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4 Self-distributive structures in physics

Tobias Fritz

Abstract. It is an important feature of our existing physical theories that observables
generate one-parameter groups of transformations. In classical Hamiltonian mechanics
and quantum mechanics, this is due to the fact that the observables form a Lie algebra,
and it manifests itself in Noether’s theorem. In this paper, we introduce Lie quandles as
the minimal mathematical structure needed to express the idea that observables generate
transformations. This is based on the notion of a quandle used most famously in knot
theory, whose main defining property is the self-distributivity equation x ⊲ (y ⊲ z) =
(x⊲y)⊲ (x⊲z). We argue that Lie quandles can be thought of as nonlinear generalizations
of Lie algebras.

We also observe that taking convex combinations of points in vector spaces, which
physically corresponds to mixing states, satisfies the same form of self-distributivity.

1. Introduction

Observables play a dual role in our existing physical theories [1]. On the one hand, they
are the quantities that we think of as being measurable in principle. On the other hand,
they are also exactly those quantities that generate groups of transformations, including
symmetries and the dynamics of a theory. This surprising dual role is especially apparent
and well-understood in Hamiltonian mechanics, where it is closely tied to the symplectic
structure of phase space, and in quantum mechanics, where it manifests itself in the corre-
spondence between self-adjoint operators and one-parameter groups of unitaries (Stone’s
theorem). In both cases, this duality is what underlies Noether’s theorem: an observable
is a conserved quantity if and only if the transformation group that it generates is a group
of symmetries.

This fact that observables generate transformations is not an a priori necessary feature
of physical theories. In fact, it is not difficult to come up with candidate physical theories
which violate it. For example, this is generically the case for the general probabilistic
theories studied in quantum foundations [2, 3]: in a general probabilistic theory, a state
space is given by a convex body in R

n, and a generic such object has no symmetries at
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2 TOBIAS FRITZ

all, and in particular no nontrivial one-parameter groups of transformation. Another class
of theories in which observables cannot generate transformations in the way that we are
used to are theories with non-reversible time evolution. What we are used to is that if
dynamics is generated by an observable denoted H, then we would expect there to be
another observable −H which generates the time reversed dynamics.

We are thus led to conclude that having a well-behaved correspondence between ob-
servables and one-parameter groups of transformations is a distinguishing feature of those
theories that describe the physics of our universe (as far as we understand it). Suppose
now that we want to develop other theories—perhaps more fundamental ones—that follow
this very principle. Then which mathematical structure do we need in order to capture this
feature? In Hamiltonian mechanics and quantum mechanics, this principle is encoded in
the fact that the spaces of observables is a Lie algebra. This leads to the desired feature
because any observable H generates a one-parameter group of transformations on the space
of observables itself determined by the equation

Ȧ = [H,A]. (1.1)

In quantum mechanics, the Lie bracket is exactly the usual commutator (up to factors of i
and ~ which we ignore), so that this specializes to the usual time evolution equation in the
Heisenberg picture. In Hamiltonian mechanics, the Lie bracket is the Poisson bracket, so
that this equation Hamilton’s equations of motion in their general abstract form. In both
cases, our notation suggests thinking of H as the Hamiltonian and of the transformations
as time evolution. But of course it applies likewise if H is e.g. the momentum operator
instead, in which case the transformed observable A(t) is a spatially translated version of
A.

What we argue in this paper is that the Lie algebra structure is overkill in order
to formalize the idea of a well-behaved map from observables to transformation groups.
Instead, we posit that it is enough to have a Lie quandle, which is an algebraic structure
that we introduce here and think of as a nonlinear generalization of a Lie algebra. To
motivate it, let us simply axiomatize the idea that observables generate transformations
on the space of observables itself a standalone algebraic structure. So given an observable
H and another observable A, for every t ∈ R we should get a new observable

H ⊲t A, (1.2)

where this notation is to be read as ‘H acting on A for time t’. Leaving A unspecified
means that we have a map H ⊲t − from the set of observables to itself. Since this should
be a one-parameter group of transformations, we expect this to be additive in the time
argument: we should have the equations

H ⊲t+s A = H ⊲t (H ⊲s A), H ⊲0 A = A. (1.3)

Furthermore, it is natural to expect that the maps H ⊲t − respect whatever mathematical
structure the set of observables has. But surely the binary operations ⊲s themselves are
part of this structure. Hence we expect every H⊲t− to be a map which is a homomorphism
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with respect to every ⊲s. This means that for all observables H, A and B, we should have

H ⊲t (A ⊲s B) = (H ⊲t A) ⊲s (H ⊲t B) ∀s, t ∈ R. (1.4)

This intriguingly self-referential equation is a form of self-distributivity, which famously
appears in the theory of self-distributive structures like quandles [4, 5]. Surprisingly, the
role of such self-distributivity in physics does not seem to have been appreciated before1,
and quandles have hitherto mainly been considered in pure mathematics2. Hence the main
purpose of this paper is to point out the relevance of self-distributivity in physics.

There is another appearance of self-distributivity in physics which underlines its rele-
vance, but now at the level of states rather than observables. In quantum theory, forming
convex combinations or mixtures of (mixed) states has been recognized as a crucial piece
of structure already by von Neumann [13, Ch. IV], and has since become central through
the framework of general probabilistic theories. Now if we consider convex combinations
operations in the form

x ∗t y := (1− e−t)x+ ety,

then this family of binary operations again turns out to the satisfy the properties (1.3)
and (1.4), which now take the form

x ∗t+s y = x ∗t (x ∗s y), x ∗0 y = y,

x ∗t (y ∗s z) = (x ∗t y) ∗s (x ∗t z).

These equations are straightforward to show by direct calculation. In light of our earlier
discussion, one may think of this as saying that an operation of the form x ∗t − is a kind
of dynamics on the set of states, which ‘shrinks’ the whole state space in the direction of x.
The self-distributivity equation may be thought of as saying that this operation preserves
other convex combinations; this is clear even without calculation based on the fact that
every affine map preserves convex combinations, and the map x ∗t − is affine.

It remains mysterious to us whether the double appearance of self-distributivity at the
level of observables and at the level of states is somehow coincidental, or whether there is a
deeper underlying connection between the two. A point in favour of a deeper connection is
that both ⊲t and ∗t satisfy one further equation which we have not mentioned yet, namely
idempotency:

A ⊲t A = A, x ∗t x = x.

On the other hand, there also is an important difference between the two cases, which
suggests that the similarity may be coincidental. To wit, forming convex combinations

1One notable exception is a blog post by Daniel Moskovich [6], which expresses the idea that asso-
ciative algebraic structures are geometric in nature, while self-distributive operations are appropriate for
‘information physics’. However, he does not seem to have recognized the role of self-distributivity in the
correspondence between observables and transformation groups.

2Their most well-known application is to knot theory [4, 7, 8]. However, the earliest appearance of
(involutive) quandles seems to be as algebraic structures abstracting reflections [9], and they have also been
used in number theory [10] and real algebra [11]. Brieskorn’s early survey [12] discusses relations to braid
groups, root systems and singularity theory.
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also satisfies right self-distributivity,

(x ∗t y) ∗s z = (x ∗t z) ∗s (y ∗t z),

which is an equation that generally does not hold for the ⊲t operations.

Related Work. While our notion of Lie quandle and its physical interpretation in
terms of observables generating transformations seem to be new, the importance of self-
distributivity in physics has been recognized in a blog post by Moskovich [6]. There also
are a number of existing works relating self-distributive structures with Lie theory:

⊲ The thesis of Crans [14, Section 3.2.4] considers unital spindles and quandles
internal to the category of coalgebras, and uses these structures as an intermedi-
ate notion between Lie groups and Lie algebras. Since the underlying set of her
quandles correspond to the symmetric power of a Lie algebra, this seems quite
different from our Lie quandles (of which the simplest examples are Lie algebras
themselves).

⊲ Smooth quandles were introduced by Ishikawa [15]3; we also refer to the thesis of
Yonemura [17] for a detailed exposition. Smooth quandles are quandles internal
to the category of manifolds (meaning that the underlying set is a manifold and
the quandle operation is smooth). This is more closely related to Lie quandles: a
Lie quandle becomes a smooth quandle if one forgets all operations ⊲t for t 6= 1.

Nevertheless, having all ⊲t available to work with seems more prudent for
our purposes: it reflects the physical structure more accurately, and it is also
mathematically convenient since we can differentiate as e.g. at (3.5).

2. Self-distributivity

To begin a more detailed discussion, let us first consider the mathematics of self-
distributivity in its essence. We will not do anything original here and we refer to literature
like [4, 5, 14, 18] for more details.

Definition 2.1 (e.g. [14, 18]). A shelf is a set S together with a binary operation ⊲ such
that

x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z) (2.1)

for all x, y, z ∈ S.

Here we have adopted the terminology of Crans [14, Definition 52]4. A good way to
think about this equation is as saying that the map x ⊲ − : S → S is a homomorphism
with respect to ⊲ itself for every x ∈ S. In this way, shelves axiomatize the idea of a set
acting on ‘itshelf’.

3There is a more general notion of quandles in categories with finite products [16], which yields smooth
quandles upon taking the category to be the category of manifolds.

4We the attribute ‘left’ since we will not consider right shelves.
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Example 2.2. The set S = {0, 1, 2} with the binary operation

⊲ 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

(2.2)

may be the historically first example of a shelf [18, p. 481]. Note that every element acts
by permuting the other two.

Of particular interest to us are shelves which also satisfy the idempotency equation.

Definition 2.3 ([14, 18]). A spindle is a shelf S such that

x ⊲ x = x

for all x ∈ S.

Example 2.4. (i) A glance at the diagonal entries of (2.2) shows that that shelf is
indeed a spindle.

(ii) For another example, take S := R
2 and define x ⊲ y to be the point obtained

by reflecting y across x. This satisfies self-distributivity due to the fact that any
Euclidean transformation preserves distances, the point x⊲y can be characterized
uniquely in terms of its distances from x and y5, and reflection at x is a Euclidean
transformation.

(iii) More generally, for any fixed θ ∈ [0, 2π) by obtain a spindle by defining x ⊲ y to
be the point obtained by rotating y around x by θ; taking θ = π then recovers
the previous example.

(iv) Similarly, we can work with points on the sphere S2 and define x ⊲ y to be the
point obtained by rotating y around x by θ [19, Definition 4.3].

(v) We can also take S to be any symmetric space, such as the sphere S2, and define
x ⊲ y to be the point obtained by reflecting y across x [5, Example 56]6.

Example 2.5. The following example is a simple variation on the standard Alexander
quandle from the theory of knot invariants [5, Example 67]. It also appears in Moskovich’s
blog post [6] and has probably been known before.

Let C ⊆ R
n be a convex set (such as the set of mixed states of a physical system).

Then for any s ∈ [0, 1], the set C is a spindle with respect to the operation of mixing with
bias s,

x ⊲ y := (1− s)x+ sy. (2.3)

5Namely as the unique point whose distance from x equals the distance of x and y, and whose distance
from y is twice that.

6Note that [5] considers right self-distributivity rather than the left version of Definition 2.1, so that
their x ⊲ y corresponds to our y ⊲ x.
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Intuitively, the self-distributivity equation (2.1) holds because taking a convex combination
with x uniformly shrinks all points in the direction of x, and this operation preserves other
convex combinations.

The following particularly elegant types of spindles can be thought of as the analogues
of groups in the self-distributive world.

Definition 2.6. A quandle Q is a spindle such that for every x ∈ Q, the map

x ⊲− : Q → Q

is a bijection.

If we denote the inverse map by x ⊲−1 − : Q → Q, and moreover write ⊲1 in place of ⊲,
then the fact that these maps are inverse amounts to the equation

x ⊲−1 (x ⊲1 y) = y, x ⊲1 (x ⊲−1 y) = y. (2.4)

Moreover, it can be shown that ⊲−1 equips the original set Q with another quandle structure,
and ⊲1 and ⊲−1 also mutually distribute over each other [5, p. 95]. These statements are
observations that naturally lead to the Lie quandles of Section 3 if one considers an entire
family of operations ⊲t indexed by t ∈ R.

Example 2.7. (i) Assuming s ∈ (0, 1), a convex set C ⊆ R
n is typically not a

quandle with respect to (2.3), since for given x, z ∈ C the point y with (1− s)x+
sy = z need not belong to C again. In fact, it can be show that C is a quandle
if and only if it is an affine subspace of Rn.

(ii) For a group G, its conjugation quandle is Q := G itself equipped with conju-
gation as the operation,

x ⊲ y := xyx−1.

This is the most important family of examples of quandles. These quandles satisfy
the following special property: for every given x, y ∈ Q, we have

x ⊲ y = y ⇐⇒ y ⊲ x = x, (2.5)

We will later find this to be closely related to Noether’s theorem.

(iii) To see that not every quandle satisfies (2.5), let X be a set on which G acts, and
consider the disjoint union Q := G ⊔X. We define

x ⊲ y :=











xyx−1 ∈ G if x, y ∈ G,

xy ∈ X if x ∈ G, y ∈ X,

y ∈ X if x ∈ X.

In other words, for x ∈ G we let x ⊲− act by conjugation on G and by the given
G-action on X, and for x ∈ X we take x ⊲ − to be the identity map. Then
simply checking all cases shows that this is a quandle, but (2.5) is generically not
satisfied if x ∈ X and y ∈ G.
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This construction works the same way if G is replaced by any quandle and
the action on X by a quandle action in the sense of [20, § 3.2].

Hitherto, the theory of quandles has been primarily applied to knot theory. We refer
to the original papers [4, 7, 8] as well as to the more recent textbook [5] for expositions of
this application.7

3. Lie quandles

As indicated in the introduction, we now introduce a Lie-theoretic version of quandles.
From our point of view, these are the minimal structures needed to formalize the idea that
observables of a physical theory form a set such that every elements acts on the set itself
as a one-parameter transformation group.

Definition 3.1. A Lie quandle is a smooth manifold Q together with an operation

⊲ : Q× R×Q −→ Q

such that the following equations hold for all x, y, z ∈ Q and s, t ∈ R:

(i) Self-action:
x ⊲s (x ⊲t y) = x ⊲s+t y, x ⊲0 y = y. (3.1)

(ii) Self-distributivity:

x ⊲s (y ⊲t z) = (x ⊲s y) ⊲t (x ⊲s z). (3.2)

(iii) Idempotency:
x ⊲s x = x. (3.3)

Example 3.2. In quantum mechanics, the space of observables is the space of self-adjoint
elements of a C*-algebra; let us focus on the finite-dimensional case of a matrix algebra for
simplicity.8 Then the set of observables is given by the set of hermitian matrices,

Q := {A ∈ Mn(C) | A
† = A}.

This is the paradigmatic example of a Lie quandle with respect to the operations

X ⊲t Y := eitXY e−itX ,

which is the standard way in which an observable generates a one-parameter group of trans-
formations of other observables in quantum mechanics. While the other Lie quandle axioms
are quite straightforward to check, let us explain how to verify the self-distributivity equa-
tion (3.2) explicitly. This uses the well-known fact that matrix exponentiation preserves
conjugation, that is

eitAY A−1

= AeitY A−1

7A reader who knows about anyon physics may wonder whether anyons provide another way in which
quandles appear in physics. As far as we can see this is not the case, since anyons are modelled by braided
fusion categories, and these do not seem to bear any direct relation (with physical significance) to quandles.

8In order for our statements to apply to infinite-dimensional C*-algebras, one would need to work with
a suitable notion of infinite-dimensional manifold in the definition of a Lie quandle.
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for any matrix Y and any invertible A [21, Proposition 2.3(6)]. We apply this with A = eisX

in the third step of the following sequence of equations:

X ⊲s (Y ⊲t Z) = eisX
(

eitY Ze−itY
)

e−isX

=
(

eisXeitY e−isX
)(

eisXZe−isX
)(

eisXe−itY e−isX
)

= eit e
isXY e−isX(

eisXZe−isX
)

eit e
isXY e−isX

= (X ⊲s Y ) ⊲t (X ⊲s Z).

This establishes the required self-distributivity. While this calculation may seem obscure,
the intuition behind it makes it quite unsurprising: conjugation by a unitary preserves
all algebraic structure on matrices, including conjugation by a unitary itself. This also
makes clear that these Lie quandles are souped-up versions of the conjugation quandles
from Example 2.7.

Since we have not used the assumption of X being hermitian in the above calculation,
the same calculation can be used to show that the space of all matrices Mn(C) is a Lie
quandle with respect to the operation

X ⊲t Y := etXY e−tX .

This Lie quandle structure can also be characterized in terms of the differential equation

d

dt
(X ⊲t Y ) = [X,X ⊲t Y ] (3.4)

with initial condition X ⊲0 Y = Y . This is exactly the evolution equation (1.1) from
Hamiltonian mechanics and quantum mechanics written in different form.

The characterization (3.4) of the Lie quandle structure implies that every (real) Lie
algebra g ⊆ Mn(C) is a Lie quandle with respect to the operations ⊲t restricted from all
matrices to g. By Ado’s theorem, we can embed every Lie algebra into Mn(C) for some n,
and therefore every Lie algebra is a Lie quandle in a canonical way. If G is any Lie group
with Lie algebra g, then this Lie quandle structure on g can also be written in terms of the
exponential map exp : g → G and the adjoint action of G on g [21, §4.3.3] as

X ⊲t Y = Ad(etX)Y,

since this solves the differential equation (3.4) with initial condition X ⊲0 Y = Y . The
differential equation also shows that the Lie bracket can be recovered as

[X,Y ] =
d

dt

∣

∣

∣

t=0
(X ⊲t Y ). (3.5)

In summary, Lie algebras are Lie quandles, and the Lie bracket is encoded in the Lie
quandle structure. This suggests that we can think of a general Lie quandle as a nonlinear
generalization of Lie algebras.

But there also are Lie quandles which are not Lie algebras. When considered in the
physics context, the following nonlinear example feels similar to the Bloch sphere with
dynamics given by Rabi oscillations.
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Example 3.3. We introduce a Lie-theoretic version of the sphere quandle appearing in
Example 2.4(ii) by considering all angles of rotation at the same time. This amounts to
taking Q := S2, and for given points x, y ∈ S2, we define x ⊲t y as the point obtained by
rotating y by an angle t around the axis having x ∈ S2 as its north pole.9

One way to see that this satisfies the self-distributivity equation is to note that the
geometric structure needed to define these rotations is itself preserved under rotations.
Another way to show that this defines a Lie quandle is to note that there is an embedding
of this structure as a Lie subquandle of the hermitian 2×2-matrices by identifying S2 with
the space of projections of rank 1. In physics terms, this is simply the map which assigns
to every pure qubit state the corresponding density matrix.

Clearly this Lie quandle is not isomorphic to a Lie quandle arising from the Lie alge-
bra, since the underlying manifold S2 is not even diffeomorphic to a vector space. Also,
analogous constructions of Lie quandles defined by rotations are possible if one replaces S2

by the Euclidean plane or the hyperbolic plane.

In physical terms, we may want to think of examples like this as (nonlinear) spaces
of observables, where each observable defines a Heisenberg-picture-type dynamics on the
space of observables itself, as already discussed in the introduction.

The correspondence between observables and one-parameter groups of transformations
plays a crucial role in Noether’s theorem.10 We can now understand this result by phrasing
a formulation of Noether’s theorem due to Baez [1] in the framework of Lie quandles.

Definition 3.4. A Noether quandle11 is a Lie quandle Q such that

x ⊲t y = y ∀t ∈ R ⇐⇒ y ⊲t x = x ∀t ∈ R. (3.6)

Here is how this corresponds to Noether’s theorem. If y plays the role of a Hamiltonian,
then the condition x⊲t y = y for all t ∈ R means that the observable x generates a group of
transformations that are symmetries of the Hamiltonian. On the other hand, the condition
y ⊲t x = x can be interpreted as a conservation law: the observable x is invariant under
the dynamics generated by the Hamiltonian y. Therefore Noether’s theorem is equivalent
to (3.6).

Example 3.5 (cf. [1]). The Lie quandle associated to a Lie algebra g is a Noether quandle,
since in this case the condition x⊲t y = y for all t ∈ R is equivalent to [x, y] = 0. Then (3.6)
amounts to the equivalence between [x, y] = 0 and [y, x] = 0, which is the antisymmetry
of the Lie bracket. This is the straightforward proof of Noether’s theorem in Hamiltonian
mechanics and quantum mechanics.

Example 3.6. To see that not every Lie quandle is a Noether quandle, we can use a
similar construction as in Example 2.7(iii). Indeed if a Lie group G acts on a manifold X,

9Whether one rotates in the positive or negative direction is then irrelevant as long as it is done
consistently.

10We refer to [22, Theorem 5.58] for a general version of Noether’s theorem in classical field theory.
11Although calling this a ‘Noetherian Lie quandle’ would be intrinsically more intuitive, the clash with

the meaning of ‘Noetherian’ in commutative algebra seems too severe to justify the more intuitive term.
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then the disjoint union Q := g ⊔X becomes a Lie quandle with respect to the operations
x ⊲t − defined such that every x ∈ X acts trivially, and such that x ∈ g acts on g by the
adjoint action as above and by the given Lie group action of etx on X. Similar to what we
saw in Example 2.7(iii) with the failure of (2.5), this Lie quandle is not a Noether quandle
as soon as some exponential of an element of g acts nontrivially on some element of X.

On the other hand, it is still conceivable that every connected Lie quandle is a Noether
quandle. If this does turn out to be the case, then we have a very general form of Noether’s
theorem.

4. Conclusion

We have tried to argue that self-distributive structures deserve to play a prominent
role in physics, upending the usual focus on associative structures. This is in line with
Moskovich’s idea that associative algebraic structures are geometric in nature, while self-
distributive operations are appropriate for ‘information physics’ [6]. The basic observation
is that observables form a self-distributive structure with respect to every observable gen-
erating a one-parameter transformation group on the space of observables, and we have
proposed a definition of Lie quandle to formalize this structure more generally, and we have
argued that Lie quandles are nonlinear generalizations of Lie algebras.

Of course, a space of observables can also be expected to carry structure that we have
not considered here. For example, we have not investigated in what way observables have
‘values’ and how these values should be expected to interact with the quandle structure.
Nevertheless, we believe that Lie quandles provide part of an interesting framework for
physical theories generalizing Hamiltonian mechanics and quantum mechanics.



REFERENCES 11

References

[1] John C. Baez, “Getting to the bottom of noether’s theorem,” in The Philosophy and
Physics of Noether’s Theorems, Cambridge University Press, 2022, pp. 66–99 (cit. on
pp. 1, 9).

[2] Jonathan Barrett, “Information processing in generalized probabilistic theories,” Phys.
Rev. A, vol. 75, p. 032 304, 2007, arXiv:quant-ph/0508211 (cit. on p. 1).
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