
SpikingResformer: Bridging ResNet and Vision Transformer in Spiking Neural
Networks

Xinyu Shi1,2, Zecheng Hao2, Zhaofei Yu1,2*

1 Institute for Artificial Intelligence, Peking University
2 School of Computer Science, Peking University

Abstract

The remarkable success of Vision Transformers in Ar-
tificial Neural Networks (ANNs) has led to a growing in-
terest in incorporating the self-attention mechanism and
transformer-based architecture into Spiking Neural Net-
works (SNNs). While existing methods propose spik-
ing self-attention mechanisms that are compatible with
SNNs, they lack reasonable scaling methods, and the over-
all architectures proposed by these methods suffer from
a bottleneck in effectively extracting local features. To
address these challenges, we propose a novel spiking
self-attention mechanism named Dual Spike Self-Attention
(DSSA) with a reasonable scaling method. Based on
DSSA, we propose a novel spiking Vision Transformer ar-
chitecture called SpikingResformer, which combines the
ResNet-based multi-stage architecture with our proposed
DSSA to improve both performance and energy efficiency
while reducing parameters. Experimental results show
that SpikingResformer achieves higher accuracy with fewer
parameters and lower energy consumption than other
spiking Vision Transformer counterparts. Notably, our
SpikingResformer-L achieves 79.40% top-1 accuracy on
ImageNet with 4 time-steps, which is the state-of-the-
art result in the SNN field. Codes are available at
https://github.com/xyshi2000/SpikingResformer

1. Introduction
Spiking Neural Networks (SNNs), considered as the third
generation of Artificial Neural Networks (ANNs) [28], have
garnered significant attention due to their notable advan-
tages such as low power consumption, biological plausibil-
ity, and event-driven characteristics that are compatible with
neuromorphic hardware. In comparison to ANNs, SNNs
exhibit an energy-saving advantage when deployed on neu-
romorphic hardware [11, 30, 33], and have become popular
in the field of neuromorphic computing in recent years [34].

*Corresponding author: yuzf12@pku.edu.cn

Spikformer
Spikingformer

Spike-driven Transformer
SpikingResformer (Ours)

5 10 15 20
Energy (mJ)

70

72

74

76

78

A
cc

ur
ac

y
(%

)

20 30 40 50 60
Model Parameters (M)

70

72

74

76

78

A
cc

ur
ac

y
(%

)

Figure 1. Comparison of Top-1 accuracy on ImageNet with re-
spect to energy consumption per image for inference (left) and the
number of parameters (right). The input size is 224×224.

However, the performance of existing SNNs still lags be-
hind that of ANNs, particularly on challenging vision tasks,
which limits further application of SNNs.

Researchers make great efforts to enhance the perfor-
mance of SNNs. Recently, inspired by the remarkable
achievements of vision transformers [8, 27] in ANNs, some
attempts have been made to introduce transformer-based
architecture into SNNs. The main challenge in incor-
porating transformer structures into SNNs lies in design-
ing a self-attention mechanism suitable for SNNs. The
vanilla self-attention mechanism in ANNs relies on float-
point matrix multiplication and softmax operations. How-
ever, these operations involve float-point multiplication, di-
vision, and exponentiation, which do not comply with the
spike-driven nature of SNNs. Moreover, commonly used
components in ANN Transformers, such as layer normal-
ization (LN) and GELU activation, are not directly applica-
ble in SNNs. Therefore, the introduction of transformer ar-
chitectures into SNNs necessitates circumventing these op-
erations and catering to the unique requirements of SNNs.

Some work has attempted to partially preserve floating-
point operations [38], or run an SNN and an ANN Trans-
former in parallel [49]. Although these approaches en-

1

ar
X

iv
:2

40
3.

14
30

2v
2

 [
cs

.N
E

]
 2

8
M

ar
 2

02
4

https://github.com/xyshi2000/SpikingResformer

hance performance, they do not fully address the incompat-
ibility between vanilla self-attention and SNNs. There are
also works that propose spiking self-attention mechanisms
and spiking Vision Transformer architectures, which are en-
tirely based on synaptic operations [46] and fully spike-
driven [42, 45]. These works completely resolve the in-
compatibility of the self-attention mechanism with SNNs,
significantly outperforming existing spiking convolutional
neural networks. However, these approaches have certain
limitations. Specifically, the spiking transformer architec-
tures of these methods exhibit a bottleneck in extracting lo-
cal features. They employ a shallow convolutional network
before the Transformer encoder to extract local features and
reduce the size of feature maps. However, the effectiveness
of such a shallow network is limited compared to Trans-
former encoders. Replacing this shallow network with a
Transformer encoder is not feasible. This is because their
spiking self-attention mechanisms lack reasonable scaling
methods, making them suitable only for small feature maps.
Designing proper scaling factors for these mechanisms is
challenging as the input currents to neurons, which gen-
erate self-attention, do not possess simple mean and vari-
ance forms. Thus, there is a pressing need to design a new
spiking self-attention mechanism with a reasonable scaling
method that can effectively handle large feature maps.

To address these problems, we propose a novel spiking
self-attention mechanism, named Dual Spike Self-Attention
(DSSA). It produces spiking self-attention via Dual Spike
Transformation, which is fully spike-driven, compatible
with SNNs, and eliminates the need for direct spike mul-
tiplications. In addition, we detail the scaling method in
DSSA, enabling it to adapt to adapt to feature maps of
arbitrary scales. Building upon DSSA, we propose Spik-
ingResformer, a novel spiking Vision Transformer architec-
ture. This architecture combines the ResNet-based multi-
stage design with our proposed spiking self-attention mech-
anism. Experimental results show that our proposed Spik-
ingResformer significantly outperforms the performance of
existing spiking Vision Transformers with fewer parame-
ters and less energy consumption. The main contributions
of this paper can be summarized as follows:

• We propose the Dual Spike Self-Attention (DSSA), a
novel spiking self-attention mechanism. It produces spik-
ing self-attention via Dual Spike Transformation, which
is fully spike-driven and compatible with SNNs.

• We detail the scaling factors employed in DSSA, enabling
DSSA to handle feature maps of arbitrary scales.

• We propose the SpikingResformer architecture, which
combines the ResNet-based multi-stage architecture with
our proposed DSSA.

• Experimental results show that the proposed Spik-
ingResformer significantly outperforms other spiking
Vision Transformer counterparts with fewer parame-

ters and lower energy consumption. Notably, our
SpikingResformer-L achieves up to 79.40% top-1 accu-
racy on ImageNet.

2. Related Work
Spiking Convolutional Neural Networks. Spiking con-
volutional neural networks (SCNNs) have been extensively
developed due to the remarkable success of surrogate gradi-
ent learning [31, 43] and are widely used in handling chal-
lenging vision tasks, including object recognition [1, 20],
detection [17, 36], and segmentation [18, 32]. To improve
the performance of SCNNs on these challenging tasks, re-
searchers have dedicated great efforts to exploring train-
ing methods [6, 12, 21, 29, 39, 41, 47, 48] and ANN-to-
SNN conversion techniques [2, 3, 5, 7, 13–16, 22, 24, 35,
40]. Moreover, many deep spiking convolutional architec-
tures [9, 14, 21, 35, 44] have been proposed to achieve high
performance. The success of SpikingVGG [21, 35] demon-
strates that SCNNs can achieve comparable performance to
ANNs in recognition tasks. SpikingResNet [14, 44] fur-
ther explores SCNNs with residual structure and achieves
deeper SCNN with ResNet-based architecture. Moreover,
SEW ResNet [9] meticulously analyzes the identity map-
ping in directly-trained spiking residual networks and suc-
cessfully trains a 152-layer SCNN directly. These architec-
tures leverage large-scale SNNs with numerous layers and
demonstrate superior performance on various tasks.
Spiking Vision Transformers. Spikformer [46] is the first
directly-trained spiking vision transformer with a pure SNN
architecture. It introduces a spiking self-attention mech-
anism that eliminates multiplication by activating Query,
Key, and Value with spiking neurons and replacing softmax
with spiking neurons. In addition, it replaces layer nor-
malization and GELU activation in the Transformer with
batch normalization and spiking neurons. Based on Spik-
former, Spikingformer [45] achieves a purely spike-driven
Vision Transformer by modifying the residual connection
paradigm. Spike-driven Transformer [42] proposes a spike-
driven self-attention mechanism with linear complexity, ef-
fectively reducing energy consumption. However, all of
these efforts employ a shallow convolutional network to
pre-extract local information to form a sequence of patches
and lack proper scaling methods.

3. Preliminary
We describe the dynamics of the Leaky Integrate-and-Fire
(LIF) neuron used in this paper by the following discrete-
time model:

vi[t] = ui[t] +
1

τ
(Ii[t]− (ui[t]− urest)), (1)

si[t] = H(vi[t]− uth), (2)
ui[t+ 1] = si[t]urest + (1− si[t])vi[t]. (3)

2

Eq. (1) describes the charging process. Here ui[t] and vi[t]
denote the membrane potential of i-th postsynaptic neuron
before and after charging. τ is the membrane time con-
stant. Ii[t] denotes the input current. In general, Ii[t] =∑

j wi,jsj [t], where sj [t] ∈ {0, 1} represents the spike
output of the j-th presynaptic neuron at time-step t, and
wi,j represents the weight of the corresponding synaptic
connection from neuron j to neuron i. Eq. (2) describes
the firing process, where H(·) is the Heaviside function,
si[t] ∈ {0, 1} is the spike output of the spiking neuron, uth

denotes the firing threshold. Eq. (3) describes the resetting
process, with urest denoting the resting potential.

For the sake of simplicity and clarity in subsequent sec-
tions, we represent the spiking neuron model as follows:

S = SN(I), (4)

where SN(·) denotes the spiking neuron layer, omitting the
dynamic processes within the neuron, I ∈ RT×n is the input
current, where T is the time step and n is the number of
neurons, S ∈ {0, 1}T×n is the corresponding spike output.

4. Dual Spike Self-Attention
This section first revisits the vanilla self-attention (VSA)
mechanism commonly used in ANNs and analyzes why
VSA is not suitable for SNNs. Then, we propose dual spike
self-attention (DSSA), specifically designed for compatibil-
ity. We further discuss the significance of the scaling factor
in DSSA and the spike-driven characteristic of DSSA.

4.1. Vanilla Self-Attention

The vanilla self-attention in Transformer [37] can be formu-
lated as follows:

Q = XWQ, K = XWK , V = XWV , (5)

Attention(Q,K,V) = Softmax

(
QKT

√
d

)
V (6)

Here Q,K,V ∈ Rn×d denote Query, Key and Value, re-
spectively. n is the number of patches, d is the embed-
ding dimension. We assume that Q,K,V have the same
embedding dimension. X ∈ Rn×d is the input of self-
attention block, WQ,WK ,WV ∈ Rd×d are the weights
of the linear transformations corresponding to Q,K,V, re-
spectively.

The vanilla self-attention commonly used in ANNs is not
suitable for SNNs due to the following two types of opera-
tions involved: 1) the float-point matrix multiplication of Q
and K, as well as between the attention map and V; 2) the
softmax function, which contains exponentiation and divi-
sion operations. These operations rely on float-point mul-
tiplication, division, and exponentiation operations, which
are not compatible with the restrictions of SNNs.

4.2. Dual Spike Self-Attention

To introduce the self-attention mechanism into SNNs and
efficiently handle the multi-scale feature maps, we pro-
pose a novel spiking self-attention mechanism, named Dual
Spike Self-Attention (DSSA). DSSA only utilizes Dual
Spike Transformation (DST), thereby eliminating the need
for the float-point matrix multiplication and softmax func-
tion. We first define the DST as follows:

DST(X,Y; f(·)) = Xf(Y) = XYW, (7)

DSTT(X,Y; f(·)) = Xf(Y)T = XWTYT. (8)

In Eq. (7), X ∈ {0, 1}T×p×m and Y ∈ {0, 1}T×m×q rep-
resent the dual spike inputs. T is the time steps, p, m, q de-
note arbitrary dimensions. Here f(·) is a generalized linear
transformation on Y, with W ∈ Rq×q denoting its weight
matrix. It represents any operation that can be equated to
a linear transformation, including convolution, batch nor-
malization (ignoring bias), etc. A detailed discussion on
the equivalence of convolution operations to linear trans-
formations can be found in the supplementary. Similarly, in
Eq. (8), we have Y ∈ {0, 1}T×q×m, W ∈ Rm×m. Since X
and Y are both spike matrices, all matrix multiplications are
equivalent to the summation of weights. Consequently, the
DST avoids floating-point multiplication, making it com-
patible with SNNs. Further discussion of the compatibility
and the spike-driven characteristic of DST can be found in
Sec. 4.4. Based on DST, the attention map in DSSA can be
formulated as follows:

AttnMap(X) = SN(DSTT(X,X; f(·)) ∗ c1), (9)
f(X) = BN(Convp(X)), (10)

where X ∈ {0, 1}T×HW×d is the spike input, with H and
W denoting the spatial height and width of the input, d de-
noting the embedding dimension. BN(·) refers to the batch
normalization layer, Convp(·) denotes a p × p convolution
with a stride of p, and c1 is the scaling factor. Since the
convolution operation is equivalent to a generalized linear
transformation, and batch normalization can be absorbed
into the convolution (ignoring bias), BN(Convp(·)) can be
viewed as a generalized linear transformation. Here we use
the p× p convolution with a stride of p to reduce the spatial
size to handle the multi-scale feature map and reduce the
computational overhead. In DSSA, there is no need for the
softmax function since the spiking neuron layer inherently
generates a binary attention map composed of spikes. Each
spike sij in this spiking attention map signifies attention be-
tween patch i and patch j. We believe that such a spiking
attention map is more interpretable compared to the atten-
tion map in ANN activated with softmax. With the spiking
attention map, the DSSA can be formulated as follows:

DSSA(X) = SN(DST(AttnMap(X),X; f(·)) ∗ c2),
(11)

3

Stage 1
Residual Blocks 1

Classifier

Avg Pool

Stage 3
Residual Blocks 3

Downsample Layer

Downsample Layer

SN

Point-wise Conv
R 4 & BN

SN

Point-wise Conv
R 4 & BN

SN

3 3 Group-wise Conv
G 64 & BN

GWSFFN

Input

Classifier

Avg Pool

Input

Spiking Patch Spliting

3 3 Conv & BN

SN

3 3 Maxpooling
with stride 2

 4

3 3 Conv & BN

SN

Transformer Blocks 8

MHSSA

SFFN

Transformer Encoder

Classifier

Avg Pool

Stage 3
Residual Blocks 3

Stage 1
Residual Blocks 3

Stage 2
Residual Blocks 4

Residual Blocks 6

Stage 3

1 1 Conv & BN

Stem

Input

SN

3 3 Conv & BN

SN

1 1 Conv & BN

SN
Residual Blocks 2

MHDSSA

GWSFFN

Stage 2

7 7 Convolution with stride 2
& BN

3 3 Maxpooling with stride 2

Stem

X

Convp
& BN

Convp
& BN

Scale

SN

Scale

SN

Attn

DSSA

Output

DSTT DST

MHDSSA

SN

Multi-Head DSSA

Point-wise Conv
& BN

Concat

Spike

Conv & BN

Input Current

Spiking Neuron

Maxpooling

Matmul

Spiking Self-
Attention module

FFN module

Other modules

a) SpikingResformer b) SEW ResNet-50 c) Spikformer

Figure 2. Left: Architecture of SpikingResformer and components including Dual Spike Self-Attention (DSSA), Multi-Head DSSA
(MHDSSA), and Group-Wise Spiking Feed-Forward Network (GWSFFN). Right: Architecture of SEW ResNet-50 and Spikformer.

where c2 is the second scaling factor. Since the form of
DSSA is quite different from VSA and existing spiking
self-attention mechanisms, we further discuss how DSSA
achieves self-attention in the supplementary.

4.3. Scaling Factors in DSSA

In the vanilla self-attention mechanism [37], the product of
matrices Q and K in Eq. (6) is scaled by a factor of 1/

√
d

before applying the softmax operation. This scaling is nec-
essary because the magnitude of QKT grows with the em-
bedding dimension dk, which can result in gradient vanish-
ing issues after the softmax operation. Formally, assume
that all the elements in Q and K are independent random
variables with a mean of 0 and a variance of 1, then each el-
ement in their product QKT has mean 0 and variance d. By
multiplying the product with a factor of 1/

√
d, the variance

of the product is scaled to 1.
While DSSA does not employ the softmax function, the

surrogate gradient also suffers gradient vanishes without
scaling. However, directly using the scaling factor of VSA
is not feasible. Due to the spike-based nature of the input
in DST and the attention map in DSSA, we cannot assume
that they possess a mean of 0 and a variance of 1. Therefore,
the scaling factor values in DSSA should be different from
those used in VSA. In the following theorem, we present
the mean and variance of DST.

Theorem 1 (Mean and variance of DST). Given spike in-
put X ∈ {0, 1}T×p×m, Y ∈ {0, 1}T×m×q and linear

transformation f(·) with weight matrix W ∈ Rq×q , I ∈
RT×p×q is the output of DST, I = DST(X,Y; f(·)). As-
sume that all elements in X and Y are independent ran-
dom variables, xix,jx [t] in X subject to Bernoulli distri-
bution xix,jx [t] ∼ B(fx), and the output of linear trans-
formation f(Y) has mean 0 and variance 1, we have
E(IiI ,jI [t]) = 0, Var(IiI ,jI [t]) = fxm. Similarly, for I =
DSTT(X,Y; f(·)) and Y ∈ {0, 1}T×q×m, W ∈ Rm×m,
we also have E(IiI ,jI [t]) = 0, Var(IiI ,jI [t]) = fxm.

The proof of Theorem 1 can be found in the supplemen-
tary. Accroding to Theorem 1, we have c1 = 1/

√
fXd,

c2 = 1/
√

fAttnHW/p2. Here fX and fAttn are the aver-
age firing rate of X and spiking attention map, respectively.

4.4. Spike-driven Characteristic of DSSA

The spike-driven characteristic is important for SNNs, i.e.,
the computation is sparsely triggered with spikes and re-
quires only synaptic operations. Previous work has made a
great effort in achieving spike-driven Transformers [42, 45].
In this subsection, we delve into the spike-driven character-
istic of DSSA and prove that DSSA is spike-driven. We first
give the formal definition of the spike-driven characteristic.

Definition 1. A spiking neural network is spike-driven if the
input currents of all neurons satisfy the following form:

Ii[t] =
∑
j

wi,jsj [t] =
∑

j,sj [t]̸=0

wi,j , (12)

4

where Ii[t] is the input current of the i-th postsynaptic neu-
ron at time step t, sj [t] ∈ {0, 1} is the spike output of the
j-th presynaptic neuron, wi,j is the weight of the synaptic
connection from neuron j to neuron i.

This definition reveals the nature of the spike-driven
characteristic, i.e., the accumulation of input current is
sparsely triggered by spikes emitted from presynaptic neu-
rons. It is evident that commonly used linear layers and
convolution layers satisfy this definition.

The DSSA has only two spiking neuron layers, including
the spiking attention map layer and the output layer. Both of
these layers receive input currents derived from DST. Thus,
we only need to validate that the DST satisfies the form in
Definition 1. We first validate the DSTT in Eq. (8)

I = XWTYT, (13)

Ii,j [t] =

m∑
k=1

m∑
l=1

xi,k[t]wl,kyj,l[t] =
∑
k,l

(xi,k[t]∧yj,l[t]) ̸=0

wl,k.

(14)

Slightly different from Definition 1, the spike input here is
the logical AND of dual spikes. This can be viewed as a
synaptic operation requiring dual spikes to trigger, which is
the reason it is called dual spike transformation. Similar to
the DSTT, the DST in Eq. (7) can also be formulated as:

I = XYW, (15)

Ii,j [t] =

m∑
k=1

q∑
l=1

xi,k[t]yk,l[t]wl,j =
∑
k,l

(xi,k[t]∧yk,l[t]) ̸=0

wl,j .

(16)

Thus, DSSA is spike-driven.

5. SpikingResformer
In this section, we first introduce the overall architecture of
the proposed SpikingResformer and compare it with exist-
ing SEW ResNet [9] and Spikformer [46]. Then we detail
the design of the spiking resformer block.

5.1. Overall Architecture

The overall pipeline of SEW ResNet [9], Spikformer [46],
and the proposed SpikingResformer are shown in Fig. 2.
As shown in Fig. 2, Spikformer employs a Spiking Patch
Splitting (SPS) module to project an image to d dimensional
feature with reduced spatial size. However, the local infor-
mation can only be poorly modeled by this shallow spik-
ing convolutional module and it only generates single-scale
feature maps. On the other hand, SEW ResNet is much

deeper than the SPS in Spikformer and have a greater capa-
bility in extracting multi-scale feature with the multi-stage
architecture, but lacks the global self-attention mechanism
which helps extract global information. To overcome the
limitations of these architectures while exploiting their ad-
vantages, we propose SpikingResformer, which combines
the ResNet-based architecture and the spiking self-attention
mechanism.

The details of the overall architecture of SpikingRes-
former series are listed in Tab. 1. Similar to the ResNet-
based SNNs [9, 14], our model starts with a stem architec-
ture consisting of a 7×7 convolution and a 3×3 max pool-
ing to pre-extract localized features and employs a multi-
stage backbone to generates multi-scale feature maps. In
each stage, multiple spiking Resformer blocks are stacked
sequentially. Each spiking Resformer block consists of
two modules, named Multi-Head Dual Spike Self-Attention
(MHDSSA) block and Group-Wise Spiking Feed-Forward
Network (GWSFFN). A downsample layer is applied be-
fore each stage (except the first stage) to reduce the size of
the feature maps and project them to a higher dimension
(2× downsampling of resolution with 2× enlargement of
dimension). Finally, the model ends with a global average
pooling layer and a classification layer.

5.2. Spiking Resformer Block

As illustrated in Fig. 2, the spiking Resformer block
consists of a Multi-Head Dual Spike Self-Attention
(MHDSSA) module and a Group-Wise Spiking Feed-
Forward Network (GWSFFN). We first introduce the two
modules and then derive the form of the spiking Resformer
block.
Multi-Head Convolutional Spiking Self-Attention. In
Sec. 4, we propose the single-head form of DSSA. It can
be easily extended to the multi-head DSSA (MHDSSA) fol-
lowing a similar approach to the vanilla Transformer [37].
In MHDSSA, we first split the results of linear transforma-
tion in DST into h heads, then perform DSSA on each head
and concatenate them together. Finally, we use point-wise
convolution to project the concatenated features thus fus-
ing the features in different heads. The MHDSSA can be
formulated as follows:

MHDSSA(X) = BN(Conv1([DSSAi(SN(X))]hi=1)),
(17)

where [. . .] denotes the concatenate operation, Conv1 de-
notes the point-wise convolution.
Group-Wise Spiking Feed-Forward Network. The spik-
ing feed-forward network (SFFN) proposed in previous
spiking vision transformers is composed of two linear lay-
ers with batch normalization and spiking neuron activa-
tion [42, 46]. Moreover, the expansion ratio is usually set
to 4, i.e., the first layer raises the dimension by a factor of 4
while the second layer reduces to the original dimension.

5

Table 1. Architectures of SpikingResformer series. The output size corresponds to the input size of 224×224. Di and Hi are the embedding
dimension and number of heads of MHDSSA in stage i, respectively. pi denotes that the MHDSSA in stage i uses pi × pi convolution in
DST. Ri and Gi denote the expansion ratio and embedding dimension per group of GWSFFN in stage i, respectively.

Stage Output Size Layer Name SpikingResformer-Ti SpikingResformer-S SpikingResformer-M SpikingResformer-L

Stem 56×56 Stem Conv 7×7, stride 2, Maxpooling 3×3, stride 2

Stage 1 56×56 MHDSSA
 D1 = 64

H1 = 1, p1 = 4
R1 = 4, G1 = 64

× 1

 D1 = 64
H1 = 1, p1 = 4
R1 = 4, G1 = 64

× 1

 D1 = 64
H1 = 1, p1 = 4
R1 = 4, G1 = 64

× 1

 D1 = 128
H1 = 1, p1 = 4
R1 = 4, G1 = 64

× 1
GWSFFN

Stage 2 28×28

Downsample Conv 3×3, 192, stride 2 Conv 3×3, 256, stride 2 Conv 3×3, 384, stride 2 Conv 3×3, 512, stride 2

MHDSSA
 D2 = 192

H2 = 3, p2 = 2
R2 = 4, G2 = 64

× 2

 D2 = 256
H2 = 4, p2 = 2
R2 = 4, G2 = 64

× 2

 D2 = 384
H2 = 6, p2 = 2
R2 = 4, G2 = 64

× 2

 D2 = 512
H2 = 8, p2 = 2
R2 = 4, G2 = 64

× 2
GWSFFN

Stage 3 14×14

Downsample Conv 3×3, 384, stride 2 Conv 3×3, 512, stride 2 Conv 3×3, 768, stride 2 Conv 3×3, 1024, stride 2

MHDSSA
 D3 = 384

H3 = 6, p3 = 1
R3 = 4, G3 = 64

× 3

 D3 = 512
H3 = 8, p3 = 1
R3 = 4, G3 = 64

× 3

 D3 = 768
H3 = 12, p3 = 1
R3 = 4, G3 = 64

× 3

 D3 = 1024
H3 = 16, p3 = 1
R3 = 4, G3 = 64

× 3
GWSFFN

Classifier 1×1 Linear 1000-FC

Based on SFFN, we insert a 3×3 convolution layer with
the residual connection between two linear layers to enable
SFFN to extract local features. Since the dimension of the
hidden features between the two linear layers is expanded
by a factor of 4 compared to the input, in order to reduce
the number of parameters and computational overhead, we
use group-wise convolution and set every 64 channels as 1
group. We also employ the spike-driven design in [42, 45].
The group-wise spiking feed-forward network (GWSFFN)
can be formulated as follows:

FFLi(X) = BN(Conv1(SN(X))), i = 1, 2, (18)
GWL(X) = BN(GWConv(SN(X))) +X, (19)

GWSFFN(X) = FFL2(GWL(FFL1(X))). (20)

Here FFLi(·), i = 1, 2 denote the feed-forward layers,
Conv1(·) is point-wise convolution (1×1 convolution),
which equal to the linear transformation. GWL(·) de-
notes group-wise convolution layer, GWConv(·) denotes
the group-wise convolution.
Spiking Resformer Block. With the MHDSSA module
and GWSFFN above, the spiking resformer block can be
formulated as:

Yi = MHDSSA(Xi) +Xi, (21)
Xi+1 = GWSFFN(Yi) +Yi. (22)

where Yi denotes the output features of MHDSSA module
in the i-th spiking resformer block.

6. Experiments
In this section, we first evaluate the performance and energy
efficiency of SpikingResformer on the ImageNet classifica-
tion task. Then, we perform ablation experiments on key

components in SpikingResformer. Finally, we evaluate the
transfer learning ability of SpikingResformer.

6.1. ImageNet Classification

ImageNet [4] is one of the most typical static image datasets
widely used for image classification. For a fair compar-
ison, we generally follow the data augmentation strategy
and training setup in [42]. More details of the experimental
setup can be found in the supplementary.
Results. Our experimental results are listed in Tab. 2. For
comparison, we also list the results of existing spiking con-
volutional networks and spiking Vision Transformers. As
shown in Tab. 2, SpikingResformer achieves higher accu-
racy, fewer parameters, and lower energy consumption at
the same time compared to existing methods. For instance,
SpikingResformer-Ti achieves 74.34% accuracy with only
11.14M parameters and 2.73G SOPs (2.46mJ), outper-
forming Spike-driven Transformer-8-384 by 2.06%, saving
5.67M parameters and 1.44mJ energy. SpikingResformer-
M achieves 77.24% accuracy with 35.52M parameters
and 6.07G SOPs (5.46mJ), outperforming Spike-driven
Transformer-8-768 by 0.92% while saving 30.82M param-
eters. Particularly, the SpikingResformer-L achieves up
to 79.40% accuracy when the input size is enlarged to
288×288, which is the state-of-the-art result in SNN field.

6.2. Ablation Study

We perform ablation experiments on key components in
SpikingResformer, including the multi-stage architecture,
the group-wise convolution layer in GWSFFN, and our
proposed spiking self-attention mechanism. The ablation
experiments are conducted on the ImageNet100 dataset,
which is a subset of the ImageNet dataset and consists of
100 categories from the ImageNet dataset. The experimen-

6

Table 2. Evaluation on ImageNet. SOPs denotes the average synaptic operations of an image inference on ImageNet validation data.
Energy is the estimation of energy consumption same as [42, 46]. The default input resolution for training and inference is 224×224.
† means the input is enlarged to 288×288 in inference. - means the data is not provided in the original paper.

Method Type Architecture T Param SOPs Energy Top-1 Acc.
(M) (G) (mJ) (%)

Spiking ResNet [14] ANN-to-SNN ResNet-34 350 21.79 65.28 59.30 71.61
ResNet-50 350 25.56 78.29 70.93 72.75

STBP-tdBN [44] Direct Training Spiking ResNet-34 6 21.79 6.50 6.39 63.72

TET [6] Direct Training Spiking ResNet-34 6 21.79 - - 64.79
SEW ResNet-34 4 21.79 - - 68.00

SEW ResNet [9] Direct Training

SEW ResNet-34 4 21.79 3.88 4.04 67.04
SEW ResNet-50 4 25.56 4.83 4.89 67.78

SEW ResNet-101 4 44.55 9.30 8.91 68.76
SEW ResNet-152 4 60.19 13.72 12.89 69.26

Spikformer [46] Direct Training
Spikformer-8-384 4 16.81 6.82 7.73 70.24
Spikformer-8-512 4 29.68 11.09 11.58 73.38
Spikformer-8-768 4 66.34 22.09 21.48 74.81

Spikingformer [45] Direct Training
Spikingformer-8-384 4 16.81 - 4.69 72.45
Spikingformer-8-512 4 29.68 - 7.46 74.79
Spikingformer-8-768 4 66.34 - 13.68 75.85

Spike-driven Transformer [42] Direct Training

Spike-driven Transformer-8-384 4 16.81 - 3.90 72.28
Spike-driven Transformer-8-512 4 29.68 - 4.50 74.57
Spike-driven Transformer-8-768 4 66.34 -/- 6.09/- 76.32/77.07†

SpikingResformer (Ours) Direct Training

SpikingResformer-Ti 4 11.14 2.73/4.71† 2.46/4.24† 74.34/75.57†

SpikingResformer-S 4 17.76 3.74/6.40† 3.37/5.76† 75.95/76.90†

SpikingResformer-M 4 35.52 6.07/10.24† 5.46/9.22† 77.24/78.06†

SpikingResformer-L 4 60.38 9.74/16.40† 8.76/14.76† 78.77/79.40†

Table 3. Ablation Study on ImageNet100 dataset. The number of
parameters for all variants is comparable to SpikingResformer-S.

Model SOPs (G) Energy (mJ) Acc. (%)

SpikingResformer-S 2.43 2.18 88.06
w/o multi-stage architecture 1.84 1.66 85.32
w/o group-wise convolution 2.37 2.13 84.64
w/o DSSA not converge
w/o p× p convolution 4.34 3.91 86.14
w/o scaling not converge

tal setup basically follows the one in Sec. 6.1. Detailed set-
tings are listed in the supplementary.
Multi-Stage Architecture. To verify the effectiveness
of the multi-stage architecture, we replace it with the
Spikingformer-based architecture, while the structure of the
spiking Resformer block remains unchanged. We adjust
the embedding dimensions to make the model parameters
comparable to SpikingResformer-S. As shown in Tab. 3,
SpikingResformer-S outperforms the variant without multi-
stage architecture by 2.74%, demonstrating the effective-
ness of multi-stage architecture.
Group-Wise Convolution Layer. In comparison to the
point-wise SFFN, GWSFFN employs a 3×3 group-wise
convolution layer between the two linear layers. We

evaluate its effect by removing the group-wise convolu-
tion layer and increasing the dimension to keep the num-
ber of parameters constant. As demonstrated in Tab. 3,
SpikingResformer-S achieves 3.42% higher accuracy in
contrast to the variant without the group-wise convolution
layer. This difference highlights the benefits of the group-
wise convolution layer in GWSFFN.

Dual Spike Self-Attention. To validate the effective-
ness of DSSA, we first replace DSSA with existing spik-
ing self-attention mechanisms, including Spiking Self-
Attention (SSA) in Spikformer and Spike-Driven Self-
Attention (SDSA) in Spike-driven Transformer. However,
neither SSA nor SDSA converges. We believe this is be-
cause SSA and SDSA do not fit the multi-scale input. To
further validate the key factors that help DSSA fit for the
multi-scale input, we conduct two more sets of experiments.
One set replaces all p × p convolutions with 1 × 1 con-
volutions in DST to validate the effect of reducing spatial
size. The other removes the scaling factor or replaces our
proposed scaling factors with 1/

√
d to validate the effect

of scaling. As a result, the first group converges but only
achieves 86.14% accuracy with a higher energy consump-
tion of 3.91mJ, while the second set does not converge. This
shows that the scaling factor is the key to convergence. We
believe that both SSA and SDSA lack proper scaling meth-

7

Table 4. Transfer learning results on CIFAR10, CIFAR100, CIFAR10-DVS, DVSGesture datasets.

Method Type CIFAR10 CIFAR100 CIFAR10-DVS DVSGesture

T Acc. T Acc. T Acc. T Acc.

STBP-tdBN [44] Direct Training 6 93.16 - - 10 67.8 40 96.87
PLIF [10] Direct Training 8 93.50 - - 20 74.8 20 97.57

Dspike [25] Direct Training 6 94.25 6 74.24 10 75.4 - -

Spikformer [46] Direct Training 4 95.19 4 77.86 16 80.6 16 97.9
Spikingformer [45] Direct Training 4 95.61 4 79.09 16 81.3 16 98.3

Spike-driven Transformer [42] Direct Training 4 95.6 4 78.4 16 80.0 16 99.3

Spikformer [46] Transfer Learning 4 97.03 4 83.83 - - - -
SpikingResformer (Ours) Transfer Learning 4 97.40 4 85.98 10 84.8 10 93.4

ods, thus do not apply to multi-stage architecture. SSA em-
ploys the same scaling factor as vanilla self-attention, i.e.,
1/
√
d. However, this does not apply to spike matrix multi-

plication, since spikes do not have mean 0 and variance 1.
SDSA has no scaling method, which may be feasible when
the feature map is small but not for multi-scale inputs.

6.3. Transfer Learning

High transfer learning ability is a key advantage of Vision
Transformer. We evaluate the transfer learning ability of
the proposed SpikingResformer on static dataset CIFAR10
and CIFAR100 [19] and neuromorphic dataset CIFAR10-
DVS [23] and DVSGesture [1] by fine-tuning the models
pre-trained on ImageNet. Among the existing spiking Vi-
sion Transformers, only Spikformer provides transfer learn-
ing results, and only on the static image datasets CIFAR10
and CIFAR100. Thus, we also compared our results with
the direct training results for a comprehensive comparison.
Tab. 4 lists the highest accuracy achieved by these methods.
The experimental setup and a more detailed comparison can
be found in the supplementary.
Static Image Datasets. As shown in Tab. 4, SpikingRes-
former achieves 97.40% accuracy on CIFAR10 dataset and
85.98% accuracy on CIFAR100 dataset, which is the state-
of-the-art result, outperforming the transfer learning re-
sults of Spikformer by 0.37% on CIFAR10 and 2.15% on
CIFAR100. Compared to direct training methods, Spik-
ingResformer obtained from transfer learning has signif-
icantly better performance. For example, SpikingRes-
former outperforms Spikingformer by 6.89% on CIFAR100
dataset, demonstrating the advantage of transfer learning.
Neuromorphic Datasets. Neuromorphic datasets differ
significantly from traditional static image datasets. The
samples of the neuromorphic dataset consist of event
streams instead of RGB images. As a result, there is a
large gap between the source and target domain for mod-
els pre-trained on static image datasets. To bridge this
gap, we stack the events over a period of time to form a
frame. The RGB channels are replaced with positive events,

negative events, and the sum of events channels, respec-
tively. As shown in Tab. 4, transfer learning results of Spik-
ingResformer significantly outperform the direct training
ones on CIFAR10-DVS. SpikingResformer achieves 84.8%
accuracy on CIFAR10-DVS, outperforming Spikingformer
by 3.5%. However, the transfer learning results on DVS-
Gesture fail to achieve comparable performance to direct
training. SpikingResformer only achieves 93.4% accuracy
on DVSGesture, falling behind the state-of-the-art method
Spike-driven Transformer by 5.9%. We believe that this is
mainly due to the way CIFAR10-DVS is constructed dif-
fers from DVSGesture. CIFAR10-DVS is converted from
CIFAR10, which does not contain temporal information.
Thus, models pre-trained on static datasets can transfer to
CIFAR10-DVS well. However, DVSGesture is directly cre-
ated from human gestures using a dynamic vision sensor,
thus containing rich temporal information. As a result,
models pre-trained on static datasets do not transfer well
to DVSGesture. We hope our exploration of transfer learn-
ing on neuromorphic datasets could pave the way for further
transfer learning research of SNNs.

7. Conclusion
In this paper, we propose a novel spiking self-attention
mechanism named Dual Spike Self-Attention (DSSA). It
produces spiking self-attention via Dual Spike Transforma-
tion, which is fully spike-driven and compatible with SNNs.
We detail the scaling factors in DSSA enabling it to handle
feature maps of arbitrary scales. Based on DSSA, we pro-
pose SpikingResformer, which combines the ResNet-based
multi-stage architecture with our proposed DSSA to achieve
superior performance and energy efficiency with fewer pa-
rameters. Extensive experiments demonstrate the effective-
ness and superiority of the proposed SpikingResformer.

Acknowledgments
This work was supported by the National Natural Science
Foundation of China (62176003, 62088102) and by the Bei-
jing Nova Program (20230484362).

8

References
[1] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jef-

frey McKinstry, Carmelo Di Nolfo, Tapan Nayak, Alexander
Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al.
A low power, fully event-based gesture recognition system.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 7243–7252, 2017. 2, 8, 15

[2] Tong Bu, Jianhao Ding, Zhaofei Yu, and Tiejun Huang. Op-
timized potential initialization for low-latency spiking neural
networks. In In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, pages 11–20, 2022. 2

[3] Tong Bu, Wei Fang, Jianhao Ding, PENGLIN DAI, Zhaofei
Yu, and Tiejun Huang. Optimal ANN-SNN conversion
for high-accuracy and ultra-low-latency spiking neural net-
works. In Proceedings of the International Conference on
Learning Representations, pages 1–19, 2023. 2

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 248–255, 2009.
6, 14

[5] Shikuang Deng and Shi Gu. Optimal conversion of conven-
tional artificial neural networks to spiking neural networks.
In Proceedings of the International Conference on Learning
Representations, pages 1–14, 2021. 2

[6] Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu.
Temporal efficient training of spiking neural network via gra-
dient re-weighting. In Proceedings of the International Con-
ference on Learning Representations, pages 1–15, 2022. 2,
7

[7] Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun
Huang. Optimal ANN-SNN conversion for fast and accurate
inference in deep spiking neural networks. In Proceedings of
the International Joint Conference on Artificial Intelligence,
pages 2328–2336, 2021. 2

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In Proceedings of
the International Conference on Learning Representations,
pages 1–22, 2021. 1

[9] Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée
Masquelier, and Yonghong Tian. Deep residual learning in
spiking neural networks. In Advances in Neural Information
Processing Systems, pages 21056–21069, 2021. 2, 5, 7

[10] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier,
Tiejun Huang, and Yonghong Tian. Incorporating learnable
membrane time constant to enhance learning of spiking neu-
ral networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2661–2671, 2021. 8,
16

[11] Steve B Furber, Francesco Galluppi, Steve Temple, and
Luis A Plana. The spiNNaker project. Proceedings of the
IEEE, 102(5):652–665, 2014. 1

[12] Yufei Guo, Yuhan Zhang, Yuanpei Chen, Weihang Peng, Xi-
aode Liu, Liwen Zhang, Xuhui Huang, and Zhe Ma. Mem-

brane potential batch normalization for spiking neural net-
works. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 19420–19430, 2023. 2

[13] Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and
Zhaofei Yu. Reducing ANN-SNN conversion error through
residual membrane potential. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 11–21, 2023. 2

[14] Yangfan Hu, Huajin Tang, and Gang Pan. Spiking deep
residual networks. IEEE Transactions on Neural Networks
and Learning Systems, 34(8):5200–5205, 2021. 2, 5, 7

[15] Yangfan Hu, Qian Zheng, Xudong Jiang, and Gang Pan.
Fast-snn: Fast spiking neural network by converting quan-
tized ann. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 45(12):14546–14562, 2023.

[16] Haiyan Jiang, Srinivas Anumasa, Giulia De Masi, Huan
Xiong, and Bin Gu. A unified optimization framework of
ANN-SNN conversion: Towards optimal mapping from ac-
tivation values to firing rates. In Proceedings of the Inter-
national Conference on Machine Learning, pages 14945–
14974, 2023. 2

[17] Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh
Yoon. Spiking-YOLO: spiking neural network for energy-
efficient object detection. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, pages 11270–11277, 2020.
2

[18] Paul Kirkland, Gaetano Di Caterina, John Soraghan, and
George Matich. Spikeseg: Spiking segmentation via STDP
saliency mapping. In Proceedings of the International Joint
Conference on Neural Networks, pages 1–8, 2020. 2

[19] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 8, 14

[20] Yuxiang Lan, Yachao Zhang, Xu Ma, Yanyun Qu, and Yun
Fu. Efficient converted spiking neural network for 3d and 2d
classification. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9211–9220, 2023. 2

[21] Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda,
Gopalakrishnan Srinivasan, and Kaushik Roy. Enabling
spike-based backpropagation for training deep neural net-
work architectures. Frontiers in Neuroscience, 14:119, 2020.
2

[22] Chen Li, Edward Jones, and Steve Furber. Unleashing the
potential of spiking neural networks by dynamic confidence.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 13350–13360, 2023. 2

[23] Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and
Luping Shi. Cifar10-dvs: an event-stream dataset for ob-
ject classification. Frontiers in Neuroscience, 11:309, 2017.
8, 15

[24] Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and
Shi Gu. A free lunch from ANN: Towards efficient, accu-
rate spiking neural networks calibration. In Proceedings of
the International Conference on Machine Learning, pages
6316–6325, 2021. 2

[25] Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng,
Yongqing Hai, and Shi Gu. Differentiable spike: Rethink-
ing gradient-descent for training spiking neural networks.
Advances in Neural Information Processing Systems, 34:
23426–23439, 2021. 8, 16

9

[26] Yuhang Li, Youngeun Kim, Hyoungseob Park, Tamar Geller,
and Priyadarshini Panda. Neuromorphic data augmentation
for training spiking neural networks. In Proceedings of the
European Conference on Computer Vision, pages 631–649,
2022. 15

[27] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 1

[28] Wolfgang Maass. Networks of spiking neurons: the third
generation of neural network models. Neural networks, 10
(9):1659–1671, 1997. 1

[29] Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang,
Zhouchen Lin, and Zhi-Quan Luo. Towards memory-and
time-efficient backpropagation for training spiking neural
networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6166–6176, 2023. 2

[30] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, An-
drew S Cassidy, Jun Sawada, Filipp Akopyan, Bryan L Jack-
son, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A mil-
lion spiking-neuron integrated circuit with a scalable com-
munication network and interface. Science, 345(6197):668–
673, 2014. 1

[31] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke.
Surrogate gradient learning in spiking neural networks:
Bringing the power of gradient-based optimization to spik-
ing neural networks. IEEE Signal Processing Magazine, 36
(6):51–63, 2019. 2

[32] Kinjal Patel, Eric Hunsberger, Sean Batir, and Chris Elia-
smith. A spiking neural network for image segmentation.
arXiv preprint arXiv:2106.08921, pages 1–25, 2021. 2

[33] Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui
Zhang, Shuang Wu, Guanrui Wang, Zhe Zou, Zhenzhi Wu,
Wei He, et al. Towards artificial general intelligence with
hybrid tianjic chip architecture. Nature, 572(7767):106–111,
2019. 1

[34] Catherine D Schuman, Thomas E Potok, Robert M Pat-
ton, J Douglas Birdwell, Mark E Dean, Garrett S Rose,
and James S Plank. A survey of neuromorphic com-
puting and neural networks in hardware. arXiv preprint
arXiv:1705.06963, pages 1–88, 2017. 1

[35] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and
Kaushik Roy. Going deeper in spiking neural networks:
VGG and residual architectures. Frontiers in Neuroscience,
13:95, 2019. 2

[36] Qiaoyi Su, Yuhong Chou, Yifan Hu, Jianing Li, Shijie Mei,
Ziyang Zhang, and Guoqi Li. Deep directly-trained spik-
ing neural networks for object detection. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 6555–6565, 2023. 2

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30:1–11, 2017. 3, 4, 5

[38] Xiao Wang, Zongzhen Wu, Yao Rong, Lin Zhu, Bo Jiang,
Jin Tang, and Yonghong Tian. SSTFormer: Bridging spiking

neural network and memory support transformer for frame-
event based recognition. arXiv preprint arXiv:2308.04369,
pages 1–12, 2023. 1

[39] Wenjie Wei, Malu Zhang, Hong Qu, Ammar Belatreche, Jian
Zhang, and Hong Chen. Temporal-coded spiking neural net-
works with dynamic firing threshold: Learning with event-
driven backpropagation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10552–
10562, 2023. 2

[40] Jibin Wu, Chenglin Xu, Xiao Han, Daquan Zhou, Malu
Zhang, Haizhou Li, and Kay Chen Tan. Progressive tandem
learning for pattern recognition with deep spiking neural net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(11):7824–7840, 2021. 2

[41] Qi Xu, Yaxin Li, Jiangrong Shen, Jian K Liu, Huajin Tang,
and Gang Pan. Constructing deep spiking neural networks
from artificial neural networks with knowledge distillation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7886–7895, 2023. 2

[42] Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong
Tian, Bo Xu, and Guoqi Li. Spike-driven transformer. In
Advances in neural information processing systems, pages
1–20, 2023. 2, 4, 5, 6, 7, 8, 12, 14, 16

[43] Friedemann Zenke and Tim P Vogels. The remarkable ro-
bustness of surrogate gradient learning for instilling complex
function in spiking neural networks. Neural computation, 33
(4):899–925, 2021. 2

[44] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li.
Going deeper with directly-trained larger spiking neural net-
works. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 11062–11070, 2021. 2, 7, 8, 16

[45] Chenlin Zhou, Liutao Yu, Zhaokun Zhou, Han Zhang,
Zhengyu Ma, Huihui Zhou, and Yonghong Tian. Spiking-
former: Spike-driven residual learning for transformer-based
spiking neural network. arXiv preprint arXiv:2304.11954,
pages 1–16, 2023. 2, 4, 6, 7, 8, 16

[46] Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang,
YAN Shuicheng, Yonghong Tian, and Li Yuan. Spikformer:
When spiking neural network meets transformer. In Proceed-
ings of the International Conference on Learning Represen-
tations, pages 1–17, 2023. 2, 5, 7, 8, 12, 16

[47] Yaoyu Zhu, Zhaofei Yu, Wei Fang, Xiaodong Xie, Tiejun
Huang, and Timothée Masquelier. Training spiking neural
networks with event-driven backpropagation. In Advances
in Neural Information Processing Systems, pages 30528–
30541, 2022. 2

[48] Yaoyu Zhu, Wei Fang, Xiaodong Xie, Tiejun Huang, and
Zhaofei Yu. Exploring loss functions for time-based training
strategy in spiking neural networks. In Advances in Neural
Information Processing Systems, pages 65366–65379, 2023.
2

[49] Shihao Zou, Yuxuan Mu, Xinxin Zuo, Sen Wang, and Li
Cheng. Event-based human pose tracking by spiking spa-
tiotemporal transformer. arXiv preprint arXiv:2303.09681,
pages 1–12, 2023. 1

10

SpikingResformer: Bridging ResNet and Vision Transformer in Spiking Neural
Networks

Supplementary Material

A. Proof of Theorem 1
Lemma 1. (Expectation and variance of the product of
independent random variables) Given two independent
random variables a and b with expectation and variance,
we have

E(ab) = E(a)E(b), (S1)

Var(ab) = Var(a)Var(b) + Var(a)E(b)2 +Var(b)E(a)2.
(S2)

Proof. The expectation of ab can be formulated as:

E(ab) = E(a)E(b) + Cov(a, b). (S3)

Since the random variables a and b are independent of each
other, the covariance Cov(a, b) = 0. Thus, we have

E(ab) = E(a)E(b) + 0 = E(a)E(b). (S4)

Using the above conclusion and the definition of variance,
we have

Var(ab) = E((ab− E(ab))2)

= E(a2b2)− E(ab)2

= E(a2)E(b2)− E(a)2E(b)2

= (Var(a) + E(a)2)(Var(b) + E(b)2)− E(a)2E(b)2

= Var(a)Var(b) + Var(a)E(b)2 +Var(b)E(a)2.
(S5)

Lemma 2. (Expectation and variance of the sum of in-
dependent random variables) Given independent random
variables a1, a2, . . . , an with expectation and variance, we
have

E(

n∑
i=1

ai) =

n∑
i=1

E(ai), (S6)

Var(

n∑
i=1

ai) =

n∑
i=1

Var(ai). (S7)

Proof. Considering first the case of two independent ran-
dom variables ai and aj where i ̸= j, the covariance
Cov(ai, aj) = 0, we have

E(ai + aj) = E(ai) + E(aj), (S8)
Var(ai + aj) = Var(ai) + Var(aj) + 2Cov(ai, aj)

= Var(ai) + Var(aj) (S9)

This can be simply generalized to the case of n random vari-
ables as:

E(

n∑
i=1

ai) =

n∑
i=1

E(ai), (S10)

Var(

n∑
i=1

ai) =

n∑
i=1

Var(ai) +
∑

1≤i,j≤n,i ̸=j

Cov(ai, aj)

=

n∑
i=1

Var(ai). (S11)

With Lemma 1 and Lemma 2, we prove the Theorem 1
in the main text.

Proof. Let us first consider the case of DSTT(X,Y; f(·)).
We denote the result of applying linear transformation f on
Y as Z = f(Y) = YW. Thus, each element in the result
of DSTT can be formulated as:

Ii,j [t] =

m∑
k=1

xi,k[t]zj,k[t] =

m∑
k=1

xi,k[t]

(
m∑
l=1

yj,l[t]wl,k[t]

)
(S12)

Based on the assumption, each zj,k[t] has a mean of 0
and variance of 1, and each xi,k[t] subjects to Bernoulli
distribution B(fx), thus we have E(xi,k[t]) = fx and
Var(xi,k[t]) = fx(1 − fx). According to Lemma 1, we
have

E(xi,k[t]zj,k[t]) =0 · fx = 0, (S13)

Var(xi,k[t]zj,k[t]) =1 · fx(1− fx) + 1 · f2
x

+ fx(1− fx) · 02

=fx. (S14)

In addition, each zj,k[t], k = 1, . . . , q consists of a set of
yl,k[t], l = 1, . . . , q that do not overlap each other. Thus
zj,k[t] can also be viewed as independent random variables.
According to Lemma 2, we have

E(Ii,j [t]) =

m∑
k=1

0 = 0, (S15)

Var(Ii,j [t]) =

m∑
k=1

fx = fxm. (S16)

11

Similar to DSTT, each element in the result of DST can be
formulated as:

Ii,j [t] =

m∑
k=1

xi,k[t]zk,j [t] =

m∑
k=1

xi,k[t]

(
q∑

l=1

yk,l[t]wl,j [t]

)
(S17)

And we also have E(xi,k[t]zk,j [t]) = 0 and
Var(xi,k[t]zj,k[t]) = fx. Thus, the expectation
and variance of Ii,j [t] are also E(Ii,j [t]) = 0 and
Var(Ii,j [t]) = fxm.

Further Discussion. In Eq. (S15) and Eq. (S16), we
treat zj,k[t] as independent random variables, since each
zj,k[t], k = 1, . . . , q consists of a set of yl,k[t], l = 1, . . . , q
that do not overlap each other. It is true for the p×p convolu-
tion with stride p used in this paper. However, this property
does not hold for all generalized linear transformations. For
example, the 3 × 3 convolution with stride 1 leads to input
overlap. For these operations, we need a stronger assump-
tion that assuming zj,k[t] are independent random variables.

B. Scaling Factors in Existing Spiking Self-
Attention Mechanisms

In the main text, we propose that existing spiking self-
attention mechanisms lack reasonable scaling methods and
design scaling factors for our DSSA. In this section, we use
a similar approach to design scaling factors for these ex-
isting methods and thereby analyze the limitations of these
methods.
Scaling Factor in Spiking Self-Attention (SSA). First,
we try to design the scaling factor for the Spiking Self-
Attention (SSA) in Spikformer [46]. The SSA can be for-
mulated as follows:

Q = SN(BN(XWQ)), (S18)
K = SN(BN(XWK)), (S19)
V = SN(BN(XWV)), (S20)

SSA(Q,K,V) = SN(QKTV ∗ c), (S21)

where X ∈ RHW×d is the input, WQ,WK ,WV ∈ Rd×d

are weight matrices, H and W are the height and width of
input, respectively, d is the embedding dimension, c is the
scaling factor. We denote I = QKTV, each element in I
can be formulated as:

Ii,j [t] =

d∑
r=1

HW∑
l=1

qi,r[t]kr,l[t]vl,j [t]. (S22)

Assume that all elements in Q, K, and V are independent
random variables, qiq,jq [t] in Q subject to Bernoulli distri-
bution qiq,jq [t] ∼ B(fQ), kik,jk [t] in K subject to B(fK),
viv,jv [t] in V subject to B(fV), respectively, fQ, fK , and

fV are the average firing rate of Q, K, and V, respectively.
We have E(Ii,j [t]) = HWdfQfKfV .

However, the form of variance is complex. This is be-
cause the summation terms qi,r[t]kr,l[t]vl,j [t] are not inde-
pendent thus introducing a lot of covariance. The variance
can be formulated as:

Var(Ii,j [t])

=

d∑
r=1

HW∑
l=1

(
Var(qi,r[t]kr,l[t]vl,j [t])

+
∑
r′ ̸=r

Cov(qi,r[t]kr,l[t]vl,j [t], qi,r′ [t]kr′,l[t]vl,j [t])

+
∑
l′ ̸=l

Cov(qi,r[t]kr,l[t]vl,j [t], qi,r[t]kr,l′ [t]vl′,j [t])

)

=HWd

(
fQfKfV (1− fQ)(1− fK)(1− fV)

+ fQfKf2
V (1− fQ)(1− fK)

+ fQf
2
KfV (1− fQ)(1− fV)

+ f2
QfKfV (1− fK)(1− fV)

+ fQf
2
Kf2

V (1− fQ)

+ f2
QfKf2

V (1− fK)

+ f2
Qf

2
KfV (1− fV)

+ (d− 1)(f2
Qf

2
KfV − f2

Qf
2
Kf2

V)

+ (HW − 1)(fQf
2
Kf2

V − f2
Qf

2
Kf2

V)

)
=HWdfQfKfV

(
1− (HW + d− 1)fQfKfV

+ (d− 1)fQfK + (HW − 1)fKfV

)
.

(S23)
As shown in Eq. (S23), this form is overly complex and
lacks practicality. Thus it is difficult to design the scaling
factor for SSA.
Scaling Factor in Spike-driven Self-Attention (SDSA).
Next, we try to design the scaling factor for the Spike-driven
Self-Attention (SDSA) in Spike-driven Transformer [42].
The SDSA can be formulated as follows:

SDSA(Q,K,V) = SN(SUMc(Q⊗K))⊗V, (S24)

where ⊗ denotes Hadamard product, SUMc represents the
sum of each column, Q, K, and V are the same as in
Eq. (S18) to Eq.(S20). The original SDSA does not have a
scaling factor. We believe that there should be a scaling fac-
tor before the spiking neuron layer and the Eq. (S24) should
be reformulated as follows:

SDSA(Q,K,V) = SN(SUMc(Q⊗K) ∗ c)⊗V, (S25)

12

Table S1. Further ablation study on ImageNet100 dataset.
The number of parameters for all variants is comparable to
SpikingResformer-S.

Model Acc. (%)

SpikingResformer-S 88.06
Spike-driven Transformer-8-384 (w/o scaling) 83.06
Spike-driven Transformer-8-384 (with scaling) 83.96
SpikingResformer-S with SDSA (w/o scaling) not-converge
SpikingResformer-S with SDSA (with scaling) 87.74

where c is the scaling factor. We denote I = SUMc(Q⊗K),
each element in I can be formulated as:

Ij [t] =

HW∑
i=1

qi,j [t]ki,j [t]. (S26)

Following the same assumption in SSA, we have

Var(Ij [t]) =

HW∑
i=1

Var(qi,j [t]ki,j [t])

=

HW∑
i=1

(fQfK(1− fQfK))

= HWfQfK(1− fQfK).

(S27)

Thus, the scaling factor c in SDSA should be c =
1/
√
HWfQfK(1− fQfK).

To validate the effectiveness of this scaling factor, we
conduct two sets of further ablation experiments. One
set introduces our proposed scaling factor to the Spike-
driven Transformer. The other replaces the DSSA in Spik-
ingResformer with the SDSA with our proposed scaling
factor. The p × p convolutions and the GWSFFN remain
unchanged. Experimental results are listed in Tab. S1. As
shown in Tab. S1, the scaling factor successfully solves the
non-converge problem, demonstrating the effectiveness of
our proposed scaling factor and its necessity for multi-scale
feature map inputs. Moreover, the scaling factor also im-
proves the performance of SDSA with single-scale feature
map inputs.

C. Equivalence of Convolution to Linear
Transformation

In this section, we discuss the equivalence of convolution
to linear transformation. For ease of understanding, we first
visualize a simple example, and then give a formal descrip-
tion of the equivalence. Since no dynamics in the temporal
domain are involved here, we omit the time dimension.

Fig. S1 shows how a 2×2 convolution with a stride of
2 on a 4×4 input is equivalent to a linear transformation.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2

3 4

1 2

3 4

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

1

2

3

4

1

2

3

4

Input

Kernel Output

Input OutputWeight

 (convolution)

 (linear transformation)

Figure S1. Diagram of the equivalence of convolution to linear
transformation. Top: Convp(·) on a 4×4 input where p = 2;
Bottom: Its equivalent linear transformation.

In order to convert the convolution to its equivalent lin-
ear transformation, we first reshape the h × w convolu-
tion kernel W to a hw × 1 weight matrix W′, where h
and w are the height and width of the convolution kernel,
respectively. Here h = w = 2. Then, we rewrite the
Hin × Win input Y to HoutWout × hw input Y′, where
Hin and Win are the height and width of the input, Hout

and Wout are the height and width of the output, respec-
tively. Here Hin = Win = 4, Hout = Wout = 2. Each row
in Y′ is a patch of input corresponding to an element in the
output. By the above process, we convert the convolution to
its equivalent linear transformation.

We give a formal description of the equivalence of
convolution to linear transformation. Given an input
Y ∈ {0, 1}Hin×Win×Cin and a convolution kernel W ∈
Rh×w×Cout×Cin , the convolution with stride p can be for-
mulated as follows:

Z = Y ⊗W, (S28)
zi,j,cout

=

h∑
k=1

w∑
l=1

Cin∑
cin=1

(
y(i−1)∗p+k,(j−1)∗p+l,cin · wk,l,cout,cin

)
.

(S29)

Let gY be a mapping from {0, 1}Hin×Win×Cin to
{0, 1}HoutWout×hwCin and gW be a mapping from

13

Rh×w×Cout×Cin to RhwCin×Cout , where

Y′ = gY (Y),

s.t. y′i∗Wout+j,cin∗hw+k∗w+l = y(i−1)∗p+k,(j−1)∗p+l,cin ,

(S30)

W′ = gW (W),

s.t. w′
cin∗hw+k∗w+l,cout

= wk,l,cout,cin . (S31)

The linear transformation of gY (Y) with weight matrix
gW (W) can be formulated as:

Z′ = Y′W′ = gY (Y)gW (W), (S32)
z′i∗Wout+j,cout

=

h∑
k=1

w∑
l=1

Cin∑
cin=1(

y′i∗Wout+j,cin∗hw+k∗w+l · w′
cin∗hw+k∗w+l,cout

)
=

h∑
k=1

w∑
l=1

Cin∑
cin=1

(
y(i−1)∗p+k,(j−1)∗p+l,cin · wk,l,cout,cin

)
=zi,j,cout

. (S33)

Thus, the convolution is equivalent to linear transformation.

D. Self-Attention in DSSA
Dual Spike Self-Attention (DSSA) has no explicit Query,
Key, and Value, which makes it quite different from the
form of the Vanilla Self-Attention (VSA). In this section,
we further discuss how DSSA achieves self-attention.
Recall. The DSSA can be formulated as follows:

DSSA(X) = SN(DST(AttnMap(X),X; f(·)) ∗ c2),
(S34)

AttnMap(X) = SN(DSTT(X,X; f(·)) ∗ c1), (S35)
f(X) = BN(Convp(X)). (S36)

And the Dual Spike Transformation (DST) can be formu-
lated as follows:

DST(X,Y; f(·)) = Xf(Y) = XYW, (S37)

DSTT(X,Y; f(·)) = Xf(Y)T = XWTYT. (S38)

DSSA achieves self-attention by the two DSTs. The
first one, DSTT(X,X; f(·)), produces the attention map.
It computes the multiplicative attention of a pixel in the
input X and a p × p patch of feature transformed by the
p×p convolution. The output of DSTT(X,X; f(·)) is then
scaled and fed to the spiking neuron as the input current to
generate the spiking attention map. The spiking attention
map is a binary attention map consisting of spikes. Each
spike si,j in this spiking attention map signifies attention
between the patch i (pixel i) and patch j. The second one,

DST(AttnMap(X),X; f(·)), produces the output feature.
For each pixel, it computes the sum of features of patches
that have attention to this pixel to form the output features.
In this way, the first DST is similar to the product of QKT

in the VSA, and the second DST is similar to the product of
attention map and V in the VSA.

E. Experiment Details

ImageNet Classification. ImageNet [4] is a vast collec-
tion of static images and one of the most commonly used
datasets in computer vision tasks. It consists of around
1.2 million high-resolution images, categorized into 1,000
distinct classes. Each class includes approximately 1,000
images, representing a diverse range of objects and scenes,
making it an effective reflection of real-world scenarios.

For ImageNet classification experiments, we generally
follow the data augmentation strategy and training setup
in [42]. We use the standard preprocessing, i.e., data nor-
malization, randomly crop and resize the input to 224×224
during traning, and set the input size to 224×224 and
288×288 for inferince. We employ the standard data
augmentation methods including random augmentation,
mixup, cutmix, and label smoothing1, similar to [42].
We use the AdamW optimizer with a weight decay of
0.01. The batch size varies from 256 (SpikingResformer-
Ti) to 128 (SpikingResformer-L) depending on the model
size. We train the models for 320 epochs with a cosine-
decay learning rate whose initial value varies from 0.001
(SpikingResformer-Ti) to 0.0005 (SpikingResformer-L).

Since the scaling factors in DSSA require the firing rate
of input fX and attention map fAttn, we use an exponential
moving average with a momentum of 0.999 to count the
average firing rate during training, and use the average firing
rate counted during training in inference. We used the same
method to count the average firing rate in all subsequent
experiments.
Ablation Study. All the ablation experiments are con-
ducted on the ImageNet100 dataset. It is a subset of the Ima-
geNet dataset consisting of 100 categories from the original
ImageNet dataset. The experimental setup basically follows
the ImageNet classification experiments. The weight decay
is increased to 0.05 since the ImageNet100 is smaller and
easy to overfit.
Transfer Learning on Static Image Datasets. We first
perform transfer learning experiments on static image
datasets CIFAR10 and CIFAR100 [19]. The CIFAR-10
dataset comprises 60,000 samples, divided into 10 cate-
gories with 6,000 samples in each category. Each group
has 5,000 training samples and 1,000 testing samples. The
images in the dataset are colored and have a resolution of
32×32 pixels. On the other hand, the CIFAR-100 dataset is

1Implemented by PyTorch Image Models

14

https://github.com/huggingface/pytorch-image-models

an extension of the CIFAR-10 dataset, designed to provide
a more challenging and diverse benchmark for image recog-
nition algorithms. It contains 100 classes for classification,
encompassing a broader range of objects and concepts than
the CIFAR-10 dataset’s limited set of 10 classes.

We finetune the SpikingResformer-Ti and Spiking-
Resformer-S pretrained in ImageNet classification on these
datasets. We first replace the 1000-FC classifier layer with
a randomly initialized 10-FC (CIFAR10) or 100-FC (CI-
FAR100) layer. We finetune the model for 100 epochs with
an initial learning rate of 1 × 10−4 and cosine-decay to
1×10−5. The batch size is set to 128. We employ data aug-
mentation methods including random augmentation, mixup,
and label smoothing. We use the AdamW optimizer with a
weight decay of 0.01.
Transfer Learning on Neuromorphic Datasets. We also
perform transfer learning experiments on neuromorphic
dataset CIFAR10-DVS [23] and DVSGesture [1]. The
CIFAR10-DVS dataset [23] is created by converting the
static images in CIFAR10. This is done by moving the im-
ages and capturing the movement using a dynamic vision
sensor. The CIFAR10-DVS dataset consists of 10,000 sam-
ples, with 1,000 samples per category. Each sample is an
event stream with a spatial size of 128×128. It is worth
noting that the CIFAR10-DVS dataset does not have prede-
fined training and test sets. In our experiments, we select
the first 900 samples of each category for training and the
last 100 for testing.

The DVSGesture [1] dataset is created by directly captur-
ing the human gestures using the DVS128 dynamic vision
sensor. It has 1,342 instances of 11 hand and arm gestures.
These gestures were grouped in 122 trials, performed by 29
subjects under 3 different lighting conditions. The dataset
includes hand waving, arm rotations, air guitar, etc.

We use the following preprocessing procedure. Firstly,
we divide the event stream into ten slices, each of which
contains an equal number of events. Next, for each slice,
we stack the events into a single frame consisting of three
channels. These channels represent positive events, nega-
tive events, and all events. Finally, we use this frame as the
input for that particular time step. In this way, we use a time
step of 10 for these datasets.

We use the data augmentation technique proposed
in [26]. Other settings follow the experiments of transfer
learning on static image datasets.

F. Further Comparison with ANN Version
We compare SpikingResformer with its ANN version,
called Resformer in the following. To construct the ANN
version of SpikingResformer, we replace the spiking neu-
rons in SpikingResformer with ReLU activation, and re-
place the neurons in the attention map with Softmax func-
tion. For a fair comparison, other modules and the over-

Table S2. Further comparison with ANN version SpikingRes-
former. † means the input is enlarged to 288×288 in inference.

Model T Param OPs Energy Top-1 Acc.
(M) (G) (mJ) (%)

Resformer-Ti 1 11.14 4.07 18.72 78.37

SpikingResformer-Ti 4 11.14 2.73/4.71† 2.46/4.24† 74.34/75.57†

SpikingResformer-S 4 17.76 3.74/6.40† 3.37/5.76† 75.95/76.90†

SpikingResformer-M 4 35.52 6.07/10.24† 5.46/9.22† 77.24/78.06†

SpikingResformer-L 4 60.38 9.74/16.40† 8.76/14.76† 78.77/79.40†

all architecture remain unchanged. In addition, the ex-
perimental setup of Resformer is the same as SpikingRes-
former. As shown in Tab. S2, the Resformer-Ti achieves
higher accuracy (78.37% vs. 74.34%) but consumes signif-
icantly more energy (18.72mJ vs. 2.46mJ), even surpassing
the energy consumption of SpikingResformer-L (8.76mJ,
78.77% acc.), demonstrating the energy efficiency advan-
tage of SNNs.

G. Further Comparison of Direct Training Re-
sults

In the main text, we perform only transfer learning ex-
periments on small-scale datasets including CIFAR10, CI-
FAR100, CIFAR10-DVS, and DVSGesture. In this section,
we perform direct training experiments on these datasets.
To adapt to the small-size inputs, we replace the 7×7 con-
volution with a 3×3 convolution and remove the 3×3 max
pooling. Other modules remain unchanged. In addition,
the minimum SpikingResformer-Ti is still too large for the
DVSGesture dataset. Therefore, we halved the number
of channels in each layer to avoid overfitting, thus con-
structing SpikingResformer-XTi. As shown in Tab. S3
and Tab. S4, our method is consistently effective when
directly trained on small-scale datasets. For instance,
SpikingResformer-Ti achieves 96.24% accuracy when di-
rectly trained on CIFAR10 dataset and achieves 79.28% ac-
curacy on CIFAR100 dataset, outperforming state-of-the-
art method Spikingformer-4-384 by 0.63% on CIFAR10
dataset and 0.19% on CIFAR100 dataset. For neuromorphic
datasets, SpikingResformer-Ti achieves 81.5% accuracy on
CIFAR10-DVS dataset, outperforming Spikingformer-2-
256 by 0.2%. SpikingResformer-XTi achieves 98.6% accu-
racy on DVSGesture dataset, outperforming Spikingformer-
2-256 by 0.3%, and competitive with 99.3% accuracy of
Spike-driven Transformer-2-256.

H. Detailed Comparison of Transfer Learning
Results

Static Image Datasets. As shown in Tab. S3, Spik-
ingResformer outperforms other transfer learning methods
on CIFAR10 and CIFAR100 datasets with fewer param-
eters. The SpikingResformer-Ti achieves 84.53% accu-

15

Table S3. Detailed comparison on static datasets.

Method Type Architecture #Param (M) T Top-1 Acc. (%)

CIFAR10 CIFAR100

STBP-tdBN [44] Direct Training ResNet-19 12.54
2 92.34 -
4 92.92 -
6 93.16 -

PLIF [10] Direct Training 6 Conv, 2 FC 36.71 8 93.50 -

Dspike [25] Direct Training ResNet-18 11.21
2 93.13 71.68
4 93.66 73.35
6 94.25 74.24

Spikformer [46] Direct Training
Spikformer-4-256 4.13 4 93.94 75.96
Spikformer-2-384 5.74 4 94.80 76.95
Spikformer-4-384 9.28 4 95.19 77.86

Spikingformer [45] Direct Training
Spikingformer-4-256 4.13 4 94.77 77.43
Spikingformer-2-384 5.74 4 95.22 78.34
Spikingformer-4-384 9.28 4 95.61 79.09

Spike-driven Transformer [42] Direct Training Spike-driven Transformer-2-512 10.21 4 95.6 78.4

SpikingResformer (Ours) Direct Training SpikingResformer-Ti* 10.79 4 96.24 79.28

Spikformer [46] Transfer Learning
Spikformer-4-384 9.28 4 95.54 79.96
Spikformer-8-384 16.36 4 96.64 82.09
Spikformer-8-512 29.08 4 97.03 83.83

SpikingResformer (Ours) Transfer Learning SpikingResformer-Ti 10.76 4 97.02 84.53
SpikingResformer-S 17.25 4 97.40 85.98

* The stem structure differs from the original SpikingResformer-Ti in the main text.

Table S4. Detailed comparison on neuromorphic datasets.

Method Type Archtecture #Param (M) T Top-1 Acc. (%)

CIFAR10-DVS DVSGesture

STBP-tdBN [44] Direct Training ResNet-19 12.54 10 67.8 -
ResNet-17 1.40 40 - 96.87

PLIF [10] Direct Training 5 Conv, 2 FC 17.22 20 74.8 -
6 Conv, 2 FC 1.69 20 - 97.57

Dspike [25] Direct Training ResNet-18 11.21 10 75.4 -

Spikformer [46] Direct Training Spikformer-2-256 2.55 10 78.6 95.8
16 80.6 97.9

Spikingformer [45] Direct Training Spikingformer-2-256 2.55 10 79.9 96.2
16 81.3 98.3

Spike-driven Transformer [42] Direct Training Spike-driven Transformer-2-256 2.55 16 80.0 99.3

SpikingResformer (Ours) Direct Training SpikingResformer-Ti* 10.79 10 81.5 -
SpikingResformer-XTi* 2.71 16 - 98.6

SpikingResformer (Ours) Transfer Learning SpikingResformer-Ti 10.76 10 84.7 93.4
SpikingResformer-S 17.25 10 84.8 93.4

* The stem structure differs from the original SpikingResformer-Ti in the main text.

racy on the CIFAR100 dataset, outperforming Spikformer-
8-512 by 0.7% with only 11.14M parameters. More-
over, the SpikingResformer-S achieves 85.98% accuracy
on the CIFAR100 dataset, which is the state-of-the-art re-
sult and outperforms Spikformer-8-512 by 2.15%. Com-
pared to direct training methods, the SpikingResformer ob-

tained from transfer learning has significantly higher per-
formance. The SpikingResformer-Ti outperforms the Spik-
ing Transformer-2-512 by 6.1% with a comparable number
of parameters. This demonstrates the advantage of transfer
learning.

Neuromorphic Datasets. Since the existing spiking vi-

16

sion transformer does not perform transfer learning ex-
periments on neuromorphic datasets, we mainly compare
with direct training methods. However, since the size
of the models trained directly on the CIFAR10-DVS and
DVSGesture is typically much smaller than the models
pre-trained on ImageNet, we are not able to compare
them to models with comparable parameters. As shown
in Tab. S4, the SpikingResformer obtained from transfer
learning has significantly higher performance on CIFAR10-
DVS. The SpikingResformer-Ti achieves 84.7% accuracy
on CIFAR10-DVS, outperforming Spiking Transformer-2-
256 by 4.7% and outperforming Spikingformer-2-256 by
3.4%. However, the transfer learning results on DVS-
Gesture fail to achieve comparable performance to direct
training. SpikingResformer only achieves 93.4% accuracy
on DVSGesture, falling behind the state-of-the-art method
Spike-driven Transformer by 5.9%. We believe that this is
mainly due to the way CIFAR10-DVS is constructed dif-
fers from DVSGesture. CIFAR10-DVS is converted from
CIFAR10 using a dynamic vision sensor, which does not
contain temporal information. Thus, models pre-trained on
static datasets can transfer to CIFAR10-DVS well. How-
ever, DVSGesture is directly created from human gestures,
which contain rich temporal information. As a result, mod-
els pre-trained on static datasets do not transfer well to
DVSGesture.

17

	. Introduction
	. Related Work
	. Preliminary
	. Dual Spike Self-Attention
	. Vanilla Self-Attention
	. Dual Spike Self-Attention
	. Scaling Factors in DSSA
	. Spike-driven Characteristic of DSSA

	. SpikingResformer
	. Overall Architecture
	. Spiking Resformer Block

	. Experiments
	. ImageNet Classification
	. Ablation Study
	. Transfer Learning

	. Conclusion
	. Proof of Theorem 1
	. Scaling Factors in Existing Spiking Self-Attention Mechanisms
	. Equivalence of Convolution to Linear Transformation
	. Self-Attention in DSSA
	. Experiment Details
	. Further Comparison with ANN Version
	. Further Comparison of Direct Training Results
	. Detailed Comparison of Transfer Learning Results

