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ABSTRACT
In this work, we propose an approach to generalize denoising
diffusion probabilistic models for stock market predictions
and portfolio management. Present works have demonstrated
the efficacy of modeling interstock relations for market time-
series forecasting and utilized Graph-based learning models
for value prediction and portfolio management. Though
convincing, these deterministic approaches still fall short of
handling uncertainties i.e., due to the low signal-to-noise ratio
of the financial data, it is quite challenging to learn effective
deterministic models. Since the probabilistic methods have
shown to effectively emulate higher uncertainties for time-
series predictions. To this end, we showcase effective utili-
sation of Denoising Diffusion Probabilistic Models (DDPM),
to develop an architecture for providing better market pre-
dictions conditioned on the historical financial indicators and
inter-stock relations. Additionally, we also provide a novel
deterministic architecture MaTCHS which uses Masked Re-
lational Transformer(MRT) to exploit inter-stock relations
along with historical stock features. We demonstrate that our
model achieves SOTA performance for movement predica-
tion and Portfolio management.

Index Terms— Diffusion Models, Stock Market, Rela-
tional Learning

1. INTRODUCTION

Stock price prediction is an age-old intrigue for investors
due to its potential dividends and the inherent challenges
it presents due to market volatility and its stochastic nature
[1, 2]. Modern advancements in Deep Learning now em-
power researchers to employ a multitude of modalities such
as historical stock trends, news, social media, and financial
reports in market prediction models [3, 4]. There has been
a concerted effort in modeling inter-stock dependencies, re-
vealing that stocks associated with top-tier positions, or those
in similar sectors, often show correlated trends, contributing
to significant improvements in market predictions [5, 6].

Historically, time series prediction relied heavily on state
space framework-based statistical models such as ARIMA
and exponential smoothing [7, 8]. However, while pure ma-
chine learning approaches have been explored, they often

didn’t surpass statistical models due to issues like overfitting
and non-stationarity [9, 10]. In recent years, the spotlight has
shifted towards the diffusion model for probabilistic time se-
ries forecasting, marking state-of-the-art performances. No-
tably, the TimeGrad model [11] and CSDI model [12] have
showcased the potency of the diffusion model for optimizing
forecasting.

Yet, a challenge persists in the realm of stock prediction:
the low signal-to-noise ratio inherent in stock data. Such
noise can hinder machine learning models’ effectiveness, af-
fecting the accuracy of latent factors [13]. While the integra-
tion of multi-modal data helps bridge the gap, deterministic
methods often grapple with the uncertainties introduced over
time. This has led to the rise of probabilistic models, no-
tably the Denoising Diffusion Probabilistic Models (DDPM)
[14], which transform noise into predictions using a denois-
ing process conditioned on historical readings. However, their
limitation lies in solely modeling temporal dependencies, ne-
glecting spatial correlations between stock nodes [11, 12].

To surmount these challenges, we propose a novel frame-
work that synergizes DDPMs with relational market data,
encapsulating the spatio-temporal strengths of determinis-
tic models and the uncertainty handling of DDPMs. Our
MaTCHS architecture, derived from our preceding work
[15], employs Transformer Encoders with Masked attention
heads, encapsulating both temporal dynamics and spatial
correlations.

For a detailed exploration of deterministic models, readers
are encouraged to refer to [15, 16].

2. MODEL

2.1. General Market Prediction Task

We are interested in the problem of predicting future stock
prices, and we are provided with P financial indicators for
the last L days for every stock. We have a total of N stocks,
and which gives a set of financial and social indicators repre-
sented as, fN,L = (f ′1

P,L, f
′2
P,L..., f

′N
P,L) here f ′m

P,L ∈ RP×L.
In addition, we have a relation matrix C ∈ RN×N×G, which
specifies connections between N stocks over G different re-
lations, C(i, j, k) = {1 if i and j are connected by relation
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k, else 0}[6]. We can model our relation matrix as a graph
H = (N , E), with E ∈ RG is a hyperedge.
Given historical financial signals fN,L we can represent each
node as a stock in the graph H . Now, given this information
we seek to predict the stock value at time step Tobserved + 1
to T for all the N stocks, i.e. x(T+1,N). So, we can formulate
our problem as p(x(T+1,N)|fN,L, H) and we seek to learn
some F : (fN,L, H) → x(T+1,N).

2.2. Conditional Diffusion Model

We build on the work by [12, 17], to develop a conditional dif-
fusion model for market prediction. We can start by following
a obvious approach using the stock trend history ft,L and re-
lational data between stocks H as the condition in the reverse
process. So, we can write our conditioned reverse diffusion
process as,

pθ(x
(T+1,N)
0:K |fN,L, H) = p(x

(T+1,N)
K )

×
1∏

k=K

pθ(x
(T+1,N)
k−1 |x(T+1,N)

k , fN,L, H). (1)

Here we can note that x(T+1,N) can be thought of as being
sampled from the same distribution as fN,L due to the high
trend correlation between consecutive time-stamps. To bet-
ter utilize this association, we modify the equation to predict
fN,L+1 i.e. fN,L along with future time steps as demonstrated
by [17]. This formulation provides a unifying approach that
combines historical reconstruction and future estimation. By
predicting fN,L+1, we can use historical data to model the
distribution of data comprehensively.

pθ((fN,L+1)0:K |fN,L, H) = p((fN,L+1)K)

×
1∏

k=K

pθ((fN,L+1)k−1|(fN,L+1)k, fN,L, H). (2)

with training objective,

min
θ

L(θ) = min
θ

E(fN,L+1)0,ϵ ∥ϵ− ϵθ ((fN,L+1)k, k|fN,L, H)∥22 .
(3)

Here, ϵθ is our MaTCHS model, the denoising model. The
denoising function ϵθ estimates the noise vector ϵ that was
added to its noisy input (fN,L+1)k. Detailed formulation is
similar to works of [11, 12, 14]. 1

2.3. Adaptive Noise for Financial Series Diffusion

Stock market dynamics are inherently stochastic and diverse,
exhibiting various unique patterns like spikes, trends, and de-
clines at different time points. To adequately model and cap-
ture these diverse dynamics, it’s imperative for the Difffusion

1It is to be noted that at all the instance where we have used T + 1 and
L + 1 it can be generalised to T + t′ and L + l′ i.e. any number of future
time steps t′ or l′ can be predicted.

process to model inherent volatility at different time points
and the collective behaviors of groups of stocks.

Modeling Time Series Variance: One way to assess the
intrinsic unpredictability or volatility of the stock market is
by evaluating the local variance at each time point. This lo-
cal variance can be thought of as an indicator of how sen-
sitive a stock might be to broader market fluctuations. The

formula is given by, v(t) =
∑t+w

i=t−w(fN,t−fN,i)
2

2w+1 , Where the
normalization of this variance is represented as, vnorm(t) =

v(t)
maxτ∈T v(τ) .

Modeling Intra-Cluster Dynamics: Groups of stocks
often exhibit collective behaviors, especially if they belong to
the same sector or are influenced by similar macroeconomic
factors. To model such collective behaviors or intra-cluster
dynamics, we employ Dynamic Time Warping (DTW)[18]
method. DTW provides a measure of similarity between time
series of individual stocks. Thus, the intra-cluster DTW dis-
tance for a stock within a cluster can be expressed as:

DTWintra(fN,i, C) = DTW

 1

|C| − 1

∑
fN,j∈C,i ̸=j

fN,i, fN,j


The influence of a stock’s time series in relation to its cluster
is then given by, Iintra(fN,i, C) = 1

1+DTWintra(fN,i,C) .
Integrating Volatility and Cluster Dynamics: To obtain

a comprehensive understanding of a stock’s behavior, both its
individual volatility and its intra-cluster dynamics should be
taken into account. By integrating these, we get:

vscore,intra(t, fN,i, C) = α× vnorm(t) + (1− α)

×Iintra(fN,i, C)× vnorm(t, C),

This integrated score provides a unified metric, repre-
sented as I(t) = vscore,intranorm(t, C), that captures the
overall significance of a given time point. Based on this
metric, noise can be adaptively applied to market signal :

q((fN,L+1)k+1|(fN,L+1)k) =

N((fN,L+1)k+1;
√

(1− βt)(fN,L+1)k, βtI).
(4)

This ensures that significant time points and relation pat-
terns are emphasized during Diffusion process by prioritizing
learning these trends during denoising process and enabling
model in making better future trend prediction.

2.4. MaTCHS(Denoising Model)

Introducing MaTCHS, our architecture fuses a Masked
Transformer with a Convoutional network to predict stock
prices leveraging Hypergraph relations. It consists of two
main segments. The first, Att-DiCEm, focuses on temporal
feature extraction from financial indicators using the Att-
DCNN approach[16]. The second emphasizes understanding
the relationship between different stocks for price prediction.
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Fig. 1. MaTCHS Denoising Model: Masked Transformer and Convoutional network for Hypergraph relation based Stock
time-series generation.

After the ”Masked Relational Transformer(MRT)” provides
relational information, this is further enhanced temporally
with another Att-DCNN layer. The model concludes by pro-
ducing a financial time-series for each stock spanning past
and future time-stamps. The input to our denoising network
will be concatenated (fN,L+1)k, and fN,L+1, the conditional
for the diffusion model with mask at the future time-steps. So
the concatenated input takes the form of fN,2(L+1).

Att-DiCEm Building upon our previous work[15], the
event pipeline has been excluded, emphasizing the financial
segment. We’ve adapted this segment to generate a time
series across 2L+1 time steps with ”d” time variables. Con-
trasting the original output of R(2L+1)×1, the new format is
R(2L+1)×d. Noise level positional encoding, k ∈ [1,K], is
implemented using a transformer positional embedding[19]
as, ne(k) = [. . . , cos(k/r−2s/D), sin(k/r−2s/D), . . . ]T,
with the embeddings added post the initial DC-CNN layer in
each Att-DiCEm unit.

2.4.1. Masked Relational Transformer (MRT)

As described in [19], in the Self-Attention Network an
attention function maps a query and a set of key-value
pairs to an output as, A(Q,K, V ) = S(Q,K)V , with

S(Q,K) =

[
exp

(
QiK

T
j /

√
dk

)
∑

k exp
(
QiKT

k /
√
dk

)]. Here, queries Q, keys

K, and values V ∈ RT×dk are matrices. A representa-
tion sequence is given as H l ∈ RT×d in the l-th layer,
H l =

[
A1, · · · , AI

]
WH , i denotes the attention head and d

is the hidden size.
By analyzing the self-attention function, we can model it as
a graph. The relation from Node j to i can be described
by, rel(i to j) = qTi kj . A modified attention function, in-
corporating masking to make the model operate on specific
graph nodes, is described as, AM (Q,K, V ) = SM (Q,K)V

with, SM (Q,K) =

[
Mi,jexp

(
QiK

T
j /

√
dk

)
∑

k Mi,kexp
(
QiKT

k /
√
dk

)], where M ∈

RT×T ,Mi,j ∈ [0, 1] can be a static or dynamic mask matrix.

Now to model hyper-graph structure one approach would
be of aggregating all relation types into a single matrix, but
that might overlook specific relation nuances [19]. Given
that multi-head attention mechanisms sometimes capture
redundant features [20, 21, 22], we propose the Masked Rela-
tional Attention Networks (MRAN). It uses separate attention
heads for each relation, Ai

Mi(Qi,Ki, V i) = Si
Mi(Qi,Ki)V i

with,Si
Mi(Qi,Ki) =

[
Mi

i,jexp
(
Qi

iK
iT
j /

√
dk

)
∑

k Mi
i,kexp

(
Qi

iK
iT
k /

√
dk

)], such that,

Ai
M is Attention calculated for ith attention head which uses

ith relation mask M i i.e. C(:, :, i).
Due to computational concerns, we restrict attention heads in
our transformer to 12, grouping similar relations together and
using aggregated relations as masks. So, Masked Relational
Transformer (MRT), divides the total G relations among 12
attention heads. We also employ additional 4 unmasked atten-
tion heads for capturing potential evolving relations between
stocks. So, we employ grouped stock-relations C as our sec-
ond conditional. Given output X = X1, . . . , XN from the
Att-DiCEm layer, we first flatten it to X ′

m ∈ Rd(2L+1)×1.
MRT uses X ′

t as input for Transformer Encoder Layer. The
output, X ′′

t , is obtained by de-flattening each stock in X′′
t to

match MRT layer input dimensions. Note that these Trans-
former Encoders model spatial relations among stocks, not
temporal domains.
For training, we retained preprocessing from [15] and used
the diffusion model hyperparameters outlined by [12]. We
varied βk capped at [0, 1, 0.2] and diffusion steps K from [20,
50, 100, 200]. Using a batch size of 16 and a decaying learn-
ing rate initialized at 1e − 4, training spanned 100 epochs.
Two transformer encoders in each MRT Network were used
with a prediction window of 3. Evaluation for StockNet was
centered on the L+1 timestamp. Training with 200 diffusion
steps for 100 epochs on the A100 GPU took 6 hours. Optimal
values on StockNet were K = 100 and βk = 0.2.



3. EVALUATION

3.1. Datasets and Baselines

For an extensive evaluation of our model, we plan to evalu-
ate it on four datasets from US Stock Market spanning over
6 years. We test on NASDAQ [6], NYSE [6] and StockNet
[23]. We follow the same train test partitions as in original
works [6, 23]. We follow the approach described by [6] for
populating relation matrix C for all the datasets. We compare
our model with top performing models, STHGCN [24], GCN
[25], GCN20 [26], RSR [6], HATS [26]. For Stock Movement
Prediction, we’ll use accuracy and MCC. For Portfolio Man-
agement, we’ll compare our cumulative return (IRR) with
other trading models and use Sharpe Ratio to measure risk-
adjusted returns. For probabilistic models (DDPM), we’ll
use CRPS to assess distribution compatibility. For portfolio
management using predicted prices we will adopt a daily buy-
hold-sell strategy as described by [5].

Table 1. Evaluation Results over StockNet Dataset[23]
Model F1 ↑ Accuracy ↑ MCC ↑
RAND 0.502± 8e− 4 0.509± 8e− 4 −0.002± 1e− 3

TA ARIMA - [27] 0.513± 1e− 3 0.514± 1e− 3 −0.021± 2e− 3
- [28] 0.529± 5e− 2 0.530± 5e− 2 −0.004± 7e− 2
RandForest - [29] 0.527± 2e− 3 0.531± 2e− 3 0.013± 4e− 3
TSLDA - [30] 0.539± 6e− 3 0.541± 6e− 3 0.065± 7e− 3
HAN - [31] 0.572± 4e− 3 0.576± 4e− 3 0.052± 5e− 3
StockNet - TechnicalAnalyst - [23] 0.546±− 0.550±− 0.017±−
StockNet - FundamentalAnalyst - [23] 0.572±− 0.582±− 0.072±−
StockNet - IndependentAnalyst - [23] 0.573±− 0.575±− 0.037±−

FA StockNet - DiscriminativeAnalyst - [23] 0.559±− 0.562±− 0.056±−
StockNet - HedgeFundAnalyst - [23] 0.575±− 0.582±− 0.081±−
GCN[25] 0.530± 7e− 3 0.532± 7e− 3 0.093± 9e− 3
HATS - [26] 0.560± 2e− 3 0.562± 2e− 3 0.117± 6e− 3
Adversarial LSTM - [6] 0.570±− 0.572±− 0.148±−
MAN-SF - [32] 0.605± 2e− 4 0.608± 2e− 4 0.195± 6e− 4
STHGCN - [5] 0.609± 2e− 4 0.613± 2e− 4 0.198± 6e− 4
MaTCHS (This work) - AttDiCEm i.e. without relations 0.568± 2e− 3 0.572± 2e− 3 0.168± 6e− 3
MaTCHS (This work) - Aggregated relations 0.585± 2e− 3 0.587± 2e− 3 0.175± 6e− 3
MaTCHS (This work) 0.611± 2e− 3 0.612± 2e− 3 0.206± 6e− 3
MaTCHS (with Diffusion w/o Adap. Noise) 0.623± 2e− 3 0.621± 2e− 3 0.214± 6e− 3
MaTCHS (with Diffusion) 0.631± 2e− 3 0.634± 2e− 3 0.225± 6e− 3

Table 2. Evaluation Results over NASDAQ and NYSE
Dataset(2 decimal places disp.) [6]

Model NYSE NASDAQ
SR@5 IRR@5 SR@5 IRR@5

ARIMA [27] 0.33± 3e−3 0.10± 5e−3 0.55± 1e−3 0.10± 6e−3

A-LSTM [33] 0.81± 4e−3 0.14± 7e−3 0.97± 5e−3 0.23± 3e−3

GCN [25] 0.70± 3e−3 0.10± 6e−3 0.75± 4e−3 0.13± 1e−3

HATS [26] 0.73± 5e−3 0.12± 2e−3 0.80± 6e−3 0.15± 7e−3

DQN [34] 0.72± 5e−3 0.12± 4e−3 0.93± 5e−3 0.20± 6e−3

iRDPG [35] 0.85± 7e−3 0.18± 3e−3 1.32± 5e−3 0.28± 4e−3

Rank LSTM [36] 0.79± 1e−3 0.12± 6e−3 0.95± 4e−3 0.22± 2e−3

GCN [25] 0.72± 7e−3 0.16± 3e−3 0.46± 4e−3 0.13± 5e−3

RSR-E [6] 0.88± 6e−3 0.20± 3e−3 1.12± 5e−3 0.26± 4e−3

RSR-I [6] 0.95± 1e−3 0.21± 3e−3 1.34± 6e−3 0.39± 5e−3

STHAN-SR [5] 1.10±±e−3 0.255± e−3 1.40± 7e−3 0.44± 1e−2

MaTCHS 1.13±±e−3 0.267± e−3 1.45± 7e−3 0.45± 1e−2

MaTCHS(Agg) 0.97±±e−3 0.221± e−3 1.34± 7e−3 0.40± 1e−2

MaTCHS(16) 1.14±±e−3 0.270± e−3 1.46± 7e−3 0.46± 1e−2

MaTCHS with Diffusion w/o Adap. Noise 1.15±±e−3 0.274± e−3 1.48± 7e−3 0.46± 1e−2

MaTCHS with Diffusion 1.18±±e−3 0.285± e−3 1.52± 7e−3 0.48± 1e−2

% Improv. (SOTA w.r.t. STHAN-SR) 7.92 9.81 6.18 8.07

Table 3. Comparison with other Diffusion Models
Diffusion Model StockNet

F1 Accuracy MCC CRPS
CSDI [12] 0.582± 2e− 3 0.586± 2e− 3 0.170± 6e− 3 0.092

TimeGrad [11] 0.596± 2e− 3 0.598± 2e− 3 0.177± 6e− 3 0.076
MaTCHS with Diffusion (ours) 0.631± 2e− 3 0.634± 2e− 3 0.225± 6e− 3 0.049

3.2. Results and Analysis

Two variations of our model were evaluated: the Diffusion-
based MaTCHS and the naive MaTCHS, which omits diffu-
sion. The naive MaTCHS uses an input size of N × P × L

for N stocks, P indicators, and L timesteps, with an adjusted
output layer (N × 1) for next-day stock predictions. Compar-
ative results are presented in Table-1 and Table-2.

The Diffusion-based MaTCHS excels on the StockNet
Dataset[23], outperforming all other models in F1, accuracy,
and MCC metrics, and on NASDAQ and NYSE dataset[6]
outperforming others on SR and IRR . Without the diffusion
component, MaTCHS still performs admirably, matching
the STHAN-SR model’s performance. This emphasizes the
strength of our Masked Relational Transformers (MRT) in
grasping complex inter-stock dynamics over other GNN-
based techniques like HyperGraph-structured STHAN-SR.
Separating temporal and spatial predictions has proved ben-
eficial, addressing the complexities arising from concurrent
modeling. This separation fosters precision and leads to
superior price trend forecasting.

Our Diffusion architectures’ performance underscores
our hypothesis on the diffusion models ability in capturing
stock market nuances better due to their probabilistic nature.
Further, our specialized noise schedule for Diffusion en-
hances performance over standard Diffusion noise schemes
across all Datasets. Our guidance in Diffusion emphasizes
learning volatile and relational trends, hence augmenting the
denoising models’ capability.

Further NASDAQ and NYSE datasets, our models reveal
potent Portfolio Return trends. Notably, the Sharpe ratios of
7.92% and 6.18% suggesting considerable advances over pre-
vious models for utilisation for automated trading capablities.
Also, higher IRR scores signify the model’s ability to incor-
porate distant temporal dynamics in prediction, as higher IRR
indicates better annual returns relative to the amount invested.

We also trained and tested CSDI[12] and TimeGrad[11]
on StockNet(Table-3), we noted predictable performance
declines. As CSDI focuses on time-series imputation, and
TimeGrad’s diffusion-based training isn’t tailored to our
goals. Our CRPS scores outperformed both, proving our
diffusion model’s superiority in capturing data distribution.

An ablation study, examining the impact of aggregating
relations across attention heads, exhibited performance drops
across the StockNet, NASDAQ, and NYSE datasets. Ampli-
fying the attention heads number yields marginal improve-
ments, reinforcing the rationale behind the MRT’s design.

3.3. Limitations and Conclusion

Our architecture, while effective, requires substantially more
computational resources and time compared to alternatives,
hindering its applicability in rapid scenarios like day-trading.
Immediate reductions in iterations compromise model effi-
cacy. More efficient diffusion architectures are essential for
real-world use. In summary, our diffusion-based stock pre-
diction architecture outperforms current models, presenting a
promising avenue for improved stock market predictions and
advancing research in this sector.
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