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Abstract

We fit the three finestructure constants of the Standard Model with
three, in first approximation theoretically estimable parameters, 1) a
“unified scale”,turning out not equal to the Planck scale and thus only
estimable by a very speculative story, 2) a “number of layers” being
a priori the number of families, and 3) a unified coupling related to a
critical coupling on a lattice. So formally we postdict the three fine
structure constants!

In the philosophy of our model there is a physically lattice theory
with link variables taking values in a (or in the various) “small” rep-
resentations of the Standard Model Group. We argue for that these
representations function in first approximation as were the theory a
genuine SU(5) theory. Next we take into account fluctuation of the
gauge fields in the lattice and obtain a correction to the a priori SU(5)
approximation, because of course the link fluctuations not correspond-
ing any Standard model Lie algebra, but only to the SU(5), do not
exist.

The model is a development of our old anti-grand-unification model
having as its genuine gauge group, close to fundamental scale, a cross
product of the standard model group S(U(3) × U(2)) with itself, there
being one Cartesian product factor for each family.

In these old works we included the hypotesis of “multiple point
criticallity principle” which here effectively means the coupling con-
stants be critical on the lattice. Counted relative to the Higgs scale we
suggest the in our sense “unified scale” (where the deviations between
the inverse fine structure constants deviate by quantum fluctuations
being only from standard model groups, not SU(5)) makes up the 2/3
th power of the Planck scale relative to the Higgs scale, or better the
topquarkmass scale..

1 Introduction

We[9, 10, 11, 12, 8, 13, 18, 20, 40] and others[6, 7, 4, 5] have long - long
time ago - worked on fitting the fine structure constants - especially the
non-abelian ones - in a model based on the main assumptions:
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• Critical Couplings at Fundamental Scale Preferably the gauge
couplings should be at some multiple critical point for a lattice theory
at the“fundamental scale” . And it was in the spirit of that model,
that there indeed would exist a lattice theory in Nature.

• AntiGUT The gauge group was at the “fundamental scale” the Carte-
sian product G × G × ... × G of the same group G with itself, one time
for every family of fermions.

but mainly the Abelian coupling of U(1) was not so well predicted contrary
to the non-abelian ones (the attempt by Don Bennet and myself [14] got
good numbers, but the theory is a bit complicated). Further Laperashvili
and Das and Ryzhikh [16, 21, 5] have even united this type of model with
grand unification with SU(5) [16, 21]. They used also supersymmetry in
their picture.

Now it is the point of the present article to also make such a combination
of SU(5) GUT[1, 3] and the A(nti)GUT theory(AGUT= “anti grand unifi-
cation theory” meaning the type of theory with a cross product of several
copies of the standard model group, e.g. one cross product factor for each
family of fermions) just mentioned, but without SUSY. Rather we shall
here seek an SU(5)-like “unification” without taking the SU(5) theory
as really true, but rather taking the SU(5) as an approximate symme-
try appearing, because of the link variables have a form reminding of SU(5).
In fact one possible argumentation is to assume, that the link variables are
constructed as matrices (with dynamical matrix element with somewhat re-
stricted movability) for a most simple and smallest faithfull representation
(a sort of principle [26, 27, 28] of smallest link-representation). Another
similar argumentation is to use our earlier work [26, 27, 28] telling, that one
can define a concept of “small representation” so that the standard model
group[29]1 This would, taken seriosly, tell, that it is important, that the
group chosen by Nature should have small representation, and that makes
it natural that the link degrees of freedom corresponds to a “small” faithfull
representation of the standard model group. Then it turns out, that a typi-
cal such small representation is the one obtained by starting from the 5-plet
of SU(5) and restrict to the Standard Model Group as contained in SU(5).
Really the standard model group S(U(2) × U(3)) is even in the notation as

1O Raifeartaigh points out that by choosing the group among the set of groups, with
the given Lie algebra, which is “smallest” and thus have the fewest representations, but
still has the representations used by the fermions and the Higgs(es), one can claim, that
one selected the gauge group for the used theory with its fermions etc. So a sense can be
given in this way to the Standard Model Group and it turns out to be S(U(2)×U(3))
meaning the group of 5×5 matrices composed along (and around) the diagonal a U(2) and
a U(3) and then impose the condition - symbolized by the “S” - of the determinat of the
whole 5 × 5 matrix being det = 1 gets selected as having smallest faithfull representation
among all groups.
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used here an obvious subgroup of just SU(5), the notation of which- the
5 × 5 matrices - is used to write it.

In the game we proposed[26, 27, 28] to specify the Standard model group
as a group, it turns out that a cross product of several isomorphic groups
gets the same “points”(in the game of our reference [26, 27, 28] so that the
AGUT model believed in the article is on a shared first place with the single
Standard Model group) as the group itself, so a group GSMG × GSMG ×
...GSMG would be equally favoured by the our game.

. In any case the idea is, that the link variables are in terms of the
fundamental physics, that is imagined to be behind, represented by variables
like in some “small” representation [26] of the standard model group, and
that then this representation happens to be / naturally is effectively an
SU(5)-representation. This means that the link variables can formally be
interpreted as SU(5) variables; but in reality they are not. (i.e. there is
no SU(5) symmetry for turning around the matrix elements in link 5-plet,
only under the Standard Model subgroup.) There is no true SU(5)
theory in our model! But we can describe the model in terminology of
an SU(5)-theory, which is broken fundamentally. It is not broken by Higgs
mechanism as in the usual SU(5)-theories (a priori at least), but other gauge
fields than the ones in the standard model subgroup do not exist (in the first
place). There are only gauge fields corresponding to the degrees of freedom
in the standard model groups - one set for each family, however, -. (So you
must imagine either, that we really have the gauge group GSMG × GSMG ×
· · ·×GSMG with as many standrad model group factors as there are families
of fermions, 3, or you imagine there to be three layers of a usual lattice, so
that we have three links, where you usually have only one.)

In the very crudest approximaton for a lattice action - linear in the trace
of the representation matrix, the similarity to the SU(5) matrix theory is so
great, that the coupling constant ratios at the fundamental lattice theory in
the first approximation become just as in the GUT SU(5) unification scale.
However, when it now comes to perturbative corrections due to the fluctua-
tion of the lattice theory degrees of freedom, it becomes important that the
degrees of freedom present in SU(5) theory, but not in the Standard model,
are missing, and therefore cannot fluctuate. So the quantum corrections
from the fluctuation of these - in standard model not present - degrees of
freedom are lacking, and thus makes the effective couplings observed in the
continuum limit get different values from what they would have gotten in
a true SU(5) theory. Being quantum corrections one would usually treat
them perturbatively and expect them to be small. If this is indeed the case,
then the usual SU(5) predictions will be approximate! We can say that it
is the main point of present article to calculate this deviation from the exact
SU(5) predictions to the usual picture of unifying gauge couplings. Thus
the Standard Model (inverse) fine structure constants do not truly unify (at
a unification scale, but we shall talk in the present paper about an “our
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unified scale”, which is the scale at which there is unification except for our
(quantum) corrections, and that we call µU ), but we calculate the degree of
lack of unification, and even make prediction of the numerical value of
the deviation.

1.1 Character of Our Prediction(s)

The main point of the present article is really to predict the deviation from
exact SU(5) GUT at a certain scale µU at which we calculate the corrections
to the exact SU(5) inverse fine structure constants in the standard model
as due to quantum fluctuations in the lattice theory assumed to be really
physically existent at some scale. Since we predict the absolute values of the
differences between the inverse finestructure constants at the scale, we have
at this scale two numerical predictions, and thus we can afford to use one
of these predictions at the fundamental scale to fit the scale, and we shall
still have one predition left. For instance we can use the prediction at the
scale, at which the ratio of the difference 1/α2(µU ) − 1/α1 SU(5)(µU ) to the
other difference 1/α1 SU(5)(µU )−1/α3(µU ) shall be 2 to 3 (as our calculation
implies). This is illustrated on figure 1.1, and one shall remark, that the
three crossings of the inverse fine structure constant with the vertical black
line on the figure at the scale about 5. ∗ 1013GeV has been fitted, so that
the three crossings lie with the ratio 2 : 3 of the two intervals. The U(1)
inverse fine structure constant passes in between the SU(2), above it with
a piece that is proportional to 2, and the SU(3) line, then below it with
a distance proportional to 3. But having fixed the scale µU this way it is
still a very nontrivial prediction that e.g. the absolute difference between
the SU(2)-crossing and the SU(3)-crossing is just 3π/2 = 4.712385. This is
illustrated on figure 1.1.

1.2 Our Rather Simple Fitting Formulas

1.2.1 The quantum corrections breaking the approximate SU(5)

Our formulas for fitting the three inverse finestructure constants in the Stan-
dard Model in the for SU(5) adjusted notation, wherein one uses 1/α1 SU(5) =
3/5 ∗ 1/α1 SM = 3/5 ∗ cos2ΘW ∗ 1/αEM are rather simple, and concerns of
course the three Standard Model fine structure by renormalization group
transformed to a certain scale µU , which is our replacement for the unifica-
tion scale (because there is of course as we know no unification scale proper
unless one involves susy or something else extra). The choice of the scale µU

is only indirectly determined in our model, and is essentially just a fitting
parameter, although we in section 11 shall speculatively relate µU to the

Planck energy scale EP l by a crude relation
ln(

EP l
mt

)

ln(
µU
mt

)
≈ 3/2. Then at this
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Figure 1: This is the usual graph representing the three Standard Model
inverse fine structure constants with the α−1

1 being in the notation suitable
for SU(5), meaning it is 3/5 times the natural normalization, α−1

1 SU(5) =3/5∗
α−1

1 SM =3/5 ∗ α−1
EMcos2ΘW . The vertical thin line at the energy scale µU =

5∗1013GeV points out “our unified scale”, which is as can be seen not really
unifying the couplings, but rather is the scale where the ratio of the two
independent differences, α−1

2 − α−1
1 SU(5) and α−1

1 SU(5) − α−1
3 have just the

ratio 2/3 as our model predict at the “ our unification scale”. One may note
that this “our unified scale” is actually very close to, where the three inverse
couplings are nearest to each other, and in that sense an “approximate”
unification scale.
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Figure 2: Same as figure 1, but now with our prediction inserted, marked as
the number 4.712385 = 3 ∗ π/2, which is predicted to be at the “our unified
scale”the difference 1/α2 − 1/α3. Our prediction is, that just at horizontal
thin black line at 5 ∗ 1013GeV corresponding to the scale µU , given by our
fitted to the green line crossing point dividing the region between the blue
and the red in the ratio 2 to 3, we shall have the difference in ordinate
between the red and the blue crossing points with the vertical black being
3π/2.
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scale - to be fitted -

1

α1 SU(5)(µU )
=

1

α5 uncor.
− 11/5 ∗ q (1)

1

α2
(µU ) =

1

α5 uncor.
− 9/5 ∗ q (2)

1

α3(µU )
=

1

α5 uncor.
− 14/5 ∗ q, (3)

where the one parameter 1
α5 uncor.

, which could also give other names like

1

α5 bare
=

1

α5 classical
=

1

α5 uncor.
, (4)

is our replacement for the unified inverse SU(5) fine structure constant.
The symbols, which we propose uncor. = bare = classical are to tell that
this coefficient in the action functioning as the SU(5) inverse coupling is
without the quantum fluctuation couplings, i.e. it is uncorrected (= uncor.)
or “bare”. We could also define a corrected one

1

α5 cor.
=

1

α5 uncor.
− 24/5 ∗ q. (5)

The other parameter q we believe to calculate in our model with its 3
families of fermions and in a Wilson lattice in a lowest order approximation:

q = “#families′′ ∗ π/2 = 3 ∗ π/2 = 4.712385. (6)

Using this notation we could equally well use the formulation

1

α1 SU(5)(µU )
=

1

α5 cor.
+ 13/5 ∗ q (7)

1

α2(µU )
=

1

α5 cor.
+ 3 ∗ q (8)

1

α3(µU )
=

1

α5 cor.
+ 2 ∗ q. (9)

Here in fact the quatity 1
α5 cor.(µU ) is the in the analogous way to our treat-

ment of the Standard Model inverse fine structure constants formally cor-
rected SU(5)- inverse coupling to an effective one at the our unified scale
µU , but of course, since there is no SU(5), this is not so important, and
rather formal only.

1.2.2 The Critical coupling

The requirement of the gauge couplings at the fundamental scale being just
on the borderline on one or preferably more phase transitions, that are

7



welcome to be lattice artifacts, was the basic ingredient in the wroks, of
which the present one is a development[9, 10, 11, 12, 8, 13, 18, 20, 40]. In
the present work with its approximate SU(5) it may seem natural to require
the SU(5) coupling being just on the phase border for the pseudo-unified
SU(5) coupling as represented by 1

α5 uncor.
. In principle the critical coupling

depends on the lattice details, and it has to be calculated by lattice computer
calculations, but here we have for a beginning just taken an approximate
formula for the critical coupling out of our earlier works[19].

1.2.3 The “unified scale” from in lattice constant fluctuating “lat-
tice”

The fact, that has always been a bit embarrasing for GUT theories of e.g.
SU(5), namely that the unified scale turns out appreciably smaller in energy
than the Planck scale, is also embarrasing in our theory, and for rescuing it
against this problem, we propose the speculation of a strongly fluctuating
lattice. It should fluctuate in the size of the lattice constant, and we should
imagine, that in various places and moments the lattice is more or less fine.
We shall below see, that this kind of fluctuations can be used as an excuse
for the effective scale for gravity, the Planck energy scale, and that for
the Standard Model, the “our” grand unified scale (which is a replacement
for the GUT scale) can deviate from each other violently. The parameter
giving the our unified scale µU , namely the logarithm of it relative to the
weak scale MZ , namely ln( µU

MZ
) (or may be use better mt instead of MZ),

is according to our speculation given in terms of the Planck scale, which
thus is a needed input to obtain all three parameters to give the three fine
structure constants.

1.2.4 Resume of the Fitting

The three parameters, with which we fit the three Standard Model fine struc-
ture constants come in our present work from rather different speculations,
which though all should be sufficiently compatible, that we can have them
in the same model. Here we announce, in the below table, the success of
our model:

Parameter Formula From α’s Theory Deviation Section

q q=1/α2(µU ) − 1/α3(µU ) 4.618201 4.712385 -0.094±0.05 3, 3.1

1/α5 uncor.(µU ) see above 51.705 45.927 5.778± 3.5 9

ln( µU

MZ
) ln(µU

mt
) = 2

3 ∗ ln(EP l red

Mt
) 26.43 24.76 1.67± 1 11

or 0.02

In the third parameter line we put a somewhat by hand taken uncertainty
for the theoretical value, because the scales being diveded,the Planck scale
over the scale of the three families ending at low energy taken as the MZ

scale or better top-mass mt, is a ratio of rather illdefined concepts of scales
and thus at least give an uncertainty of one unit in the natural logarithm.

8



Depending on how many of the stories behind the “theory” of these
parameters the reader might buy as trustable the reader can decide with how
many parameters, we fit the three standard model (inverse) fine structure
constants. In fact the “theories” for the three different parameters are rather
independent of each other, so that a selections that some are wrong and some
are right would not at all be excluded.

1.3 Plan of Article

In the following section 2 we describe our, the assumption of lattice for the
Standard Model Group, which means that it is important also, what the
global structure of this group is, and not only the Lie algebra. According
to O’Raifaighty [29] the global structure of group is connected with the
system of allowed representations, and one thus can consider the system of
repsentations for the fermions in the standard model as a strong indication
for the special gauge group S(U(2) × U(3)).

In section 3 we perform calculations of the quantum correctons meaning
calculating zero-point fluctuations in plaquette variables, Taylor expanding
the partition function and developping a table for the contributions of the
zero point fluctuations on the continuum/effective (inverse) fine structure
constants. Strictly speaking our correction depends on the type of lattice
used, although we hope that it will be very little dependent. In the section
4 we at least mention the Wilson lattice action, which so to speak is the
lattice we have used. In section 5 we compared to an old similar quantum
fluctuation which we, Don Bennett and the present author, made many
years ago in the similar model. Also we look for checking of our too crude
estimation for what in lattice calculations is called tadpole improvements
[31], but actually is the quantum fluctuations, we consider being the main
mechanism breaking the approximate SU(5), that appeared so to speak by
accident, because the representation matrix in the links happened to have
also SU(5) symmetry, before some motions of it are restricted not to occur.

The fitting of the data - the experimentally determined fine structure
constants in the Standard Model - comes in section 6, where we first de-
termine by the requirement of the ratio of the difference between running
couplings being as we predict the scale, that must be the fundamental scale
in our model µU . It is what we can call “our unification scale” µU , but really
of course there is no true unification, since our SU(5) is only approximate.
Next we compare, if the seperations at this scale is what we predict. At the
end of the section we do it oppositely, as a check.

In section 9 we look at, if the coupling, say the approximate GUT one,
is the critical coupling. In the works, which led up to this one, this having
critical couplings were the crucial point[9, 10, 11, 12, 8, 13, 18, 20, 40]. We
shall in general postpone second order calculation, but we should mention
that a second order calculation is called for, see section 10, and presumably
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not exceedingly hard.
In section 11 we discuss the most speculative one among the parmeters

in our model, which should be obtainable in an other way than just by
the fitting fine-structure constants, namely the “scale of unification” µU .
Although it is probably the most chocking result, if one would believe our
model, that the “fundamental scale µU is not the Planck scale, then
we shall present a speculative story on in size fluctuating lattice, that shall
suggest a relation between the “fundamental scale” in our model and the
Planck one (allowing them to deviate in order of magnitude).

Finally in section 12 we conclude, but also include some thoughts about
the problems or suggestion for a quantum gravity, if we take the present
work so serious, that we must claim that the fundamental scale for the
Standard Model is the unification one, for our approximate SU(5) GUT,
even a bit low in energy compared to the usual unified scale. A lattice, which
fluctuates even in scale in some background of a manifold or a projective
space. If one could have the lattice imbedded in the continuum space wtih
some symmetry including scalings, there might be a chanse of having a
different way to average over fluctuations in the lattice constant size (i.
e. coping with a fluctuating “fundamental scale”) for the fine structure
constants gauge theories and for the gravity. Such different averaging can
seperate the different scales to be observed for the two groups of forces,the
Standard Model ones , and gravity.

2 Our model

Our concrete model is, that we have in Nature a fundamental lattice with
an energy scale µU crorresponding to the lattice constant 1/µU (with c =
~ = 1), the lattice being the Wilson one, say. This lattice is “tripled up” in
the sense, that there is really one Wilson lattice for each family of fermions.
Calling the number of families Ngen = 3 one can think of it as the genuine
group being not the Standard Model Group itself SMG, but its third power
SMG × SMG × SMG, the true gauge group in our model

Gfull = SMG × SMG × SMG (10)

where SMG = S(U(1) × U(3)) (11)

= (R × SU(2) × SU(3))/Zapp (12)

where Zapp = {(r, U2, U3)|∃n ∈ Z[(r, U2, U3) = (2π, −1, exp(i2π/3)1)n]}

Alternatively one might think of a model like this as there being three usual
lattices lying parallel to each other (seperated in an extra dimension, say),
It could therefore be tempting to call them “layers” of lattices.

In any case we imagine, that somehow or another the Gfull is broken
down to its diagonal subgroup, which is (isomorphic to) the standard Model
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group SMG. In fact this diagonal subgroup is defined as

SMGdiag = the subgroup of Gfullof elements of form (g, g, g)

SMGdiag = {(g, g, g) ∈ Gfull = SMG × SMG × SMG|g ∈ GSMG}.

(we tend to use both notations SMG and GSMG for the same,so simply
SMG = GSMG = S(U(2) × U(3))). This breaking down of Gfull to the
diagonal SMGdiag can easily be imagined to come about by a little bit of
mixing up the different layers locally all over. ( “confusion” [23, 24, 25]). In
the section 11 we shall speculate a bit more complicated about the lattice
structure, because we shall propose that there is even at the lattice scale
diffeomorphism symmetry or at least some symmetry, like the symmetry
of a projective space time containing (local or global) scalings. This then
means that we imagine the lattice to fluctuate in both size and position,
so that even if it is Wilson type very locally, it varies in both orientation
and size of the lattice constant very strongly from place to place. If it is so,
and it might be unrealistic to imagine that it is not fluctuating, if we shall
have a so usual gravity theory with its reparametrisation fluctuating (as one
should imagine the gauge of any gauge theory to really fluctuate [37]), e.g.
the “fundamental scale” µU we calculate below by fitting, must be at the
end considered an average value of the “fundamental scale” while the local
fundamental scale fluctuates.

But apart from this story of connecting our model to gravity, the fluc-
tuations might be ignored, and a lattice with fixed lattice constant of order
a ∼ 1/µU would be o.k. (But remember: we fit “the our unification scale”
like the one in usual exact SU(5) to be appeciably lower in energy than the
Planckscale.)

2.1 The “small” representations used in the links and pla-
quettes

The crucial special assumtption for this article is to assume, that the degrees
of freedom of the lattice-links representing the element of the standard model
group SMG is the matrix elements of a matrix representation of this SMG
on a minimal faithfull representation. It is then assumed that these matrix
elements are restricted to only (be able to) move quite freely along the image
of the SMG into the “small” representation used, while motion in other
directions is strongly restricted (perhaps by very high potentials) but at least
we shall ignore them, if there is any fluctuations, except along the standard
model group, so to speak. The idea of thinking of such an imbedding is
to note, that in such an imbedding we have a way of thinking of an SU(5)
representation too, because the “small” reprensentation, we have in mind,
is the one, that is the 5 plet reprentation of SU(5). It is of course also a
representation of the SMG ⊂ SU(5). Now a really crucial point is, that we

11



imagine, that once the SMG has been represented this SU(5) simulating
way, it tends to inherit an SU(5) symmetry, even though our model has no
true SU(5) symmetry postulated. It is only, that it seems a bit similar
in its simplest reprentaion. A bit more concretely we may say: we use, that
the smoothness assumed also for the Lagrangian density as function of the
plaquette- variables - which are also postulated to be formulated in 5 × 5
matrices - is a smoothness defined from the 5 × 5 matrices. When we then
Taylor expand and from that look for the form of the plaquette action, we
come to the trace of the 5 × 5 matrix just as in the usual SU(5) theory. By
this we have thus “sneaked in” an approximate SU(5) symmetry. This
is really the crux of matter of our model: The SU(5) symmetry is not a
symmetry imposed on Nature but rather an approximate symmetry of
the way, we suggested to be the most natural way to represent the link and
plaquette degrees of freedom for a model, that basically is only symmetric
under the standard model group SMG. Thus there is of course already in
our picture built in a breaking of the SU(5) symmetry. Most importantly
the degrees of freedom from the components in the SU(5) theory
fields not also in the Standard Model Group SMG, are lacking.

For us this then means, that there are no quantum fluctuations in the
plaquette or link variables corresponding to these lacking degrees of freedom.
The concern of the present article is to evaluate, how these lacking modes
lead to lakcing some quantum corrections for the fine structure constants,
and these corrections from the lacking modes of oscillations are not quite
equally big for the three different Standard model gauge couplings. This is
then according to us the reason for breaking in these couplings of the - of
course fundamentally non-existing - SU(5) symmetry.

2.2 The Plaquette Trace Action

As is usual, once you formulate your gauge theory on a lattice, you for
smoothness reasons let the plaquette action typically be a linear function
in the trace of the matrix representing the plaquette group element. This
mainly from smoothness decided action will for the use of the reprenstation
of the standard model group SMG on the 5-plet function as if it were in
SU(5)-thory. Actually it leads to couplings for the three sub-lie-algebras
corresponding to the three Lie algebras U(1), SU(2) , and SU(3) being
equal to each other in the same notation, in which they are equal in true
SU(5). So at first we have just from these simplicity and Taylor expansion
type arguments gotten effective SU(5) symmetry! The plaquette action,
as we shall use it to give the more precise reslult including also quantum
fluctuations H, takes the form

W� = ReT r (exp(i(h + H))) , (13)
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where both h and H are the Lie algebra valued fields written as represented
by the representation on the 5-plet. The h symbolize the field for which
we want to estimate an effective action, we can think of it as representing
a continuous field translated into the lattice and matrx formulation. On
the other hand the part H should describe the quantum fluctuations, i.e.
quantum mechanically of course even in a situation, in which you classically
describe the situation by the field from which h has come. There is in
reallity a superposition of fields configurations. That is to say, that the
plaquette or link at a certain position in space time deviate appreciably
from the confuguration given by h which is the “naive” translation of the
ansatz field considered to the lattice. It is this deviation we call H. In first
approximation - and we shall be satisfied with that - the fluctuation part H
will be simply the fluctuation in vacuum.

Now it is our calculational approach to Taylor expand the trace-action
(13) to include the first term, which even on the average get non-trivial
contribution from the fluctuations. We shall namely in our calculation show,
that it is this lowest non-trivial order term in the fluctuations, which gives
the deviation from SU(5)-symmetry. And what really shall come out is,
that indeed this contribtuion also fits with the deviation from SU(5)-
symmetry of the (inverse) fine structure constants as measured under use
of the Standard Model.

It is important for the present work to calculate, that the fluctuation in
one component of H is

1

2
< H2

one component > =
π

2
α(in one layer lattice) (14)

and we shall do it in the following subsection. The reason we gave the
value for 1/2 of the fluctuation, is that there is a factor 1/2 extra from
the Taylor expansion, so that the counting of fluctuation contributuion in
the expression T r(H2h2) is to be multiplied by 1/2 to give the correction
to the relevant inverse fine structire constant. To the approximation that
we in zeroth orde have exact SU(5) we do not have to distinguish, which
precise one of the various fine structure constants we shall use. This is also
something, which would require a bit more thinking / calculation and we
would like to postpone it for later article(see section 10 ).

Crucial is our Taylor expansion of the plaquette action (13),

W� = Re(T r(exp(i(h + H))) (15)

= ReT r[1] + Re(iT r[(h + H)]) +
1

2
Re(−T r[(h + H)2]) + ...

+
1

6
Re(−iT r[(h + H)3]) +

1

24
ReT r[(h + H)4] + ...

The fields both the fluctuation H and the “test” part h correspond to unitary
representation matrices, are Hermitean as 5 × 5 matrices. Thus taking the
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real part removes the odd power terms, so they do not contribute, leaving
in the above expansion up to 4th power,of interest, only the terms with
2nd and fourth power. Now if we are interested in the corrections to the
effective (continuum) finestructure constants, we only have interest in the
terms of even order in h, and thus even from the fourth ordert term we only
care for those six terms in the expnansion of (h + H)4, which have two h
factors and two H factors. Among the a priori 24 =16 terms in the (h+H)4

development, there are only 6 terms with h to just second power, and if
the h and H commuted, these 6 terms would be identical. Indeed h and
H do not commute, but when we take the average over the distribution of
the fluctuations of H, it turns out that these terms after all have the same
average, as if h and H did commute.

The terms to be kept for effective fine structure constant calculations
purposes are:

W� = ... − 1

2
ReT r[h2] + ... +

1

24
ReT r[HHhh(in any of 6 orders)] + ...

if commuting =
1

2
(ReT r[h2] + Re

1

2
T r[hhHH] + . (16)

In the last line we cancelled the factor 6 in the 24 by having here only
one term, so this is achievable only, if the h and H “effectively” - i.e after
averaging over the fluctuating H - do commute.

The full plaquette action shall have a coefficient β in front of it, of course.
To connect the continuum theory with Lagrangian density

L(x) = − 1

4g2
Fµν(x)F µν(x)a (17)

= −α−1/(16π) ∗ Fµν(x)F µν(x) (18)

we should, say, using a normalization by

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (19)

identify for a link h− in the µ direction

h− = a2Aµ (20)

and h� = Σaround the boxh− (to linear approximation) (21)

Calculationally it may be most easy to avoid problems with normalization
to extract the ratio of the second of these two terms to the first. The first
of the two represent the naive(=lowest order) extraction of the continuum
coupling from the lattice, while the second represents the lowest order effect
of the fluctuations.
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3 Extraction of Coupling Corrections

Once we have decided to look for the ratio of the second order and the fourth
order terms in the Taylor expansion of the Plaquette action (16), we should
be able to extract the relative correction due to inclusion of the quantum
fluctuations by just putting in some ansatz for fields alone meaning a set up
of one of the three standard model sub-group fields at a time, and even the
normalization (of h) is then not important for this relative size of the two
terms, while the size of the fluctuations have to be calculated, though.

Now we want to estimate the three Standard model finestructure con-
stants - or rather their ratios - by putting on a “test field” which for the
plaquette action, on which we think, is denoted h = h�, and if we think of
a purely spatial plaquette, is really a magnetic field of that plaquette. This
magnetic field is thought upon in the notation with the coupling constant
absored into the field, so that the action actually has an inverse finestructure
constant contained as factor to compensate the absorbed charge-factor e0

say,

S = ... +
∑

plaquettes

1

2πα0
∗ ReT r(U(�)) (22)

or continuum S ∝
∫

1

16πα0
FµνF µνd4x. (23)

(see section 4 for why just 1
2πα in front of the ReT r(U�).)

Thus the inverse fine structure constant are found from how the action
(or say the magnetic energy) varies approximately linearly with the square of
the test field imposed h2. If the fluctuation field was SU(5)-invariant - as it
would of course be in a theory without any breaking of the SU(5)-symmetry,
the three fine structure constants in the “SU(5)” invariant notation, which
is wellknown to deviate from the more natural one by the replacement:

1

α1

∣

∣

∣

∣

natural
=

1

α1

∣

∣

∣

∣

SU(5)
∗ 5

3
, (24)

would be equal to each other all three.
The test-fields, we shall use, and which for the non-abelian groups SU(2)

and SU(3) corresponds to the coupling definitions

S =

∫

(− 1

4e2
2

1

2
T rmatrix,2×2FµνF µν) − 1

4e2
3

1

2
T rmatrix,3×3(FµνF µν) + ...)d4x
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could be

For SU(2) : hSU(2) =
1√
2















0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0















, (25)

for SU(3) : hSU(3) =
1√
2















0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 0















, (26)

for U(1) : hU(1) =
1√
30















3 0 0 0 0
0 3 0 0 0
0 0 −2 0 0
0 0 0 −2 0
0 0 0 = −2















(27)

All the three proposed test-matrices h have been normalized, so that
their squares

h2
U(1) =

1

30
∗ diag(9, 9, 4, 4, 4) (28)

h2
SU(2) =

1

2
diag(1, 1, 0.0.0) (29)

h2
SU(3) =

1

2
diag(0.0., 1, 1, 0) (30)

become of trace equal to unity

T r(h2
U(1)) = 1 (31)

T r(h2
SU(2)) = 1 (32)

T r(h2
SU(3)) = 1. (33)

It is this normalization that ensures that the three couplings all become equal
in the exact SU(5) limit. (From the unbroken symmetry under the Standard
model group it will not matter which component under one of the three
standard model groups is used as test- field, as long as it is a combination
of the components of just that one of the three groups U(1), SU(2) and
SU(3).) These fields h are meant to be added to the already fluctuating
field, but not to flutuate themselves, and then dividing the thereby achieved
(magnetic) energy increase or action decrease we shall obtain (apart from a
constant factor) the inverse finestructure constant for the subgroup of the
Standard Model in question.
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3.1 Difference between our Approximate SU(5) and usual
SU(5).

In the very first approximation - the SU(5)-invariant one - there is the
same amount of fluctuation in all the 24 compponents of the SU(5)-Lie
algebra, actually each of them have the average of the field squared for one
component 1/2∗ < H2

one component >= π
2 ∗ α5. But in the philosophy,

that only the Standard model components really exist, we must
in our model only have fluctuations in these components.

The difference between our model, in which there truly speaking only is
gauge symmetry by the Standard Model, and not even fields corresponding
to the full SU(5), and the usual SU(5) theory comes in by restricting
the fluctuation field H in our model to only fluctuate in Standard
Model degrees of freedom.

Actually the Lie algebra components, which are in the SU(5)-Lie-algebra
but not in the Standard model one, can be in the notation, we have chosen
here (27), be represented by the matrix element being put to zero in the
following matrix 5 × 5:















· · 0 0 0
· · 0 0 0
0 0 · · ·
0 0 · · ·
0 0 · · ·















I.e. the difference between our model and the SU(5) symmetric model
is, that the fluctuation in the vacuum fields on the 2 times 6 points in this
matrix marked by the 0 ’s is suppressed in our model, while in the SU(5)
symmetric H the fluctuation is the same size in all the matrix element except
for the detail that the trace of H is restricted to be zero,

tr(H) = 0. (34)

In both usual SU(5) and ours the trace is zero,but the 12 element marked
with zero are restricted from fluctuating only in our model.

The technique to estimate what happens when one puts up in a region a
smooth continium field is simply, that we add the field due to the continuum
field, F say, translated to the matrix h to the fluctuating field H. That is
to say we consider the configuration:

U(�) = exp(i(H + h)), (35)

then to extract magnetic energy or the action of the plaquette, we assume
the usual type of real part of the trace action:

Splaquette ∝ ReT r(U(�)), (36)

and look for the terms in the action change, which is of second order in the
continuum extra field representing the continuum field. The coefficient to
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this second order h2 to give the action change due to the continuum field
is simply proportional to the inverse fine structure constant for the type of
field we used.

3.2 Expansion of exp(i(H + h))

The Taylor expansion of the exponential is wellknown and we only have to
keep the terms of second order in h, and we shall not go further than to
second order in H, so we only need to expand to fourth order in the sum
H + h.

In fact we generelly have

ReT r(exp(i(H + h)) = ReT r(1) +
1

2
ReT r((i(H + h))2) +

1

24
ReT r((i(H + h))4),

(odd powers give zero).

(37)

Dropping but the h2 order terms we get

Splaquette|h2−part = ReT r(U(�))|h2−part (38)

=
1

2
ReT r(h2) +

1

24
∗ 6ReT r(h2H2) (39)

( provided that h and H commute)

Otherwise : =
1

2
ReT r(h2) +

1

24
∗
(

4ReT r(h2H2) + 2ReT r(hHhH)
)

=
1

2
ReT r(h2) +

1

6
ReT r(h2H2) +

1

12
ReT r(hHhH). (40)

3.3 Classification of Fluctuations

For the presentation of the calculation of the quantum fluctuation correc-
tions to the three different fine stracture constants in the Standard Model,
we divide the fluctuations into four classes. Have in mind that in crudest
approximation the vacuum fluctuations in the SU(5) symmetric approxima-
tion consists of independent fluctuations after all the 24 basis vectors in a
basis for the SU(5) Lie algebra. Imaginig having chosen this basis so that
the 12 basis vectors are also basis vectors for the three sub Lie algebras corre-
sponding to the three Standard Model groups, we can divide the fluctuation
into four sets, denoted symbolically by H1 for the fluctuation in the single
mode of the U(1) subgroup, H2 for the fluctuation in the SU(2) degrees
of freedom, and H3 for the SU(3) fluctuations, and then for us the most
interesting class Hint, namely those remaining fluctuations in the SU(5)
Lie algebra, which do not fall into any of the three welknown subgroups of
SU(5) in the Standard model, and which in our model are declared not to
exist in Nature and thus must be removed. I.e. these fluctuations under
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the name Hint are put to zero. With such a classification we can divide the
fourth order term into a series in principle of 3 × 4 combinations. In fact
we can ask for any of the three finestructure constants for which we want
to calculate the quantum fluctuation corrections, what the contribution is
from one of any of the four fluctuation classses, H1, H2, H3, and Hint.

3.4 Calculation description

We want to calculate the shift in the three inverse fine structure constants

of the Standrd Model by first calculate the relative changes
∆α−1

i

α−1
i

of these

inverse finestructure constants 1/αi for i = 1, 2, 3 denoting respctively the
subgroups U(1), SU(2), and SU(3). Since we are now computing the “cor-
rection” after the very lowest order approximation is considered to be exact
SU(5) symmetry, we can in principle be careless with which finstructure con-
stants we use in this calculation, when performed at the unification point
of energy scale, because at this scale at zeroth approximation all three and
even the α5 are equal.

We shall first caculate the shifts ∆α−1
i (µU ) from their relative shifts. For

this we need the very important 1/2∗ < H2
one component > = π

2 α5 (but it

is here we can be careless to our approximation with which α1 you replace
this α5(µu)), and the factor π

2 is explained below in section 4.
Thus the shift of the inverse fine structure constant becomes

∆
1

αi(µU )
=

1

αi(µU )
∗ ReT r(H2h2

i )

2ReT r(h2
i )

(for effective commutativity) (41)

=
1

αi(µU )
∗ < H2

one component > ∗ ReT r(H2h2
i )

2ReT r(h2
i )∗ < H2

one component >

=
π

2
∗ ReT r(H2h2

i )

2ReT r(h2
i )∗ < H2

one component >
. (42)

One can think of the fraction
ReT r(H2h2

i
)

2ReT r(h2
i
)∗<H2

one component
>

as a kind of

counting how many components of the fluctuation contribute to the correc-
tion of the ith inverse fine structure constant,

“Eff. # < H2 > contributions”
=

def
ReT r(H2h2

i )

2ReT r(h2
i )∗ < H2

one component >
(43)

=
∑

j=1,2,3

“Eff. # < H2 > contributions”|Hj
.

Here of course

“Eff. # < H2 > contributions”|Hj

=
def <

ReT r(H2
j h2

i )

2ReT r(h2
i )∗ < H2

one component >
>
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From α−1
1 α−1

2 α−1
3

the Hi hU(1) hsu(2) hSU(3)

H1
2∗81+3∗16

900
2∗9
2∗30

4
30

=7/30 =3/10 =2/15

H2
3∗9∗2
3∗30

2∗3
2∗2 0

=9/10 =3/2 =0

H3
4∗3∗8
3∗30 0 8

3
=16/15 =0 =8/3

sum 11/5 9/5 14/5

Hint
54+24

30 3 2
=13/5 =3 =2

check 24/5 24/5 24/5

half s. 11/10 9/10 7/5
half Hint 13/10 3/2 1

Table 1: Table of the numbers
ReT r(H2

i h2
j )

2∗ReT r(h2
j
)<H2

i
>

first without the explicit

denominator 2, but then at the very two lowest lines the half is taken for
sum of the contribution from the Standard Model group fluctuations and
for the ones from the Hint which is missing in the standard model.

If we include into this sum also the Hint fluctuations, we get the corrections
under unbroken SU(5) and in this case the sum of these “ Eff. # < H2 > contributions”
should for all three inverse fine structure constants be 24/5. There are 24
components for full SU(5), but in order to contribute to the trace T r a
factor 1 you need 5 1’s (along the diagonal).

3.5 The table

By a little thinking of, that we want the average of these fluctuations which
are independent, except along the diagonal, and that elements in the ma-
trix related by permuting column number with row number are strongly
correlated as must be the case to ensure hermiticity of the fluctuating fields
H = H†, we find out that one gets the same result whatever the order in
the matrix product, so that effectively h and H commute after all.

Let us now list a table these “‘Eff. # < H2 > contributions” and their
calculations:

The numbers in this table are easily obtained when having in mind when
the trace is of the form T r(H2h2) because we can then simply evaluate the
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traces by using the following diagonal matrices:

< H2
1 > =

1

30
∗ diag(9, 9, 4, 4, 4) (44)

< T r(H2
1 ) > = 1 (45)

< H2
2 > =

3

2
∗ diag(1, 1, 0, 0, 0) (46)

< T r(H2
2 ) > = 3 (47)

< H2
3 > =

8

3
diag(0, 0, 1, 1, 1) (48)

< T r(H2
3 ) > = 8 (49)

< H2
int > = diag(3, 3, 2, 2, 2) (50)

< T r(H2
int) > = 12 (51)

combined with the squares of the ansatz matrices

h2
U(1) =

1

30
diag(9, 9, 4, 4, 4) (52)

T r(h2
u(1)) = 1 (53)

h2
SU(2) = diag(1/2, 1/2, 0, 0, 0) (54)

tr(h2
SU(2)) = 1 (55)

h2
SU(3) = diag(0, 0, 1/2, 1/2, 0) (56)

T r(h2
SU(3)) = 1 (57)

3.6 The Problem with commutation

The above multiplication to make the table is o.k. if the h’s and H’s indeed
commute. Effectively, however, we can show that by the averaging, we do
end up as if they commuted:

The h’s, i.e. the ansatz matrices, we can simply choose diagonal, because
that is just to select an appropriate basis vector for the group one wants. If
the fluctuation field is a diagonal one it is then indeed commuting, but if we
consider an off-diagonal component of an Hi field, then we can argue that
it leads to a product of the two diagonal elements in the h and this leads
in the special cases we consider to taking trace of an h which is zero. So in
pracsis it is as if we had commutation, almost by accident.

4 Wilson Action

We shall use the notation for the single layer (our model has three layers
corresponding to three families) Wilson lattice, being related to a continuum
theory(we here leave the gauge group open) and with the charge absorbed
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into the field F µν(x) (containing magnetic ~B and electric part ~E with their
g absorbed):

If we use a notation, in which the Aµ(x) gauge fields are already Lie-
algabra valued fields - or for our U(N) groups of interest here equivalently
matrices - and thus can define basis-vector matrices λa and Ta so that

Aµ(x) = (Σ)Aa
µ

λa

2
(58)

= (Σ)Aa
µTa (59)

where, say, for off-diagonal λ1 =















0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0















(60)

λ2 =















0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0















(61)

and with normalization T r(λaλb) = 2δab (62)

and T r(TaTb) = 1/2 ∗ δab (63)

you can by interpreting the Aµ(x) fields as representation in some represen-
tation R construct unitary matrices in the crude continuum limit identifica-
tion

Uµ(x) = exp(iaAµ(x)) (64)

in the usual way require the

SW ilson[U ] = − β

2N
Σ�(W� + W ∗

�) (65)

=
a4β

4N

∫

d4x

a4
trFµνFνµ + ... (66)

where W� = tr(Uµ(x)Uν(x + µ̂)U †(x + ν̂)U †(x)) (67)

= tr(oredered product around the plaquette �)

obtain using (17) S =
∫

− 1
4g2 FµνF νµd4x the relation

β

2N
=

1

g2
. (68)

or
β

N
=

1

2πα
. (69)
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And this leads to that the fluctuating part H = (Σ)HaTa = (Σ)Ha λa

2 of
the exponent in the plaquette variable

U� = exp(iΣHa λa

2
) (70)

goes into the action with

Σ�

β

N
Retr exp(iΣHa λa

2
) (71)

= Σ�

1

2πα
Retr exp(iΣHa λa

2
) (72)

≈
second o.

1

2πα
Σ�Retr(−1

2
(ΣaHa λa

2
)2)(73)

=
1

4πα
Σ�Σa(Ha)2/2 (74)

= Σ� a
1

8πα
(Ha)2 (75)

So if the plaquettes were not coupled - what they though are - then in the
partition function / the Euclidean path integral which is

Z =

∫

DU exp(−βS[U ]) (76)

≈ Π� a exp(− 1

8πα
∗ (Ha)2) (77)

where DU is the Haar measure, the fluctuation of a plaquette variable
(exponent) Ha would be given as < (Ha)2 > (no summation) =8πα/2
(when restriction between the plaquette variables were neglected), since
∫

x2 exp(−Kx2)dx
∫

exp(−Kx2)dx
= 1/(2K). But of course they are connected so that there

are only half the plaquette variables,which are independent. This can actu-
ally be seen to lead to that the distribution of the partition function distrib-
tuion become twise as narrow measure in the square Ha average: So in the
lattice partition faction or the Euklideanized path integral the fluctuation is

< (Ha)2 > (no summation) = 8πα/2/2 = 2πα. (78)

We here used that the plaquette variables, say Ha(�) for the different
plaquettes � are not independently integrated over. On the contrary for each
cube in the lattice there is a constraint which linearized means that the sum
of six plaquaette variable for the plaquettes around the cube is restricted
to be zero. Since there in 4 dimensions are 6 plaquettes per site and 4
cubes, this restriction would in first go mean that there per site were only
2 independent plaquette variables, but that is, however, not true, because
there is a constraint between the four cube-constraints on the plaquettes. So
in reality there is per site 3 independent constrains on 6 a priori plaquette
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variables. This gives that the average of the square (Ha)2 of a (Gaussian
distributed) plaquaette variable get reduced by a factor 6 to (6-3) meaning
a factor 2. Simplifying to just 2 variables to get restricted to 1 independent
we could just think of a Gaussian distribution about the origo in a plane,
and that we then restrict the at first two dimensional to a diagonal - a
single dimension - being a restriction symmetric between the two orinal
variables thought of as the coordinates. Then the restricted distribtuion on
the symmetric diagonal would project into one of the coordinate axes with
the average of the saquare diminished by a factor 2.

The meaning of our basis choice for defining our lattice variables Ha

could be illustrated by asking, what is now the calculated average of the
square of an off diagonal element in the 5 × 5 matrix. E.g. for matrix
element row 1 column 2 we get

< |Hrow 1 column 2|2 > = < (H1/2)2 + (H2/2)2 > (79)

= 1/2 ∗ 2πα = πα. (80)

It is such an - most easy off diagonal element we denote by Hone component
and its numerical average square is thus for one layer

< |Hone component|2 > |one layer = πα. (81)

Want
1

2
< |Hone component|2 > |one layer = π/2 ∗ α. (82)

The reason we want this half of the average square of the matrix element in
the 5×5 matrix, is that in the Taylor expansion (39) has a factor 2 deviation
between the two terms,which we shall compare.

4.1 Our Relative Correction

In the calculation of the relative correction to the inverse exact SU(5) fine
structure constants we need the ratio of the two terms (39) and the correction
term comes from the Taylor expansion as

“ correction term” =
1

4
∗ tr(h2H2)(if commuting effectively)

while the corresponding “uncorrected” =
1

2
tr(h2). (83)

4.2 On Table

Use the numbers from thee table being just traces of the products of the
diagonal matrices, which are noramlized so that their traces are 1 for the h2

and the dimension of the Lie Group for the H2
i - normalizes the difference

1
α2

− 1
α3

to one “unit” ignoring yet the factor 3 of number of families, and
the hereby absorbed denominator 2, being

The “unit” =
π

2
(84)

24



now in the notation with “Re Tr” (in which it would at first have been π.
So the prediction will be that the difference at the unifying scale of the two
nonabelian inverse fine strucutre constants - which had number 1 (when the
explicit 1/2 not included - will be π

2 for only one family, but 3∗π/2 for three
families.

5 Compare with Old Work with Bennett,and with
Computer works

Since it is so crucial for our prediction that we calculate the absolute size
of the quantum correction,our q = 3 ∗ π/2 correctly and that it is indeed
such a quantum correction effect,we shall here compare it to an old work
with Don Bennett, though only calculating this correction for simple groups
SU(3) and SU(2), but it checks the absolute size. That the physics of this
type of quantum correction works even with a background of an extensive
computer calculation is seen in the next subsection 5.1 In my old work with
Don Bennett [13] arXiv:hep-ph/9311321v1 “Predictions for Nonabelian Fine
Structure Constants from Multicriticality” we in fact presented the same
correction, which we use here and even had the normalization included and
used that the correction to the inverse fine structure constants are

1

α
→ 1

α
(1 − Cf πα) (85)

=
1

α
− Cf π (86)

where Cf means the quadratic Cassimir in the fundamental representation
of the group in question. In fact we find in this article:

C
SU(2)
f =

3

4
(87)

C
SU(3)
f =

4

3
(88)

5.1 Tadpole correction calculations

In fact the quatity < H2
i >, which is so crucial to us to get estimated, is

a quantity needed to make the so called tad-pole improvements for lattice
calculations[30]. In the calculation by Niyazi eta. [31] we find some computer
study, that also reach the quantity u0 defined by

u4
0 =

〈

1

N
T r(Up(�))

〉

, (89)

or as being the average value in the fluctuating lattice (in vaccum) for a link
variable. They present as a result of their numerical studies in a region of
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β’s around β = 7.5 in their nottation meaning 1/α3 = 7.5/5 ∗ 2π = 9.42477:

u0(β) = 0.87010 + 0.03721∆β − 0.01223(∆β)2 . (90)

where ∆β = β − 7.3.
On the basis of the crudest approximations as speculated in our section

4 we expect the u0(β) to be of the form

u4
0(β) = 1 − C

β
(91)

needing then C = 7.3 ∗ (1 − 0.870104) (92)

= 7.3 ∗ (1 − 0.057316) (93)

= 3.1159. (94)

If so, shift ∆
1

α3
= C/3 ∗ 2π ∗ (1 − 2 ∗ 4

20
) (95)

= C ∗ 2π/5 (96)

= 3.9155 (97)

≈ 4.1888 (98)

= 8/3 ∗ π/2 (99)

(here the correction factor comes from our (68) , correction for a Nc = 3 in
the notation of Niyazi et a.,and correction because the continuum coupling -
the α3 -gets a contribution from a lattice action term with double plaquettes
having a coefficient β/20 in first approximation and contribtuiing 8 times as
much as the “main Wilson term”) If the inverse β type fitting here is correct,
then the derivative being the coefficiient on the second term 0.03721∆β
should be

d

dβ
u0(β) =

d

dβ
4

√

1 − C

β
(100)

=
1

4
(1 − C

β
)−3/4 ∗ (

C

β2
) (101)

=
1

4
u−3

0 ∗ C/β2 (102)

=
1

4
C/7.32/0.870103 (103)

= C ∗ 0.00712 (104)

= 0.022190. (105)

This is a little bit lower than the 0.03721.
From formula (2) in reference [31] we see that Niayzi et al. uses the N

included in the action explicitely so that for SU(3) their β = 3βwithout theN ,so
e.g. the β = 7.3 where they worked would mean in the notation without
the N included in the definition 7.3/3 = 2.4333. Then since in the usual
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notation which Niayzy et al.seems to use one has e.g. according to [32]
β = 2Nc

g2
s

implying

1

α3
=

4π

g2
s

= 2πβwith no Nc notation (106)

But there is a further point in extracting the fine structure constant used
in the work by Nyaizi et al: They use Ĺ’uscher-Weisz action which even in
the large β = βpl limit has an extra term consisting of double plachette
actions with a coefficient which according to [33] is given by the

βrt = − βpl

20u2
0

∗ (1 + 0.4905α3) (107)

S[U ] = βplΣrt
1

3
ReT r(1 − Upl) (108)

+ βrtΣrt
1

3
Re(1 − Urt) (109)

+ βpgΣpg
1

3
ReT r(1 − Upg) (110)

so βeff |lowest order = βpl ∗ (1 − 1

20
∗ 4 ∗ 2) (111)

= βpl ∗ 3

5
(112)

So this would mean we shall use (69), but with β/N put to 3/5 ∗ βpl/3. The
case β = 7.3 in the notation of [31] corresponds then to

2π ∗ 2.433333 =
1

α3
(113)

giving 1/α3 = 15.2890 forgetting the 3/5

so the u4
0 = 0.870104 = 0.573161057(114)

will correct by15.2890 ∗ (1 − 0.870104) = 6.25597 (115)

which should be π/2 ∗ 8/3 = 4.18878 (116)

However,when we now remember the inclusion of the effect of the double
plaquette term at least in the weak coupling limit giving the factor 3/5, then
instead to Niyazi et al. ’s β = 7.3:

βtrue = 7.3/3 ∗ 3/5 (117)

= 7.3/5 (118)

= 1.46 (119)

giving
1

α3
= 2πβtrue (120)

= 9.1734 (121)

and shift by 9.1734 ∗ (1 − 0.870104) = 3.91556 (122)

again compare to 8/3 ∗ π/2 = 4.188787 (123)
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Now there is very little difference,so that we can consider it, that this
extraction from the calculation of the u0 became a test of our calculation of
the correction from loop corrections being so crucial for the present work.

Let us take yet an example namely βNyaizi = 7.7,it gives β = βNyaizi/3∗
3/5 = 1.54 and 1/α3 = 2π ∗ 1.54 = 9.6761. Now we had for 7.7, u0 = 0.8803
and thus 1−u4

0 = 1−0.88034 = 0.399486 giving the change of the 9.6761 by
3.8655. Still close to 4.1887 (But I do not like it got further away from this
4.1887, when the coupling got weaker, because we expect our values exact
in the weak coupling limit).

6 Fitting

The first step in our fitting of our model is to calculate the “unifying” scale
µu, at which the ratios between the differences between the inverse fine
structure constants for the three subgroups of the Standard Model group
is the one predicted from our calculation of the quantum fluctuation cor-
rections. In fact the three inverse fine structure constants shall lie on the
number axis as the numbers (2, 13/5, 3) corresponding to the subgroups
(SU(3), U(1), SU(2), where we have chosen the SU(5)-normalisation for the
U(1)-finstructure constant. The relation is expressed in terms of the two
independent differences, that can be formed. Let us , e.g., say

1
α2

− 1
α1 SU(5)

3 − 13/5
=

1
α1 SU(5)

− 1
α3

13/5 − 2
(124)

⇒ 1

α2
− 1

α1 SU(5)
=

2

3
∗ (

1

α1 SU(5)
− 1

α3
) (125)

⇒ 1

α2
− 5

3
∗ 1

α1 SU(5)
+ 2/3 ∗ 1

α3
= 0 (126)

Expressing the 1
αi

’s as

1

αi(µ)
=

1

αi(MZ)
− bi

2π
ln

(

µ

MZ

)

+ ... (127)

with bSM
i = (41/10, −19/6, −7), (128)

this relation for the αi(µu) ’s is written for the MZ -scale finestructure con-
stants as

1

α2(MZ)
− 5

3
∗ 1

α1 SU(5)(MZ)
+ 2/3 ∗ 1

α3(MZ)
= (b2 − 5

3
b1 + 2/3 ∗ b3)/(2π) ∗ ln

(

µu

MZ

)

.

Inserting the values obtained for the MZ inverse fine structure constants
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this becomes:

29.57 ± 0.06% − 5

3
∗ 59.00 ± 0.02% +

2

3
∗ 8.446 ± 0.6% =

−19/6 − 5/3 ∗ 41/10 + 2/3 ∗ (−7)

2π
∗

∗ ln
µu

MZ

−63.10 = −44/3/6.2832 ln
µu

MZ
(129)

⇒ ln
µu

MZ
= 27.03 (130)

⇒ µu

MZ
= 5.482 ∗ 1011 (131)

Using MZ = 91.1876GeV (132)

thus µu = 5.00 ∗ 1013 (133)

6.1 Table for inverse fine structure constants and our fitting

In the table 6.1 we go through the calculation of first determine the our
unification scale by requiring the ratios of the two relative deviations from
true SU(5) symmetry to be in the ratio required by our model. This we
have shown to be done by requiring the linear combination of the three in-
verse finestructure constants at this unifying scale to make zero the linear
combination of the inverse fine structure constants having the coefficients
(−5/3, 1, 2/3) for respectively (1/α1 SU(5), 1/α2, 1/α3). As a check of our
model we work out, by correcting for the quantum fluctuations in the in-
verse fine structure constant, to reproduce the two 1/α5’s, namely the one
without quantum corrections - the bare SU(5) inverse fine structure con-
stant - and the ‘èffective ” SU(5) inverse fine structure constant which has
been corrected for these quantum corrections. The test is that these two
formalSU(5) (inverse) couplings shall be the same whichever of the three
standard model fine structure constants are uused for the calculation of
them, provided our model agrees with the data used.

6.2 Values at the µu-scale

What we are really interested in is the magnitude of the deviation from
SU(5) being accurate at the our “unified scale” µu, and we should like to
develop the expression for this deviation in terms of the original variables
at MZ even. But to get an overview it is better first obtain the deviations
by simply calculating the three inverse finstructure constants at the our
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1/α1 SM 1/α1 SU(5) 1/α2 1/α3

Formula 1/αEM cos2ΘW 3/5 ∗ 1/αEM cos2θW 1/αEM ∗ sin2ΘW α−1
3

Start #′s 127.916 ∗ 0.76884 3
5 ∗ 127.916 ∗ 0.76884 127.916 ∗ 0.23116 0.1184−1

Value 98.347 59.008 29.569 8.446
Uncertainty ± 0.02 ± 0.013 ± 0.017 ± 0.05

Coefficient -5/3 1 2/3

Contribution -98.347 29.569 5.631
Uncertainty ± 0.02 ± 0.017 ± 0.034

SUM:
Sum -63.147

Uncertainty ± 0.04

b’s 41/6 41/10 -19/6 -7

b-contribution -5/3*41/10 1*(-19/6) 2/3*(-7)
= -41/6 = -19/6 =-14/3

Sum (-41-19-28)/6
=-44/3

b-contr./2π -2.33420017 -1.087559696 -0.503991079 -0.742723695

Ratio:
ln( µU

MZ
) −63.147

−2.33420017

=27.053
Uncertainty ± 0.02

Scale µU 5.116 ∗ 1013GeV
Uncertainty ±0.1 ∗ 1013GeV

b’s/2π 0.652535818 -0.503991079 -1.114085543

ln( µU

MZ
) ∗ b′s

2π 17.653 -13.634 -30.139

Uncertainty ± 0.01 ± 0.01 ± 0.02

Value at µU 41.355 43.203 38.585
Uncertainty ± 0.017 ±0.02 ± 0.05

Pred.to 1/α5 bare 3*11/5*π/2 3*9/5*π/2 3*14/5*π/2
=10.367247 =8.482293 =13.194678

1/α5 bare 51.722322462 51.685853652 51.780040772
Uncertainty ± 0.017 ± 0.02 ± 0.05

Pred. to1/α5 cont 3*13/5*π/2 3*3*π/2 3*2*π/2
= 12.252201 =14.137155 =9.42477

1/α5 cont 29.103 29.066 29.161
Uncertainty ± 0.017 ± 0.02 ± 0.05

Average:
Average 29.092 w=35 w=25 w=4

Deviations 0.0107 -0.0258 0.0683
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“unification scale” µu:

1

α1 SU(5)(µu)
= 59.00 ± 0.02 − 0.65254 ∗ 27.0566 (134)

= 59.00 − 17.66 (135)

= 41.34 (136)
1

α2(µu)
= 29.57 + 0.50399 ∗ 27.0566 (137)

= 29.57 + 13.64 (138)

43.21 (139)
1

α3(µu)
= 8.446 + 1.11409 ∗ 27.0566 (140)

= 8.446 + 30.143 (141)

= 38.59 (142)

We may note down the differences and check that they are in the right
ratio:

1

α2(µu)
− 1

α1 SU(5)(µu)
= 43.21 − 41.34 (143)

= 1.87. (144)
1

α1 SU(5)(µu)
− 1

α3(µu)
= 41.34 − 38.59 (145)

= 2.75 (146)

1

α2(µu)
− 1

α3(µu)
= 43.21 − 38.59 (147)

= 4.62 (148)

The test now is if

2/5 ∗ 4.62
?
= 1.87 (149)

In fact 2/5 ∗ 4.62 = 1.85 (150)

and 3/5 ∗ 4.62
?
= 2.75 (151)

In fact 3/5 ∗ 4.62 = 2.77 (152)

Now our question is how big is this 4.62 in units of π/2 = 1.5708. We
find

1
α2(µu) − 1

α3(µu)

π/2
(153)

=
4.62

π/2
(154)

= 2.94 ≈ 3 = #families! (155)

31



This is remarkably close to 3, the number of families! (with an order of
magnitude uncertainty ±0.1 it the inverse finestructure constants, a devia-
tion of only 0.06 is very good!) This is in itself a remarkable coincidence, in
spirit with our old work stories about critical inverse finestructure constants
getting multiplied by the number of families, because of the antiGUt theory
behind.

Corresponding to this spacing, we can now with the above calculations
being used find in fact two SU(5) inverse couplings, namely one before the
effect of the quantum fluctuations < H2 > of H are taken into account and
one after they are taken into account for the - in our theory non-existent -
whole SU(5).

6.3 The SU(5) unification couplings

Using the table 6.1 we find, that using as unit 1/α2(µu)−1/α3(µu) = 4.62 ≈
3π/2, the two a bit different inverse unified couplings 1/α5 bare and 1/α5 cont

(for SU(5) formally) at our unification scale µu are given as

The “bare”:

1/α5 bare = 1/α1 SU(5)(µU ) + 11/5 ∗ 4.62 = 41.34 + 10.164 = 51.504

or 1/α2(µu) + 9/5 ∗ 4.62 = 43.21 + 8.316 = 51.526 (156)

or 1/α3(µU ) + 14/5 ∗ 4.62 = 38.59 + 12.936 = 51.526(157)

The corrected:

1/α5 cont(µU ) = 1/α1 SU(5)(µU ) − 13/5 ∗ 4.62 = 41.34 − 12.012 = 29.328

or 1/α2(µU ) − 3 ∗ 4.62 = 43.21 − 13.86 = 29.35 (158)

or 1/α3(µU ) − 2 ∗ 4.62 = 38.59 − 9.24 = 29.35 (159)

(We used in this table the “experimental” value q = 4.62 but it would
have made only very little difference to use the theoretical value q = 3∗π/2,
because our agreement is so good)
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7 What says our result about Original variables?

Our remarkable result is that at the “unified scale ” µu for our approximate

SU(5) the difference between say 1
α2(µu) and 1

α3(µu) is just the number of

families Ngen times the ‘unit” π
2 . It is so to speak the deviation from proper

SU(5) symmetry, which seems remarkably to be an integer - the number of
families - times the “unit”π

2 , which denotes the amount of shift in an inverse
α per unit of quantum fluctuations in the lattice theory of the theory in
question.

For testing and for illustrating, that there is truly a content in our predic-
tion, we want now to rewrite this result in terms of the MZ -scale quantities:

Let us begin to write down the difference, that should have the remark-
able value Ngen ∗ π

2 (where Ngen is the number of families):

1

α2(µu)
− 1

α3(µu)
=

1

α2(MZ)
− 1

α3(MZ)
− b2 − b3

2π
ln

µu

MZ
,
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where now

ln
µu

MZ
=

1/α2(MZ) − 5/3 ∗ 1/α1 SU(5)(MZ) + 2/3 ∗ 1/α3(MZ)
b2−5/3∗b1+2/3∗b3

2π

so that
1

α2(µu)
− 1

α3(µu)
=

1

α2(Mz)
− 1

α3(MZ)
−

− b2 − b3

b2 − 5/3 ∗ b1 + 2/3b3
∗

∗(1/α2(MZ) − 5/3 ∗ 1/α1 SU(5)(MZ) + 2/3 ∗ 1/α3(MZ)).

Here the ratio of the bi’s becomes:

b2 − b3

b2 − 5/3 ∗ b1 + 2/3 ∗ b3
=

−19/6 − (−7)

−19/6 − 5/3 ∗ (41/10) + 2/3 ∗ (−7)

=
−190 + 420

−190 − 5/3(+246) + 2/3 ∗ (−420

=
−570 + 1260

−570 − 1230 − 840
(160)

=
690

2640
(161)

=
23

88
(162)

Numerically
−3.166 + 7.000

−3.166 − 5/3 ∗ 4.100 − 2/3 ∗ 7.000
(163)

=
3.834

−3.166 − 6.8333 − 4.666

=
3.834

−14.6653
(164)

= −0.26143(agree with
23

88
) (165)

(166)

Our difference is

1

α2(µu)
− 1

α3(µu)
= (

111

88α2
− 115

264α1 SU(5)
− 218

264α3
)|MZ

=

(

(
111

88
+ 3/5 ∗ 115

264
)

1

αEM
sin2Θ − 3/5 ∗ 115

264

1

αEM
− 218

264
∗ 1

α3

)

|MZ

=

(

1

αEM
∗ (

333 + 69

264
∗ sin2Θ − 115

264
) − 218

264
∗ 1

α3

)

|MZ

=

(

1

αEM
∗ (

402

264
∗ sin2Θ − 3/5

115

264
) − 218

264
∗ 1

α3

)

|MZ

=

(

1

αEM
∗ (

201

132
sin2Θ − 69

264
) − 218

264
∗ 1

α3

)

|MZ
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7.1 Calculating Our difference 1
α2(µu)

− 1
α3(µu)

from MZ scale

Data.

Let us use

1

αEM (MZ)
= 127.916 ± 0.015 (167)

sin2Θ = 0.23116 ± 0.00013 (168)

α3(MZ) = 0.1184 ± 0.0007 (169)

Then our difference becomes:

“difference′′ =
1

α2(µU )
− 1

α3(µU )
(170)

=

(

1

αEM
∗ (

201

132
sin2Θ − 69

264
) − 109

132
∗ 1

α3

)

|MZ

= ((127.916 ± 0.015) ∗ (
201

132
∗ (0.23116 ± 0.00013) − 69

264
) −

− 109

132
∗ 1

0.1184 ± 0.0007
) (171)

= 4.6187 ± 0.0014(from αEM) ± 0.025(from sin2θ) ± 0.041(from α3)
?
= 3 ∗ π/2 = 4.7124 (172)

deviation = 0.0937 ± 0.046 (173)

deviation is about 2s.d. (174)

If you would like to blame all our deviation on the strong α3, we would
get, that in stead of the used 0.1184 a number 2.3 standard deviation higher,
meaning the replacement,

α3(MZ) = 0.1184 ± 0.0007 → 0.1200 (175)

A strengthning by 0.0016 meaning 2.3s.d. (176)

8 Alternative Way of Calculating

As an alternative - or check - we could impose our predicted values for the
differences of the inverse fine structure constants and in that way obtain
a “unification scale” µU . If our model is right then fitting the “unification
scale” to the different differences between the three inverse fine structure
constants in the standard model should lead to the same “unification scale”.

Let us as the first example take the difference 1
α2(µ) − 1

α1 SU(5)
. At the
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MZ scale we have:

difference21 =

(

1

α2
− 1

α1 SU(5)

)

|MZ
(177)

=

(

1

αEM (MZ)
∗ sin2ΘW − 3

5
∗ 1

αEM
∗ cos2ΘW

)

|MZ
(178)

= (−3

5
+

8

5
sin2ΘW ) ∗ 1

αEM
(179)

= (−3/5 + 8/5 ∗ (0.23116 ± 0.00013)) ∗ (127.916 ± 0.015)(180)

= (−0.230144 ± 0.00020) ∗ (127.916 ± 0.015) (181)

= −29.4390999 ± 0.02 (182)

The slope by renorm group of this difference is

b2 − b1 SU(5)

2π
=

−19/6 − 41/10

2π
(183)

=
−95 − 123

2π ∗ 30
(184)

=
−218

60π
(185)

= 1.156526 (186)

Now our model - with its quantum fluctuations - says that at the “unified
scale” of interest in our model the difference, 2 to 1, shall have run to

“difference”2 to 1 = (3 − 13/5) ∗ 3 ∗ π

2
(187)

= 2/5 ∗ 3 ∗ π/2 (188)

= 1.884954. (189)

So the ratio of the our “unified scale” to the MZ -scale has the logarithm

ln(
µU

MZ
) =

1.884954 − (−29.4390999)

1.156526
(190)

=
31.32405

1.156526
(191)

= 27.084608474 ± 0.02 (192)
µU

MZ
= 5.79023 ∗ 1011 (193)

“unifying scale” µu = 5.27997 ∗ 1013GeV ± 1012GeV (194)

We earlier got by different calculation 27.0566 giving with MZ = 91.1876GeV
that the “unifying scale” 5.134 ∗ 1012GeV .

Note that the difference between the two different fits to the ln( µU

MZ
)

deviate by just 0.03 while the predicted quantity 1.88 we used would give
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rise to a contribution to this logarith of the order of 1.6, which is more than
50 times larger.So we can claim that the prediction works well to about 2%
accuracy.

In the table 2 we have collected similar calculations for the other two
differences, too.

8.1 The 2 minus 3 case

We could estimate the same “unification scale” µU logarithm ln( µU

MZ
) simi-

larly using another difference predicted as e.g. ( 1
α2

− 1
α3

)|µU
= 1 ∗ 3 ∗ π/2 =

4.712385.
At the MZ -scale we have

1

α2(MZ)
− 1

α3(MZ)
=

1

αEM (MZ)
∗ sin2ΘW − 1

α3(MZ)

= (127.916 ± 0.015) ∗ (0.23116 ± 0.00015) − 1

0.1184 ± 0.0001
(195)

= (29.5691 ± 0.003) − 8.4459 ± 0.01 (196)

= 21.1232 ± 0.01, (197)

but at µU we predict : (
1

α2
− 1

α3
)|µU

= 1 ∗ 3 ∗ π/2 (198)

= 4.712385 (199)

Running needed: “run need′′ = 21.1232 − 4.72385 (200)

= 16.3993 (201)

and this difference run with the renorm group by the rate

d(1/α2 − 1/α3)

dµ
=

19/6 − 7

2π
(202)

=
−23

6 ∗ 2π
(203)

= −0.610094. (204)

So the natural logarith of ratio

ln(
µU

MZ
) =

16.3993

0.610094
(205)

= 26.8800 ± 0.02 (206)

This is to be compared with the 27.085 ± 0.02 from above, and deviate by
about 0.20, which with an uncertainty for the difference between the two
numbers put to 0.03 would be 7s.d.. But note that even with this not so
impressive number of standard deviations the deviation of 0.20 is compared
to the number 4.7123/0.6101 = 7.725 corresponding to our prediction of the
value at the unified scale, about 30 times as small. So our theory works in
that sense to 3% accuracy.
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8.2 Superfluous case Difference 1 to 3

Although it is just related to the twoo foregoing let us explicitely for check
also calculate what the our requirement for the difference 1to 3 means

1

α1 SU(5)(Mz)
− 1

α3(MZ)
=

1

αEM (MZ)
∗ cosΘW (MZ) ∗ 3/5 − 1

α3(MZ)
(207)

= (127.916 ± 0.015) ∗ (1 − 0.23116 ± 0.00013) ∗ 3/5 − 1/(0.1184 ± 0.0007)

= 59.0082 ± 0.02 − (8.4459 ± 0.7%) (208)

= 50.5623 ± 0.021. (209)

Then

ln(
µU

MZ
) =

(50.5623 − 3/5 ∗ 3 ∗ π/2) ∗ 2π

41/10 + 7

=
47.7349 ∗ 2π

111/10
(210)

= 27.0204 ± 0.01 (211)

8.3 Table

By accident the average of the three values for ln( µU

MZ
) turns out to be

exactly 27.00 within our uncertainty. The 11th line in the table gives the
deviation from this average relative to the part of the ln( µU

MZ
), which is due

to our prediction value, so it give the order of magnitude of the failure of our
prediction relatively. Remark, that even the biggest of these three deviation
measures relative to our predictions is only 0.052 meaning that even this
deviation is only so well fitting by accident in one out of 24 cases.

The ln( µU

MZ
) = 27.00 correspond to that the “unification scale in our

model”

µU

MZ
= 5.32 ∗ 1011 (212)

and µU = 4.85 ∗ 1013GeV (213)

9 Critical Coupling

Now we have without using but the lattice theory philosophy - see the
old works and [41], also connection to our several phase speculations [42]
- reached to an understanding in our picture of the deviations from the
SU(5) symmetry. It would of course be natural first to look for, if the uni-
fying coupling should be the critical one for SU(5) corrected of course for
the factor that is the number of families. This is though not at all obviously
the correct thing to do in our philosophy, because we have in the philosophy
of the present article no true SU(5) theory. It is only approximate, but
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1. 1/α2 − 1/α1 SU5 ± 1/α2 − 1/α3 ± 1/α1 SU5 − 1/α3 ±
2. dif |MZ

−29.4390 0.03 21.1232 0.05 50.5623 0.05
3. dif |µU pred. 2/5 ∗ 3 ∗ π/2 1 ∗ 3 ∗ π/2 3/5 ∗ 3 ∗ π/2
4. =1.88495 =4.71239 =2.82743
5. dist to run 31.32405 −16.3993 −47.7349

6. Run rate 19/6+41/10
2π

19/6−7
2π

−41/10−7
2π

7. =1.156526 =-0.6101 =-1.76662
8. ln( µU

MZ
) 27.0846 0.03 26.8797 0.1 27.02046 0.03

as av.+dev. 27.04+0.0446 27.04-0.1203 27.04-0.01954

9. |dif |µU pred.

Run rate | |1.88
1.15 | | 4.71

−0.610 | | 2.827
−1.7666 |

10. =1.629 =7.724 = 1.6005
11. rel.dev. 0.052 -0.015 0.011
12. ln( µU

MZ
) 1.5 1.6 0.6

s.d.f. av.
13. d. fr. 27.03 0.05 -0.15 -0.01

Table 2: Table of results for three - not indenpent - ways of using the by us
predicted differences between the running inverse fine structure constants at
“unfied scale in our model” (which is the scale at which the three running
differences should be equal to the numbers in line 3 or 4. These predictions
are to be fullfilled at this “unified scale” which using each of the three dif-
ferences is written in line 8, and the success of our model is really that these
three numbers agree. They deviate from their average 27.04 by the num-
bers of standard deviations (s.d.) given in line 12. The “small” deviations
agree within accuracy. But more important is to compare these deviations
from the common average to the ratios given in line 9. which should be the
contribution from our prediction numbers translated into the numbers in
ln( µU

MZ
, which we gave in line 8. Here it turns out that the deviations from

the average of the three numbers as written in line 12 in terms of standard
deviations, when compared to these predictions divided by the running rate
are relatively small as seen in line 11. In fact these numbers in line 11 are at
most of the order of 1/20, while the two smaller ones of them are only of the
order of 1/70. This means that our prediction values turned out correctly
to better than 5%. A similar conclusion would be reached by instead of
the average of the three ln( µU

MZ
) fits using the value of the ln( µU

MZ
) fitted by

directly insisting on the ratio of the differences of th the inverse fine struc-
ture constants being the one we require. This insisting on the ratio of the
differences directly lead to 27.03, which is only deviating by 0.01 from the
average here in the table which was 27.04,when wieighting with uncertaitties
wereused in evaluating the average (the naive average is rather 27.00) . The
difference o.o3 is only 1.5 s.d. and quite small compared the to the predic-
tions corresponding shifts in the ln( µU

MZ
) as seen in line 9.or 10. Again this

fact ensures that our agreement although not perfect (yet) is remarkably
good.
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lacks half of the degrees of freedom. nevertheless let us for first orientation
look for comparing the expression for the SU(5) critical coupling given by
Laperashvili, Ryzhikh, and Das [16, 18]

α−1
N crit =

N

2

√

N + 1

N − 1
α−1

U(1)crit (214)

where we for the critical U(1) coupling take the lattice value for Wilson and
Villain actions:

αlat
crit ≈ 0.2 ± 0.015. (215)

This gives

α−1
5 crit = 0.2−1 ∗ 5/2 ∗

√

3/2 = 5 ∗ 5/2 ∗ 1.2247 (216)

= 15.309 (217)

With the family factor Ngen = 3 this would let us expect 15.309 ∗ 3 =
45.927 to be compared with the estimates from data above. (Presumably)
the value to compare with is the 51.5 for the unified coupling not corrected
by the quantum fluctuations, which we considered so much in this paper.
Now we must remember, that the U(1)-critical coupling was 0.2 ± 0, 015
meaning 7.5% uncertainty. These 7.5% means ±3.45 for the 46 we predict.
So the “experimental” 51.5 from our fit is only off by 5.5

3.45 = 1.6 s.d.. If
there is an uncertainty in the critical coupling formula, we used, in addition
to the one from the uncertainty in the critical coupling for U(1), then the
deviation in standard deviations will be even smaller than the 1.6.

So formally we must count the hypotesis, that indeed the critical inverse
unified finestructure constant should be just 3 times the critical one, is
very successfull! One should have in mind, that in reality the “the critial
finstructure constant” is not quite well defined, because it depends on the
details of the lattice theory.

If we accept this agreement, we can say, that we fitted all three Standar
Model fine structure constants with only the unification scale, i.e. one
paramter. The unification value of the fine structure constant for the SU(5)
was determined by the “critcallity”.

Actually we shall even below in section 11 claim that we can relate the
approximate unification scale - the lacking parameter to predict at this stage
in the article - to the top-mass and the Planck scale,so that at the end we
shall have predicted all three parameters.

9.1 More thoughts on the Critical Coupling, Unified Cou-
pling

Thinking a bit deeper: We should really not take a formula for the SU(5)
critical coupling without correction, because we have been claiming all through
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the article that in our model the SU(5) symmetry and all its degrees and
freedom do not exist. Rather we should look for correcting the number for
the critical α5 to the critial coupling for the lattice standard Model group
coupling:

Very crudely we think of the critial coupling for groups like the ones we
look at to be the transition between two phases described as

• 1. An essentially classical phase, wherein the coupling is so weak - i.e.
1/α so large, that at the scale we consider (the lattice links cale) all
the plaquette variables are so close to unity, that the quantum effects
can be considered just perturbations, but that basically we have the
classical theory working.

• 2. A “confined” phase, in which we rather have that to first approx-
imation the plaquette variables are distributed uniformly all over the
group volume,as the Haar measure, we could say. Of course it will be
still be more likely to find the plaquette variables closer to the unit
element in the group until the inverse coupling 1/α reaches zero. But
now it is the variation of the probability density over the group that
is the “small” perturbation.

If the standard model group lie as a dence network inside the SU(5)
in the 5-plet vector representation space, then the a bit smeared volume of
the standard model group would be similar to that of SU(5) proper, and
the value of the (inverse) fine structure constant, at which one or the other
one of the two approximations above will shift their dominance (i.e. the
critical value), will be (roughly) the same as for full SU(5). But of course
the denceness of the net formed by the standard model group is not perfect,
and thus it will require that one goes to a somewhat stronger coupling (i.e.
smaller inverse 1/α) to give the “ confinement phase” enough weight in the
partition function to (barely) compete with the “classical phase”. So thus
we expect

1

αSMG crit
≤ 1

α5 crit
but only a bit. (218)

But now we have - to be fair - to remember that the standard model
group, never had the quantum fluctuating degrees of freedom, which the
full SU(5) lattice gauge theory has. It lacks at least the 12 degrees of free-
dom, we refered to by Hint in our calculation. So going from the standard
model “total” coupling, if such a thing existed, to the various subgroups
SU(2), SU(3), and U(1) would not corresond to taking away so many fluc-
tuations as, if one went from the full SU(5). So the critical 1

αcrit SMG
should

not be identified with the above fitted 1
α5 bare

, but rather with an inverse fine
structure constant of a type, that shall not have had it fluctuations in the
set Hint type ones removed,as we did in our formalism when constructing
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this “bare” inverse SU(5) fine structure constant. So what we should rather
identify as the implimentation of the critical coupling assumption, is to say,
that a “fitted” 1

αSMG
is the one you get by not counting that the refered to

by Hint modes be included, but only the other ones, is to be identified by the
3 * 1

αsmg crit
which by (218) is - actually only a bit - smaller than 1

α5 bare crit
.

The “fitted” quantity 1
αSMG

comes actually very close to be an average of
the three inverse fine structure constants from the standard model,which is
rather expected, since it is the standard model genuine gauge group. Then if
the dence net-work with which the standard model group GSMG covers the
SU(5), there will only be little difference between the two sides in (218) and
we now expect, that the average of the three standard model group inverse
fine structure constants at “our unification scale” say essentially being 1

αSMG

shall be a bit smaller than the critical SMG inverse fine structure constant
times the 3, which again is just a bit smaller than the 3 times the critical
inverse fine structure constant for SU(5):

41.34 =
1

α1 SU(5)(µU )
(taken as average 1/αi) (219)

≈ 1

αSMG(µU )
(220)

= 3 ∗ 1

αSMG ccrit
(221)

<
a bit 3 ∗ 1

α5 bare crit
(222)

= 3 ∗ 15.3 = 45.9 (223)

10 Crude Second Order Calculation

We did in principle the above calculations only up to first order approxima-
tion in a preturbative scheme, in which the 0th order approximation is the
exact SU(5), wherein all three standard fine structure constants are equal
to each other, and the first order approximation is the one, in which our
corrections are considered small of first order, so that the squares of the
corrections can be considered negligible. The numerical order of the first
order quantities are

“first order size” ≈ α

1 or 3 ∗ π/2
(224)

≈ 1/10. (225)

One unneccesary ignorance of second order terms, which are expected to
be of the order (1/10)2 times the main term is, that we above let the α
appearing as a factor in the < H2 >’s cancel with the 1/α whichever among
the 1/αi’s we meet. Actually it was tempting to think, that by using this
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lucky trick of getting rid of the parameters in the estimate of our corrections,
we were likely actually to get a better result with respect to agreeing for our
calculations. Once we look for accuracies of the second order, there may be
more corrections, such as the H distribtuion being not even just Gaussian,
and the whole program of doing the second order deserves a further article.
Here we shall only make a very crude attempt to estimate the effect of seeing
what α (among the three one say) comes into which of the fluctuations
< H2 >. We shall make the assumption that the α to be used for an Hi

where it is the fuctuation in one of the basis vectors for the subgroup i of the
SU(5), is αi. Then we see from table 3.5 that we have had relativley good
luck by letting the two α’s cancel each other, because the mostly contrbuting
< H2

i > to the correction for the inverse fine structure constant 1/αj , for
the standard model subgroup denoted j is actually mostly i = j itself. In
fact e.g. according to the table 3.5 the correction to

Fraction of SU(2)-inverse coupling not H2
3/10

3/2
=

1

10
(226)

Fraction of SU(3)-inverse coupling not in H3
2/15

8/3
=

1

20
(227)

For the U(1) inverse fine structure constant the dominant cotrbutuion to
the corrections comes from the two nonabelian groups, i.e. from H2 and H3,
but it has a bigger number from the H1 than any of the other two groups,
namely 7/30. But since the U(1) coupling correction is so mixed, to take all
the same α is not so bad.

In any case it looks that it is only about 1/10 of the correction for the
SU(2) coupling and 1/20 for the SU(3) coupling, that would be changed
by being a bit more carefull with which α to use. The change to the more
correct α to use would thus increase difference 1/α2 − 1/α3 percentwise by

Decrease of 1/α2 − 1/α3 =
1/10 + 1/20

2
∗ 4.7/2/40 (228)

= 3/40 ∗ 0.06 (229)

= 0.045 relatively (230)

This is now to be compared with the deviation of of the 3 ∗ π/2 = 4.712385
from the number in (148) which is 4.62 and thus smaller than or prediction
3 ∗ π/2 = 4.712385 by 0.09 which relatively is 0.0190. This agrees only
modulo a factor 2.

The observed by renorm group developping the fine structure constants
to the “our unification scale” defined from the ratios of the two indepen-
dent differences of inverse couplings to be 2:3 was 4.62, i.e. smaller than
the theoretical 4.71, but now the effect of pushing the inverse finstructure
constants predicted down from their starting point in the SU(5)-symmetric
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limit 1/α5 naive is getting increased for the SU(2)-inverse fine structure con-
stant, because for that the changed H1 contribution is getting increased by
our second order correction because the α1 SU(5) is correctly stonger than
what we used at first. For the 1/α3 oppsitely the 1/α1 SU(5) is above the
1/α3 at the “our unification ” so that for the 1/α3 the H1 contribution cor-
responds to a weaker 1/α1 SU(5) thus giving a lower suppression compared
to naive inverse SU(5) coupling, 1/α5 naive. Thus the theoretical 4.712385
should be deminshed - since the 3- inverse coupling goes up by the correction
and 2-inverse coupling down - relatively by the 0.045. But that would bring
the theoretical number to 4.50, close to the 4.62.

The deviation from the only to first order result of the number gotten
by fitting is of the order of magnitude of the second order estimate. So it is
important to estimate this second order approach more carefully.

11 Speculative Relation to Planck Scale

A major problem and surprize comming, if one takes our suggestion of
truly existing lattice at the approximate or ours unification scale µU =
5.18 ∗ 1013GeV seriously is, that it suggests a “fundamental” scale quite
different from the Planck scale. To seek a way out of this problem we
propose to think of a fluctuating lattice even in size of the lattice con-
stant in the sense that we speculate, that the general theory of relativity is
still perturbatively treatable and rather well understood already - so that no
completely speculated quatum gravity theory is needed at the µU scale - so
that the whole lattice structure must be in a quantum superpostion state in-
variant under the reparametrization group from the general relativity. That
is to say, with the philosophy, that there is very big quantum fluctuations in
the gauge and taking the diffeomorphism of reparametrization symmetry as
the gauge symmetry of general relativity, we must take it that the world is in
a superposition of all the possible deformations of the lattice - needed for our
model for the approximate GUT SU(5) - achieved by reparametrizations.
That is to say, that in a typical component in this superpostion somewhere
we find a very small lattice constant and somewherewe find a very big one,
so that lattice cannot be exactly a Wilson one e.g.. But locally it could
still be close to a Wilson lattice. Then of course the lattice constant value
suggested by our parameter µU as lattice constant a ≈ 1/µU could only be
true in an average sense:

µU = Average
1

a
, (231)

where a is some local, or may be better single link, lattice constant, i.e.
length of the link in the metric of the general relativity, which should still
be perturbatively treatable in the range around 1/a ≈ 5.18∗1013GeV (which
is a small energy relative to the Planck scale).

44



So the physical model, in which we developped our more primitive lattice
model, is in the rest of the article further developped into some presum-
ably more chaotic lattice theory (a kind of glass), in which the
degree of fineness varies from region to region and you find links
of all possible sizes, and at least approximate diffeomorphism in-
variant structure of the lattice. It is of course only approximately dif-
feomrphisminvariant by being in superposition of having different fineness
of the lattice at any place. From the approximate diffeomorphism invari-
ant structure of the lattice model in this section we cannot avoid, that the
density of links of the length around a has to vary approximately like

“density”(ln(a))d ln(a) = P (ln(a) < ln “link length” < ln(a) + d ln(a))

= a−4d ln(a), (232)

where P (ln(a) < ln “link length” < ln(a) + d ln(a)) is the probablity of
finding a random link taken out of our “chaotic lattice” within the scale in
logartihm from ln(a) < ln(lattice constant ) < ln(a) + d ln(a). A similar
distribtion of the sizes of the plaquettes found in the “chaotic lattice” of this
section, would also have a factor in the density going as the fourth power of
the inverse plaquette side size.

There is actually a divergence problem with this “chaotic lattice” as
we speculate it: If indeed this density distribution should be fully true the
probablity of finding links of a specific order of magnitude would need to
be zero and all the contribtuion would come from infinitely small links or
infinitely long link. So we have to imagine that there finally must be some
cut offs for very long - not so important - and for very short links at least.

To have approximate diffeomorphism symmetry and thus also approxi-
mate scale-invariance we should have at most a very slowly varying weight
factor depending on the logarithm of the say link length - but only very
weakly breaing the scale symmetry in the range of scales we consider rele-
vant, meaning scales between the Planck scale and macroscopic scales.

But if we scall be concrete wewould propose aGaussian weighting as
a function of the logarithm of say the link length. Near the peak in the
Gaussian such a Guassian weighting is only very weakly breaking the scaling
invariance, but for very large or very small scales the Gaussian distribution
of the weighting in the logarithm is enoermous. But somehow we hope that
for very small or very big link length we have got the cut off effectively
and there are anyway so little chanse for the links having that size that it
does not matter so much. But I think we need a cut off in this style of
being smooth for some “relevant” region and then very drastically cutting
off in the scales ofvery small a (i.e. high energies) becuase ifwe did not
have the strong cut off somewhere, then attempting to play simultaneous
with the extra factor (1/a)4 for the Standard model approximate SU(5) and
an other extra factor (1/a)6 for describeing the generalrelativity Einstein-
Hilbert action would unavoidably lead to severe divergensies.
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We could say that the proposed Gaussian as function of the logarithm
very robust by being able to cut off at the ends large and big scales any
polynomial extra factor. Then in addition to in this way be able to cope
with any power extra factor, it can be claimed in the appropriate region
of scales to be rather flat, so that is not at such scales drastically breaking
scale symmetry.

With this very special “cut off” assumption, it might be felt needed
tomake at least a little bit of propaganda for it: Once we preferably should
have had invariance under scalings in size,it is suggested that we need a
slowly varying weight as function of the logarithm of the scale. We also like
at the end a robust cut off that can cut off anything polynomial say and
then an exponential of a smooth function

“weight′′ ∼ exp(f(ln(1/a)) (233)

is suggested. But then the Gaussian -which may not be socrucial exactly -
is gotten by Taylor expanding the function f around the maximum, which
is of course the most important region. One could as propaganda also say,
that the cut-off proposed represents a weak coupling to the metric tensor of
gravity.

Then depending on whether you have a factor a−4 as for the inverse fine
structure constants or a factor a−6 as for the gravitational κ the weighted
maximum in the over scale logarithm intergal, will have somewhat different
central values, i.e. central logarithms of scales.

These centers of the contributing distrbutions will be the effective lattice
scales for the different weightings. So we can indeed get the µU weighted
with a−4 and the gravitational scale being the central one for weight a−6

become different by orders of magnitude. If we just at first give a name to
scale µ0 which one gets with weight 1, then in the Taylor expansion lowest
order approximation the drag shifting will be in the ratio 6 : 4, so that

ln(
EP l

µ0
) = 6/4 ln(

µU

µ0
). (234)

(whether one shall use the formal Planck constant just made by dimensional
arguments from the Newton constant G or some reduced one with an ex-
tra factor 8π extracted might be discussed, but may be just considered an
uncertainty)

11.1 Averaging over our “chaotic lattice”

When we have some part of the continuum lagrangian like the 2π
α FµνF µνd4x,

then the contribution to it in the lattice theory - our chaotic one or just a
usual Wilson lattice - come from individual plaquettes or whatever combina-
tion of the lattice ingredients, that contribute, but you get therefore a bigger
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contribution the more of these contributing objects there are per hypercubic
unit volume to the coefficient in the of the continuum lagrangian density.

Actually we can use simple dimensional arguments to see how the average
of the continuum Lagrangian coefficient comes about:

For the inverse fine structure constants you simply get a contribution to
the action from each plaquette independent of its size (provided you let the
β weighting the plaquette in the action be the same whichever the size of the
plaquette, especially with our philosophy that it should be critical such beta
independent of the size is suggested.). So in terms of an integral over the
logarithm of the inverse size, say 1/a, of the laticce constant or link-length
we have

1/α ∝
∫

(1/a)4“cut off weight ”d ln(1/a) (235)

∝
∫

(1/a)3“cut off weight” d(1/a) (236)

∝ (1/a)4|at peak for (1/a)4 *weight (237)

But gravity, extra 1/a2:

κ ∝
∫

(1/a)4 ∗ (1/a)2“cut off weight”d ln(1/a)(238)

∝
∫

(1/a)5“cut off weight”d(1/a) (239)

∝ (1/a)6|at peak for (1/a)6*weight (240)

So we see that we predict from the “chaotic lattice ” model with its approx-
imate scale invariance, by an essentially dimensional argument, that there
shall be different effective lattice scales for the Yang Mills theories µU , and
for gravity. (But it is of course dependent on our Gaussian in log in some
sense special cut off, although it is suggestive.)

In the figure 11.4 we illustrate, how we after having inserted a strong cut
off implementing weight get a distribtuion in the logarithm ln(1/a) of the
scale with a broad peak, (which we imagine Gaussian, in this log, in first
approximation).

The main point is that the dominant or peak value for the distributions
depend on the exact distribution, and that the one for gravity has got an
extra factor (1/a)2. For the Standard Model gauge couplings this peak scale
is only of relevance via the renomalization group, while for gravity the very
size of the (inverse) coupling κ (also) depends on the peak value for the
(logarithm of) 1/a.

It should be clarified, that it is only because of some “phenomenolog-
ically” added “ cut off weight ” factor that we at all mannage to get a
peaking distribution instead of some nonsence divergent one, just increas-
ing monotomously. So the picture we propose is really much dependent
on there being some cut off of this type, and this cut off has to be con-
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sidered some sort of “new physics”, even though we escape from assuming
many details about it, except that it is smooth in the logarithm of the
scale and sufficiently strong to cause the convergence (preferably exponen-
tial in form, but with a low coefficient on the function, say f(ln(1/a)) =
“small number” ∗ (ln(1/a) − const.)2, in the exponant.).

Let us now suppose that including this “‘new physics” weight there is
scale, which we call µ0 for which the density of plaquettes or links counted
per link-size volume is maximal. Then if we do not put the factor (1/a)4

or (1/a)6 on as we did above, then the peak of the so to speak just “weight”
would be at µ0 or we should say ln(µ0), when thinking of the plotting with
ln(1/a) along the abscissa as in figure 11.4.

Now in the approximation of the “weight” distribtuion being Gaussian in
the logarithmic scale and noticing that the extra factors (1/a)4 and (1/a)6

from the logarithmic abscissa point of view are linear terms in the exponent
4 ln(1/a) and 6 ln(1/a) which will shift the peak from ln(µ0) by amonts
proportional torespectively 4 and 6, we see that

ln(EP l

µ0
)

ln(µU

µ0
)

=
6

4
=

3

2
(241)

11.2 On the Maximum before the Powers in 1/a Factors

In seeking to guess, what to take for the maximum density scale µ0, when
no extra factor like the (1/a)4 or (1/a)6, we should have in mind that the
density of plaquettes in a volume (in four space) of size like the plaquette
or link is indeed, what we called the number of “layers”, which again were
identified with the number of families, or at least this density of plaquettes
in the range associated with a plaquette is proportional to the number of
layers.

Since we identify by our hypotesis the number of layers with the number
of families, we take the number of layers at different scales to reflect the
number of families being present as fermions with negligible mass at the
various scales. That is to say, that in the range of scales of the quark and
(charged) lepton masses we have region of scales where as one goes down in
energy loose more and more families. With such a philosophy of counting
only the effectively massless fermions at the scale we may - using a table like
table 11.2 - extrapolate to a scale with maximal number of families and take
that as µ0; we could take it close to the mass of the mostmassive quark or
lepton, the top. Actually as seen in table 4 putting µ0 = mt the top quark
mass is close to make our prediction (241) be satisfied. Fitting to make our
prediction (241) be exactwould require a slightly higher in energy scale µ0.

We consider this close to agreement as success for explaining theoretically
the “unification scale” µU of our approximate SU(5).
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Name Mass ln(Mass/GeV ) Sums etc.

Quarks:

up 2.16 MeV -6.137
down 4.67MeV -5.367

strange 93.4MeV -2.371
charme 1.27GeV 0.239
bottom 4.18GeV 1.430

top 172.5GeV 5.150
sum quraks -7.055 -1.176
“average” 309 MeV -1.176

electron 0.5109989461MeV -7.055
muon 105.6583745MeV -2.248
tau 1776.86MeV 0.575

sum leptons -9.252 -3.084
“average” 45.78 MeV -3.084

av. weight 2:1 163 MeV −1.812

Table 3: Here we just listed the charged quarks and leptons exposing their
masses and the natural logarithms of the latter with the purpose of very
crudely use them to extrapolate to scale µ0 at which the number of at
that scale effectively massless flavours would be maximal. This scale µ0 is
presumably very close to the top-mass, since just above mt all the quarks
and leptons are effectively massless. But how high above we shall expect
the maximum for the purpose of our lattice remain speculations.
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11.3 Ambiguity of Concept of Planck Energy Scale, reduced
?

In reduced Planck units, the Planck energy 1.22 ∗ 1019GeV from unreduced
Planck units is divided by

√
8π = 5.01325 so as to get

EP l red = 1.22 ∗ 1019GeV/5.013225 (242)

= 2.4335 ∗ 1018GeV (243)

Now, however, we must ask: what is it that gives us a scale in the sence
the studies of the running couplings tells us? The ratio of the reduced Planck
energy 2.43∗1018GeV relative to the logarithmically averaged charged lepton
masses maverage = 163MeV is

2.43 ∗ 1018GeV

0.163GeV
= 1.4930 ∗ 1019 (244)

and has ln(
EP l red

mav.ch.fermions
) = 44.15 (245)

Further:
mZ

mav.ch.fermions
=

91.1876GeV

163MeV
(246)

= 559.4 (247)

and has ln(
MZ

mav.ch.fermions
= 6.327 (248)

So for “our” scale ln(
µU

mav.ch.fermions
) = 27.05 + 6.327 (249)

= 33.38 (250)

Thus the ratio
ln( EP l red

mav.cg.fermions
)

ln( µU

mav.ch.fermions
)

=
44.15

33.38
(251)

= 1.323. (252)

Had we not used the reduced Planck energy, but the usual one, we would
have got the logarithmic distance from the quark and charged lepton mass
scale to the Planck one ln(

√
8π) = 1.612 bigger, so that it would go from

the 44.15 up to 44.15 + 1.612 =45.76. Then we would get the ratio changed
to

ln(
Epl

mav.ch.fermions
)

ln( µU

mav.ch.fermions
)

=
44.15 + 1.61

33.38
(253)

=
45.76

33.38
(254)

= 1.371 (255)

In fact we think, we can argue for, that this latter choice is not the correct
one, because the 8π or 4π usually comes from the differnce in the coefficient
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to a Coulomb field and the charge appearing in the field theory action.
When we have just used the fermion masses without any 4π-like correction
we associate it with the simple relation m = gyφ >, while if I would like the
Yukawa-field aruond the Higgs particle I would get a 1/(4π) factor in. So
the simple masses correspond we could say to the Yukawa coupling gy being
used for unit, and not the alternative gy/(4π). So to speak

G ∼ gy

4π
(256)

(4πor8π)G ∼ gy and thus also m (257)

This argues for, that the reduced EP l red was the right one to use not to
introduce unjustified extra factors.

We could also have argued that the nice scheme of the Standard Model
with its gauge fields and three families is spoiled, when going down in en-
ergy already at the Higgs scale, so that we should not come up with this
logarithmically averaged fermion masses, but just use the very Z0 mass MZ

instead, then our ratio would be a bit simpler to compute:

ln(EP l red

MZ
)

ln( µU

MZ
)

=
−1.612 + ln(1.22∗1019GeV

91.1876GeV )

27.05
(258)

=
−1.612 + 39.43

27.05
(259)

= 1.398 (260)

11.4 Table of Combinations

The most important outcome of the fluctuating-size-of-links lattice, we pro-
pose, is that it gives us te possibility of having a Planck scale very different
from te “unification scale” and still claim a “fundamental” lattice at the uni-
fication scale. But we would of course like to see, if the order of magnitudes
are at all thinkable. We therefore in figure ?? illustrate how we imagine a
smooth Gaussian distribution in the logarith of the link length say.

Description of figure11.4: Here the number densities of links or of
plaquettes, in a small length range of say a percent counted or weighted in
different ways. The curve “original” is for counting this number density as
the number in 4-cube of size proportional to the link length range which
is being counted. In the two other curves the “original” density has been
weighted with respectively the inverse fourth power of the link-length a and
the sixth power. For all three curves it is the logarithm of the density, which
is plotted and a Gaussian behavior as function of the logarithm of the inverse
length of the link is assumed as suggestive example. Plotted with logarithmic
ordinate of course a Gaussian distribution looks like a downward pointing
parabola, and the three curves are meant to be such downward pointing
parbolas. It is trivial algebra to see that weighting the density counted the
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Figure 3: As function of the logarithm of the scale - say given as energy
being the inverse of the link length 1/a we give here the 1) density of links
perlinks-length to the fourth, 2) this density multiplied by a−4,and that is
the contribution to the Lagrangian dentity for Yang Mills theories, 3) the
first density multiplied by a−6, and that is the density of contribution to the
Einstein Hilbert Lagrangian density. See also the text. In our approximation
we assume these densities to be Gaussian,and with the logarithmic ordinate
these Gaussians are parabolas pointing downwards.

“original” way by further respectively (1/a)4 and (1/a)6, the logarithms of
which are linear in ln(1/a), just leads to displacements of the p parbolas,
but leave their shapes the same. For the fine structure constants or say our
approximate SU(5) it is the total number of plaquettes equivalent to the
weighting with (1/a)4 that counts, and the effective lattice link-size for our
approximate SU(5) model should thus be the tip of the distribution with
the “extra factor a−4”. The abscissa of this tip is therefore marked by the
symbol µU (with a µ written by the curve progarm). Because the Einstein
Hilbert action has a dimension 2 different behavior from the just counting
plaquettes, it is the abscissa of the tip of the parabola, which had an a−6

weighting relative to the “original”, which means the effective lattice link-
size for the extraction of the Planck scale EP l energy. One shall note from
figure or the trivial algebra that denoting the abscissa for the peak of the
“original” by µ0 then the pushing of this tip energy scale by the two different
linear extra terms in the logarithm by the a−4 and a−6 respectively makes
displacements in the dominant (energy)scale by terms in the logarithm being
in the ration 4 : 6 = 2 : 3. This means the prediction

ln(µU

µ0
)

ln(EP l

µ0
)

=
4

6
=

2

3
. (261)
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Name µ0 EP l EP l red

=1.22 ∗ 1019GeV = 2.34 ∗ 1018GeV

Z0 mass MZ 1.4579 1.3968
=91.1876GeV

Av. fermion mass mav.fermions

=163 MeV 1.3711 1.3216

Top quark mt

=172.52 GeV 1.4689 1.4079

Fitted µ0 µ0 best

=24.231 TeV 1.5769 1.5 (exact)

Table 4: Table with µU = 5.1 ∗ 1013 GeV
of ln “gravity scale”

ln “unified scale” =
ln(

EP l or P lred
µ0

)

ln(
µU
µ0

)

But we have to guess e.g µ0 = MZ or µ0 = mt to use this.

11.5 Variants of the Relation Planck Scale to “our unified”

In fact the scales µ0 and also the “Planck scale” do not come in precisely
fromour physics and are at best order of magnitudes wise determined. The
µ0 scale should be where the effective number of families is having maximum,
but honestly this effective number of families is 3 from the top-mass and up
to infinity? So we only know µ0 ≥ mt. And for the Planck scale we shallin
factclaim that it would be expected that the reduced Planck scale (including
the often associated 8π to G before using dimensional arguments to construct
an energy scale) is actually more reasonable to use.

11.6 How well agrees Our Relation?

In the table 4 we therefore combine our fit above obtained value of the “our
unification scale” µU = 5.1 ∗ 1013 GeV with some reasonable suggestions for
the two less welldefined scales µ0 and the “Planck scale”.

11.7 Fitted µ0

Alternative to just guessing on good ideas of what our scale µ0 at which
the density of the size of the scale is maximal counting with its own link
length as unit we can simply fit, what we would like this scale to be and
then if possible build up a story of, what it should be of that order. Such a
fitting of the scale µ0 would simply mean, that we solve the equation of our
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prediction, say

ln(
EP l red

µ0
) =

3

2
∗ ln(

µU

µ0
) (262)

formally giving:
1

2
ln(µ0) =

3

2
ln(µU ) − ln(EP l red) (263)

= 31.563 ∗ 3/2 − 42.2967(using GeV) (264)

= 5.048 (265)

So: ln(µ0) = 2 ∗ 5.048(in GeV used) (266)

= 10.095(with GeV) (267)

⇒ µ0 = 24.23T eV. (268)

The choice of µ0 that would make prediction perfect was as seen from the
table and our calculation 24T eV , which is higher than the top quark mass
only by a factor 24.23

172.25GeV = 7.11. Very speculatively one could attempt to
construct some fitting of the density as a function of the scale fermions still
findable as effectively massles at the scales considered. Above the top mass
of course the effective number of massless Fermions at the scale correspond
to 3 families, but as one asks below the top qaurk mass there is a 1/3 or 1/4
of a family missing, and one could claim that just below the top mass we have
some 3-1/4 or 3-1/3 families left, and then crudely estimate in this spirit,
if one could fit the (non-integer) number of families to a function reaching
a bit above the top-mass a maximum of 3 families. Then this maximum
in a curve taken as a function of the logartihm of the scale would have its
maximum with value 3 families very close to our wanted µ0 = 24.23T eV.
(most wellcome to make gravity scale match our model).

Such a very crude and somewhat arbitrary extrapolation might be this:
Firts have in mind that the derivative of the number of “effectively mass-

less” fermion families as function of the logarithm of the scale is given by
the “density of the fermions with mass at that scale”=“density of species”.

On a logarithmic mass scale there is a “density of species” of 1 over a
scale dististance ln mt

mb
= 6.02, meaning density = 0.166 per e-factor. The

center of this interval is the geometric mean of 172.25 GeV and 4.180 GeV,
which is 26.83 GeV. Next take the interval beteen the b-mass and the s-
mass which has length ln(4.180

0.095 ) = 3.784 and contains two species quarks
and 3 species fermions, if we include the τ -lepton. This means for this
region around

√
4.180 ∗ 0.095GeV = 0.630 GeV we have the density of quark

species 2/3.784 = 0.5285. This density is 3.184 times bigger than in the
interval between t and b. If the deviation from the maximal number 3 of
the number of families at the scale being seen as massless were varying with
the logarithm of the scale quadratically counted out from some center value
of the scale, then the slope of it, being in fact the “density of species” would
vary linearly, and we should just extrapolate the density to the point, where
it passes zero to find the maximum point for the formal number of massless
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families. In logarithmthe distance between the two points we considered is
ln(26.83

0.630 ) = 3.75,and the linear extrapolation leads to the zero for the slope
point displaced upward from the 26.83 by the exponential of 3.75/(3.184-1)=
1.717, and that gives 149.4 GeV. It is actually very close to the top-mass.
Now we see, that if we take the difference between the two possibilities we
mention in the table for the Planck scale as an estimate of the uncertainty of
only order of magnitude numbers, then this uncertainty for the ratio given
in the table is of order 0.06. But the best of the points actually for the top
mass as µ0 deviates only by 0.03 from the predicted 1.5, so we must say that
we shouls take it as agreement within expected uncertainty.

In any case we have shown how a fluctuating lattice size speculatively
can solve our problem, that the unification scale is quite different from the
Planck energy scale,in spite of that we want a common lattice to describe
them both.

12 Conclusion

We have succeeded in constructing a lattice model picture, in which we
fit the three fine structure constants in the Standard Model by three pa-
rameters, which are with limited accuracy predicted by various
assumptions of the model. What we consider the most important is,
that we suggest, that the way with smallest representation used as the link
variables for the Standard Model group - understood as the global group
structure S(U(2) × U(3)) in the O’Raifeartaigh sense [29] and not only the
Lie algebra - is in fact links, that also could have been an SU(5) representa-
tion, and therefore the model obtains an approximate SU(5)-symmetry,
when we imposed the usual trace-action. We then took it, that this first
approximation SU(5)-symmetry of the classically treated simple trace ac-
tion was broken by quantum fluctuations, which are of course only present
for those fluctuations, which are true standard model group degrees of free-
dom, while the degrees of freedom which are only in SU(5), but not in the
Standard model group, of course do not contribute quantum corrections to
correct the finestructure constants in our model, wherein they do not exist.
It is this quantum correction breaking the SU(5) symmetry (The SU(5)
relation between the couplings is only valid in the classical approximation)
that brings the deviations from SU(5) GUT theories without help from
additions as susy, and indeed we “predict” in our model not only ratios of
the shifts caused by the quantum fluctuation for the three different standard
modelinverse fine structure constants, but also the absolute size of the
corrections. So even, if we used say the ratio of the corrections to fit the
pseudo-unified scale, or let us say “our unification scale” µU , then it is still
a prediction, that we know the size of the correction from precise SU(5)
unification. This prediction - it must be admitted though - contains a factor
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3 being the number of families. Really it is the number of parallel lattices
supposed to exist in Nature, that is 3, so the connection to the number of
families is, that there would be by assumption one layer (one of the Wilson
lattices lying in parallel) for each family of fermions. (Each family its own
“layer”.)

The success of this predicting the deviation from GUT by quantum
corrections fits actually the to experiment fitted fine structure constants
at say the MZ (Z0 -mass scale) within uncertainties! And this is quite
remarkable, because these uncertainties for the three inverse finstructure
constants in the Standard Model are much smaller by a factor of the order
of 50 than the corrections due to the quantum fluctuations, we predicted.

It is due to the high accuracy, with which the fine structure constants are
- now a days - known, that we can find so good agreement compared to our
quantum corrections, because these corrections are indeed about 10 times
smaller than the typical inverse fine structure constant, which is of order 40,
while our correction are of the order of 1 times the important “unit” for our
corrections 3 ∗ π/2 = 4.7124. In fact we predict e.g. the difference between
the inverse fine structure constants at the “our unification scale ” (µU ) such
as

1/α2(µu) − 1α3(µu) “predicted′′ 3 ∗ π

2
= 4.7124 (269)

turned out: 1/α2(µu) − 1α3(µu) “fitted′′ 4.62. (270)

and the uncertainty in these inverse fine structure such as e.g. the 1/α3 is
±0.05, so the deviation of 0.09 is only 1.8 s. d.(s.d.= standard deviations),
and if we count two similar numbers the estimated uncertainty would be
±

√
2 ∗ 0.05 = ±0.07 and we would have 1.3 s.d. Our deviation and uncer-

tainty are of the order of a factor 52 smaller than the quantity of deviation
4.62, which we found!

It would in itself be interesting just to leave the two further parameters,
namely the unified coupling - for the SU(5) - and the scale of this approx-
imate unification, because we would even then have an interesting relation
between the fine structure constants.

12.1 The further two parameters

But we have also formally manged to find assumptions, so that these two
further parameters are fitted within the now somewhat smaller accuracies:

• The Unified Coupling as Critical coupling

We mannaged to be allowed to claim, that the unified coupling is
indeed the critical coupling for the non-exitent SU(5) in our model.
So in a way there is the little worry with this prediction: that it is for
the SU(5) lattice gauge thoery, we use the critical coupling, but this
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SU(5) theory is not truly present in our model. One should possibly
replace the SU(5) critical couplng by one for a modified SU(5) with the
degrees of freedom cut down to those of the Standard Model -like it is
in our model - but such a correction would make the critical coupling be
stronger(i.e. lower 1/α5 crit), and that would make the fitting with this
critical coupling being the unified one worse prediction. So after such
improvement our unified coupling prediction would not work so well,
if this was all we did. But if one starts from a standard model group
critical coupling, then one should not make the quantumcorrections as
if it were a full SU(5). When we also correct the quantum correction
to be for the Standard Model Group, then it actually seems to agree
better.

• Relation of the Unified Scale to the Planck scale

Our story behind our formally within errors relating in our model
our unified scale - at which our corrections are to be applied - to the
Planck scale may be a bit too much made up with guesses to be truly
convincing. Thus this part of the work should rather than being an
attempt to find a third predicted parameter, namely the unification
scale - what it though also is -, be taken as a needed story for rescuing
our model against a severe problem: Our unification scale µU should
as the lattice scale be the fundamental scale in our model. But that
is not so good, because this “unification energy scale” is much lower
than the presumably fundamental scale of gravity,the Planck energy
scale?

12.2 Problem with Planck scale in our Model

The problem with the Planck scale comesabout like this:
It is not surprising that this unified scale turns out, like in all GUT-

theories, to be appreciably smaller than the Planck scale, and in our theory
it is even compared to usual unification a bit small:

µU = 5.13 ∗ 1013GeV. (271)

However, the real problem is that we suggest to have a lattice that is
taken seriously to exist in Nature, and wewould seemingly loose ordi-
nary continuum manifold physicsfor smaller distances than 1/µU and the
seemingly approximate well working generel relativity taken classically at
such scales, would be already to be considered as aquantum gravity, and
in addition we would find it a priori non-attracktive to have several (two)
fundamentalscales(µU and the Planck energy scale).
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12.3 Gravity has to be “Weak” on Fundamental Scale

This may bring us some message about gravity: We have to invent a story
of the kind, that gravity is for some reason very weak compared to the
fundamental scale expectation. Our above described model namely has as
its philosophy, that the unified scale - which remains low compared to the
Planck scale in energy - is to be the “ fundamental scale”! You might
speculatively think about, that the gµν (with upper indices) has appeared
as kind of spontaneous breaking of e.g. diffeomorphism symmetry, and and
thus has a chance to be small (often one finds reltively small spontaneously
breaking fields, otherwise it would not be so common with low temperature
super conductivity, that it was a big sensation to find high temperature
super conductivity). If this gµν is small compared the our fundamental
lattice, then compared to this lattice the gµν with lower indices will be
large and thus the length say of a lattice link would be big. This bigness
would be bigness compared to the Planck constant and so getting gµν by
some spontaneous breaking story would help bringing about the lack of
coincidence of our fundamental scale with the Planck one[22].

Although this idea of having gµν representing a smontaneous symmetry
break down and being “small” for that reason, seems attrcktive to me, we
shall in this article rather seek to solve the problem with the Planck scale
being different from “the our unified one” µU by the idea of fluctuating
lattice link size described in next subsection.

12.4 Fluctuating Lattice Scale

A priori it seems somewhat embarrasing, that our theory taken seriously
wants a fundamental scale with lattice already at the approximately unifi-
cation scale 5 ∗ 1013GeV , while we a priori would expect the fundamenntal
scale at the Planck scale, especially for the gravity itself, when we even
seek to uphold a principle of critical coupling constants . If a lattice grav-
ity should have in one sense or another a critical coupling, then the lattice
should be of the Planck scale lattice constant roughly. The speculation solu-
tion, that almost has to be needed is, that of the in scale fluctuating lattice
like this or something similar:

At around the “unifying scale” the gravitational fields must behave clas-
sically to a very good approximation, except though that a gauge degree of
freedom would tend to fluctuate infinitely (actually Ninomiya Förster and
myself[37] even would let such strong quantum fluctuations be the reason
for the exact gauge symmetry.) because there is lacking terms in the La-
grangian, that can keep the gauge to a fixed one, except the by hand put in
gauge fixing terms, but they are of course not physical.

This then means, that we must think in a gravity containing theory as the
lattice fluctuating being dense with small lattice constant somewhere in the
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Riemann space-time and large somewhere else. In that case we must imagine
that the “observed” lattice scale (as for our model the 5.13 ∗ 1013GeV ) will
be some appropriate average over a highly fluctuating lattice constant size.
We would expect the local lattice scale to fluctuate with a distribution that
would be an approximately flat distribution in the logarithme of the lattice
constant, because the diffeomorphism group contains scalings and the Haar
measure for a pure scaling symmetry subgroup would suggest a smooth in
logarithm distribtution. But now, while the averaging of the Yang Mills
Lagrangiam over a distribution of scales with a smooth distribution in the
logarithm would be weighted in slowly varying way, the gravity action, the
Einstein Hilbert one varies with a power law with the scale of the lattice,
if you, as we had success with, assumed a critial coupling. This would
then lead to that the average size of the lattice link or plaquette structures
contributing dominantly to gravity action would be much smaller than the
ones contributing to the Yang Mills fields action.

This could suggest a mechanism for the seeming fundamental scale (=
lattice constant size scale) for gravity would be much higher in energy than
for the Yang Mills theories.

A fluctuating lattice might provide a natural explanation for the much
smaller Planck length than length scale at the Yang Mill.

12.5 Baryon Non-conservation ?

Our theory is in danger of inheriting baryon decay in analogy to the usual
SU(5) grand unification theories, but at least the gauge particles in the
SU(5) theory which are not in one of the standard modelgroups also are
supposed not to exist in our scheme, so the obvious diagram with an ex-
change of such an SU(5) gauge particle is missing in our model. Actually
it is in our model some four fermion interaction, that could give the baryon
violation, but such an interaction would have a dimension similar to that of
the Einstein Hilbert action, and thus the interaction of such a type violating
baryon number conservation would be suppressed as a term in Lagrangian
of high order with Planck energy as the energy unit. At least that is, what
happens in our model, just using our cut off scheme as we did with grav-
ity (fluctuating lattice scale). Whether our Gaussian in log weighting can
be assumed sufficiently consistently to suppress the baryonnumber violation
suffiently to cope with bounds on proton decay may deserve study in a later
work, but at first it looks like working and giving sufficient suppression. .

12.6 Is Approximate Scale Invariance a Dirty Assumption?

Of course, when we claim, what we in this fluctuating lattice model claim,
that we have on the one hand an at least approximate scale invariance; but
nevertheless, that this symmetry is broken so much, that the size distribution
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of the numbers of lattice links, or of lattice plaquettes, has maximum at
some finite scales - even in order of magnitude - depending on the exact
weighting, this sounds a bit dangerous, and can only be true approximately.
The meaning is e.g., that if you include some extra power of the (inverse)
link length (1/a)n, it can shift maximum in the size distribution from e.g.
“the 0ur unifying scale” to the Planck scale. It also involves some physical
effect or principle, that performs the needed very strong suppression of links
or plaquettes being stronger and stronger the smaller the link or plaquette.

At first it looks like breaking reparametrization invariance in general rel-
ativity, does not sound nice. But we must postpone this problem just having
now admitted, that there is a problem, that would need more detailed mod-
elling, and that most likely such improved models would be too complicated
to be believable.

12.7 Our progress compared to our earlier works

One way of looking at the progress of the present work is to think of it as
an updated version of the work by Don Bennett and myself[14], which seeks
to get all the three fine structure constant from criticallity at Planck scale
and the antiGUT type of model with the gauge group being a cross product
of 3 isomorphic Standard Model groups. But in the old works we had to
help by extra assumptions the U(1) fine structure constant. In the present
article this helping the U(1) has been replaced by the approximate SU(5),
so that it seems more natural, and not so specially just making some story
for U(1) alone.

12.8 Outlook

12.8.1 The Dream of Exact Formula for αEM

Of course behind such fittings of finestructure constants is the holy gral
dream of finding the mathematical formula for the (electrodynamics) fine
structure constant, because that is so well known - many decimals - that it
contains so much infromation[39] that one could hope to justify a theory to
be correct, if it fitted the fine structure constant in a sufficiently simple way
(with the many decimals). A work like the present would suggest restrictions
on the form of the formula for the fine structure constant, and thereby
make an a bit more complicated formula be acceptable as convincingly right
provided it were of the right form.

But to make a formula without from phenomenology included expres-
sions possible we would of course need to have the Higgs and the fermion
masses connected, and for the time being the usual philosophy is, that the
Higgs scale is a pure mystery and, that it needs a solution of the hirarchy
problem to be possible at all. Some different philosophy e.g. a coupling of
the weak scale or Higgs scale to the development of the renorm group (for
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e.g. the top quark mass) is needed, one example is our [35, 34] applying the
complex action theory also in [36].

12.8.2 Could the See-saw Scale be identified with Our Unifcation
Scale?

It is characteristic of the our unified scale µU for the only approximate that
it is a bit to the low side in energy to even unified scales in other models
(especially if it is models with susy), and further it is the spirit of our model
that since our unification scale is a lattice scale - or some dominating average
in a fluctuating lattice link size -. It is only 5.13 ∗ 1013GeV . So it puts us
in the direction of asking if the see-saw mass scale could be the same as our
unification scale?

The neatrino mass square differences are for the atmospheric netrino
mass square difference and the solar one

∆m2
A ≈ 1.4 ∗ 10−3eV 2 to 3.3 ∗ 10−3eV 2 (272)

∆m2
sol ≈ 7.3 ∗ 10−5eV 2 to 9.1 ∗ 10−5eV 2 (273)

indicating masses of the order of magnitudes (4 to 5) ∗ 10−2eV and 3 ∗
10−3eV . With say a typical charged fermion mass in the Standard Model
being of mass 1GeV , you would expect by dimensional arguments a see saw
neutrino mass of the order

“see saw scale” ≈ (1GeV )2

10−2eV
(274)

= 1011GeV (275)

Not so far from ourµU = 5.13 ∗ 1013GeV. (276)

If we take it that the spread in the charged fermion masses from the electron
mass 0.5 ∗ 10−3GeV and the top quark 174GeV implies that our typical
charged fermion mass shall be considered to have 2 to 3 orders of magnitude
uncertaity, implying by the squaring in going to the see-saw mass a doubling
in the numbers of orders of magnitude, then the see-saw scale is

“see saw scale” ≈ 1011GeV ∗ 10±5 (277)

having inside errors µU = 5.13 ∗ 1013GeV. (278)

So if we believe in a lattice already at the 5.13 ∗ 1013GeV , we can look for
replacement of the see-saw neutrinos by some lattice effects.

12.8.3 Small Hierarchy by the Charges from GSMG × · · · × GSMG

If our model were right one would look for understanding the charged
fermion masses along the lines of our old work with Yasutaka Takanishi
and Colin Froggatt [40], while the neutrino oscillations would be related to
the lattice of effective lattice scale only 5.13 ∗ 1013GeV .
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