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Abstract

In this paper, we study a class of infinite horizon fully coupled McKean-Vlasov forward-
backward stochastic differential equations (FBSDEs). We propose a generalized monotonicity
condition involving two flexible functions. Under this condition, we establish the well-posedness
results for infinite horizon McKean-Vlasov FBSDEs by the method of continuation, including the
unique solvability, an estimate of the solution, and the related continuous dependence property
of the solution on the coefficients. Based on the solvability result, we study an infinite horizon
mean field control problem. Moreover, by choosing appropriate form of the flexible functions, we
can eliminate the different phenomenon between the linear-quadratic (LQ) problems on infinite
horizon and finite horizon proposed in Wei and Yu (SIAM J. Control Optim. 59: 2594-2623,
2021).
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1 Introduction

Mean field control problems have, in the recent years, drawn the attention of the applied mathemat-
ics community. Being an extension of the classical optimal control, it has been studied from different
angles. The first one is to use the so-called dynamic programming principle (DPP). Compared with
the classical control problems, the presence of the distribution of the controlled process in the coeffi-
cients brings additional difficulty. One can refer to [3, 20, 21] for related research on establishing DPP
for mean field control problems. A second way is based on the Pontryagin’s maximum principle. This
approach has been successfully developed in many literature, see [8, 6, 1, 9]. Recently, Bayraktar and
Zhang [4] studied a mean field control problem on infinite horizon using FBSDE techniques, where
the state volatility is a constant.

In this paper, we consider the following infinite horizon mean field control problem: Minimize

J(a):=E [/OOO 2B (4, Xy, L(Xy), o) dit (1.1)

subject to

(1.2)

{dXt =b(t, Xe, £(Xy), 00)dt + o(t, Xy, £(Xy), 00)dWy, t€[0,00),
XO = 57
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where K € R is a constant, W; is a d-dimensional Brownian motion, (b, f,0) : [0,00) x R™ x P2(R™) x
A — R" x R x R"*? are measurable mappings, and a = (a¢); is a progressively measurable process
with values in a measurable space (4, .4). It can be noticed that we introduce a term e?%* to "suppress"
the growth of the running cost function f(t, X (t), £(X¢), az), thereby obtaining the well-posedness of
the cost functional (1.1). In the literature [25, 24, 4], they used the same technique when studying
infinite horizon control problems. As indicated in [25], the choice of parameter K depends on the
properties of the coefficients. Specifically, if the monotonicity of b with respect to = is sufficiently
negative, the parameter K may take a positive real number. Therefore, the appearance of parameter
K is friendly with various models and we can always identify the parameter K according to the the
intrinsic properties of coefficients and formulate the control problems.

Following the probabilistic approach to finite horizon mean field control problems, we establish an
appropriate form of the Pontryagin’s maximum principle for the infinite horizon case and then the
infinite horizon mean field control problem (1.1)-(1.2) is reduced to solving an infinite horizon McKean-
Vlasov FBSDE, which is also called a Hamiltonian system. Motivated by this, we aim to establish the
well-posedness of a more general form of infinite horizon coupled McKean-Vlasov FBSDEs. In detail,
we consider the following infinite horizon McKean-Vlasov FBSDE:

dXt = B (taXtunu Zt7£ (Xta}/:fa Zt)) dt+ g (tuXhYVta Ztuﬁ(Xtunu Zt)) thu te [0700)7
dY, = F (t, Xy, Y, Zo, £ (X0, Yy, Z,)) dt + ZdW,, T € [0,00), (1.3)
Xo :gv

where W; is a d-dimensional Brownian motion, X,Y, Z take values in R”, R™, R™*¢ B o, F are pro-
gressively measurable functions with appropriate dimensions, £ is an Fy-measurable square integrable
random variable and £ (X;,Y;, Z;) denote the probability measures induced by (X;,Y;, Z;). We aim
to look for solutions (X,Y, Z) to (1.3) in L2* (0, 00; R**7+m%d) where K € R and Lo (0, 00; R™)
is the Hilbert space of all R™-valued adapted processes 1, such that

IE/ leBty|2dt < oo. (1.4)
0

Finite horizon classical FBSDEs were first investigated by Antonelli [2] and a local existence and
uniqueness result was obtained. For the global solvability results, there exist four main methods: the
method of contraction mapping used by Pardoux and Tang [17], four-step scheme approach introduced
by Ma, Protter and Yong [14], continuation method initiated by Hu and Peng [11], Peng and Wu [19]
and improved by Yong [29, 30|, random decoupling field introduced by Ma et al. [15] and extended by
Fromm and Imkeller [10] and Hua and Luo [12]. For more detailed results on finite horizon FBSDEs,
one can refer to the monograph by Ma and Yong [16]. The research on finite horizon mean field
FBSDEs builds upon these methods and further developments have been made, see [5, 8, 9, 7, 13].

In [18], Peng and Shi, for the first time, investigated fully coupled classical infinite horizon FBSDEs
by the method of continuation. Later, Wu [26] studied this problem in some different monotonicity
framework. Yin [27, 28] studied the same issue by the method of contraction mapping. Shi and
Zhao [23] extended the results [18] to a larger space and studied the connection of infinite horizon
FBSDEs with corresponding PDEs. Besides, Yu [31] investigated infinite horizon FBSDEs driven by
both Brownian motions and Poisson processes. Bayraktar and Zhang [4] extended the infinite horizon
FBSDEs results to a type of infinite horizon McKean-Vlasov FBSDEs where the coefficients B, F'
depend on (X,Y, £(X,Y)) and the coefficient o is a constant. Recently, Wei, Xu and Yu [24] studied
a kind of infinite horizon linear mean field type FBSDEs with jumps.

In this paper, we establish an existence and uniqueness result and a pair of estimates for the
solutions to infinite horizon McKean-Vlasov FBSDE (1.3) with the method of continuation. The key
point of the method of continuation lies in proposing suitable motononicity condition. For the finite



horizon McKean-Vlasov FBSDEs, Bensoussan et al. [5] extended the results in Peng and Wu [19] to
include mean-field terms by proposing the following motononicity condition:

E[(T (t;01,L£(01)) =T (¢;02,L(02)),01 — O2)]
< - BE[|G(X - Xo)P| = 6o (B [|GT 1 - o) +E [|67 (21 - 2)[)).

for any ©; = (X1,Y1,721),02 = (X2,Ys, Zy) € L2(RTm+mxd) where I' = (GTF,GB,Go), G is a
matrix and (1, f2 are non-negative constants with 81 + 82 > 0. Recently, Reisinge et al. [22] proposed
a generalized monotonicity condition by introducing two flexible measurable functions ¢; and ¢s:

E[I (01, £(01)) = T'(t;02,£(02)) , 61 — O2)]

< =p1¢1 (X1, X2) — B2¢2 (1,01,02,L(01), L(O2)) . (15)

For the infinite horizon classical FBSDEs, Wei and Yu [25] proposed the following domination-
monotonicity condition:

1
19(s, 2,91, 21) = g(s, 2,42, 22)| < | A(s) (@1 — z2),

|F(s, @,y1, 21) — F(s,@,y2, 22)| < £|B(S)(y1 —y2) + C(s)(21 — 22)|, (1.6)
<F(S, 91) — F(S, 92), 91 — 92> + 2K<I1 —T2,Y1 — y2>
< —v|A(s) (21 — x2)|* = p|B(s)(y1 — y2) + C(s) (21 — 22)°,

for any 61 = (z1,y1,21), 02 = (2,y2,22) € R "H7Xd where g = B,o, and A(-), B(-),C(-) are
three bounded matrix-valued stochastic processes and v, i are non-negative constants with v+ p > 0.
Motivated by above conditions, we introduce an infinite horizon generalized monotonicity condition
involving two flexible functions ¢; and ¢ (see Assumption (H2)(i)). Moreover, different from finite
horizon case, two additional monotonicity conditions for the coefficients B and F are proposed (see
Assumption (H2)(ii)).

Our work is closely related to [4] and [25]. We provide a comparison with their results and
summarize our main innovations as follows:

(i) We study a more general coupled (McKean-Vlasov) FBSDE in comparison with [4] and [25].

(ii) The introduction of the two functions ¢; and ¢ makes our conditions more general and flexible
than those considered in [4] and [25], thereby improving application scope of our solvability
results. In particular, by selecting appropriate functions ¢; and ¢3, our conditions can be
reduced to those proposed in [4] and [25] (see Remark 3.2 (ii)).

(iii) As mentioned above, we need to identify the parameter K based on the intrinsic properties
of the coefficients, which is an additional consideration compared to finite horizon situation.
When studying infinite horizon mean field control problems, under our generalized monotonicity
condition, once the mean field control problem is well-defined for parameter K determined by
the coefficients, then it is solvable without additional constraint on K. In particular, we can
solve the mean field control problem considered in [4] under a rather weaker constraint on K (see
Remark 4.7). Moreover, for stochastic LQ control problems on infinite horizon, [25] stated that
there exists a phenomenon that whether the cross term coefficient S(-) in the cost functional is
equal to zero or not may bring different results to the solvalibility of the LQ problem. With help
of our theoretical result of FBSDE, we can eliminate this phenomenon under strictly convex
condition (see Remark 4.8).

The rest of the paper is organized as follows. In section 2, we present the necessary notations,
concepts and study the well-posedness of the infinite horizon McKean-Vlasov SDEs and McKean-
Vlasov BSDEs as a basis of the following study. In section 3, under the infinite horizon generalized




monotonicity condition, we obtain the existence, uniqueness and related estimates of the solutions for
the infinite horizon McKean-Vlasov FBSDEs with the method of continuation. Finally, in section 4,
we investigate an infinite horizon mean field control problem by applying the obtained FBSDE result.

2 Preliminaries

Let (2, F,P) be a complete probability space on which is defined a d-dimensional Brownian motion
W, and F = {F;},-, be the natural filtration of W augmented with an independent o-algebra Fg.
For any given n, m eNandz € R™ we denote by II,, the n x n identity matrix, by R”*™ the Euclidean
space of all (n x m) real matrices, especially, R* = R"*! by 0,, the zero element of R" and by J, the
Dirac measure supported at . We denote (-,-) and | - | to be the respective usual inner product and
norm in Euclidean space, and for any A, B € R"*™, we define (A, B) 2 tr(AT B), |A| = {tr(ATA)}z,
where the superscript T denotes the transpose of a vector or matrix. In this paper we use the operator
norm of matrices:

[|A]] ;== sup @, for any A € R™*™.
0F£z€R™ |I|
Now we introduce some spaces which will be used in our following analysis. For any ¢ € [0, 00) and
constant K € R,
o L% (% R") is the set of R"-valued Fj-measurable random variables £ such that

1€ 2 = E [|€[2] % < oo;

° L]%’K(t, 00; R™) is that set of R™-valued F-progressively measurable processes f(-) such that

1Ok =E { / h \e“ﬂs)fdsr < oo; (2.1)

o L (t,00;R™ ™) is the set of all Lebesgue measurable functions A : [t,00) — R™*™ such that
[AG) oo := esssupsefr,o0) [|A(s)]| < 00

Clearly, for any K; < Ks, we have L;"K2 (t,00;R™) C LIQF’K1 (t,00; R™), i.e., the sequence of spaces

{L;’K (t, o0; R”)} is decreasing in K.
KeR
In the sequel, we will use the notation £(©) to denote the law of the random variable ©. Let W;

denote 2-Wassertein’s distance on Py (R™) defined by

W (p1, po) 2 inf{ {/ |z — y|?m(dw, dy)] , € Py (R™ x R™) with marginals y; and ug} .
R7 xR

(2.2)
It is obvious from its definition that

1

Wa (p1, p2) < E [|X1 —Xzﬂ °,

where X7 and X5 are n-dimensional random vectors that follow the distributions p; and uo respec-
tively.

For a function defined on space of measures, its Lipschitz continuity and differentiability upon
the measure variable p is understood in the sense of 2-Wassertein distance and L-differentiability,
respectively.



Now we briefly introduce the structure of L-derivative for functions defined on space of measures
and we refer the readers to [9, Chapter 5| for details. Let Q be a Polish space and P an atomless measure
over 2. The notion of differentiability is based on the lifting of functions P, (Rd) > p— H(p) into
functions H defined on the Hilbert space L2(Q R?) over some probability space (Q F, ]P’) by setting
H(X) = H(Pg) for X € L*(; Rd) Then a function H is said to be differentiable at uo € Po(R?) if

there exists a random variable Xo with law pg such that the lifted function H is Fréchet differentiable
at Xy. Whenever this is the case, the Fréchet derivative of H at X, can be viewed as an element
of L2(;R%), denoted by DH(X), by identifying L?(€;R?) and its dual. It can be shown that
there exists a measurable function : 8, H (1) : R? — R such that 9, H (10)(Xo) = DH(Xy), P-as.
Therefore, we define the derivative of H at g as the measurable function 0, H (1), which satisfies

H(p) = H (o) + E [0, H (o) (Xo) - (X = Xo)] + (| X = Xoll2),

where £(X) = p, £(Xo) = pio.

As a basis of the investigation of infinite horizon McKean-Vlasov FBSDEs, we give the well-
posedness of infinite horizon McKean-Vlasov SDEs and infinite horizon McKean-Vlasov BSDEs in the
rest of this section. The corresponding classical infinite SDEs and BSDEs have been studied in [25]
and it can be observed that our conditions can degenerate to their conditions when there are no mean
field terms.

2.1 Infinite horizon McKean-Vlasov SDEs
For ¢ € [0, 00), consider the following infinite horizon McKean-Vlasov SDE:

{dXS = b (s, Xs, L(X,))ds + 0 (t, Xs, L(X,)) dWs, s € [t,00), 23)

X = x4,

where b : [t,00) x 2 x R" x Po(R") — R" and o : [t,00) x  x R” x P(R") — R"*¢ are measurable
functions. We introduce the following assumptions.

Assumption 2.1. (i) z; € L% (5R™). For any © € R", p € Po(R™), the processes b(-,z, 1)
and o(-,x, ) are F-progressively measurable. Moreover, there exists a constant K € R such that
b(-,0,00,) € LIQF’K (t,00;R™) and o(-,0,80,) € LIQF’K (t, 00; R™*4).

(ii) The functions b(t,x,n), o(t,x,n) are uniformly Lipschitz in (x, ), i.e., there exist positive con-
stants lyz, lops low, lop such that for any x,2" € R™, p, 1/ € Po(R™) and almost all (s,w) € [t,00) x €,

|b(87 Z, /1') - b(S, I/, M/)l < lbwl‘r - .CL'/| + leWQ (/1'7//)7

(2.4)
lo(s, 2, 1) —o(s, 2, 1) < loglz — 2’| + lopWa (s pt')

(111) There exists a constant k, € R such that for any p € Po(R™), z, 2’ € R™ and almost all
(s,w) € [t,00) x §, it holds that

(x— ', b(s,z, 1) —b(s, 2", p)) < =g |z — 2|7 (2.5)

It follows from the classical theory of McKean-Vlasov SDEs on finite horizon (see [9]), under
Assumption 2.1 (i) (ii), McKean-Vlasov SDE (2.3) admits a unique solution on [t,00). Furthermore,
similar with the proof of [31, Proposition 2.1]), we can easily get the following result.

Lemma 2.2. Let Assumption 2.1 (i) (ii) hold. If the solution X to McKean-Viasov SDE (2.3) belongs
2,K n

to Ly™ (t,00;R™), then we have

lim E [|e57Xr[*] = 0. (2.6)

T—o0



Now, we give the main result for McKean-Vlasov SDE (2.3) as follows.

Lemma 2.3. Let Assumption 2.1 holds. We further assume that K < k; — W —lyy. Then
the solution X to McKean-Viasov SDE (2.3) belongs to Ly™ (t,00;R™). Moreover, for any & > 0, we
(265 — 2K — 20, — (lyw + Loy) — 3¢) IE/ |5 X, | ds
¢

have the following estimate:
9 0o 9 l2 + l2 9 (27)
< E yeKtJJt’ +/ + 11+ % ’€KSU(S,O,5QH) ds p.
t
Proof. For any T > t, applying It6’s formula to ‘XSeKS‘z on the interval [t, T] yields

T
E{\XTeKT|2—2K/ |XSeKS|2ds}
t

= E{’«ItGKtP + /tT |:2<Xs,b(S,XS,L(Xs))> + |0’ (SaX57£(XS))|2:| eszdS}

1
- ’eKsb(s, 0, do,,)

< IE{ ’xteKt’2 + /tT [2 (Xs,b(s, X5, L(Xs)) —b(s,0, L(Xs)) + b(s,0, L(X)) — b(s,0,0,))

+ 2|XS||b(Sv 0, 6On)| + (|U(S, Xs, ['(XS)) - U(Sv 0, 50n)| + |0(57 0, 6On)|)2}62K5d5}'

By the monotonicity condition of b and Lipschitz condition of b and o, we have
2 T 2
E < [ XreT|" — 2K/ | X.e™%|" ds
t
) T
B [ [ [~20a PP 4+ 2 X VBT + 21X, (50,50, )
t

2
+ (l,m|Xs| + o VE[ X2 + |0(s,0,60n)|> ] eQKSds} )

For any € > 0, with the help of the inequality 2ab < |a|? 4 (1/¢)|b|?, we derive

T
E{]XTeKT]2 - 2K/ | X, ds}
t

T
2 1
<E { |z e™)” + / [(zf_w 12, + 20 + 2oaloy + 3 — 26,) | Xo|* + g|b(s, 0,0, )|?
t

12, +12
+(1+% lo(s,0,80,)|? | eX5ds ¢ .

Let T'— oo, thanks to Lemma 2.2, we have

(QKI —2K — 2117“ - (lam + lau)2 - 35) E/ ‘X56K5‘2 ds
t

<o fjners [
t

X (2.8)

2 2
- ‘b(s,O,&on)eKSIQ + (1 + @) ‘U(S,O,(SQH)GKSF] ds} .




2
The condition K < k — %

(O,m — W — oy — K) Therefore, the estimate (2.8) and Assumption 2.1 (i) imply that the
solution X € L™ (t,00;R™). O

— Iy, implies the existence of the number ¢ such that 3¢ €

2.2 Infinite horizon McKean-Vlasov BSDEs

For ¢ € [0, 00), we introduce the following infinite horizon McKean-Vlasov BSDE:
dYs = f(s,Ys, Zs, L(Ys), L(Zs))ds + ZsdWs, s € [t,00), (2.9)

where f : [t,00) X Q x R™ x R™X4 x Py(R™) x Py(R™*4) — R™ is a measurable function and satisfies
the following assumption.

Assumption 2.4. (i) For any y € R™, z € R™*? 1 € Po(R™), v € Po(R™*?), the process
f(yy, 2,1, v) is F-progressively measurable. Moreover, there exists a constant K € R such that
£(-,0,0,60,.,00,...) € L2 (t,00; R™).

(i) f(s,y, 2, pu,v) is Lipschitz in (y, z, p,v), i.e., there exist positive constants Lys oy by, s Ly, such that
for any y,y' € R™, z, 2" € R™*4 1 1! € Po(R™), v, € Po(R™*?) and almost all (s,w) € [t,00) x 2,

|f(s,y,z,,u, V) - f(svylvz/nulvylﬂ S ly|y - y/| + lZ|Z - Z/| + l#yWQ(IU’MUJI) + lleWQ(Va V/)' (210)

(iii) There exists a constant k, € R such that for any y,y’ € R™, z € R™*?4 1 € Py(R™), v €
Po(R™*4) and almost all (s,w) € [t,o0) x §, it holds that

2
<y_ylaf(sayuznu'71/)_f(svylvzvﬂuy» > —Ry |y_y/| . (211)
First, we give the following an a priori estimate.

Lemma 2.5. Let f be a coefficient satisfying Assumption 2.4 and K > ky + 1, + 2+ lsz' Let

(Y, 2) e L]QF’K (t, oo;Rerde) be a solution to McKean-Viasov BSDE (2.9). Then, for any e > 0, we
have

E{|YteKt}2 + /t (2K = 2y — 22 = 22— 21,,, - 3) [Y,e™*”
] (2.12)

Ks|2 L[~ Ks|2
+l§ +ll2tz +e€ ’Zse ’ :| dS} < EE‘/t ’f(87070760m750m><d)e ‘ ds.



Proof. For any T € (t,00), applying Ito’s formula to |Y56K5}2 on the interval [¢, T leads to
2 T 2 2
E{ Xty +/ 2K [, [+ [eF22,[*] as
t

T
_IE{ |eKTYT}2 —2/t [<1@,f(s,Ys,Zs,£(Ys),,c(Zs)) —f(S,O,ZS,L(YS),ﬁ(Zs))>

(Yo S (5,0, 20, £(Y,). £(2,)) = (5,0,0.L(Y.), £(2.)))

+ <Y57 f(S, 07 07 ‘C(Ys)u ‘C(Zs)) - f(S, 07 07 6Om7 ‘C(Zs))> (2.13)

+ (Y2 £(5,0,0,00,,, £(2,)) - f(s,o,o,aom,(;ow)ﬂemds}
T
S]E{ |€KTYT‘2+/ |:2K:|}/S|2+2lz|}/s||zs| +2l#y|}/s| E[|}/S|2]+21,u.z|}/s| E[|Z5|2]
t

+2|Ys||f<s,o,o,5om,5ow>|]e2md5},

where the monotonicity condition and the Lipschitz condition of f are used.
For any € > 0, by the inequalities

2

2 2 2 a 2 2o, 1,0
2aly||z| < (Z+12. +¢) |y +m|z| » 2yl fl < elyl +g|f| ,

we deduce that

9 T s12 £ 512
E{them| +/t [(21{-2@—213—211 — 21, — 36) | Ve +W\Z56K | ]ds}

T
< ]E{|YT€KT‘2 +/ é |f(55070550m75om><d)eK5‘2 dS} :
t

Then, by letting T' — oo on both sides of the above inequality, with help of Lemma 2.2, we obtain the
estimate (2.12). O

Similar to the definition of solutions for classical BSDEs on infinite horizon in [23], a pair of
processes (Y, Z) € Ly™ (t, 00; R™F7%4) is called a solution to McKean-Vlasov BSDE (2.9) if and only
if, for any T € (¢, 00), the pair of processes (Y, Z) satisfies

T T
Y, =Yr —/ f(r,Ye, Z, L(Y,), L(Z,))dr —/ Z.dW,, s€[t,T]. (2.14)

With the help of above a priori estimate (2.12), the method of Peng and Shi [18, Theorem 4] is
still valid to yield the following result.

Lemma 2.6. Let the coefficient f satisfies Assumption 2.4 and let K > ry +1,, + 12 + lﬁz. Then,
infinite horizon McKean-Viasov BSDE (2.9) admits a unique solution (Y, Z) € L™ (t, 0o RMAmxd),



3 Infinite horizon McKean-Vlasov FBSDEs

In this section, we establish existence and uniqueness of solution to infinite horizon McKean-Vlasov
FBSDE

dXt = B (taXtunu Zt7£ (Xta}/:fa Zt)) dt+ g (tuXhYVta Ztuﬁ(Xtunu Zt)) thu te [0700)7
d}/t = F(t,Xt,}/t, Zt,ﬁ (Xh}/tvzt)) dt + thWt, te [O, OO), (31)
Xo :gv

where £ € L%, (€;R™).

Definition 3.1. A triple of F-progressively measurable processes (X,Y,Z) € LIQF’K (O, 03 R"ererXd)
is called a solution of FBSDE (3.1), if (3.1) is satisfied in the following sense: for any T > 0,

t t
Xt:€+/ B(SaXs,Ys,Zs,E(Xs,Yst))dS+/ O'(SaXsaYVsuZsaﬁ(Xm}/squ))dWsa te [O,T],
0 0

T T
Yt:YT—/ F(s,XS,YS,ZS,E(XS,YS,ZS))ds—/ Z,dW,, telo,T).
t t

We introduce the following assumptions.

Assumption (H1). £ € L% (Q;R"). Let (B, F,0) : [0,00) x QxR" X R™x R™*x Py (RrFmAmxd)
(R™,R™, R™*9) be FF- pmgresswely measurable functions satisfying:

(i) There exists a positive constant | such that for any z,x’ € R™, y,y' € R™, 2,2/ € R™*4 m m' €
Py (RrFmtm=d) and almost all (t,w) € [0,00) x Q,

|(B,F,J)(t,x,y,z,m) - (B,F,O’) (t,x/,y’,z/,m/ﬂ < l(|$—$/| + |y_y/| + |Z_Z/| +W2 (mam/))'

(ii) There exists a constant K € R such that (B, F,a)(-,0,0,0,d0, ,80,,,0,,..) € L& (0, oo; RmtmAnxd),

mxd
Besides Assumption (H1), we introduce the following monotonicity condition to deal with the
coupling between the forward equation and the backward equation in (3.1) on infinite horizon.

Assumption (H2). There exist constants kq, iy € R, B1,82 € [0,00), lg,lg, 1, € (0,00), v € (0,1),
G € R™*" and measurable functions ¢y : [0,00) x L? (Q;R™) x L? (Q;R") — [0,00), ¢ : [0,00) X
L2 (Q; Rrmamxd) s 2 (Q RFmtmxd) o Py (RrFmAmxd) s Py (RrFm+mxd) — [0, 00) such that for
all t € [0,00), i € {1,2},0, := (X;,Y:, Z;) € L* (Q;R”+m+de), we have as follows:
(i) One of the following two monotonicity conditions holds:
E[(B(t,01,L(01)) — B(t,02,£(62)),G" (Y1 — Y2))]
+ E [<U (t, O, ﬁ(@l)) -0 (t, O, (@2)) el (Zl Z2)>}
+E[(F (t,01,L(01)) = F (t,02,L(02)) ,G (X1 — X3))] (32)
+ (ko + £y E[(X1 — X, GT(YI —Y2))]
< =Bi¢1 (t, X1, X2) — B2 (t, 01,02, L(01), L(O2)),
and
E[(B(t01,£(01) - B(t, 02, £(62)),GT (Vi - 12))]
+ E [<O’ (t, @1, E(@l)) — 0 (t, @2, (@2)) GT (Zl Zg)ﬂ
+E[<F (tv@lv‘c(@l)) _F(t7627 ( )) ( X2)>] (3'3)
+ (ke + 1y E[(X1 — X2, GT (Y — Ya))]
> P1gn (8, X1, X2) + Bada (t,01,02,L(01), L(O2)) .



(i) One of the following two cases holds.

Case 1: B2 > 0 and for any t € [0, 00),

E[|o (t,01,L(01)) — o (t,02,L(02)) |?]

< LE[IX) — Xo|?] + 1p¢2 (t,01,09, L(01), L(O2)) ,
E[(B(t,01,L£(01)) — B(t, 0, L£(02)), X1 — X2)]

< —k B[ X1 — Xo|?] + It (t,01,02, L£(01), L(Os)), (3.4)
E[(F(t,01,L(01)) — F(t,02,£(02)),Y1 — Y2)]

Lz
> ~(ry + 2E [V — YaP’] - JE[2: - Zol"]

— 1y (E[| X1 — X214+ ¢2 (£, 01,02, L(01), L(O2))) .
Case 2: $1 > 0 and for any t € [0, 00),
E [|o (t,01,L(01)) = 7 (t,02,L(02)) |’]
<LE[X) — XoP] + LE [|[V1 — Y2 + |21 — Z5)7],
E[(B(t,01,L(01)) — B(t, 02, L(03)), X1 — X5)]
< =k B[| X1 — XoP] + E [|Y1 — Ya|* + |21 — Zo]?] (3.5)
E[(F(t,01,L(01)) — F(t,02,L(02)), Y1 — Y2)]

L
> (v + 3B (Vi = Yal”] = SEZ1 = Zo] ~ Lo (t, X1, Xo).

We give the following remark to explain the Assumption (H2) and compare it with the existing
literature.

Remark 3.2. (i) Compared with the finite horizon case in [22], an additional term (ky+ry )E[(X71—

(i)

(iii)

Xo,GT(Y] — Y2))] appears in the monotonicity condition (3.2), which will suit for the later
analysis of infinite horizon.

Compared with the monotonicity conditions in the literature, we propose a generalized mono-
tonicity condition (3.2) by introducing two functions ¢1 and ¢2. The introduction of these two
functions provides us with more flexibility. Specially, when we choose n =m=d =1, 5, =0,
Ba >0, ¢ (t,01,02,L(01),L(02)) = (Y1 — Y2) |32 + (X1 — X2)||3,, the monotonicity condi-
tion (3.2) is reduced to the monotonicity condition in [{]. Moreover, our condition can be seen
as a generalization of the domination-monotonicity condition proposed in [25] by choosing

1 (t, X1, X2) = [|A(t)(X1 — Xa)||72

2 (t,01,02,L(01), L(02)) = | B(t)(Y1 — Ya) + C(t)(Z1 — Z3)| 72 »

where A(-), B(-),C(-) are three bounded matriz-valued stochastic processes. Using a more general
function ¢o instead of a linear combination of Y and Z, our solvability results can be easily
applied to infinite horizon mean field control problems whose coefficients enjoy specific structural
conditions by choosing

¢2 (t; 61; 627‘6(61)7‘6(62)) = ||d(ta X17}/15 Zl; ‘C(leiflv Zl))_d(thQa }/25 Z27£(X27}/2; Z2))||%27

where & is the optimal control, which will be discussed in detail in section 4.
The monotonicity conditions of coefficients B and F are necessary assumptions in infinite hori-
zon situations, which is indicated by the analysis of infinite horizon McKean-Viasov SDFEs and
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infinite horizon McKean-Viasov BSDEs in the previous section. From the subsequent analysis,
we can observe that the constants kg, Ky will affect the values of the parameter K. Condition
(3.4) avoids the influence of the monotonicity of function ¢2 on the choice of constants k, and
Ky, further the values of parameter K. The benefits of this technique will be demonstrated in
investigating mean field control problem (1.1)-(1.2) and LQ control problems (see Remark 4.8).

Now, we give the main result of this section.
Theorem 3.3. Let Assumptions (H1) and (H2) hold. Let

Ky + Ky

2

Then, infinite horizon McKean-Viasov FBSDE (3.1) admits a unique solution (X,Y,Z) € L;’K(O, 00;
Rrtm+mxd) - Moreover, we have the following estimate:

E/ |eKtXt|2dt+E/ |eKth|2dt+E/ |5t Z,2dt
0 0 0

Ky — Ky > max{ly,l.} and K = (3.6)

T (3.7)
< OE/ |(B7F7 U)(taovOa075071+7n+7nxd>6Kt|2dt7
0

where C' > 0 is a constant depending on |G|, kg, Ky,le, 15,101 and B1 or (2. Furthermore, let
({(7}7,7 ) € LIQFvK(()7 oo; RtmAmxdy pe g solution to the FBSDE (3.1) with another set of coefficients
(&, B, F,5), then we have

E/ |eKt(Xt—Xt)|2dt+E/
0 0

oo

|5y, — Y3)|2dt + IE/ |52, — Zy)|2at
0

+E/ |O'(t, (:)t) - 5(t, ét)eKtlzdt} N
0

where Oy = (X, Yy, Zy, L(X4, Y, Zi)) and C is the same constant as in (3.7).
Remark 3.4. It is easy to verify that (3.6) is equivalent to

l, ly _ Kg Tt Ry
my+§<K<mw—§ and K = 5 (3.9)
We introduce a family of infinite horizon FBSDEs parameterized by A € [0, 1]:
ax} = [AB (L, X0V 20, £ (X0 20)) = (1= Nk X+ 77 |t
# [aa (002,20, £ (5232, 7)) + 7 510

AV} = [AF (6 X0V 20 £ (XX YN 20) = (U= Ny Y+ I |dt + Z2aw,

X5 =¢,

where £ € L% (Q;R™) and (27,77, 17) are arbitrary processes in L2 (0, o0; R™m+7xd) - Note that
when A\ = 1,77 =0,ZF =0, Z° = 0, (3.10) becomes (3.1), and when A\ = 0, FBSDE (3.10) is reduced
to

dX) = (=K, X{ + IP)dt + I7 dW,
AYL = (kY2 + I dt + Z22dw,, (3.11)
X0 =¢

11



It is clear that FBSDE (3.11) is in a decoupled form and we can solve the SDE and BSDE separately.
As a direct application of Lemma 2.3 and Lemma 2.6, we have the following result.

Lemma 3.5. Assume rk, < K < kg, then for any (ZB,7F,17) € L]%’K (0, o0; RHmFnxd) gnd ¢ €
L2f0 (Q;R™), FBSDE (3.11) admits a unique solution (X9, Y, Z%) in L]QF’K (O, oo;R"ererXd).

Next, for any Ao € [0, 1], we shall establish an a priori estimate for FBSDE (3.10) which plays a
key role in the method of continuation.

Lemma 3.6. Let (¢,B,F,0), (£,B,F,5) satisfy Assumptions (H1) and (H2), and (IB,IF,IU),
(IB,17,1°) ¢ L]%’K (0, oo; R+mFnxd) gnd let

Ky + Ky

Ky — Ky > max{ly,l.} and K = (3.12)

Suppose (X,Y,Z),(X,Y,Z) € L;’K(O, oo;R”*m_*"iXd) are solutions to FBSDE (3.10) parameterized
by Ao € [0, 1] with ({,B,F, U,IB,IF,I‘T) and (&, B, F,5,78,IF | 17), respectively. Then there exists
a constant C > 0 only depending on |G|, kg, Ky, Ly, 12, 1o and B1 or Bz, independent of Ao such that

1X = X[ + [y =¥ + 112 - ZII5
< c{E[l¢ - & + X (B(-©) - B(-.©)) + (Z% — T7)||3, (3.13)
+ %o (o(-,©) — 5(-,©)) + (I° —T’)H; + %o (F(-,0) — F(-,0)) + (2" —iF)||§< }
where © = (X,Y, Z,L(X,Y,Z)), = (X,Y,Z,L(X,Y,Z)) and || - |% is defined as (2.1).

Proof. The whole proof will be splitted into two cases according to Assumption (H2). Before splitting
the proof, we first do some pretreatments for both cases.
First, we can represent the FBSDE (3.10) parameterized by Ao in the following form:

de™' X, = [Ne™'B (t, X4, Y1, Zy, L (X4, Y, Z1)) + (K — (1 — Xo)ka)e™ ' Xy + TP ] dt
+ [Moe™to (t, X, Yy, Z4, L( X0, Ve, Z4)) + X' T7 ] dW,

de™'Y, = [Me"'F (t, X1, Yy, Z4, L (X4, Y2, Zy)) + (K — (1 — Ao)ky)e™ 'Y, + ™' T ] dt + ™' Z,dW,.
. . (3.14)
By applying Ito’s formula to (eX*(Y; — V;), GeX" (X; — X¢)) on the time interval [0, 7], we obtain
that

E [(e"" (Yr — Yr), Ge"T (Xp — X7))] —E [(Yo — ¥0,G(¢ - §))]
- IE/T l()\oem (B(t,0:) — B(t,0¢)) + (K — (1 — M)ka)e" (X — Xp) + "HZP - IP),GTe" ' (Y — 1))
0
+ Noe®t (F(t,04) — F(t,0y)) + (K — (1 — Xo)ry)e™ (Y = Yy) + "N Zf — ), Ge™' (X, — Xy))

+ <)\0€Kt (U(tv @t) - 6(t7 ét)) + eKt(Ig - jg)v GTeKt(Zt - Zt)> dt.

(3.15)
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Then, by adding and subtracting the terms B (t, (:)t), F (t, (:)t), o (t, (:)t), we can deduce that
E [(e"T(Yr — Y1), Ge"" (X1 — X71))] = E [(Yo — Y0, G(£ = ©))]

T
0

(Moe™" (B(t,0,) — B(t,0,)) ,G eV, - V1))

+ (A" (F(t,0,) — F(t,0,)) ,Ge™' (X, — Xy))

+ (MoeX (o(t,04) — 0(t,04)) ,GTeX (2, — Z4)) (316)
+ (2K — (1= Xo) (ks + Ky)) (¥ (X = X)) ,GTeRH (Vi = V7))

+ (e (B(1,6,) ~ B(1,6,)) + " (P ~T7) ,GTe" (v~ Vo))

+ (Ne™" (F(t,0) — F(t,0y)) + ™' (ZF - IF) ,Ge™" (X, — X4))

+ (Ne™ (a(t,0,) —3(t,0y)) + "Iy —I7),G " (2, — Z,)) | dt

The monotonicity condition (3.2) and K = (ky + y)/2 work together to reduce the above equation

to _
E [(eX7 (Yr - Vi), GeXT (Xr — Xr))] — E[(Yo — Yo, G(¢ - §))]

T
<k [
0

+ <)\06Kt (F(t, ét) — F(f, (:)t)) + €Kt(ItF — .'th), GeKt(Xt — Xt)>

(Moe™" (B(t,0,) — B(t,0,)) + "' - I]),G """ (v, - V7))

(3.17)
+ (Mo (0 (1,00) =5 (1,01)) + " NT7 —I7),G TN (2, = Zy)) | dt
T ~ _
“ / AR (B (1, X0, X0) + Pads (1,01, 6,)) dt.
0

With help of the inequality 2ab < ca® + (1/€)b? for any € > 0, Lemma 2.2, and letting 7" — oo, we
have

)\0/ et (B¢ (t Xo, Xi) + B2z (t,©4,0y)) dt
0

< e (1Yo = Yoll .+ 1X = X+ IV = VI +112 - ZI) (3.15)
GJ? _ B o ) |
+ B e - a7 + |no (B(.0) - B(,0)) + 27 - 1),

%0 (7 (- €) =7 (-0)) + (@ =I5 + A0 (F (-0) = F (- 6)) + (" = I }-

Moreover, under monotonicity condition (3.3), we can still get (3.18) with similar arguments. We have
finished the pretreatment work. The next analysis in two cases will be based on (3.18). For simplicity
of notations, from now we denote the right-hand side of (3.13) as RHS.

Case 1: By > 0. First, applying It6’s formula to [ef*(X; — X;)|? on the time interval [0, 7], we
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have
E[|e"" (X7 = Xr)PP] —E[I¢ - €]
= E/T lg (e"'( Xy — X1), Me™" (B(t,0,) — B(t,0,) + B(t,0,) — B(t,0,)) + " (2 — 1)
0

+ (K — (1 - Ao)ﬂm) eKt(Xt — Xt)> + ‘)\OeKt (O'(t, @t) — O'(t, ét) + O'(t, ét) — 5'(t, @t))

+efi Ty —I0)|? |at.

(3.19)
Under the condition (3.4) and with the help of the inequality 2ab < e1a? + (1/£1)b? for any 1 > 0,
we can deduce that,

E [[e"T (X7 — X7))] —E [|€ - &?]
T
< IE/ l(2K — 2k,)e* B Xy — X |2+ 200l K o (t, O, O4) + 1€ (X — X4) 2
0
1 _ _ _ _ _
+ €—|)\06Kt (B(t,0,) — B(t,0¢)) + e""(Zf —IP)|? + A] (I]e""(Xy — Xo)|* + 12K g2 (t, ©4,6,))
1
+Aoe™ (0(t,0:) — (¢, 04)) + e UTT — I7)? + 1] (lo]e™ (Xe — Xo)|* + 19> o (t, O, 6y))

= ac (o(t,00) — o(1,60)) +X(T7 ~T7)P? |t
1

(3.20)
Arrange terms, we can obtain that

T
E[[eXT (X7 — X7)|?] + (262 — 2K — 1y — (1 +15)e1) IE/ left (X, — X,)|%dt
0

T T
< (2+51)l¢,)\0/ 2Kl (t,04,04)dt + %E/ e’ (Ao (B(t,0¢) — B(t,0y)) + I — 177 2 dt
0 1 0

1 T - - _ .
" (? " 1) B [ o (0(60) — 0(0.60) + 57 ~ 7 e+ Ellg — €P.
1 0
(3.21)
The condition K < k; — (I5/2) implies the existence of €1 such that (1+1,)e1 € (0,6, — K — (I5/2))
and we denote

(2+51)l¢ (1/51)+1
Cy = Co = . 3.22
T ke — 2K — Iy — (14 1g)en)B2 2 2k — 2K — 1y — (1 + 1) (322)
When $3 > 0, from (3.18), we obtain,
N [0 (1.4, 0,)
0 (3.23)
< (Vo= Toll2s + 1% = K2+ [V =TI + 17— 22 + 'L rus
<e([[Yo-Yol . +IIX - X%+ Y = Y%+ 112 - Z|I% T :
Combine (3.23) and (3.21) and let ' — oo, we have
X — X|I%
. _ _ _ G2 (3.24)
e {a( Yo — Vo2 +I1X = X% + Y = V% + 12 - z||§<) + %RHS} + CoRHS.
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Choose € small enough such that 0 < ¢ < 1/C4, and denote

018 Cl|G|2 02
= = = . 2
fTIC Cie’ Cs 4e(1 — Che) + 1—Che (3.25)

Then, (3.24) is reduced to

— _ — 2 — —
X - X% < s( [Yo = Yo|[ oo + 1Y = Y% + 12 - ZII%) + C3RHS. (3.26)
Second, we apply 1t6’s formula to |ef¢(Y; — Y;)|? on the time interval [0,7] and we obtain

Elle"" (Yr — Y7)|?] - E[|Yo - Yo|?]

= /T [2 (MY, — Y1), Moe™" (F(t,0;) — F(t,0y)) + (K — (1 — Ao)ky)e™ (Y — V7)
0

T
+efH(Tf —ff))]dt+]E/ |52, — Z,)dt

. (3.27)

- /T [2<6Kt(Yt —Y3), Moe™ " (F(t,0;) — F(t,0;) + F(t,0;) — F(t,0,))
0
+ (K = (1= Ao)ky)e™H(Yy = V) + e5H(T) - ff)>]dt + E/T 542, — Z,) [t
0

Under the condition (3.4) and with the inequality, for any g5 > 0, 2ab > —e9a? — (1/22)b?, we can
deduce that,
E[|e"" (Yr — Y7)|?] - E[|Yo — Yo|?]
T - T -
Z —2[¢AOE/ 62Kt|Xt - Xt|2dt - 21(;5)\0/ €2Kt¢)2(t, @t, @t)dt
0 0
T

T T
+ (2K — 2K, — )\Olz)E/ le5H(Y; — Y3)|2dt — )\OvE/ |58 Z; — Zy)|Pdt + E/ |52, — Zy)|dt
0 0 0

T T
_ 1 _ _ _
- EQE/ |5t (Y, — ;) |2dt — —E/ |Moe™" (F(t,0,) — F(t,0,)) + e*"(Zf —If)|2dt.
0 0

£2
(3.28)
Arranging terms, letting T — oo and substituting (3.23) into (3.28) yield
E[|Yo - Yo?] + (1 - ”y)IE/ 5 Zy — Z,)Pdt + (2K — 25y — 1, — 2) E/ Xt (Y, — Yi)|dt
0 0
o > 2l pe - - _ _
<218 [ R, - X+ ZE (Yo - Tall}, + 1 - XU+ 1Y - VI + 12 - 21%)
0
Is|GJ? 1 Oo Kt . B F _ FF\y2
+ RHS + —E [Aoe™ (F(t,0:) — F(t,0:) + (Z; —Z;))|"dt
2e 2 €2 0
(3.29)

The condition K > k,+(I./2) implies the existence of the number e, such that e € (0, K—ry,—(1./2)).
We can choose € small enough such that

2 2
0K — 24y — . —ey — =25 50, 1—y— =250 (3.30)
‘ B2 B2
And we denote ol ol
Cy :—min{2K—2ny—lz—52——¢E,1—”y——¢5}. (3.31)
B2 B2
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Therefore, (3.29) is reduced to

— 2 — — —
Yo = Yol2a + IV = VI3 + 12 = Z|% < Cs)1X — X + CoRHS, (3.32)
where
2p(1+ £) Lok
[ B2 22 e
= —"" (5= ———"=. 3.33
5 Cy » Ce o (3.33)
Choose € small enough such that 1 — £C5 > 0 and combined with (3.26), we obtain
- Cee+ Cs
X - X|}% < =——="RHS. 3.34
I - X < SEES (3.34)
Substituting (3.34) into (3.32), we have
|X = X|[5 + Y = V|5, + | Z - 2|5, < CRHS, (3.35)
where o o os(C Cy)
c+C3 5(Ce€ + C3
Ci= = Cé. 3.36
1—&Cs 1—z0, ° (3.36)
The desired estimate (3.13) is obtained in case 1.
Case 2: 31 > 0. When (1 > 0, from (3.18), we obtain,
)\0[31/ Ky (t, X1, Xo) dt
0 (3.37)

<e(|[vo - Yol o

[ & Rys.

+IX = Xl + 1Y - V% +12 - 2% ) +

We first apply Ito’s formula to |e®*(Y; — Y;)|? on time interval [0, T]. Under condition (3.5), combined
with (3.37) and letting T — oo, (3.27) is reduced to

E[[Yo — Yo|?] + (1 - ”y)IE/ 582, — Zy)2dt + (2K — 2k, — 1, — EQ)E/ |5 (Y, — Y;)|dt
0 0

21¢E — 112 — _ _
< (Yo = Yoll 7. +1X = XU + 1Y = VI +112 ~ ZI%)

l G|? 1 e _
+ ¢| " rus + —E/ Xoe™" (F(t,0;) — F(t,6y)) + (ZF — I))2dt.
2ep1 €2 0
(3.38)
We can choose € small enough such that
21 21
0K — 2y — . —ey — =25 50, 1—y— =255, (3.39)
‘ B B
and denote ol ol
Cy = min{QK—Qliy—lz—Eg aad 1—~y——¢5}. (3.40)
B’ B
Then, we obtain
— 2 — — - —
Yo = Yol 2o + Y = V1% + 112 — ZII% < & X — X|[% + CsRHS, (3.41)
where
o BIGP | 1
~ @€ 2eB1 g2
R 3.42
p1C7 ® Cr (3.42)



Next, we apply It6’s formula to [ef!(X; — X;)|? on time interval [0,7]. Under condition (3.5), by
similar estimating argument with case 1, we can get

T
E[|lef T (X7 — X7)] + (26, — 2K — 1, — (1 + zg)gl)E/ leBH(X, — X)) |2dt
0

T
<E[JE— &7+ @+ el / KUY, ~ Vif2 412, — Zo?)dt
0

1 T (3.43)
FoB [ 00 (B(.©) - B,60) + 2P - 27 de
1 0
1 ’ 2Kt a = a o o |2
+ = F1)E [ e |Xo (o(t,©4) —3(t,0y)) + Iy — I7| dt.
1 0
Denote @ y
+e1)ly
Cy := . 3.44
P 2k, — 2K — 1, — (L+1g)er G40
Then, letting T — oo, (3.43) is reduce to
IX = X% < Co(IY = Yllic + 12 = Z||%) + CRHS. (3.45)
Substituting (3.41) into (3.45), we have
|X — X||% < Cy(é]| X — X||% + CsRHS) + CoRHS. (3.46)
By choosing € such that 1 — Cyé > 0, we have
S CoCs + Cs
X - X||} £ =————"RHS. 3.47
IX - X < B2 (3.47
Combined with (3.41), we obtain
=12 =12 =112 ~
X = X[ + [y =Y +|Z - Z||;; < CRHS, (3.48)
where L4 Y (CoCn b C
O e (1+8)(Co 8~+ 2) 4O
1— Cg&'
The desired estimates (3.13) is obtained in case 2. Therefore, we obtain the estimate (3.13) in two
cases. The whole proof is completed. O
Based on the above a priori estimate, we give a continuation lemma.
Lemma 3.7. Suppose Assumptions (H1) and (H2) hold and let
Ky + Ky
Ky — Ky > max{ly,l.} and K= — (3.49)

Then there exists a constant &g > 0 independent of Ao such that if for some Ao € [0,1) and any
(IB,IF,I‘T) € L]%’K (R"+m+"><d), FBSDE (3.10) admits a unique solution (X,Y,Z) € L;’K(O,oo;
RrtmAmxd) “then the same conclusion is also true for X\ = \g + & with § € [0,80] and A < 1.
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Proof. Let 0y > 0 be determined later, and § € [0, do]. For any (Z%,7F,77) € L]%’K (0, oo; Rmnxd)

and 0 = (z,y,2) € L]2F’K (O, 00; R""’m"’mx"l), we introduce an infinite horizon McKean-Vlasov FBSDE
as follows:

dX, = [AOB (t, Xo, Yo, Zo, £(X0, Y, Z0)) — (1 — Ao)kuXe +iﬂdt
+ [Aoa (t. X0, Yo, Zo, £ (X0, Yo Z4)) +ig}th, 550

4y, = [/\OF (t, X, Yo, Ze, £ (X2, Yoo Z4)) — (1= Ao)iy Y +if]dt + Z,dW,,

Xo =¢,

where . .
17 = 6(B(t, e, ye, ze, L(xe, yr, 21)) + katie) + L7,
If = §(F(t, e, ye, 20, L(xe, ye, 21)) + Ky +1I/, (3.51)
ig = 5(0(t7 Tty Yty 2ty E(:I:ta Yt, Zt)) + Ig

Since (z,y,z2) € L]%’K(O, oo; RrTmtmxd)y and (Z8,77,1°) € L]%’K (Rtminxd) by Assumption (H1),
it is easy to check that (ZB,IF,7I7) e L;’K(O,oo;Rn+m+”Xd). Then, by our assumptions, FB-
SDE (3.50) admits a unique solution © = (X,Y,Z) € Lz (0,00;R*"t™+m%d) " Dye to the arbi-
trariness of 6, we can comprehend that FBSDE (3.50) defines a mapping from the Banach space
L]%’K (0, oo; R FmFmxd) into jtself:
© = Mx,+5(0).

In the following, we shall prove that this mapping is contractive when ¢ is small enough.

For any 0 = (z,y,2), 0 = (¢',y,2') € L%K (O,oo;R”*erde), let © = (X,Y,Z) = Mj,+5(0)
and ©' = (X" Y, Z") = Mj,+5(6'). By Lemma 3.6, there exists a constant C' > 0, independent of Ao

such that ) ) )
X = X' + 1Y =Yl +1Z - Z'|%

< O{ Hg(B (-,0,L£(0)) — B(-,0',L(6")) + kyp(z — I/)) H
) (3.52)
t6(o 0.0 o (020

+ Ha(F (0,L(8)) — F (-0, (') + re, (y — y')) Hj{ }

2

K

Combined the fact that
9132 9132 912
Wa (£ (@i, 20), £ (4,5, 20)) < E [loe =2t +E [l —wilP]" +E [lze 2P, (3.59)
and the Lipschitz continuity of functions B, F, o, we have
X = X 3| Y =¥ [Betl| 2 = 208 < O (o — o Bty — v/ B+l 2= 1) . (350

where C only depending on |G|, kz, Ky, L, Loy g, 12,7, B1 or B2 and independent of A, which shows we
can choose dy independent of \g such that C'6?> < 1 when § < &. Thus My, s is a contraction
mapping and the fixed point is the unique solution of infinite horizon McKean-Vlasov FBSDE (3.10)
parameterized by Ag + 6. O

Now, we shall establish the well-posedness for infinite horizon FBSDE (3.1) by applying Lemma
3.5 and Lemma 3.7.
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Proof of Theorem 3.3. When A = 0, Lemma 3.5 shows that FBSDE (3.10) is uniquely solvable in
LE™(0, 00y R m+mxd) for any (Z8,7F,17) € Ly™ (0, 00;R*T™+7%4) Based on this, Lemma 3.7
further implies that FBSDE (3.10) is uniquely solvable for any A € [0,1] and any (Z7,7%,1°) €
L]%’K (0, 00; R FmHnxd) - Egspecially, when A = 1 and (Z%,ZF,77) = 0, (3.10) coincides with the
original FBSDE (3.1). Consequently, the unique solvability of (3.1) is obtained.

The estimates (3.8) is followed from (3.13) in Lemma 3.6 by letting Ao = 1, (Z%,Z%,Z°) = 0 and
(Z8,77,17) = 0. o

Moreover, when (B, F,5) = 0, £ = 0, it is obvious (0,0,0) is a solution to the corresponding
FBSDE (3.1). Then we get the estimate (3.7) from (3.8). O

4 Infinite horizon mean field control problems

In this section, we investigate mean field control problems through the solvability results of infinite
horizon McKean-Vlasov FBSDEs obtained in previous section. First, in subsection 4.1, we derive the
corresponding infinite horizon FBSDE (4.5) by Pontryagin’s stochastic maximum principle and solve
the control problem given solutions to (4.5). Then in subsection 4.2, we provide sufficient conditions
for the existence of solutions to (4.5). Let A € R™ (m > 1) be a convex control space. Suppose b :
[0,00) xR x Pa(R?)x A — R™, 7 : [0,00) x R? x Pa(R")x A — R" < £ :[0,00) xR" xPy(R?)x A — R
are three measurable functions. We work under the following assumption.

Assumption 4.1. (i) b(t,z, p, @), o(t, z, u, @) are Lipschitz in (x, u, ) and f(t,z, u, ) is of at most

quadratic growth in (z, pu,a). There exist positive constants lyg, lou, low, loy, la such that for any t > 0,
a, o € A, x,2’ € R™, p,p’ € Pa(R™),

b(t, 2, p, ) = b(t, 2’ pf, )| < lpgle — 2| + Lo — &' | + LpuWa (1, 1)

4.1
lo(t, x, p, ) —o(t, 2, 1, a)| <lowlz — 2|+ la]a— & | + lpWa (1, 1) - (“.1)

(ii) There exists a constant K € R such that [ e***|f(t,0,60,,0)|dt < +oo and b(-,0,d,,0) €
L25(0, 00; R™).

(iii) There exists a constant Kk > K +
x, 2’ € R™, it holds that

W + ly, such that for anyt >0, a € A, p € P2(R"),

(z — 2/ b(t, 2, py ) — b (2 ) < —rk |z — 2

Define A := L]2F’K(O7 00; A) to be the space of all admissible controls. For any control a € A, it
follows from Lemma 2.3 that under Assumption 4.1, the following controlled McKean-Vlasov SDE
(4.3) admits a unique solution X; € L;’K(O, oo; R™).

We consider the following mean field control problem: Minimize

J(a) :=E UOOO ARUF (b, Xy, L(Xy) o) dit| (4.2)

over the set A of admissible control processes, which is finite under Assumption 4.1, subject to the
dynamic constraint

{dXt =b (t, Xt, ,C (Xt) 5 O[t) dt + 0'(157 Xt, ,C (Xt) 5 O[t)th, (4 3)

Xo = €.
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4.1 Pontryagin’s stochastic maximum principle

In this subsection, we aim to establish the Pontryagin’s stochastic maximum principle for the
infinite mean field control problem (4.2)-(4.3). When the volatility o of the state dynamics is a
constant, the corresponding maximum principle was obtained in [4]. Now we extend the maximum
principle to a more general state dynamics (4.3).

We define the Hamiltonian H by

H(taIaU7yaZao‘) = b(tv'rvluﬂo‘) Y + O'(t,I,,u,OZ) “Z A f(t,iE,,LL,OZ) + 2Kz - Y, (44)

for t € [0,00), a € A,y € R, z € R™*? [ € Py(R"), where the dot notation stands for the inner
product in Euclidean space. Moreover, the Hamiltonian #, which is assumed to be differentiable
in (z,a,p), is said to be convex in (x,u,a) if for any t € [0,00), y € R", z € R (z,a,u),
(@', a,u') € R™ x A x Po(R™), we have

H (tu xla Mlu 0/7 Y, Z) > H(t7 T, [, &Y, Z) + 6wH(t7 T, [, &Y, Z) : (xl - :E)
+ 8a7_[(ta z, um, 'y, Z) ' (O/ - a) + IE 8#H(ta z, um, Yy, Z)(X) ' (X/ - X):| )
where X', X are square integrable random variables defined on (Q, F,P) and have distributions 4/, u
respectively.

We assume the existence of a function (¢,x,y,z,4u) — &(t,z,y,2,u) € A, which is Lipschitz-
continuous with respect to (z,y, z, 1), uniformly in ¢ € [0, 00) such that:

alt,r,y,z,p1) = argﬂiinﬂ(t,:r,u,y,z,a), t€[0,00), z,y €R™, z € R™, 1€ Po(R").
ac

The existence of such function was proven in the next subsection 4.2 under specific assumptions
on the drift b and the running cost function f. Then, we introduce the following infinite horizon
McKean-Vlasov FBSDE:

dXt = b (t7 Xtu ﬁ(Xt)7 d(ta Xtu }/;57 Ztu ﬁ(Xt))) dt + U(t7 Xt7 E(Xt)7 d(tu Xt7 thu Ztu ﬁ(Xt)))dWh
dS/t = _awH (t7 Xtu E(Xt)u }/;7 Ztu d(tu Xt7 }/tu Zt7 E(Xt))) dt + thWt

- E |:8,LLH (tv Xt; L(Xt); Y/tv Ztv d(ta Xtv i/tv Zt; L(Xt))) (Xt):| dtv
Xo = 57

(4.5)

where (X,f/, Z) is an independent copy of (X,Y,Z) defined on the space (Q,]}, ]f”), which is an
independent copy of (2, F,P) and E denotes the expectation on (2, F,P).

Proposition 4.2. Let (b, f) be differentiable in (x,u,«), Assumption 4.1 holds and H be convex
in (z,p, ), &(-,0,0,0,00,) € L]%’K(O,OO;Rn) and &(t,z,y,z,p) is Lipschitz in (z,y,z,u). More-
over, suppose infinite horizon McKean-Viasov FBSDE (4.5) admits a unique solution (X,Y,Z) €
L;’K(O, ooy Rutn+nxd) - Then we have that J(&) = min, J (o).

Proof. Since we assume infinite horizon McKean-Vlasov FBSDE (4.5) admits a unique solution (X, Y, Z),

let us denote 0} := (X¢,Y;, Zy), o) = ~()~(t~,l~/t,2t), Op = (00, L(Xy),a(t,0),L(X,))) and ©) =
(0, L(X3), a(t, 07, L(X3))), where (X3, Yy, Z;) is an independent copy of (Xt, Yz, Z;). For an arbitrary
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admissible control o’ and its associated process X’, we have that
J(@)—J()=E U BV (H (4, X, L(Xy), 6, Ve, Zy) — H (8, X[, L(X]), 04, Ve, Z4)) dt}
0
-E U 2B (b (t, Xy, L(X1),0u) —b(t, X[, L(X]), ) - Ytdt}
0

-E UOOO e (o (t, X4, L (X)) — o (t, X[, L(X}), a})) - tht}

—2KE [/ X (X, — X)) - Yidt| .
0

It can be easily seen from Lemma 2.2, that there exists a sequence of T; — oo such that
E [e2X" (X1, — XT,) - Y1,] — 0.

Applying Itd’s formula to €25 (X, — X/) - Y; on time interval [0, T}], and letting T; — oo, we obtain
that -
E [ / K (X, - X)) - (0 (1,00) + B [9,H(6]) (X)) ) dt}
0

=E [/O@ M (2K (X — X)) + b (¢, Xe, £(Xy) ,éu) — b (8, X, L(X]), ) - Ytdt] (4.7)
0

+E U 2K (o (t, X4, L(Xy),G¢) — o (t, X[, L(X]),a})) - tht] :
0

According to the convexity of H and the fact that & = argmin, 4 H (¢, X, £(Xy), o, Y3, Zy), it holds

that
H (ta Xév‘c (Xé) aaévn; Zt) -H (tht; L (Xt) ) OA‘t; }/t; Zt)

> (X[ = X0) - 0,1 (1,00) + B |9, (1, 07) (%) - (X - %)

4.8
+ (CY; — dt) . aaH (t, 6;\) ( )
> (X] = X;) - 0.H (1,00 + E [aﬂ (t,00) (X,) - (X! — Xt)} .
Using Fubini’s theorem and the fact (:)tA is an independent copy of ©7, we have that
E[(X] - X)) B [0,00) (X0)|| =E[ E[9,7 (1,0 (%) - (X1 - %] ] - (4.9)

Combined with (4.6), (4.7), (4.8) and (4.9), we conclude that
J(OA[)—J(O/) :E / 62Kt (H (t,Xt,E(Xt),OA[t,}/t,Zt)—H(t,X{,ﬁ(Xg),Oé;,}/t,Zt))dt
0 J

) /000 2Kt (X, — X)) - (&CH (t,OM +E [aﬂ (éf) (Xt)]) dt}

:E/ AR (H (t, Xy, L(Xy), G, e, Ze) — H (8, X[, L(X]), ), Yz, Zp)) dt
LJ O i

~[ [T e (- XD 0. 00) + E[9,2(0.00) (%) (%: - X)) |

(4.10)
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4.2 Solvability of mean field control problems

In this subsection, we give sufficient conditions on the given data for the existence and uniqueness
of solutions to infinite horizon FBSDE (4.5). As it is most often the case in applications of the
maximum principle, we choose A = R™ and A := L]%’K(O7 00; R™) to be the space of all admissible
controls. We consider a linear model for the forward dynamics of the state.

Assumption 4.3. (i) The drift b and the volatility o are linear in p,x and «. They read

b(t,x, p, o) = bo(t) + b1 (t)x + ba(t)in + b3(t)c,
o(t,x, p, ) = oo(t) + o1(t)x + o2 () + o3(t)a,

for some bounded measurable deterministic functions by, by, bs, bg with values in R™ R"*™ R"*™ gnd
R™™ and og, 01,09, 03 with values in R4 ROx)xn Rxd)xn gpd RXDXm (the parentheses
around n x d indicating that o;(t)u; is seen as an element of R™*?% whenever u; € R™, with i = 1,2,
or u; € R™, with i = 3), bo(-) € L™ (0,00;R™), 09(-) € L2™(0,00; R"*%) and we use the notation
= [xdu(z) for the mean of a measure .

(ii) [ is differentiable with respect to (x,p,a) and |f(-,0,d0,,0)| € LIQF’K(O,OO;R). Moreover, the
derivatives satisfy that 9, f(-,0,8,,0),9uf(-,0,0,80,)(0) € La™(0,00;R™) and daf(-,0,d0,,0) €
L2 (0,00; R™) .

(111) There exists a positive constant L such that for all t >0, the functions 8y f,daf are L-Lipschitz
continuous with respect to (x,a, n). Moreover, there exists a version of 0, f(t,2', 1, a)(:) such that
Ouf(t, 2, p,a)(x) is L-Lipschitz in (2, u,a,x) 1, the Lipschitz property in the variable u being under-
stood in the sense of the 2- Wassertein distance.

(iv) The function f is convexr with respect to (x,u,a) for t > 0 in such a way that, for some X\ > 0,

f (taxlaﬂlva/) - f(t,,’E,/J,,CY) - 6(x,a)f(tuxuﬂaa) ' (:I;/ - .’II,CY/ - Oé)
_INE 8#f(t,x,u,o¢)()~()()~('—)~() Z)‘|O/_O[|27

whenever X, X' with distributions w and p', respectively.

Now, we introduce some notations about bounded measurable functions valued in R™*". It is
obvious that for any ¢ > 0, the matrix (by(¢)+b1(¢) ") is symmetrical. Let Apax(b1(t) +b1(¢) ") denote
the largest eigenvalue of (by(t) + b1(t)T). Due to the boundedness of b (t), it is clear that

% SUP  Amax(b1(t) +01(t) ) < +o0. (4.11)
t€[0,00)
Then, we have
(1(2)2,2) = 5 ((61(6) + 510 )2, 2) < S humanlb3(6) + b2 () Dl
4.12
< % SUpP  Amax(b1(t) +b1(t)T)|x|2, ( )

t€[0,00)

for any t > 0 and x € R™.
Then in this linear setting, to ensure the control problem well-defined, we can choose x in Assumption
4.1 (iii) as

1
K=—= sup Amax(bi(t) +b1(t)"), (4.13)
t€[0,00)

IFor the Lipschitz property of (¢, 2’ u, o, ) = Ouf (t, 7', pu, @) (x), [9, Lemma 5.41] provides a simple criterion.
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and the corresponding relationship of £ and K is reduced to

K< =3 5 Suaelba) + u(0)7) = In(o ~ U= Ol

Since the drift and the volatility are linear, the Hamiltonian defined as (4.4) takes the following
particular form:

H(t,z,p,y,z,a) =[bo(t) + b1(t)x + ba(t) i + b3(t)a] - y

+ [O'O(t) + O'l(t)fE + O'Q(t)ﬂ + Ug(t)a] cz 4+ f(t, z, 1, a) 12Kz -y, (415)

for t € [0,00), @« €R™, z,y € R", z € R™¥9 1 € Py(R™).
First, using similar argument in [9, Lemma 3.3, Lemma 6.18], we can easily obtain the following
result about the minimization of the Hamiltonian (4.15).

Lemma 4.4. Let Assumption 4.3 holds. Then for any (t,x, u,y, z, &) € [0,00) x R™ x Po(R™) x R™ x
R"¥4 x R™ there exists a unique minimizer &(t,x, u,y, z) of Hamiltonian H. Moreover, the function
[0,00) x R" x Py (R") x R x R™"*4 5 (t, 2, u,y, 2) = a(t, z, p,y, 2) € R™ is measurable, locally bounded
and Lipschitz continuous with respect to (x,u,y, z), uniformly in t € [0,00), the Lipschitz constant

depending only upon A, ||b3(*)|lco, [|03(-)|lcc and the Lipschitz constant L of O f in (x,u). In fact, an
explicit upper bound for & reads:

Y(t, , 1, y, 2) € [0,00) x R™ x Py(R™) x R™ x R™ 4,

- . (4.16)
&t @, p,y, 2)| < A (106 f (t 2, 1, B)] + [b3(D)]y] + |os(B)][2]) + (Bt

where By is any admissible control in A, and then &(-,0,4d0,,0,0) € L]%’K(O, oo; R™).

Then the infinite horizon McKean-Vlasov FBSDE corresponding to (4.5) reads

dX¢ = [bo(t) +b1(t) X¢ + ba(H)E [Xe] + bs ()& (¢, Xe, L(X4), Ve, Zy)] di
+ [Uo(t) + 01 (t)Xt + Uz(t)E [Xt] + Ug(f)d (f, Xt, ﬁ(Xt), Y;g, Zt)] th,
d}/t == [aﬂﬁf (ta Xta L(Xt)v 8} (ta Xtv ‘C(Xt)v }/t; Zt)) + bl (t)}/t + 2K}/t + o (t>Zt] dt + thWt (417)

- {E [a#f(t, X0 L(X0), a(t, Xy, £(X0), Vi, 24)) (Xt)} L ba(DE[Y:] + 02 (£)E [zt]} dt.

Next, based on Lemma 4.4, we can follow the arguments in the proof of [4, Lemma 3.2] to prove
that the following function is Lipschitz:

U(t,z,m) =& [@Lf(t,f(t, L(X0), alt, Xo, £(X0), Yo 24)) (Xt)]

(4.18)
- / Ouf (o e (b2 iy ) (@)dm (o, =)
Il,yl,zl

where m € Po(R"t"+7X4) and y is the first marginal of m. To avoid repetition, the detailed proof of
the following lemma is omitted.

Lemma 4.5. Under Assumption 4.3, for any t >0, z,Z € R",m,m € Py (R""F7%) it holds that

where Cy depending only upon the Lipschitz constant of & in (x, u,y, z), the Lipschitz constant L of
Ouf in (2, p, o, ).

23



Now we give the main result of this section. It is worth noting that the condition (4.20) for pa-
rameter K is exactly the requirement (4.14) to ensure the infinite horizon mean field control problems
well-defined.

Theorem 4.6. Suppose Assumption 4.3 holds. Let

K <=2 Auba() 5 b (0)7) = o) o — U o0

(4.20)
te[0,00) 2

Then infinite horizon FBSDE (4.17) admits a unique solution (X,Y,Z) € L;’K(O,OO;R”JF”*”Xd)
and &(t, Xy, L(Xt),Ys, Z), t € [0,00) is the optimal control of the infinite horizon mean field control
problem (4.2)-(4.3).

Proof. Under Assumption 4.3, by Lemma 4.4, &; is Lipschitz in (z, p,y,2) and &(-,0,0,0,dq,) €
L;*K(O, o0; R™). The linearity of (b, o) and the convexity of f in Assumption 4.3 imply that the Hamil-
tonian H is convex in (x, u,a). Indeed, for all (t,y,2) € [0,T] € R® x R™*4  (z,u,a), (o', 1, ') €
R™ x Py (R™) x R™, we have

H (o'l . 2) — H(tw,a, . 2) — (O H (20, 1, 2), (& — 2,0" — )
[a H(t,z,0,1,y, 2 )(X),X/—Xﬂ
bo(f' — i) -y + o2(f' — i) - 2+ f(t, 2’ 0/ p) — f(t, 2, 0, 1)
— B [{bay + 022 + 8 (8, 3,0, 0)(X), X' = X)]
= ('l ) = f(tw, ) = B (0,0 (t 7,00 0) (X), X' = X)

> Ao —af,

(4.21)

whenever X, X’ € L2 (Q,]}, P; R) with distributions p and g/ and we use the notation f, i’ for the

mean of a measure u, 4, respectively.

Then, from Proposition 4.2, it remains to prove the well-posedness of FBSDE (4.17) and we will
apply Theorem 3.3 to obtain the solvability results. By Assumption 4.3, Lemma 4.4 and Lemma 4.5,
it is easy to show Assumption (H1) holds. Now it remains to verify Assumption (H2) and condition
(3.6) to obtain the desired conclusion.

For simplicity of notation, we denote O := (X1,Y1,Z1), Og := (Xo,Ys, Zo) € L?(Q; R"n+7Xd) and

=alt, X, L(X:),Yi, Zi), a; = alt, X, L(X,), Y5, Zi), i=1,2. (4.22)

First, we show the monotonicity condition (3.2) holds. It is clear that the Hamiltonian system
(4.17) is a special case of FBSDE (3.1) with

B(t,0,L(0)) = bo(t) 4+ b1 (t)X + ba(t)E [X] + b3(t)ax (t, X, L(X),Y, Z)
o(t,0,L(0)) = oo(t) + o1 ()X + o2()E [X] + a3(t)é (t, X, L(X),Y, Z)
F(t,0,L(0)) = {a F(6X,L(X),6 (8 X, £(X),Y, Z)) + bi(D)Y + 2KY + 01() 7 (4.23)

B [0,f(t X, £(X),a(t, X, £(X), ¥, 2)) (X)] + ba(DE[Y] + 02(DE[Z] }.

Let x4, <y be determined later, K = %, G =T, and choose the measurable function ¢, appearing
in Assumption (H2) to be

¢2(t,01,02,L(01),L(02)) :=E {|0Aé(f,X17£(X1),Y1, Zy) — a(t, Xo, L(X2),Ya, Z2)|2} .

24



Denote

H(t,x, p,y, z,a) = [bo(t) + b1 (t)x + ba(t) i + b3(t)a] - y + [00(t) + o1(t)x + o2 ()t 4 03(t)] - 2

+ f(t,z, p, ).
(4.24)
It is obvious that H(t,z, i, y, z, &) = H(t,z, i, y, z,a) + 2Kz -y and it has the same convex property
as (4.21). From the definition of B and the linearity of H in (y, z), we can deduce that

E{<B (tv 917‘6(61)) - B (tv ®2a£(62))7§/1 - Yv2> + <0 (tvglu‘c(@l)) - 0(t7®27£(®2)) ) Z1 — Z2>
= E[E[ (f,Xl,al,ﬁ(Xl),Yl,Zl) — ﬁ(t,Xl,al,ﬁ(Xl),ng,Zg)]

~ B[ H (t, X2,02, £(X2). Y1, Z2) — H (t. X3, 00, £(X2), 2, Z2) |

(4.25)
Moreover, by the definition of F', we can obtain that
E[(F (t,01,L£(01)) — F (t,02,L£(02)), X1 — X5)]
= —E [(0,H (t,X1,a1,L(X1),Y1,Z1) , X1 — X2)]
— E[BI0. (1, X1, 01, £(X1), Y1, Z1) (K1), X1 - X))
(4.26)

+E[E(0,H (1, X, 02, £(X2), Y, Z2) (X2), X1 - Ko)]|
—2KE[(X; — X2,Y1 — Y2)],
where we have also applied Fubini’s theorem and the fact that £ (X;,Y;, Z;, i) = L(X3,Y;, Z;, &;) for
i = 1,2. Therefore, we can conclude that
E [<B (tv O1, ['(61)) - B (tv 02, 5(92)) Y1 — Y2>]
+ E [<O’ (t, O, E(@l)) —0 (t, 0o, L(@Q)) , 41 — Z2>]
+E[(F (t,01,L£(01)) — F (t,02,L(02)), X1 — X)]
+2KE[(X) — X2,Y1 — Y3)]

=E ,H(t,Xl,Oél,E(Xl),Yl,Zl) —H(t,XQ,OCQ,E(XQ),Yl,Zl)

— (0,H (t, X1, 01, L(X1),Y1, Z1) , X1 — X2)

_fE [<8ME[ (t,Xl,al,E(Xl),le,Zl) (Xl),Xl — X2>] ‘|

_ElH (t7X170417£(X1)7}/2722) - ,H(t,Xg,OéQ,E(XQ),YVQ,ZQ)
— (0,H (t, X2, az, L(X3),Y2, Z2) , X1 — X2)
~E |:<6M‘H(t7X27a27£(X2)7§/27 Zs) (X2), X1 — X2>} 1

< —2)\E [|a1 — 042|2}
< —2Xa(t, 01,02, L(01), L(2)),
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which corresponds to 82 > 0 in monotonicity condition (3.2). Then, we check the condition of case 1
in Assumption (H2)(ii).
For the coeflicient function o, for any €, > 0, we have

E [|O’ (t, @1, E(@l)) - O'(t, @2, L(@Q))F}
=E Dol (t) (X1 — X2) + 02(t) (E[X1] — E[X2]) + 03(t) (a1 — a2)‘2}
< ((lo1(O)lloe + lo2(Yloe)® + 20 ) BN X1 = Xaf?

+ <||03(~)|§o + oIl (1% + |Uz(~)||§o)) $2(t, 01,02, L£(01), L(O2)),

de,

— B = X+ (oa) e + 7 loa (I (or + 72)1) ) 2(t, 01,02, £(61),£(00),
(4.27)

where
2
lo = (lo1()llec + llo2()loc)™ + €0

As for coefficient function B, we have
E[(B(t,01,L£(01)) — B(t,02,L(03)), X1 — X5)]
=E[(by(t)(X1 — X2) + b2 (t)(E[X1] — E[X2]) + b3(t) (a1 — az), X1 — X3)]

< (1 sup  Amax(b1(t) +01(6) ") + [|b2(-) [l oo + 51) E[| X1 — X5/?]

2 1e[0,00) (4.28)

" M@(t, 01,02, L(01), L(O2))

481
163 ()l

< Bl X; - X+ 12,0, 0, 2001), 2062)

where the k. satisfying

1
Ko < =3 sap )/\max(bl(t) +01(0) ") = 1152l oo (4.29)
te[0,00

and the condition (4.29) ensures the existence of €; > 0 such that last inequality of (4.28) holds.
Moreover, by the Lipschitz property of 0, f and 0, f, for any €, > 0, we have

E[<F(t7617£(61)) - F(t7®2u£(®2))7y'1 - Yv2>]

=E

<8mf (t, Xo, L(X2),a2) = O f (£, X1, L(X1), 1) + b1 (8) (Yo — Y1) + b2 (1) (E [Yo] — E[Y3])
+2K(Y, = V1) + E[0,f(t, Xa, £(X2), d2) (X2) | — B[O, f(t, X1, L(X1), 1) (X7)]

+01(8)(Z1 — Z2) + 02(1)(E[Z1] - B[ Ze]), i - Ya )

1
> - (— sap )Amax(bl(t) +b1(6) ") + 1152 )l + 2K + 752) E[|Y1 - Y2|?]
te|0,00

. 02(")|lco 2 z 2 01" )|locc 02(")|lco 2 2
~UorOll +lo2Olee) $ gy g (U910l o) 17, 7
2 ((lorOlso + llo2()l1c)” +¢:)
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212
_— — — 2 [ —
e E[| X1 — Xa7] = $2(t,01,02, L(O1), L(O2))
L, vy 5L2
>~ (i + ) Bl - e - JE (121 - 2] - S Bl - o)
212
— 4—62¢2(t, 01,045, L(01), L(02)), (4.30)

where

(lo1 (s + lloa()lls0)”
lo1()lloe + oz (o) + Ez)

2
Lz = (lor(lloe + llo2()llee)” + €20 7 =
(
satisfying 0 < v < 1 and &, satisfying

1
hy > 5 s[up )Amax(bl(t) +01(6) ") + [|b2()]loo + 2K, (4.31)
te[0,00

and the condition (4.31) ensures the existence of €2 > 0 such that last inequality of (4.30) holds.
In fact, for any K satisfying condition (4.20), we can find 6 > 0 such that

K= S0 A (b1(0) + 61()T) = ooV = lor Ol + ool .

Let

1 1)
Ry = —5 Sup )‘maX(bl (t) + bl(t)T) - ||b2()||oo 5
2 te[0,00) 2

and

1 1)
Ky =7 SUD Amax(b1(t) +b1(6) ") + 1b2() ][0 + 2K + 5,
2 t€[0,00) 2

which satisfy (4.29) and (4.31), and we have

Ko et hy
2
and
Ko — Ky = — 5D Amax(01(t) + b1()T) = 2llb2()lloo — 2K — &
t€[0,00)
= — sup Amax(b1(t) +01(6) ") = 2[[b2() ]| —
t€[0,00)

_2<_1 sup Amax<b1<t>+b1<tm—||b2<->||oo—(””1(')”"”””2(')”“)2—6) (4‘32)

te[0,00) 2
= (lo1()lloo + lo2()lloc)? + 8
> ([lo1()lloo + lo2()lloe)? + do,

for any 0 < 69 < §. Therefore, letting e, = £, = dp in (4.27) and (4.30), we have shown that if the
condition (4.20) is satisfied, we can choose kg, K, satisfying (4.29) and (4.31) respectively, such that

Ky + Ky

2
The proof is finished. O

Ky — Ky > max{ly,l,} and K = (4.33)
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At the end of this section, let us recall the infinite horizon control problems studied in [4] and [25]
and provide some remarks to make a comparison.

Remark 4.7. Bayraktar and Zhang [/] considered an infinite horizon mean field control problem as
follows.
Minimize the problem
J(a) :=E U BV (t, Xy, £(Xy) , ap) dt| (4.34)
0

subject to

(4.35)

dXt =b (t, Xt,ﬁ (Xt) ,Oét) dt + O'th,
X, = ¢.

When solving the Hamiltonian system, they let b(t,z, p,a) = bo(t) + by(t)x + by(t)ii + ba2(t)a and
proposed the following condition

|b1(t)] <1 and —maxb(t) > 1 + K, (4.36)

which can be easily verified to correspond to our condition (4.20) on parameter K. Not only did they
need (4.36), they also needed to supplement another constraint for K to solve the mean field control
problem (4.34)-(4.35) (see [4, Theorem 3.1]). Thus, compared with [4], we weaken the conditions on
the values of parameter K and extend the results to a larger space.

Remark 4.8. Wei and Yu [25] studied an infinite horizon LQ optimal control problems as follows.

Minimaze:
J(@) = %E/OOO e [Q(s)z(s), z(s)) + 2(S(s)a(s), als)) + (R(s)a(s), a(s))]ds, (4.37)
subject to

{dw(s) = [A(s)z(s) + B(s)a(s)]ds + [C(s)x(s) + D(s)a(s)] dWs, s € [0,00), (4.38)

z(0) = .

They pointed out that if S(-) is a nonzero matriz, the values of parameter K will be adjusted accordingly.
It is obvious that the optimization problem (4.2) covers LQ problem (4.37)-(4.38). Thus it follows from
Theorem 4.6 that if there exists a constant A > 0 such that

Q() = S()TR()IS() = AL =0,

and

2
K < 1 SUP  Amax (A(t) + A(t) ") — m,
te[0,00) 2

the Hamiltonian system corresponding to the LQ problem (4.37)-(4.38) admits a unique solution
(X,Y,Z2) € LIQF’K(O,OO;R"JF"JF"XCI). Therefore, we can obtain the same solvability results for the LQ
problem (4.37)-(4.38) whether the cross term coefficient S(-) is equal to zero or not. The root causing
this different phenomenon is that the values of S(-) will directly affect the monotonicity condition
proposed in [25], but it will not affect our condition since it only appears in optimal control and we do
not need to consider its monotonicity under our condition.
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