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Abstract

The latency location routing problem integrates the facility location problem and the multi-depot cumulative ca-
pacitated vehicle routing problem. This problem involves making simultaneous decisions about depot locations and
vehicle routes to serve customers while aiming to minimize the sum of waiting (arriving) times for all customers. To
address this computationally challenging problem, we propose a reinforcement learning guided hybrid evolutionary
algorithm following the framework of the memetic algorithm. The proposed algorithm relies on a diversity-enhanced
multi-parent edge assembly crossover to build promising offspring and a reinforcement learning guided variable neigh-
borhood descent to determine the exploration order of multiple neighborhoods. Additionally, strategic oscillation is
used to achieve a balanced exploration of both feasible and infeasible solutions. The competitiveness of the algorithm
against state-of-the-art methods is demonstrated by experimental results on the three sets of 76 popular instances,
including 51 improved best solutions (new upper bounds) for the 59 instances with unknown optima and equal best
results for the remaining instances. We also conduct additional experiments to shed light on the key components of
the algorithm.

Keywords: Routing; Latency location routing; Cumulative capacitated vehicle routing; Heuristics; Learning-
driven optimization.

1. Introduction

The location routing problem (LRP) plays a critical role in logistics management. The problem can be viewed
as consisting of two sub-problems: the facility location problem FLP (i.e., selecting which depots to open) and the
multi-depot vehicle routing problem (i.e., minimizing travel distance or other distance-related costs). The complexity
of this problem arises from the need to consider both sub-problems simultaneously. The latency location routing
problem (LLRP) is a LRP variant where the objective function of the underlying routing problem is to minimize the
total waiting time of all customers. This customer-centric problem has many applications in different contexts related
to emergency logistics operations in post-disaster relief, last-mile delivery with shared intermediate facilities in urban
logistics, and delivery of perishable products [20, 21].

The LLRP can be thought of as a combination of the FLP and the multiple depot cumulative vehicle routing
problem (MDCCVRP). Given that both constituent problems are NP-hard, the LLRP is inherently a computationally
challenging problem [14]. The problem can be defined on a complete graph G = (V, E) with V = D ∪ C and
E = {(i, j) : i, j ∈ V}, where D is the set of homogeneous uncapacitated depots (|D| ≥ 1) and C = {C1,C2, ...Cm}

is the set of customers. Furthermore, E is associated with a symmetric non-negative matrix Y = (di j) for the edges
(i, j), where di j represents the travel time (or equivalently the distance) between two vertices, obeying the triangular
inequality. There is a fleet H of Nv homogeneous vehicles, each with a capacity P. Each customer i ∈ C has a demand
pi that is fulfilled when a vehicle visits the customer. A solution to the LLRP problem, after determining the opening
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of at most Nd depots, involves at most Nv disjoint Hamiltonian tours from these depots. Each tour starts and ends
at the same opened depot, ensuring that each customer is visited exactly once by a tour. In addition, the sum of the
demands of the customers in each tour must not exceed the capacity P of the vehicle of the tour. Given a feasible
solution, let tk

i be the arrival time of vehicle k at customer i (tk
i = 0 if i is not served by k). Then the LLRP is to find a

solution S that minimizes the sum of the waiting times of all customers.

Minimize f (S ) =
∑
k∈H

∑
i∈C

tk
i , S ∈ Ω (1)

where Ω is the search space of all feasible candidate solutions for a LLRP instance. A mathematical formulation
of the LLRP is provided in [14].

The LLRP was formally defined by Moshref-Javadi and Lee [14], where two algorithms were proposed to tackle it,
a memetic algorithm (MA) and a recursive granular algorithm (RGA). MA uses a solution representation consisting
of two parts: the first part represents the open depots, and the second part defines the vehicle assignment and the
sequence of the customers visited by each vehicle. Four different initialization methods are applied to diversify the
initial population. The Order Crossover (OX) is used to generate offspring solutions, and a local search based on
three move operators is applied to improve the generated offspring. In RGA, a granularity-based neighborhood search
method systematically modifies the current solution, followed by a local search procedure using three move operators
to further improve the solution. The authors tested the algorithm on three benchmark sets for the LRP variants,
specifying the number of open depots and assigned vehicles for each instance.

Nucamendi-Guillén et al. [21] proposed two novel mixed-integer formulations based on multi-level networks for
the LLRP. Additionally, they introduced a variant of the LLRP that considers the open cost of depots. To solve the
LLRP, they presented a GRASP-based iterated local search (GBILS), which includes a constructive procedure and an
improvement procedure. Within each iteration of the algorithm, a feasible solution is constructed by the constructive
procedure and subsequently improved by the improvement procedure. The constructive procedure randomly applies
different methods to determine the opened depots. Following this, customers are selected based on their distance to
the opened depots, and a given number of routes are constructed. The remaining customers are assigned to routes
based on both distance and remaining vehicle capacity. In the improvement procedure, three intra-route moves are
iteratively applied until the solution can no longer be improved. Then, two inter-route moves are applied to further
improve the solution. Experimental results showed that GBILS was able to find several new best-known solutions.

Osorio-Mora et al.[23] presented three algorithms that integrate simulated annealing (SA) and variable neighbor-
hood descent (VND) [12] to effectively solve the LLRP. SA serves as the method to escape local optima, and the VND
procedure is applied to improve the solution. Upon reaching a threshold indicating that the solution cannot be further
improved, the Lin-Kernighan-Helsgaun (LKH-3) heuristic [8] is used to improve each individual route, addressing
the corresponding CCVRP. The study introduced three types of VND methods exhibiting different behaviors. Exper-
imental results on various instances indicated that the proposed algorithm significantly outperformed the state-of-art
algorithms from previous studies in the domain.

Osorio-Mora et al. [22] introduced an iterated local search (M-ILS) to tackle three latency vehicle routing prob-
lems with multiple depots, including the MDCCVRP, the LLRP and the multi-depot k-traveling repairman problem.
Recognizing that the proper selection of depots is critical to the success of the algorithm, the authors introduced a
method that integrates LKH-3 and integer linear programming to simultaneously consider depot selection and vehicle
routing. Following this, an iterative process applies a perturbation procedure, a local search based on five moves, and
a SA-VND approach similar to [23] to continually improve the quality of the solution. Then, the LKH-3 algorithm
is used again to solve the CCVRP for each open depot. Experimental results showed that M-ILS stands out as the
most powerful algorithm for solving the LLRP, consistently producing the best-known solutions for most benchmark
instances.

These reviewed studies have continuously advanced the state of the art in solving the LLRP. However, compared
to other popular routing problems, research on the problem is still limited, and additional efforts are needed to de-
velop more powerful and robust methods capable of finding satisfactory solutions for the most challenging problem
instances.
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In this paper, we present a reinforcement learning guided hybrid evolutionary algorithm to address the LLRP,
which includes a multi-parent edge assembly crossover and a learning-driven local search. Inspired by the edge
assembly crossover for the traveling salesman problem [19], the proposed crossover builds offspring solutions by
inheriting subtours that contribute to high-quality solutions from the parents, preserving the desired solution diversity
with multiple parents, and considering edge orientation during the crossover process. The VND-based local search is
reinforced by two original techniques. It uses reinforcement learning to dynamically determine the exploration order
of the underlying neighborhoods. It additionally adopts strategic oscillation [3] to allow the VND procedure to achieve
a balanced exploration between both feasible and infeasible search spaces. In terms of methodological contributions,
the idea of the multi-parent edge assembly crossover can be conveniently applied to other routing problems, while the
dynamic exploration of multiple neighborhoods with reinforcement learning is valuable for local search algorithms
using multiple move operators.

In terms of computational contributions, we present experimental results on 76 popular benchmark instances to
evaluate the performance of the algorithm. The results show that the algorithm is highly competitive with state-of-the-
art algorithms, by finding 51 record-breaking results (new upper bounds) and matching all the remaining best-known
results. These updated results are useful for future studies of the problem. Moreover, these results are achieved with
shorter computation times than state-of-the-art methods, indicating its computational efficiency. We also perform
experiments to understand the behavior of the algorithm. Finally, the codes of the algorithm will be made publicly
available, which can be used by practitioners and researchers to solve related problems.

In the remainder of the paper, we present the proposed algorithm in Section 2, a comprehensive computational
comparison with leading algorithms in Section 3. Section 4 shows additional experiments to analyze the main algo-
rithmic components and provide insights into their roles. Section 5 offers conclusions and outlines future work.

2. Reinforcement learning guided hybrid evolutionary algorithm

The proposed reinforcement learning guided hybrid evolutionary algorithm (RLHEA) for the LLRP follows the
framework of the population-based memetic algorithms (MAs) [13], especially MAs in discrete optimization [4].
MAs benefit from the synergy of these two complementary search strategies and provide a powerful framework for
solving difficult problems. In particular, MAs have been very successful in solving several complex routing problems
[5, 6, 11, 16, 24]. RLHEA is an advanced MA characterized by its multi-parent edge assembly crossover (MPEAX)
and its reinforcement learning guided variable neighborhood descent with strategic oscillation (RL-SOVND). It also
includes a population initialization procedure, a mutation procedure, and a population management method.

2.1. Main scheme

The general RLHEA framework is outlined in Algorithm 1. The learning functions Q and R are initialized at
the beginning (line 2). The population Pop is generated by the initialization procedure (line 3). After recording the
best feasible solution S b found so far (line 4), the algorithm enters the ”while” loop to improve the population. In
each generation, three parents are randomly selected from the population (line 6). The multi-parent edge assembly
crossover is then employed to generate an offspring solution (line 7). If the offspring is infeasible (i.e., violating the
vehicle capacity or/and the number of opened depots), it is immediately repaired (line 9), followed by a mutation
procedure to diversify the solution (line 10). Then, RL-SOVND is activated to improve the quality of the offspring
(line 11). The search information is updated based on the local optimum obtained (lines 12-15), and the population
is updated accordingly (line 16). During the search process, if the best solution S b remains unchanged for a given
number of consecutive generations, half of the individuals in the population are regenerated to introduce diversity
(line 18). The algorithm terminates and returns the best feasible solution S b when reaching the predefined maximum
number of generations (line 19).

2.2. Population initialization

The population initialization is a two-step process: depot selection and route construction, and applies a random
initialization method and a greedy initialization method with an equal probability. The first step randomly selects a
predefined number of depots to open. For the route construction step, note that the objective value decreases as the
number of vehicles increases since the edge returning from the last customer to the depot doesn’t contribute to the

3



Algorithm 1: Pseudo-code of RLHEA
Input: Problem instance, population size τ, population replacement threshold Ir .
Output: The best solution S b found.

1 In ← 0 /* Counter of consecutive generations the best solution S b is not improved */
2 Q,R← Initialize the Q-learning functions Q and R ;
3 Pop = {S 1, S 2, ..., S τ} ← PopInitialize() /* Population initiation, section 2.2 */
4 S b ← arg min∀S i∈Pop f (S i) /* Record the best feasible solution found so far */
5 while stopping condition is not reached do
6 S A, S B, S C ←RandomParentSelection(P) ;
7 S ←MPEAX (S A, S B, S C) /* Crossover, section 2.3 */
8 if Is Infeasible(S ) then
9 S ← Repair(S ) /* Repairing infeasibility, section 2.4 */

10 S ←Mutation(S ) /* Mutation, section 2.5 */
11 S l,Q,R← RL-SOVND(S ,Q,R) /* Local improvement, section 2.6 */
12 if f (S l) < f (S b) then
13 S b ← S l, In ← 0 ;

14 else
15 In ← In + 1 ;

16 UpdatingPop(Pop, S l) /* Population management, section 2.7 */
17 if In > Ir then
18 ReplacingPop(Pop), In ← 0 /* Population replacement */

19 return S b /* Return the best feasible solution found during the search */

objective. Additionally, the weight of an edge within a route affects the waiting time of all customers following that
edge. Therefore, it is important that the edge at the beginning of each route is as short as possible, while utilizing
all available vehicles and maintaining a balanced distribution of customers across all routes. Building upon these
considerations, the second step assigns customers to different vehicles in a cyclic manner until all customers are
served. Both greedy and random methods are used to assign customers. The greedy method first selects the shortest
edge between the opened depots and the unselected customers to determine the depot and the first node until the
specified number of routes is initialized. Then, each route is constructed by choosing the shortest edges between the
last node of the route and the remaining unselected customers. The random method constructs the routes by selecting
random depots and random customers, without using any greedy selection criterion. After a solution is constructed,
it is improved using the RL-SOVND procedure, and then inserted into the population if no copy of the solution exists
in the population.

2.3. Offspring generation based on MPEAX
A meaningful crossover should be able to produce promising offspring by inheriting good features from the parents

[4]. Therefore, it is important to find good features that contribute to the high-quality of solutions and to pass them on
to the offspring. For the traveling salesman problem and routing problems, the common edges shared by the parents
are regarded as the key feature of high-quality solutions, and this feature has enabled the design of powerful crossover
operators such as the maximal preservative crossover [15], the partition crossover [25, 30] and the edge assembly
crossover (EAX) [16, 19]. Also, EAX-like operators also performed well on the capacitated vehicle routing [17] and
other well-known routing problems [5, 6, 18].

For the LLRP, we introduce the multi-parent edge assembly crossover (MPEAX) that relies on the idea of the
original EAX crossover for the TSP [16, 19]. MPEAX also generalizes the dEAX crossover of the two-individual
evolutionary algorithm (TIEA) for the MDCCVRP [32].

EAX for the TSP uses the joint graph (undirected graph) of the parent solutions to generate the so-called AB-
cycles, where an AB-cycle is a cycle consisting of edges taken alternately from the parents and constitutes one core
element of EAX. For the LLRP, recognizing that the direction of the route significantly impacts the objective function,
we account for the route direction and use a directed graph to represent a LLRP solution. In this graph, each customer
node is connected to one in-degree edge and one out-degree edge. Based on this graph representation of solutions,
the proposed MPEAX crossover generalizes the notion of AB-cycle to the case of directed edges with three parent
solutions. In addition, the presence of multiple depots in the LLRP may make it impossible to form an AB-cycle due
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to the absence of edges with the same degree related to some depots. To overcome this, we treat all depots as a single
node in our approach like in [32] for the MDCCVRP. This treatment may not result in a strict ’cycle’. So we adopt
the term AB-sequence to accommodate this modification.

Let S A, S B, and S C be three parent solutions randomly selected in the population. We define their directed graphs,
GA = {V, EA}, GB = {V, EB} and GC = {V, EC} where V = D ∪ C and EX (X = A, B,C) is the set of directed edges
traveled by parent solution S X . Suppose that S A, S B, and S C are recombined in this order. Then the MPEAX crossover
first recombines parents S A and S B to get an intermediate offspring solution, which is then recombined with parent
S C to get the final offspring. The specific steps of MPEAX are described as follows and an illustrative example is
provided in Fig. 1.

1. We create a joint graph GAB = {V, (EA ∪ EB) \ (EA ∩ EB)} from GA = {V, EA} and GB = {V, EB}.

2. The edges in GAB are grouped into AB-sequences. An AB-sequence begins with a randomly selected node that
has connected edges. Then, an adjacent edge is chosen randomly with respect to this node, and edges from
GA and GB with the same degree for their common node are chosen to be alternately linked. When an edge
connecting to the depot is selected, the next chosen edge can be any edge connected to any depot with the same
degree. Once an edge is chosen such that it has the same degree as the first selected edge at the first chosen
node, an AB-sequence is formed. This process is repeated until no edge exists in GAB.

3. The E-set is built by randomly selecting an AB-sequence, and then selecting the AB-sequences that share at
least one node with the chosen sequence to form the E-set. Then take parent S A as the base solution, remove
the edges from S A and add the edges from S B included in E-set. The step leads to an intermediate solution.

4. It is possible that the intermediate solution contains sub-tours (i.e., cycles consisting exclusively of customer
nodes). If this happens, they are eliminated by the 2-opt* operator by removing two arcs (one from the sub-tour,
one from the existing route) and connecting the sub-tour to the exiting route by adding two new arcs. It is also
possible that some routes start and end at different depots, making the route not a cycle. To address this issue,
we select the depot that is closer to the first node of the route as the depot for that route. Once this issue is
solved, we obtain an intermediate offspring solution from parents S A and S B, we use S O to denote this solution.

5. The last parent solution S C is then used to be recombined with the intermediate offspring solution S O, following
the same procedure used to crossover parents S A and S B. This leads to the final offspring solution.

In the example of Fig. 1, two out of the five depots (square points) are selected as the opened depots. MPEAX
generates four AB-sequences (step 2), and AB-sequence 4 is selected as the central AB-sequence, which shares com-
mon nodes with AB-sequences 1 and 2. Then the E-set consists of three AB-sequences (step 3). In the intermediate
solution, there is a sub-tour (the small tour), and a tour is not a cycle (involving two depots). After fixing these
problems in step 4, three new arcs are introduced, shown in green, leading to the final offspring.

2.4. Repair procedure

MPEAX can generate infeasible offspring with more open depots than allowed. In addition, since MPEAX does
not take vehicle capacity into account, the capacity constraint may be violated. To address these issues, we use a
two-step procedure to repair an infeasible offspring solution. The first step ensures that the number of open depots
doesn’t exceed the allowed limit, while the second step focuses on repairing capacity violations.

If the number of open depots exceeds the given limit Nd, we use two repair methods. The first method relies
on the frequency information of each depot being selected in the high-quality solutions returned by the local search
procedure (RL-SOVND). Among the open depots, the top Nd depots with the highest frequency in the offspring being
repaired are retained. The second method randomly selects Nd depots. Once the open depots are determined, the
routes involved in the discarded depots are reassigned using a greedy approach. Each such route is assigned to an
open depot such that it is the closest depot to the first node of that route.

To deal with capacity violations, we use the inter-neighborhood operator 2-opt* to reassign customer nodes. we
assess a solution using the modified objective function F of Section 2.6.3, with the penalty parameter β set sufficiently
large to strongly penalize capacity violations. The procedure terminates when a feasible solution is reached or when
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Figure 1: Illustration of the crossover procedure.

all neighborhood solutions induced by 2-opt* have been explored. Note that this repair procedure doesn’t guarantee
the feasibility of capacity. The purpose of the capacity repair is to bring the input solution as close to the feasible
space as possible. The RL-SOVND procedure that follows will take care of the infeasibility issue because it examines
both feasible and infeasible solutions.

2.5. Mutation

After the MPEAX procedure, which is designed to preserve shared edges of the parents that contribute to high
quality solutions, there may be a high degree of similarity between the offspring and the parents. To ensure a diversified
offspring solution, a mutation is applied, with a probability mp, to modify the offspring with two operators: the depot
swap for the depots and the ejection chain for the customers. The depot swap operator selects a depot randomly
from the set of unopened depots and uses it to replace a randomly selected open depot. The ejection chain operator
randomly selects three customer nodes from different routes and swaps their positions in a cyclic manner. This
mutation operation is performed ml times (ml is called the mutation length). After the mutation procedure, new edges
not present in the parent solutions are introduced, and different depot configurations are explored.

2.6. Reinforcement learning guided VND with strategic oscillation

Our local search method, which is another critical component in our MA algorithm, is a reinforcement learning
guided variable neighborhood descent with strategic oscillation (RL-SOVND). RL-SOVND is characterized by two
original features. It explores multiple neighborhoods according to a dynamic order determined by reinforcement
learning. To examine candidate solutions, it uses strategic oscillation to consider both feasible and infeasible solutions
in a carefully controlled manner.

2.6.1. Rationale and general RL-SOVND framework
RL-SOVND explores multiple neighborhoods sequentially with the VND framework [12], raising the important

question of how to determine the order of checking these neighborhoods. Two common strategies for determining this
order are the random strategy and the prefixed-order strategy. The random strategy inspects the given neighborhoods
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Algorithm 2: Pseudo-code of RL-SOVND
Input: I

1 nput solution S , set of neighborhoods, slide window length up, Q-table Q, reward matrix R Output: L
2 ocal optimum S l, updated Q-table Q, and reward matrix R
3 I f , Ii ← 0 /* Set counters on consecutive feasible and infeasible solutions */

4 Improve← true β← f (S )∑
i∈C

pi
/* Initialize the penalty parameter β */

5 S l ← S /* Record the local optimum solution */
6 while Improve do
7 Improve← false ne ← 0 /* Initialize the number of explored neighborhood structures */
8 S t.clear() /* Set the current state of explored neighborhoods */
9 while ne < |N | do

10 Nδ ← Q-learning(S t,Q,R)
11 S ′ ← S ⊕ Nδ /* Perform the first improvement with Nδ */
12 S t.append(Nδ) /* Update the state */
13 Update Q, R /* See Section 2.6.2 */
14 if F(S ′) < F(S ) then
15 S ← S ′ /* Accept a better solution under F, see Section 2.6.3 */
16 if Is feasible(S ′) and f (S ′) < f (S l) then
17 S l ← S ′ /* Update the local optimum solution */

18 Update Ii, I f
19 if Ii > up or I f > up then
20 Adjust the penalty parameter β /* See Section 2.6.3 */

21 Improve← true
22 break

23 else
24 ne ← ne + 1

25 return S l, Q, R /* Return S l, Q, and R */

in a random order. The prefixed-order approach examines the neighborhoods in a fixed sequence, typically determined
according to the computational complexity of the neighborhoods.

However, the random approach does not differentiate the neighborhood structures and ignores the intrinsic differ-
ences between the neighborhoods. On the other hand, when using the predefined approach, one faces the difficulty
of determining an appropriate order for neighborhood inspection. In addition, the best order may change during the
search process, making it impossible to find an all-time best order. An interesting alternative strategy for neighbor-
hood examination is to determine the order according to the specific problem instance to be solved and the search
context of the algorithm.

To do this, we consider the determination of the neighborhood exploration order as a sequential decision-making
problem and use reinforcement learning to dynamically make the best possible decision. In particular, RL-SOVND
uses the renowned reinforcement learning algorithm Q-learning [28].

On the other hand, it is known that visiting infeasible solutions during the search process can be beneficial, as
shown in studies on constrained problems [9, 29, 31]. This benefit arises from the increased freedom it provides
to visit infeasible solutions, allowing the algorithm to more effectively transition between different feasible search
regions via infeasible regions. In RL-SOVND, we use the general strategic oscillation method [3], which allows the
algorithm to search in both feasible and infeasible regions with a focus on feasible and infeasible boundaries. For this,
we devise a mechanism to prevent, based on a penalty parameter β and search information, the algorithm from getting
stuck in either feasible or infeasible space for too long.

Algorithm 2 shows the general RL-SOVND framework. Initially, the penalty parameter β ( Section 2.6.3) is set
based on the objective value of the input solution S and the total customer demand pi (line 3). The algorithm then
enters the main loop to improve the current solution. Within this loop, neighborhood structures are systematically
explored. The selection of the next neighborhood Nδ to be examined is determined using Q-learning (line 10, Section
2.6.2). This is done based on the current state S t (comprising the explored neighborhood structures) and the historical
search information contained in the Q-table Q and the reward matrix R. For the chosen neighborhood Nδ, the neigh-
borhood solutions are explored using the first improvement strategy (line 11). Subsequently, S t, Q and R are updated
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based on the outcome of the executed action (lines 12-13). If an improved solution S ′ is found in the neighborhood
Nδ under the extended objective function F (Section 2.6.3), the current solution S is updated (line 15). Moreover if
S ′ is feasible and is better than the recorded best feasible solution found during the current RL-SOVND run, S l is
also updated by S ′ (line 17). The counter for consecutive accepted feasible or infeasible solutions is also updated
(line 18), and the penalty parameter β is adjusted if the predefined condition is met (lines 19-20). Then, the algorithm
returns to the beginning of the main loop (line 22). If no improvement is achieved with the current neighborhood, the
next neighborhood structure is explored. The algorithm terminates after exploring all neighborhood structures without
improvement, and the best local optimum solution S l, the updated Q-table Q and reward matrix R are returned (line
25).

2.6.2. Q-learning for deciding the exploring order
Q-learning uses the so-called Q-value function to estimate the expected long-term cumulative reward associated

with performing a particular action within a given state. We use Q-learning to determine the most suitable neigh-
borhood to explore in order to improve the current solution, considering that some neighborhoods have already been
explored. We define the fundamental notations of Q-learning including states, actions, transition policy, and rewards
used in our algorithm as follows.

• States (S T ): The state set comprises the explored neighborhood structures.

• Actions (A): The set of available actions depends on the current state. In a given state st, there is a specific
action set denoted as A(st), consisting of the neighborhood structures that have not yet been examined.

• Rewards (R): An immediate reward r = R(st, a) is assigned when an action a ∈ A(st) is executed at the current
state st. The reward matrix R is updated after the selected neighborhood is examined. Further details about the
updating process can be found below.

• Transition policy: The algorithm employs an ε-greedy policy to govern state transitions between different states.
This policy selects with a probability of ε the action a∗ from the action set A(st) of current state st that maximizes
the Q-value, i.e., a∗ = arg max Q(st, a), where a ∈ A(st). Meanwhile, there is a probability of 1-ε to randomly
choose an action.

After the execution of the chosen action, the Q-table is updated according to Equation 2.

Q(st, a) = (1 − α)Q(st, a) + α[R(st, a) + γ max
a′∈A(st′)

(Q(st′, a′))] (2)

In this equation, st represents the current state, a corresponds to the current action, st′ denotes the next state
resulting from the current action a, and α and γ, both in the range of [0,1], are the learning rate and discount factor,
respectively. The values stored in R represent the reward values associated with specific actions in a given state. When
an action is executed, either an improved solution or a local optimal solution among all the neighbourhood solutions
is found, denoted as S r. We use the objective value f (S r) of S r to update the reward value associated with the state-
action pair. We define two terms: ∆r = f (S c)− f (S r), which can be either positive or negative, and ∆b = f (S b)− f (S r),
where S c represents the current solution before executing the selected neighborhood, and S b is the global best solution
found. The update mechanism for the reward values is described by Equation 3.

R(st, a) =

ξR(st, a) + ∆r + max(0,∆b)e|N |−|A(st)| if ∆r > 0
ξR(st, a) + ∆r if ∆r < 0

(3)

where ξ denotes the discount coefficient, set to 0.95. This coefficient is used to reduce the influence of historical
information and to give more weight to recent performance. In particular, an additional bonus reward is given when
a new best solution is found, and this reward increases with the number of neighborhoods explored. This is because
more reward should be given as high-quality neighborhood solutions become scarcer.
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2.6.3. Variable neighborhood descent with strategic oscillation
The VND procedure in our algorithm explores seven distinct neighborhood structures induced by the following

move operators.
N1 (Relocate). It relocates a customer node from its initial location to another position within the same or a

different route.
N2 (S wap). It is associated with both customer nodes and depot nodes. It involves swapping the positions of two

nodes, which can be from the same or different routes. The nodes to be swapped must be of the same type, i.e. a
customer node can only be swapped with another customer node, and similarly for depot nodes.

N3 (2-opt). It can be applied to the nodes within the same route (intra-route) or the nodes of different routes
(inter-route). The intra-route operator deletes two non-adjacent edges and adds two new edges. Meanwhile, the edges
between the deleted edges are reversed. The inter-route operator, also called 2-opt*, deletes two edges and adds two
new edges.

N4 (2-relocate). It relocates two consecutive customer nodes from their original positions to different locations
within the same or different routes.

N5 (Node-arc swap). It swaps the positions of a customer node and an arc (two consecutive customer nodes),
which can occur within the same route or between different routes.

N6 (Arc-arc swap). It swaps two consecutive customer nodes from either the same or different routes.
N7 (S wap∗). This is an inter-route operator that selects two customers from different routes, removes them from

their original positions, and inserts them into the best position within each other’s route. This move operator is only
executed when the routes of the selected customers overlap, following the approach in [27].

It’s worth noting that we limit the neighborhood of each customer to include only the δ-nearest vertices, where
δ < |V |. The reason for this is that solutions involving edges with long distances are less likely to be of high quality.
This method increases the computational efficiency by avoiding the examination of less promising solutions. Notably,
this approach has been shown to be effective in solving other routing problems [7, 26].

RL-SOVND uses the general strategic oscillation method [3] to explore both feasible and infeasible solutions
within these neighborhood structures. To evaluate an infeasible solution, we define an extended objective function F,
as shown in Equation 4, which is a combination of the objective function f and a penalty term to deal with constraint
violations. The penalty parameter β is used to balance the exploration of feasible and infeasible search spaces and
is dynamically adjusted using search information. This helps the algorithm not to get stuck in feasible or infeasible
space for too long.

F(x) = f (x) + β
Nk∑

k=1

max(0,
∑
i∈Hk

pi − P) (4)

Specifically, the VND procedure maintains a sliding window of length of up iterations to evaluate the feasibility
of the accepted solutions within the window. If all accepted solutions are feasible, we decrease the penalty parameter
to promote exploration of infeasible spaces. Conversely, if all solutions in the window are infeasible, we increase
the penalty parameter to encourage the algorithm to explore feasible spaces. If both feasible and infeasible solutions
are accepted within the window, we keep the penalty parameter unchanged. The specific method for adjusting this
parameter is shown in Equation 5 where Ii is the number of accepted infeasible solutions in the sliding window, I f is
the number of accepted feasible solutions, up is the predefined threshold for adjusting β, and rand(0, 1) is a random
number 0 or 1.

β =

β(1.5 + rand(0, 1)) if Ii = up
β

1.5+rand(0,1) if I f = up
(5)

2.7. Population updating
Population updating aims at maintaining an appropriate diversity among the solutions in the population. The

updating mechanism used takes into account both the quality of the solution and its contribution to the population
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diversity. The contribution to diversity is assessed by measuring the distance between the new solution and the
population.

Given two solutions, S a and S b, their distance is the number of non-common edges between the solutions, which is
determined by Equation 6, where E represents the edge set of a solution. Accordingly, the distance between a solution
and the population is defined as the minimum distance between this solution and any solution from the population
(excluding itself if it is also part of the population), as shown in Equation 7.

IDist(S a, S b) = |Ea| − |Ea ∩ Eb| (6)

PDist(S , Pop) = min{IDist(S , S i) : S i ∈ Pop \ S } (7)

We employ this method to determine whether a new solution from the local search procedure (RL-SOVND)
should be added to the population. We first check if there is a clone of the new solution in the population (i.e.,
PDist(S , Pop) = 0). If this is the case, we discard the new solution. Otherwise, we add the new solution into the
population, resulting in a modified population called Pop′. Next, we re-evaluate the fitness of all solutions in Pop′

using their quality and distance to this population by Equation 8, and the solution with the worst fitness value is
removed from the population. In this equation, a normalization is applied since the quality and distance values are not
of the same dimension. We define fmax = max{ f (S i) : S i ∈ Pop′} and fmin = min{ f (S i) : S i ∈ Pop′} as the maximum
and minimum objective values within the population Pop′. Additionally, PDmax = max{PDist(S i, Pop′) : S i ∈ Pop′}
and PDmin = min{PDist(S i, Pop′) : S i ∈ Pop′} represent the maximum and minimum distances between the solutions
and the population. The parameter ψ is empirically set to 0.55.

f it(S ) = ψ
fmax − f (S )
fmax − fmin

+ (1 − ψ)
PDist(S , P′) − PDmin

PDmax − PDmin
(8)

If the best solution found so far is not updated during Ir (set to 1000) consecutive generations, indicating a search
stagnation, we introduce diversity into the population to facilitate escape from deep local optima. First, we randomly
remove half of the solutions in the population, while keeping the best solution. Then, for the given population size,
new solutions are added either using the random initialization method (Section 2.2) or by randomly selecting solutions
from an adaptive memory M. The adaptive memory stores the most recent 3000 local optima found by the local
search procedure RL-SOVND. To introduce more diversity into the population, only solutions in the first half of M
are considered, corresponding to the solutions added to the memory earlier.

2.8. Discussions

Our RLHEA algorithms has a number of novelties compared to the existing methods.
The MPEAX crossover is derived from the dEAX crossover of the two-individual evolutionary algorithm (TIEA)

for the CCVRP and MDCCVRP [32], which can be regarded as special cases of the LLRP. MPEAX is divided into
two phases, each with two parent solutions. For each phase, MPEAX and dEAX share the same operations for the
first three steps, while the remaining two steps are different. In fact, since the number of open depots in the LLRP is
limited, the intermediate solution (step 4) may require solution repair by selecting the given number of open depots.

In addition, MPEAX extends the dEAX crossover by incorporating three parent solutions to mitigate the loss of
diversity resulting from considering the direction of edges during the crossover procedure. When using three parent
solutions, the crossover order of the three parents needs to be carefully considered. Indeed, compared to the first two
parents, the features of the last parent are only diluted once by crossover, increasing the opportunity of transmitting
its edges to the offspring solution. For MPEAX, based on this observation, we select the individual with the shortest
life in the population (inserted into the population last) as the third parent, which effectively enhances the diversity of
the population.
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Compared to the work [14], which uses a simple OX crossover applied to a giant tour, the MPEAX crossover
allows the offspring to naturally inherit the common edges from the parents. This is beneficial for creating more
promising offspring and thus increasing the search efficiency of the algorithm.

Finally, our local search procedure, RL-SOVND, follows the general VND framework, which relies on multiple
neighborhoods. This raises the critical issue of determining the best exploration order of the adopted neighborhoods.
Compared to other methods that also use VND to solve routing problems [24, 32], our RLHEA algorithm differs in
its approach to learning the best neighborhood exploration order from the search information. Indeed, most existing
methods explore their neighborhoods in a fixed or random order. In contrast, RLHEA uses Q-learning to dynamically
determine the best order for neighborhood exploration. This adaptive approach makes RLHEA more effective and en-
hances its performance, as demonstrated in Section 4.3. And it can be applied to any local search algorithm involving
a portfolio of neighborhoods or search operators.

3. Computational results

We now present an extensive computational evaluation of the RLHEA algorithm on the benchmark instances for
the LLRP and a comparison with the state-of-the-art algorithms.

3.1. Benchmark instances
We use three sets of 76 benchmark instances introduced by [14].
Set Tuzun-Burke: This dataset consists of 36 instances with 100 to 200 customers and 10 to 20 depots, and is

considered as the most challenging of the benchmark instances. No optimal solutions have been reported in this set.
Set Prodhon: This dataset contains 30 instances with 20 to 200 customers and 5 to 10 depots. 11 instances have

been solved optimally in the literature.
Set Barreto: This dataset consists of 10 instances with 21 to 134 customers and 5 to 14 depots. Six instances with

less than 50 customers have been solved optimally in the literature.

3.2. Experimental conditions and reference algorithms
The RLHEA algorithm has the following main parameters: mutation probability mp, mutation length ml, learning

rate α, discount factor γ, greedy probability ε, length of the sliding window up, and neighborhood reduction parameter
δ. To determine suitable values for these parameters, we employed the automatic parameter tuning package Irace
[10]. Through the tuning process, we obtained the configuration presented in Table 1. This configuration represents
the default parameter setting for our algorithm. Moreover, RLHEA uses a population of 20 individuals.

Table 1: Parameter tuning results

Parameter Related section Description Considered values Final values

mp 2.5 mutation probability {0,0.1,0.2,0.3} 0.1
ml 2.5 mutation length {1,2,3,4,5} 2
α 2.6.2 learning rate {0.1,0.2,0.3,0.4,0.5} 0.2
γ 2.6.2 discount factor {0.8,0.85,0.9,0.95} 0.85
ε 2.6.2 probability of ε-greedy {0.7,0.75,0.8,0.85,0.9,0.95} 0.7
up 2.6.3 length of the slide window {2,4,6,8,10} 4
δ 2.6.3 granularity threshold {10,15,20,25,30} 20

According to the literature review in Section 1, four studies have addressed the LLRP problem. The earliest
algorithm MA [14] retains only few best-known solutions. Consequently, we have excluded it from our comparative
study. The reference algorithms for comparison include GBILS proposed in [21], three algorithms (SA-VND0, SA-
VND1, SA-AND2) introduced in [23], and the M-ILS algorithm presented in [22]. The M-ILS algorithm has two
versions, one yielding superior results with 30 runs and another with 5 runs; in our study, we exclusively compared
with the former (with 30 runs). For the Set Tuzun-Burke, there is no result reported for the GBILS algorithm. Among
these algorithms, M-ILS stands out as the most powerful, retaining almost all of the current best-known solutions.

Our RLHEA algorithm was programmed in C++ and compiled using the g++ 10.2.1 compiler with the -O3
optimization option. The experiments were conducted on a Xeon E5-2670 processor operating at 2.5GHz with 2GB
RAM, running Linux with a single thread. Our algorithm was executed 30 times for each instance, following the
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approach employed by M-ILS. The stopping condition for our algorithm was set to 5000 generations (crossovers). For
the three algorithms SA-VND0, SA-VND1, SA-VND2, and the M-ILS algorithm, the authors generously provided the
C++ source codes that we ran on our computer, making it possible to perform a fair comparative study. The algorithm
parameters and stopping conditions are set to match the criteria outlined in the original paper. The tested instances
and the best solutions achieved by our algorithm are accessible online1, and the code of our RLHEA algorithm will
also be made publicly available.

3.3. Computational results and comparison
Table 2 provides a summary of the comparative results on the three datasets between our RLHEA algorithm and

the reference algorithms, while Tables A.6–A.8 of the Appendix show the detailed results, including the best and
average objective values as well as the average CPU running time. In Table 2, the first column represents the dataset.
Columns fbest and favg provide a summary in terms of the best and average objective values achieved among 30
independent runs. The column labeled ”#Wins” indicates the number of instances where RLHEA outperformed the
reference algorithm, ”#Ties” shows the number of instances with equal results, and ”#Losses” indicates the number of
instances where RLHEA performed worse than the reference algorithm. The p-values from the Wilcoxon signed-rank
test (with a significance level of 0.05) applied to the best and average values are also indicated, verifying the statistical
significance of the performance differences between RLHEA and each reference algorithm. ”BKS” represents the
best-known solutions ever reported so far in the literature.

The results in Table 2 show that our RLHEA algorithm is highly competitive compared to the reference algorithms
in the best and average objective values. Overall, RLHEA achieved new best-known solutions for 51 (out of 76)
instances and matched all best-known results for the remaining instances (with no worse results). Specifically, for the
most challenging set Tuzun-Burke, our algorithm discovered 31 new record-breaking solutions out of the 36 instances.
For the set Prodhon, RLHEA reported 18 new best results out of the 19 instances whose optimal solutions were
unknown, and for the set Barreto, it reached new best results for 2 out of the 4 instances with unknown optimal
solutions. Regarding the average objective value, RLHEA outperforms the reference algorithms in all instances in the
set Tuzun-Burke. For the set Prodhon and the set Barreto, RLHEA also reports many better average results with no
worse results. The p-values for fbest and favg, excluding the set Barreto due to the small sizes of the instances, are all
less than 0.05.

Table 2: Summarized comparison results of RLHEA against the reference algorithms in terms of the best and average objective values on the three
sets of 76 LLRP instances.

Instance Pair algorithms fbest favg

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

Tuzun-Burke

RLHEA vs. BKS 31 5 0 1.32e-5 - - - -
RLHEA vs. MILS 32 4 0 9.0e-6 36 0 0 2.84e-6
RLHEA vs. SA-VND0 36 0 0 2.84e-6 36 0 0 1.53e-6
RLHEA vs. SA-VND1 35 1 0 3.56e-6 36 0 0 1.41e-6
RLHEA vs. SA-VND2 35 1 0 3.86e-6 36 0 0 1.53e-6

Prodhon

RLHEA vs. BKS 18 12 0 1.96e-4 - - - -
RLHEA vs. MILS 19 11 0 1.32e-4 27 3 0 5.61e-6
RLHEA vs. SA-VND0 21 9 0 5.96e-5 26 4 0 8.29e-6
RLHEA vs. SA-VND1 21 9 0 5.96e-5 26 4 0 8.30e-6
RLHEA vs. SA-VND2 21 9 0 5.96e-5 26 4 0 8.30e-6
RLHEA vs. GBILS 26 4 0 8.30e-6 - - - -

Barreto

RLHEA vs. BKS 2 8 0 0.18 - - - -
RLHEA vs. MILS 3 7 0 0.11 8 2 0 0.01
RLHEA vs. SA-VND0 3 7 0 0.11 7 3 0 0.02
RLHEA vs. SA-VND1 4 6 0 0.07 7 3 0 0.02
RLHEA vs. SA-VND2 4 6 0 0.07 6 4 0 0.03
RLHEA vs. GBILS 3 5 0 0.11 - - - -

3.4. Assessment of computational efficiency
From the detailed results of Tables A.6–A.8, we observe that our algorithm exhibits significant competitiveness in

running time compared to the leading algorithms SA-VND0, SA-VND1, SA-VND2, and M-ILS. To further demon-
strate the effectiveness of our algorithm, we conducted a Time-to-Target analysis (TTT) [1]. This analysis measures

1https://github.com/YujiZou/LLRP

12



the time required for each algorithm to achieve a solution with an objective value at least as good as a predefined
target objective value. The TTT presents the empirical probability distributions within the given time to reach the tar-
get value. In our TTT analysis, we performed each algorithm (with the source code) 100 times on different instances,
recording the time taken to reach the target value. Subsequently, we sorted the times in ascending order and calculated
the probability ρi = (i − 0.5)/100 for each time Ti, where Ti represents the ith smallest time.

Fig. 2 illustrates the TTT plots for four large instances (122122, 123112, 123212, 200-10-1b) from the set Tuzun-
Burke and set Prodhon. The x-axis represents the time needed to reach the target value, while the y-axis represents the
cumulative probability ρi of reaching the given target value. The figures show that the TTT curves of our algorithm are
consistently above the curves of the reference algorithms, indicating that our algorithm always has a higher probability
of reaching the given target value within the same running time. This experiment shows the competitiveness of
RLHEA with state-of-the-art algorithms in terms of computational and search efficiency.
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Figure 2: Cumulative probability distribution for the time to reach a target value.
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4. Analysis

In this section, we conduct additional experiments to gain deeper insights into the individual influences of the main
components of the RLHEA algorithm. We focus on the critical components: the MPEAX crossover, the Q-learning
method and the strategic oscillation method.

4.1. Rationale behind the MPEAX crossover

Previous studies on the TSP [19], the VRP [2], and their variants [5] have revealed that high-quality solutions
in these problems often share many common edges, which are likely to be part of the optimal solution. We show
experimentally that this is also true for the LLRP, which provides a basis for the MPEAX crossover. Indeed, like the
EAX crossover for the TSP, the MPEAX crossover takes advantage of this property by transferring common edges
from parent solutions to the offspring, while introducing new edges to increase the diversity of the offspring.

For this study, we focus on two representative instances 121222 and 200-3-1. We ran RLHEA to solve each
instance 50 times and collected 15 distinct high-quality local optimal solutions in each run, resulting in a total of
750 unique local optimal solutions per instance. We sorted these 750 solutions in increasing order of their objective
values and selected the top 250 (best) solutions and the 250 worst solutions to form the final set of 500 solutions. We
then calculated the number of common edges for each pair of solutions and presented the results as a heat map, as
shown in Fig. 3(a) and Fig. 4(a). The x-axis and y-axis represent the rank of the solutions in the solution set, and
the color represents the number of common edges. A color closer to red indicates more common edges, while a color
closer to blue indicates fewer common edges. To further illustrate this property, in Fig. 3(b) and Fig. 4(b) we show
the percentage of edges that a solution S shares with the best solution, where the percentage is calculated by |Eb∩Es |

|Es |
,

where Eb is the edge set of the best solution and Es is the edge set of the solution S .
The heatmaps of the two studied instances exhibit the same trend, we can clearly see that the lower-left corner,

where the shared edges between high-quality solution pairs are shown, is colored with deep red. The top-right is
colored with blue, indicating that solution pairs with poor objective values share fewer edges. Additionally, in the
figure showing the relationship between the objective value and the number of shared edges with the best solution, we
observe the trend that solutions with higher objective values share more edges with the best solution.

We can conclude that in the LLRP, high-quality solutions also share a high number of common edges, which
provides a foundation for the MPEAX crossover to inherit common edges from the parents during the crossover
process.

4.2. Benefits of the MPEAX crossover

As presented in Section 2.3, RLHEA’s MPEAX crossover uses three parent solutions to address the problem
of diversity degradation due to edge orientation considerations in the crossover process. To study the benefits of
this method, we created two algorithm variants, RLHEA1 and RLHEA2. In RLHEA1, we replaced MPEAX with
the order crossover used in [14] for the LLRP. In RLHEA2, we applied the MPEAX crossover to only two parent
solutions. The remaining components for the two algorithm variants are identical to RLHEA, including the stopping
condition set to 5000 generations. We ran the algorithm variants on the large instances with at least 100 customers
from the sets Tuzun-Burke (36 instances) and Prodhon (18 instances).

Table 3 shows the comparative results of RLHEA with the two variants in terms of the best and average objective
values over 30 independent runs, along with the p-values from the Wilcoxon signed-rank test. Fig. 5 shows the
deviation of the two variants from the reference values given by RLHEA. In Fig. 6, we present violin plots of the
three algorithms on four large instances (121122, 121212, 123122, and 200-10-2), illustrating the distribution of
objective values for the solutions obtained over the 30 independent runs. Looking at the results, it is evident that the
RLHEA algorithm with the three-parent MPEAX crossover significantly outperforms the two variants, especially in
terms of the average values, confirmed by the small p-values. The violin plots clearly show that the solutions found by
our RLHEA are more stable, demonstrating its robustness compared to the two variants. We conclude that RLHEA
benefits from the edge assembly crossover method and the use of multiple parents in the crossover procedure.
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Figure 3: The heatmap for the number of shared edges of solution pairs and the scatter plot for edge sharing ratio between solutions and the
best-known solution on instance 121222.
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Figure 4: The heatmap for the number of shared edges of solution pairs and the scatter plot for edge sharing ratio between solutions and the
best-known solution on instance 200-3-1.

Table 3: Summarized comparison results of RLHEA against the RLHEA1 and RLHEA2 variants in terms of the best and average objective values
on the 54 large instances.

Instance Pair algorithms fbest favg

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

Tuzun-Burke (36) RLHEA vs. RLHEA1 12 24 0 2.22e-3 33 1 2 2.77e-2
RLHEA vs. RLHEA2 6 30 0 4.95e-6 27 6 3 7.68e-6

Prodhon (18) RLHEA vs. RLHEA1 7 11 0 1.80e-2 16 1 1 6.00e-4
RLHEA vs. RLHEA2 2 16 0 0.18 15 2 1 9.35e-4
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Figure 5: Comparative results of RLHEA with its two variants RLHEA1 and RLHEA2 on the 54 large instances.

4.3. Benefits of Q-learning

As shown in Section 2.6.3, the local search procedure uses Q-learning to determine the order in which the seven
neighborhoods are explored. To evaluate the usefulness of this method, we created two algorithm variants, RLHEA3
and RLHEA4. The only difference between the two variants is the order of neighborhood exploration during local
search, while the rest of the procedures remains the same. RLHEA3 uses a random order for neighborhood ex-
ploration, while RLHEA4 explores the neighborhoods in the fixed order N1-N2-N3-N4-N5-N6-N7, which reflects the
increasing complexity of these neighborhoods. We ran both algorithms on the 54 large instances as in Section 4.2.

Table 4 summarizes the comparison of the results of RLHEA, RLHEA3 and RLHEA4 in terms of the best and
the average objective values. Additionally, Fig. 8 shows violin plots for the three algorithms on four instances
(131122, 133122, 123122, and 200-10-1b), indicating the deviation of the two variants from the reference values of
RLHEA. The results show that RLHEA outperforms RLHEA3 and RLHEA4 in terms of the best objective values
and especially in terms of the average objective values. The violin plots further show that the solution distribution
obtained by RLHEA is more stable. In conclusion, the RLHEA algorithm performs better than the variants, benefiting
from the Q-learning method to determine the exploration order of neighborhoods.

Table 4: Summarized comparison results of RLHEA against the RLHEA3 and RLHEA4 variants in terms of the best and average objective values
on the 54 large instances.

Instance Pair algorithms fbest favg

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

Tuzun-Burke(36) RLHEA vs. RLHEA3 3 33 0 0.11 28 4 4 1.63e-5
RLHEA vs. RLHEA4 5 31 0 0.04 36 0 0 2.56e-6

Prodhon(18) RLHEA vs. RLHEA3 3 15 0 0.11 12 3 3 7.55e-3
RLHEA vs. RLHEA4 3 15 0 0.11 13 3 2 1.33e-3

4.4. Benefits of strategic oscillation

As shown in Section 2.6, RLHEA uses strategic oscillation to examine both feasible and infeasible solutions
by adaptively adjusting the penalty parameter β. To evaluate the benefit of this method, we created two variants,
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Figure 6: Violin plots for four instances of RLHEA, RLHEA1 and RLHEA2.
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Figure 7: Comparative results of RLHEA with its two variants RLHEA3 and RLHEA4 on the 54 large instances.

RLHEA5 and RLHEA6. RLHEA5 visits only feasible solutions, while RLHEA6 uses a fixed penalty parameter,
which is set to the average cost per demand unit for each route of the VND input solution after the repair procedure.
The summarized results of RLHEA, RLHEA5 and RLHEA6 are shown in Table 5. From the results, we can see that
compared to the two variants, RLHEA, which uses strategic oscillation to balance the visit of feasible and infeasible
solutions, achieves better results in terms of the best and average objective values, showing the usefulness of the
strategic oscillation method.

Table 5: Summarized comparison results of RLHEA against the RLHEA5 and RLHEA6 variants in terms of the best and average objective values
on the 54 selected instances.

Instance Pair algorithms fbest favg

#Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

Tuzun-Burke(36) RLHEA vs. RLHEA5 6 30 0 0.03 30 3 3 5.91e-6
RLHEA vs. RLHEA6 3 33 0 0.11 26 6 4 1.24e-5

Prodhon(18) RLHEA vs. RLHEA5 3 15 0 0.11 18 0 0 7.63e-6
RLHEA vs. RLHEA6 2 16 0 0.18 14 2 2 1.12e-3

5. Conclusion

The latency location routing problem is a relevant model for various real-world problems, and a number of studies
have proposed methods to solve this NP-hard problem. In this study, we introduced a reinforcement learning guided
hybrid evolutionary algorithm to tackle this challenging problem. The algorithm consists of three key features. Its
multi-parent edge assembly crossover with three parent solutions is capable of generating promising offspring so-
lutions while enhancing solution diversity to mitigate diversity degradation by taking route orientation into account
during the crossover procedure. Its Q-learning driven variable neighborhood descent dynamically determines the ex-
ploration order of multiple neighborhoods based on knowledge learned from the search history. The use of strategic
oscillation during local optimization helps to dynamically visit different feasible search spaces by traversing infeasible
search spaces.
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Figure 8: Violin plots for four instances of RLHEA, RLHEA3 and RLHEA4.
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We evaluated the proposed algorithm on the 76 benchmark instances commonly used in the literature and com-
pared it with leading algorithms. Our approach achieved 51 new best solutions while matching the best known results
for the remaining instances. In addition, we performed experiments to shed light on the key components of our
algorithm and reveal the rationale behind these components.

The design principles behind the proposed algorithm are general and can be used to design effective algorithms for
other problems. In particular, the idea of multi-parent edge assembly crossover is of interest for multi-route problems.
The Q-learning technique used to determine the order of neighborhood exploration can contribute to the performance
of local search methods that involve a portfolio of neighborhoods or search operators. Finally, the algorithm and its
codes, which we will make publicly available, can be applied to practical applications related to the latency location
routing problem.
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Appendix A. Detailed comparison results

This section shows the detailed comparison results by the RLHEA algorithm and the reference algorithms, includ-
ing GBILS [21], SA-VND0, SA-VND1, SA-VND2 [23] and M-ILS [22]. Tables A.6 to A.8 show the comprehensive
results on the three datasets, Tuzun-Burke, Prodhon, and Barreto, respectively. The ”Instances” column presents in-
formation about each instance, including the name, number of customers Nc, number of depots Nd and the fleet size
Nv. It is worth noting that in the Prodhon and Barreto sets, the size information, such as the number of customers
and depots, can be inferred from their names, so this information is not separately listed. The ”BKS” column shows
the current best-known objective value for each instance reported in the literature, where underlined values are proven
optimal values. The columns fbest and favg indicate the best objective value and average value over all independent
runs. Tavg shows the average running time in seconds. It is worth noting that the presented running time for the
algorithms SA-VND0, SA-VND1, SA-VND2, and M-ILS corresponds to the time on the same computer used for our
RLHEA algorithm. To ensure a fair comparison, a scaling factor of 1.02 was applied to the running time of GBILS,
based on their single-thread performance, as indicated by their machine information2. The best solutions among the
compared results are highlighted in bold in the tables. The improved best solutions (new upper bounds) are marked
with an asterisk *.

2https://www.cpubenchmark.net/
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Table A.6: Comparative results of the RLHEA algorithm with the reference algorithms on the set Tuzun-Burke.

Instances SA-VND0 SA-VND1 SA-VND2 M-ILS RLHEA

Name Nc Nd Nv BKS fbest favg Tavg fbest favg Tavg fbest favg Tavg fbst favg Tavg fbest favg Tavg

111112 100 10 11 3834.91 3862.86 3971.50 164.54 3892.97 3972.93 213.53 3887.86 3970.09 234.55 3834.91 3884.56 172.92 3826.78* 3827.15 81.67
111122 100 20 11 3602.70 3612.36 3694.70 168.76 3633.60 3712.64 218.58 3602.70 3693.00 252.69 3659.46 3698.24 182.33 3597.64* 3604.37 78.18
111212 100 10 10 3919.74 3960.24 4038.24 154.78 3988.11 4067.91 208.51 3963.34 4054.02 222.67 3919.74 3998.66 203.02 3901.18* 3902.75 101.06
111222 100 20 11 4065.04 4086.74 4140.33 170.05 4077.87 4147.90 211.86 4065.70 4135.25 249.10 4065.04 4134.88 182.71 4058.09* 4062.18 86.99
112112 100 10 11 2726.41 2739.16 2755.53 206.47 2740.21 2759.43 263.28 2749.48 2757.67 286.65 2726.41 2749.93 143.99 2726.41 2726.41 85.78
112122 100 20 11 2057.30 2060.29 2072.57 198.98 2057.45 2078.03 243.93 2060.29 2074.93 273.22 2057.30 2061.79 96.96 2056.84* 2056.84 60.14
112212 100 10 12 1394.65 1402.97 1416.20 208.88 1403.57 1416.72 280.59 1404.58 1415.56 300.11 1394.65 1409.73 136.47 1394.65 1394.65 56.27
112222 100 20 11 1618.93 1623.69 1633.00 219.86 1621.40 1633.94 276.28 1625.44 1634.90 293.26 1618.93 1631.37 139.87 1614.83* 1614.83 78.51
113112 100 10 11 2826.52 2837.51 2852.63 182.80 2835.76 2853.57 241.31 2833.66 2853.50 268.61 2826.52 2841.15 158.13 2826.52 2826.52 104.47
113122 100 20 11 2772.98 2776.39 2782.53 175.52 2774.36 2784.42 246.00 2776.39 2781.45 251.11 2772.98 2798.60 214.48 2772.98 2772.98 65.16
113212 100 10 12 1815.62 1817.00 1823.15 189.94 1815.62 1822.81 256.71 1815.62 1823.88 277.66 1817.00 1835.52 181.58 1815.62 1815.62 47.89
113222 100 20 11 1876.14 1876.14 1888.46 170.52 1879.63 1890.96 217.34 1878.17 1891.00 233.39 1876.58 1885.67 146.63 1874.42* 1874.45 68.21
131112 150 10 16 5411.43 5473.18 5582.94 320.34 5464.21 5570.12 507.95 5466.75 5589.24 545.67 5411.43 5478.14 319.87 5405.04* 5406.30 174.53
131122 150 20 16 4926.87 4993.36 5142.06 364.16 5009.26 5143.19 541.17 4967.39 5154.30 547.68 4926.87 5051.01 314.02 4870.82* 4884.55 182.04
131212 150 10 17 5558.83 5679.70 5787.34 371.24 5606.31 5785.18 603.00 5658.71 5776.08 564.77 5558.83 5637.11 341.80 5525.91* 5550.53 156.06
131222 150 20 17 5060.71 5141.89 5284.44 366.60 5126.95 5277.65 580.13 5166.72 5279.36 529.19 5060.71 5106.51 350.46 5039.22* 5068.44 180.93
132112 150 10 16 3850.90 3868.88 3895.91 491.93 3883.40 3899.41 757.98 3879.81 3901.40 728.69 3850.90 3881.92 305.86 3831.89* 3832.05 218.87
132122 150 20 16 3738.61 3740.10 3795.93 431.31 3752.76 3787.72 654.21 3768.60 3796.56 667.73 3738.61 3785.14 304.60 3721.93* 3722.67 176.88
132212 150 10 17 2835.66 2842.10 2857.29 519.25 2837.84 2860.70 741.29 2840.11 2855.58 761.57 2835.66 2848.89 275.57 2835.25* 2835.34 139.13
132222 150 20 17 1655.39 1660.89 1691.97 561.19 1672.86 1697.45 761.57 1669.51 1691.96 778.57 1655.39 1676.46 215.95 1646.45* 1646.56 178.13
133112 150 10 16 4581.60 4588.38 4619.91 399.98 4598.23 4630.69 572.31 4587.35 4633.07 596.78 4581.60 4615.95 235.00 4556.33* 4556.33 149.38
133122 150 20 16 3211.98 3223.44 3259.45 438.16 3225.56 3271.04 677.99 3227.27 3255.20 630.51 3211.98 3237.28 310.77 3208.21* 3208.60 178.17
133212 150 10 17 2903.36 2911.58 2938.05 531.82 2911.35 2938.01 761.78 2905.45 2938.41 769.77 2903.36 2919.40 246.40 2896.63* 2897.15 151.80
133222 150 20 17 2485.07 2502.97 2551.31 501.77 2502.68 2558.34 728.81 2507.87 2534.09 724.39 2485.07 2492.94 231.98 2484.68* 2484.68 182.02
121112 200 10 21 6573.72 6608.45 6821.20 762.24 6621.55 6881.38 1196.02 6721.82 6894.98 1180.02 6573.72 6628.07 502.90 6499.53* 6506.93 316.29
121122 200 20 22 5612.82 5730.53 5954.23 892.22 5788.72 5966.38 1392.03 5762.73 5935.57 1479.41 5612.82 5679.77 487.83 5571.24* 5592.63 320.55
121212 200 10 21 6394.33 6503.36 6613.84 791.44 6429.62 6608.92 1258.20 6512.62 6643.75 1237.28 6394.33 6450.87 505.81 6337.03* 6350.82 312.35
121222 200 20 21 6428.31 6551.73 6759.22 789.09 6562.11 6796.71 1324.77 6544.89 6769.32 1242.46 6428.31 6522.74 573.24 6349.27* 6382.93 320.36
122112 200 10 21 6111.52 6154.64 6255.10 883.92 6184.70 6280.31 1705.19 6192.70 6274.04 1153.85 6111.52 6203.24 833.95 6018.59* 6043.38 486.10
122122 200 20 21 3726.80 3757.37 3782.47 995.03 3757.27 3792.67 1547.20 3751.31 3786.07 1459.85 3726.80 3754.67 437.73 3705.59* 3709.02 264.10
122212 200 10 21 4018.86 4046.81 4075.78 922.81 4046.42 4078.60 1520.92 4048.88 4082.98 1352.78 4018.86 4036.49 380.40 4013.55* 4014.10 265.99
122222 200 20 22 2047.95 2054.32 2083.56 996.79 2052.22 2084.10 1530.59 2061.32 2081.97 1490.62 2047.95 2057.11 358.11 2033.34* 2033.52 316.88
123112 200 10 22 4868.90 4916.97 5024.07 908.81 4967.11 5047.87 1407.80 4931.24 5019.94 1489.04 4868.90 4916.56 520.88 4842.05* 4842.08 313.68
123122 200 20 22 4675.34 4725.91 4771.90 898.15 4707.60 4785.89 1350.76 4719.04 4761.84 1278.30 4675.34 4705.53 545.92 4647.68* 4654.10 320.55
123212 200 10 22 5135.21 5170.77 5218.43 868.24 5178.02 5225.04 1351.98 5183.34 5259.76 1172.57 5135.21 5174.88 332.78 5123.41* 5124.13 262.12
123222 200 20 22 2528.74 2567.20 2629.66 876.49 2555.18 2633.86 1363.16 2562.46 2602.87 1353.88 2528.74 2557.17 344.07 2494.58* 2494.58 263.87
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Table A.7: Comparative results of proposed RLHEA with the reference algorithms on the set Prodhon.

Instances GBILS SA-VND0 SA-VND1 SA-VND2 M-ILS RLHEA

Name Nv BKS fbest Tavg fbest favg Tavg fbest favg Tavg fbest favg Tavg fbst favg Tavg fbest favg Tavg

20-5-1 5 330.00 330.00 0.34 330.00 330.00 9.85 330.00 330.00 8.59 330.00 330.00 13.11 330.00 330.00 13.92 330.00 330.00 3.23
20-5-1b 3 608.05 608.06 0.15 608.05 608.06 11.56 608.05 608.06 8.80 608.05 608.06 19.98 615.66 615.66 10.10 608.05 608.06 3.57
20-5-2 5 301.97 301.97 0.24 301.97 301.97 8.31 301.97 301.97 7.28 301.97 301.97 12.27 301.97 301.97 13.64 301.97 301.97 3.76
20-5-2b 3 486.55 486.55 0.25 486.55 486.55 12.31 486.55 486.55 10.23 486.55 486.55 20.68 486.55 486.55 10.10 486.55 486.54 3.69
50-5-1 12 843.93 846.88 50.32 846.17 849.77 59.10 846.51 850.10 58.17 844.63 849.66 69.99 843.93 845.75 48.57 843.93 843.93 15.71
50-5-1b 6 1293.46 1293.93 21.46 1293.46 1293.71 46.72 1293.46 1293.54 44.53 1293.46 1293.48 73.74 1293.46 1293.95 58.81 1293.46 1293.46 20.90
50-5-2 12 684.13 691.67 38.49 684.13 693.78 48.30 684.13 692.43 60.38 684.13 697.61 59.33 684.13 690.69 73.43 684.13 684.13 15.72
50-5-2b 6 953.25 954.88 22.44 953.25 953.50 39.05 953.25 953.35 39.71 953.25 953.40 63.61 953.25 953.68 48.90 953.25 953.25 16.73
50-5-2BIS 12 945.45 952.55 39.56 949.13 950.80 65.24 949.57 951.13 83.25 949.56 951.46 73.98 945.45 945.65 121.85 945.45 945.45 12.14
50-5-2bBIS 6 803.90 803.90 31.67 803.90 803.90 49.70 803.90 803.90 48.13 803.90 803.90 68.76 803.90 803.90 54.99 803.90 803.90 13.73
50-5-3 12 831.57 832.15 39.09 831.97 835.10 53.74 833.01 834.91 62.43 833.01 836.25 69.43 831.57 834.30 81.44 831.57 831.57 18.37
50-5-3b 6 1101.57 1106.57 22.75 1101.57 1103.15 39.30 1101.57 1103.94 41.72 1101.57 1102.47 61.71 1101.57 1102.49 37.31 1101.57 1101.57 19.59
100-5-1 24 2000.80 2035.60 21.24 2004.33 2023.35 246.05 2010.49 2023.78 378.85 2016.44 2028.27 307.25 2000.80 2012.06 184.89 1997.29* 1997.37 63.14
100-5-1b 12 2311.01 2357.87 33.69 2311.84 2336.64 182.67 2312.53 2337.27 227.13 2317.42 2336.82 252.54 2311.01 2346.47 171.41 2305.65* 2305.89 68.43
100-5-2 24 1128.12 1144.70 26.60 1132.36 1135.99 214.42 1129.83 1135.49 343.26 1132.68 1136.61 282.63 1128.12 1133.17 198.13 1126.39* 1126.39 65.69
100-5-2b 11 1507.88 1567.44 31.73 1507.88 1517.11 205.25 1510.57 1519.04 247.41 1510.24 1519.44 271.72 1507.88 1511.89 119.62 1506.79* 1506.79 84.88
100-5-3 24 1572.61 1596.77 16.12 1581.93 1587.20 219.07 1581.93 1586.49 344.91 1579.38 1587.41 283.76 1572.61 1582.05 233.51 1567.62* 1568.22 59.34
100-5-3b 11 1933.70 2032.13 37.66 1933.70 1950.89 180.90 1935.70 1953.85 258.79 1940.47 1955.56 255.64 1934.93 1954.50 163.38 1932.96* 1933.07 73.12
100-10-1 26 1458.80 1481.56 26.33 1472.85 1511.00 247.27 1470.71 1503.92 371.15 1461.53 1513.44 333.90 1458.80 1464.80 196.75 1457.53* 1457.68 59.80
100-10-1b 12 1899.80 1984.91 33.05 1901.27 1953.96 193.46 1915.77 1972.26 253.50 1926.32 1963.33 255.59 1899.80 1918.20 186.81 1894.92* 1895.83 63.40
100-10-2 24 1137.59 1287.50 24.84 1143.30 1152.81 251.82 1142.31 1155.47 370.05 1141.45 1156.81 332.11 1137.59 1144.99 233.59 1134.80* 1135.23 48.99
100-10-2b 11 1559.88 1645.07 45.62 1566.48 1585.67 195.28 1566.48 1588.24 256.10 1568.71 1583.06 267.51 1559.88 1570.80 190.30 1555.71* 1555.71 58.02
100-10-3 25 1204.94 1216.20 18.76 1209.20 1221.52 277.89 1209.86 1225.98 376.80 1210.61 1225.49 352.77 1204.94 1209.27 151.09 1204.01* 1204.01 56.63
100-10-3b 11 1653.83 1745.05 22.99 1662.43 1705.63 187.74 1665.69 1706.68 243.04 1676.25 1705.51 262.94 1653.83 1670.95 196.73 1647.85* 1649.38 67.45
200-10-1 49 2780.03 2861.85 91.20 2798.57 2854.10 1327.81 2797.86 2863.27 2204.55 2792.24 2860.29 2026.86 2780.03 2788.95 568.99 2770.45* 2774.33 240.31
200-10-1b 22 3290.73 3557.96 99.69 3368.71 3477.07 956.22 3355.70 3478.91 1572.79 3327.76 3456.43 1411.39 3290.73 3336.49 522.54 3270.68* 3292.13 249.43
200-10-2 49 1973.41 1997.01 112.28 1984.96 2001.97 1164.73 1986.55 2004.51 2571.48 1986.51 2003.80 1853.75 1973.41 1980.50 429.89 1963.32* 1964.37 206.21
200-10-2b 23 2328.12 2473.24 89.74 2336.11 2379.01 932.35 2355.15 2378.21 1704.98 2336.29 2377.63 1453.02 2328.12 2360.59 438.38 2309.30* 2314.74 174.98
200-10-3 48 2727.15 2783.20 106.18 2741.16 2758.09 1075.86 2744.67 2757.42 2293.23 2750.18 2762.07 1612.10 2727.15 2736.47 419.99 2719.34* 2720.27 182.54
200-10-3b 22 3194.53 3413.34 92.27 3242.18 3274.58 772.47 3233.89 3267.81 1422.02 3225.11 3272.52 1226.53 3194.53 3220.29 345.12 3174.91* 3186.06 183.2123



Table A.8: Comparative results of proposed RLHEA with the reference algorithms on the set Barreto.

Instances GBILS SA-VND0 SA-VND1 SA-VND2 M-ILS RLHEA

Name Nv BKS fbest Tavg fbest favg Tavg fbest favg Tavg fbest favg Tavg fbst favg Tavg fbest favg Tavg

Christ 50 5 6 1661.64 1719.89 11.99 1661.64 1662.06 46.25 1661.64 1662.13 42.96 1661.64 1662.13 64.7 1661.64 1669.05 51.88 1661.64 1661.64 18.65
Christ 75 10 9 2370.73 2399.28 51.12 2403.79 2459.03 96.45 2383.04 2457.45 122.18 2400.86 2459.58 128.00 2370.73 2417.28 127.97 2362.48* 2362.48 40.98
Christ 100 10 8 3791.98 3984.05 148.17 3791.98 3831.18 177.42 3806.39 3838.89 198.76 3797.00 3826.81 231.22 3803.5 3848.63 168.75 3788.96* 3788.96 92.92
Gaskell 21 5 4 653.48 653.48 0.28 653.48 653.48 9.33 653.48 653.48 8.67 653.48 653.48 13.86 653.48 653.48 11.93 653.48 653.48 4.06
Gaskell 29 5 4 1199.33 1199.33 1.70 1199.33 1199.33 25.33 1199.33 1199.33 21.29 1199.33 1199.33 40.27 1199.33 1199.33 22.26 1199.33 1199.33 7.30
Gaskell 32 5b 3 1552.84 1552.84 1.60 1552.84 1553.29 35.58 1552.84 1553.29 27.65 1552.84 1552.84 55.69 1552.84 1556.58 24.35 1552.84 1552.84 9.00
Gaskell 36 5 4 1627.17 1627.17 1.05 1627.17 1627.17 25.76 1627.17 1627.17 22.72 1627.17 1627.17 39.59 1627.17 1628.12 29.56 1627.17 1627.17 11.26
Min 27 5 4 5387.55 5387.55 27.55 5387.55 5387.55 14.27 5387.55 5387.55 12.25 5387.55 5387.55 22.73 5387.55 5387.55 10.59 5387.55 5387.55 5.98
Min 134 8 11 21751.97 - - 21852.35 22307.28 194.27 21910.54 22309.19 215.35 21853.52 22256.20 276.15 21751.97 22450.39 164.69 21751.97 21751.97 131.91
Or 117 14 7 53798.53 - - 53798.53 54866.72 108.95 53859.08 54805.87 105.50 54103.16 54902.35 171.64 54328.75 56687.87 125.96 53798.53 53907.31 97.84
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