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KNOT LATTICE HOMOLOGY AND q-SERIES INVARIANTS FOR
PLUMBED KNOT COMPLEMENTS

ROSTISLAV AKHMECHET, PETER K. JOHNSON, AND SUNGHYUK PARK

Abstract. We introduce an invariant of negative definite plumbed knot complements uni-
fying knot lattice homology, due to Ozsváth, Stipsicz, and Szabó, and the BPS q-series
of Gukov and Manolescu. This invariant is a natural extension of weighted graded roots
of negative definite plumbed 3-manifolds introduced earlier by the first two authors and
Krushkal. We prove a surgery formula relating our invariant with the weighted graded root
of the surgered 3-manifold.
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1. Introduction

In this paper, we introduce an invariant of negative definite plumbed knot complements
that unifies the homological degree zero part of knot lattice homology [OSS14a] and the BPS
q-series [GM21].

Lattice homology H∗, defined by Némethi [Né05, Né08], is an invariant of negative definite
plumbed 3-manifolds which has important applications to both low-dimensional topology
and singularity theory. It expands upon earlier work of Ozsváth and Szabó [OS03] in which
they study the Heegaard Floer homology of a certain class of negative definite plumbed
3-manifolds.

Given a closed oriented 3-manifold Y , described as a negative definite plumbing, H∗(Y ) is
a module over the polynomial ring Z[U ]. It decomposes as a direct sum over spinc structures
of Y , H∗(Y ) =

⊕
s∈spinc(Y )H∗(Y, s). Moreover, for each s ∈ spinc(Y ), H∗(Y, s) carries two

gradings: the homological grading and theMaslov grading. The homological grading is given
by the index ∗ ∈ Z≥0. For each fixed homological grading i ∈ Z≥0, Hi(Y, s) is itself a Maslov
graded Z[U ]-module, where U is in Maslov degree −2.

For each s ∈ spinc(Y ), the homological degree zero part of lattice homology H0(Y, s) can
be conveniently encoded by an infinite graph called the graded root. Note H0 was already
present in [OS03], before the general formulation of lattice homology. For a subclass of nega-
tive definite plumbings called almost rational plumbings, lattice homology is concentrated in
homological degree zero [Né08]. Using a completed version of lattice homology obtained by
working over the ground ring F[[U ]] where F = Z /2Z, Zemke [Zem21] established the equiv-
alence of lattice homology (using all homological gradings) and Heegaard Floer homology
HF− defined by Ozsváth-Szabó [OS04] for plumbing trees (not necessarily negative definite),
extending earlier proofs of this equivalence in special cases [OS03, Né05, OSS14a, OSS14b].

The BPS q-series Ẑ [GPPV20], also known as the homological block or the Gukov-
Pei-Putrov-Vafa (GPPV) invariant, is another invariant of negative definite plumbed 3-
manifolds. Like lattice homology, BPS q-series are indexed by the set of spinc structures
of the 3-manifold. As the name suggests, this invariant takes the form of a power series
in q with integer coefficients (up to a simple overall factor). These q-series encode the
Witten-Reshetikhin-Turaev (WRT) invariants [Wit89, RT91] in the sense that WRT invari-
ants can be recovered in the radial limit to roots of unity of certain linear combinations
of these q-series over spinc structures [GPPV20, Mur23]. For some classes of negative def-
inite plumbed 3-manifolds, the BPS q-series are known to satisfy (quantum) modularity
[LZ99, Zag10, CCF+19, BMM20].

While lattice homology and BPS q-series have very different origins, they are both defined
in terms of the lattice of characteristic vectors of the 4-manifold coming from the plumbing
description bounded by the plumbed 3-manifold. Based on this observation, the first two
authors and Krushkal [AJK23] assigned to each node in the graded root a Laurent polynomial
weight in two variables q and t, resulting in the weighted graded root, which unifies the graded
root and the BPS q-series. These weights depend on a choice of admissible family of functions
(Definition 3.7). In an appropriate sense (see [AJK23, Section 6]), the weights stabilize to a
two-variable power series in q whose coefficients are Laurent polynomials in t. For a specific

choice of admissible family Ŵ , evaluating the resulting power series at t = 1 yields exactly
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the BPS q-series. Recent work of Liles and McSpirit [LM23] studied these two variable

refinements of Ẑ and established quantum modularity for other specializations of t.
Both lattice homology and BPS q-series have natural extensions to plumbed knot comple-

ments, namely knot lattice homology, introduced by Ozsváth-Stipsicz-Szabó [OSS14a], and
BPS q-series for knot complements, introduced by Gukov-Manolescu [GM21], respectively.
It has been shown that knot lattice homology is isomorphic to knot Floer homology for
certain classes of knots [OSS16]. Niemi-Colvin [NC24] reformulated knot lattice homology
as the singular homology of a double filtration of a Euclidean space and proved that the
homotopy type of this double filtration is an invariant of the plumbed knot complement. It
is implicit in [NC24] that the homological degree zero part of knot lattice homology can be
naturally encoded by a certain infinite graph that we refer to as the bigraded root. The two
gradings of the bigraded root reflect the graded F[U, V ]-module structure of the knot Floer
homology.

A natural question that arises from the construction of [AJK23] is whether the weighted
graded root can be extended to plumbed knot complements. Our first main result gives
a positive answer to this question. As an executive summary, a negative definite marked
plumbing graph describes a closed plumbed 3-manifold Y and a knot K ⊂ Y . The knot
complement Y \K is equipped with a specified curve µK on its boundary given by the meridian
of K. We refer to the pair (Y \ K, µK) as a negative definite plumbed knot complement, and
we will often omit the boundary curve µK from the notation. If two negative definite marked
plumbing graphs represent plumbed knot complements for which there is an orientation-
preserving diffeomorphism sending one boundary curve to the other, then the graphs are
related by a finite sequence of Neumann moves (Figures 3 and 5).

For each spinc structure on Y , we assign three-variable weights to each node of the bigraded
root of Y \K, resulting in the weighted bigraded root for the plumbed knot complement; see
Definition 4.21. The weights are constant along the V -grading direction; see Figure 1 for
an example. Moreover, as we lower the U -grading, the weights stabilize to the BPS q-series
for the plumbed knot complement. We note that knot lattice homology is indexed by the
set of spinc structures of the 3-manifold Y containing K, while the BPS q-series for the knot
complement depends on a choice of a relative spinc structure on Y \ K. In Section 4.3 we
renormalize the q-series so that it depends only on the spinc structure on Y . Consequently,
our weighted bigraded roots are indexed by spinc(Y ). We prove the following.

Theorem 1.1 (Invariance under Neumann moves; detailed version in Theorem 4.25). For
each spinc structure, the weighted bigraded root for negative definite plumbed knot comple-
ments is invariant under Neumann moves.

As in [AJK23], the weighted graded root depends on a choice of admissible family of
functions. In the present paper the weights also depend on a choice of ε ∈ {±1}. These two
choices, discussed in Section 3.2, correspond to two natural ways to identify the lattices used
to define BPS q-series and (knot) lattice homology. Moreover, the two choices of ε clarify
the behavior of the weighted graded root under spinc conjugation.

Surgery formulas for knot lattice homology and for BPS q-series for knot complements
were established in [OSS14a] and [GM21], respectively. Our next main result unifies the two
surgery formulas by relating the weighted (bi)graded root of the plumbed knot complement
Y \ K with that of the plumbed 3-manifold obtained from surgery on K.
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Figure 1. The weighted bigraded root of the trefoil at t = 1 corresponding to the

admissible family Ŵ and ε = 1.

Theorem 1.2 (Surgery formula; detailed version in Theorem 5.3). Let Y \ K be a plumbed
knot complement obtained from a negative definite marked plumbing graph. Let Y ′ be a closed
plumbed 3-manifold built from a negative definite plumbing graph obtained by attaching an
integer framing to the marked vertex. Then the weighted bigraded roots of Y \ K determine
the weighted graded roots of Y ′.

Organization of this paper. In Section 2, we review the basics of plumbing graphs and
plumbed 3-manifolds.

In Section 3, we review graded roots, the BPS q-series Ẑ, and weighted graded roots for
closed plumbed 3-manifolds introduced in [AJK23].

In Section 4, we review knot lattice homology, following the approach of Niemi-Colvin
[NC24], and BPS q-series for plumbed knot complements. We then give our main construc-
tion, the weighted bigraded root for plumbed knot complements, and prove its invariance
under Neumann moves.

In Section 5, we prove the surgery formula for the weighted graded roots. We also illustrate
it with an explicit example.

In Appendix A, we discuss some subtleties regarding invariants of plumbed manifolds
equipped with a spinc structure.

Summary of notation. We summarize some notations that will be used in this paper.

K2 The square of K ∈ H2(X(Γ);Z), given by K2 = K⊺M−1K Eq. (4)

u u = (1, . . . , 1). The length of this vector is determined by context Eq (11)

λ λ = (λ1, . . . , λs) where λi = 1 if vi is adjacent to v0 in Γv0 and 0 otherwise Eq. (17)

δ̂ δ̂ = δ + e0 Def. 2.6

Σ Σ =
M−1

v0,m0
e0

e0⊺M−1
v0,m0

e0
= (1,−M−1λ) ∈ H2(X(Γv0,m0);Q) ∼= Qs+1 Eq. (52)
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Σ2 Σ2 = Σ⊺Mv0,m0Σ =
1

e0⊺M−1
v0,m0

e0
= m0 − λ

⊺M−1λ ∈ Q Eq. (53)

sf The (rational) Seifert framing of K, given by λ⊺M−1λ = m0−Σ2, which
is an integer if K is null-homologous.

Pg. 29
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2. Plumbed manifolds

2.1. Closed plumbed 3-manifolds. In this subsection, we review closed plumbed 3-manifolds,
their spinc structures, and Neumann moves.

Given a graph Γ, we denote its set of vertices by V(Γ). We say Γ is integer weighted if it
is equipped with a function m : V(Γ) → Z. In this paper, a plumbing graph will mean an
integer weighted forest Γ with finitely many vertices.

To a plumbing graph Γ, one can associate a 4-manifold X = X(Γ) and a 3-manifold
Y = Y (Γ) as follows. First, form a framed link L = L(Γ) ⊂ S3 = ∂D4 by associating to each
v ∈ V(Γ) a standard unknot Lv with framing m(v) and Hopf linking Lv and Lw if and only
if v is adjacent to w. See Figure 2 for an example. Define X to be the result of attaching
2-handles to the 4-ball D4 along L and define Y to be the result of Dehn surgery along L.
Note, Y = ∂X .

• ••

•

• •
−1 −3−2

−15

−2 −2

(a) A plumbing graph Γ.

−2 −3 −2 −2−1

−15

(b) The framed link L(Γ).

Figure 2. A plumbing Γ and its associated framed link L(Γ). The 3-manifold Y (Γ)
is the Brieskorn sphere Σ(2, 7, 15).

Definition 2.1. An oriented 3-manifold is plumbed if it is diffeomorphic1 to Y (Γ) for some
plumbing graph Γ. Moreover, if Γ can be chosen such that the associated 4-manifold X(Γ)
has negative definite intersection form, we call the plumbed 3-manifold negative definite.

Remark 2.2. While the framed link L(Γ) is not uniquely determined by Γ, any pair of framed
links built from Γ in the manner described above will be isotopic. Moreover, any such isotopy
between framed links will determine a diffeomorphism between the corresponding manifolds.

1“Diffeomorphism” always means orientation-preserving diffeomorphism in this paper.
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We now identify various topological and algebraic quantities in terms of the data encoded
by the plumbing graph Γ. First, fix an orientation on L such that if v is adjacent to w, then
ℓk(Lv, Lw) = +1. For each v ∈ V(Γ), let S2

v ⊂ X denote the 2-sphere obtained by capping
off the core of the 2-handle attached to Lv with a disk. We choose orientations on these
spheres so that they agree with the orientation of L in the sense that if v, w ∈ V(Γ) are
adjacent, then the algebraic intersection number of S2

v and S2
w is equal to ℓk(Lv, Lw) = +1.

By abuse of notation, we let v ∈ H2(X ;Z) denote the homology class of the oriented sphere
S2
v . Correspondingly, let v∗ ∈ H2(X ;Z) denote the image of the Poincaré dual of v under

the map H2(X, ∂X ;Z)→ H2(X ;Z) and let v† ∈ Hom(H2(X ;Z),Z) ∼= H2(X ;Z) denote the
hom-dual of v, i.e., v†(w) = δv,w. Then, H2(X ;Z) and H2(X ;Z) are free abelian groups with
bases {v}v∈V(Γ) and {v

†}v∈V(Γ), respectively.
Choose an ordering2 v1, . . . , vs of V(Γ). This ordering yields the following identifications

H2(X ;Z) ∼= Z v1 ⊕ · · · ⊕ Z vs ∼= Zs,(1)

H2(X ;Z) ∼= Z v†1 ⊕ · · · ⊕ Z v†s
∼= Zs .(2)

We will often use the above identifications and work with vectors in Zs. We let ei denote
the i-th standard basis vector in Zs and for x ∈ Zs, we write x⊺ for its transpose.

For v ∈ V(Γ), we let δ(v) denote its degree. Given the chosen ordering v1, . . . , vs of V(Γ),
we write m = (m1, . . . , ms), δ = (δ1, . . . , δs) ∈ Zs, with mi = m(vi) and δi = δ(vi). They are
called the weight vector and the degree vector, respectively.

Under the identification in equation (1), the intersection form 〈·, ·〉 : H2(X ;Z)×H2(X ;Z)→
Z is given by the adjacency matrix M of Γ,

Mij =





mi if i = j,

1 if i 6= j, vi and vj share an edge,

0 otherwise.

(3)

Parallel to Definition 2.1, we say the graph Γ is negative definite if M is negative definite.
Given K ∈ H2(X ;Z), under the identification in equation (2) we define

K2 = K⊺M−1K.(4)

The spinc structures of the 4-manifold X(Γ) and the closed oriented 3-manifold Y (Γ) can
be conveniently described from the data of Γ. The first Chern class c1 provides a bijection
c1 : spin

c(X)→ Char(X), where Char(X) is the set of characteristic elements. Specifically,

Char(X) = {K ∈ H2(X ;Z) | K(x) + 〈x, x〉 ≡ 0 mod 2 for all x ∈ H2(X ;Z)}.

Therefore, we can think of spinc structures on X as elements of the set Char(X). Under the
identification in equation (2), Char(X) is identified with the set m+ 2Zs. We write

(5) Char(Γ) = m+ 2Zs

when working in coordinates.
By considering the restriction of spinc structures on X to the boundary Y , one can ob-

tain a similar coordinate description of spinc(Y ), which is standard in the lattice homology

2This ordering is chosen for convenience, but is not essential. One could describe all of the constructions
in this paper without this choice.
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literature. Namely, there is a bijection

spinc(Y )
∼
−→

m+ 2Zs

2M Zs
(6)

where the quotient on the right is via the action by 2M Zs on m+2Zs given by (2Mx, k) 7→
k + 2Mx. We write

(7) spinc(Γ) =
m+ 2Zs

2M Zs

when working in coordinates. For a characteristic vector k ∈ Char(Γ), let [k] ∈ spinc(Γ)
denote its image in the quotient. Often we will think of [k] as the lattice {k+2Mx | x ∈ Zs},
which is a sublattice of Char(Γ).

Spinc structures in general have a natural Z /2Z conjugation action. For spinc structures
on X thought of as elements of Char(Γ), the conjugation action sends k ∈ m+ 2Zs to −k.
For spinc structures on Y thought of as elements of spinc(Γ), the conjugation action sends
[k]→ [−k].

There is also an action of H1(Y ;Z) (or equivalently H2(Y ;Z) via Poincaré duality) on
spinc(Y ). We describe this action in coordinates. First, note that there is an isomorphism

H1(Y ;Z) ∼= Zs /M Zs

sending an oriented meridian linking Lvi positively to the coset of the standard basis vector
ei. Like for spinc(Γ), for x ∈ Zs, we write [x] to denote its image in the quotient Zs /M Zs.
Given x ∈ Zs and k ∈ Char(Γ), the homology action is given by

(8) [x] · [k] = [k + 2x] ∈ spinc(Γ)

Note, the H1 action is free and transitive.
There is another realization of spinc(Γ) common in the literature, namely

(9) spinc(Γ) =
δ + 2Zs

2M Zs
.

The conjugation and homology actions using this definition are defined analogously:

(10)
[a] 7→ [−a],

[x] · [a] = [a+ 2x],

for a ∈ δ + 2Zs and x ∈ Zs. To relate these two definitions of spinc(Γ), first let

(11) u = (1, . . . , 1).

Note that Mu = m+ δ. Then, there is a bijection

(12) ψ :
δ + 2Zs

2MZs
∼
−→

m+ 2Zs

2MZs
, ψ([a]) = [a +Mu]

which commutes with the conjugation and homology actions. See also [GM21, Section 4.2],
in particular the discussion surrounding [GM21, Equation (36)]. Unless otherwise stated, by
spinc(Γ) we will mean the set in equation (7).

We now recall three moves on plumbing graphs called the type (A), (B), and (C) Neumann
moves, described in Figure 3. Figure 3 is to be interpreted as follows. A type (A) move
applied to a plumbing graph Γ at an edge e results in a new plumbing graph Γ′ which is
identical to Γ except the edge e is subdivided into two edges meeting at a new vertex which
is given a weight of −1 and the weights of the other two vertices bounding the original edge

7



e are both decreased by 1. The type (B) and (C) moves are similarly interpreted from the
figure.

• • •
m1−1

v1

−1

vs+1

m2−1

v2
Γ′ =

• •
m1

v1

m2

v2
Γ =

(a) Type (A) move.

• •
m1−1

v1

−1

vs+1
Γ′ =

•
m1

v1
Γ =

(b) Type (B) move.

Γ′ = Γ ⊔ •
vs+1

−1

Γ

(c) Type (C) move.

Figure 3. Two Neumann moves for negative definite plumbing graphs.

For plumbing graphs Γ and Γ′ related by one of the three moves in Figure 3, we use
the symbol ′ to denote data associated to Γ′, for instance m′, δ′, and M ′. When writing in
coordinates, we follow the convention that the ordering of the relevant vertices is as shown
in Figure 3.

To each Neumann move we associate bijections

α :
δ + 2Zs

2M Zs
−→

δ′ + 2Zs+1

2M ′ Zs+1 and β :
m+ 2Zs

2M Zs
−→

m′ + 2Zs+1

2M ′ Zs+1

between the spinc structures of the corresponding plumbing graphs, in terms of both identi-
fications (7) and (9).
Type (A)

α : α([a]) = [(a, 0)], β([k]) = [(k, 0) + (−1,−1, 0, . . . , 0, 1)](13)

Type (B)

α([a]) = [(a, 0) + (−1, 0, . . . , 0, 1)], β([k]) = [(k, 0) + (−1, 0, . . . , 0, 1)](14)

Type (C)

α([a]) = [(a, 0)], β([k]) = [(k,−1)](15)

These maps fit into the commutative square (16).

(16)

δ + 2Zs

2M Zs
m+ 2Zs

2M Zs

δ′ + 2Zs+1

2M ′ Zs+1

m′ + 2Zs+1

2M ′ Zs+1

ψ

α β

ψ

.

The following explains the relevance of the Neumann moves.
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Theorem 2.3 ([Neu81]). Let Γ and Γ′ be two negative definite plumbing trees. Then Y (Γ)
and Y (Γ′) are diffeomorphic if and only if Γ and Γ′ are related by a finite sequence of type
(A) and (B) Neumann moves.

Remark 2.4. The above theorem restricts to negative definite trees and therefore uses only
the type (A) and (B) moves. In Section 2.2, when discussing marked plumbing graphs that
yield manifolds with torus boundary, the type (C) move will also be relevant.

2.2. Plumbed knot complements. In this subsection, we describe an adaptation of the
previous subsection to the setting of plumbed knot complements.

A marked plumbing graph Γv0 is a plumbing graph with a distinguished, unweighted vertex
v0. We also require the graph to be a tree3. For marked plumbing graphs, we will always
index the vertices starting from 0 rather than 1, so that the 0-th vertex v0 is the marked one.
When illustrating marked plumbing graphs, we use a hollow circle to represent the marked
vertex.

Given a marked plumbing graph Γv0 , we define the ambient plumbing graph Γ := Γv0 \{v0}
to be the graph obtained from Γv0 by deleting v0 and all edges adjacent to v0. Given an
integer m0, we also define the surgered plumbing graph Γv0,m0 to be the graph obtained from
Γv0 by giving v0 the weight m0. See Figure 4 for an example.

•

•

•

•

−3

−6

−8

−10

(a) Γv0

•

•

•

•

−3

−6

−8

−10

(b) Γ

••

•

•

•

−4−3

−6

−8

−10

(c) Γv0,m0
with m0 = −4.

Figure 4. A marked plumbing and its corresponding ambient and surgered plumb-
ing graphs.

Fix a marked plumbing graph Γv0 with s+1 vertices. Denote its degree vector by δ ∈ Zs+1.
We define three vectors λ, δamb, and m associated to the ambient plumbing graph Γ. First,
set λ ∈ Zs to be the vector

(17) λi =

{
1 if vi is adjacent to v0,

0 otherwise.

Letting δamb ∈ Zs denote the degree vector of the ambient plumbing graph Γ, we have

δ = (δ0, 0, . . . , 0) + (0, δamb + λ).

We also denote by m = (m1, . . . , ms) ∈ Zs the weight vector of ambient plumbing graph Γ.
Consider the adjacency matrix Mv0 of Γv0 , where the diagonal entry corresponding to v0

is left unspecified; that is,

Mv0 =

(
∗ λ⊺

λ M

)

3One can generalize to forests, but this requires an extra normalization in the main construction of this
paper.
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where M is the adjacency matrix of Γ. We say Γv0 is negative definite if M is negative
definite.

Given a marked plumbing graph Γv0 , we associate two oriented 3-manifolds. As in the
constructions in Section 2.1, we begin by building a link L = L(Γv0), except now the com-
ponent L0 corresponding to v0 does not have a framing. All other components have framing
equal to the framing of the corresponding vertex of the plumbing. The ambient 3-manifold
Y is obtained by Dehn surgery on L \ L0, i.e., Y = Y (Γ). Define a knot K ⊂ Y to be the
image of the unknot L0 ⊂ S3 after performing Dehn surgery along L \ L0. We also define
Yv0 to be the complement of a tubular neighborhood of K in Y with a specified (unoriented)
curve µK ⊂ ∂Yv0 given by a meridian of K.

Definition 2.5. An oriented 3-manifold with torus boundary together with a specified curve
γ on its boundary is called a marked plumbed knot complement if it is diffeomorphic to Yv0
for some marked plumbing graph Γv0 such that the diffeomorphism maps γ to µK. If Γv0 can
be chosen to be negative definite, we say Yv0 is negative definite.

The vector λ described above has the following cohomological interpretation. Consider
the 4-manifold X = X(Γ) constructed from the ambient plumbing graph Γ by attaching
2-handles to the 4-ball D4 along the framed link L \ L0. Let D2

0 be a properly embedded
2-disk in X obtained by taking a disk bounding L0 and pushing it into D4. In terms of the
identification in (2), the Poincaré dual of this disk is precisely λ as defined in equation (17).

Next, we review relative spinc structures on the manifold Yv0 with torus boundary. We use
Turaev’s identification of relative spinc structures with smooth Euler structures (see [Tur02]).
A smooth Euler structure on Yv0 is an equivalence class of nowhere-vanishing vector field
on Yv0 that points outward along ∂Yv0 . The equivalence relation is given by declaring two
such vector fields to be equivalent if there exists some x ∈ Yv0 on which their restrictions to
Yv0 \ {x} are homotopic through nowhere-vanishing vector fields that point outward along
the boundary. We will let spinc(Yv0) denote the set of smooth Euler structures on Yv0 .

Turaev [Tur02, Chapter VI] shows how a surgery presentation of a 3-manifold leads to an
identification of spinc(Yv0) with a certain lattice (or quotient lattice). Applying this to the
surgery presentation of Yv0 given by the framed link L, one sees that spinc(Yv0) is identified
with the following set

(18)
δ + (1, . . . , 1) + 2Zs+1

2Mv0(0× Zs)
.

Note that the expression Mv0(0×Zs) is well-defined even though the entry labeled ∗ in Mv0

is unspecified because Mv0(0, x) = (λ⊺x,Mx) ∈ Zs+1 does not depend on ∗. The elements of
δ + (1, . . . , 1) + 2Zs+1 are called charges in [Tur02, Section 2.2].

The set spinc(Yv0) comes equipped with a Z /2Z conjugation action and an H1(Yv0 ;Z)
action. In terms of (18), these actions are given by

[b] 7→ [−b + (0, 2, 2, . . . , 2)],

[x] · [b] = [b+ 2x],

respectively, for b a charge and x ∈ Zs+1. Here [x] is thought of as an element of H1(Yv0 ;Z)
under the isomorphism H1(Yv0 ;Z)

∼= Zs+1 /Mv0(0 × Zs) given by sending the i-th meridian
of the link component Li of L to the coset of the standard basis vector ei.
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For consistency with the closed 3-manifold setting, we shift the numerator of (18) by
−(0, 1, . . . , 1) so that the conjugation action becomes multiplication by −1. With this shift
in place, we make the following definition.

Definition 2.6. The set of relative spinc structures of the marked plumbing graph Γv0 ,
denoted spinc(Γv0), is defined to be

(19) spinc(Γv0) :=
δ̂ + 2Zs+1

2Mv0(0× Zs)
.

where δ̂ = δ + e0.

The conjugation and homology actions on spinc(Γv0) are now given by

(20)
[b] 7→ [−b],

[x] · [b] = [b+ 2x],

respectively, for b ∈ δ̂ + 2Zs+1 and x ∈ Zs+1.

Remark 2.7. In [GM21, Equation (73)], the set of relative spinc structures on Yv0 is identified
with

(21)
δ + 2Zs+1

2Mv0(0× Zs)
.

However, conjugation is not given by negating representatives in this identification. For
instance, the solid torus, which has no self-conjugate relative spinc structures, can be repre-
sented by the following marked plumbing

•
−1

while if using (21) we would have [(−1, 1)] = [(1,−1)]. One may verify that conjugation on
(21) is given by [a] 7→ [−a + (−2, 0, . . . , 0)]. Moreover, in [GM21, Section 6.2], the set of
labels [a] depends on the boundary parametrization (the framing m0 of v0), whereas the set
of relative spinc structures does not.

We now relate spinc(Yv0) to spin
c(Y ), where Y = Y (Γv0\{v0}). The gluing formula [Tur02,

Ch. VI] applied to performing ∞-surgery on the component L0 provides a map

spinc(Yv0)× spinc(S1 ×D2)→ spinc(Y ).

Choosing an orientation on the core of S1 ×D2 (equivalently, an orientation of L0) fixes an
identification of spinc(S1 × D2) with the odd integers 1 + 2Z, where conjugation is given
simply by negation. This provides a surjective map

ωn : spinc(Yv0)→ spinc(Y )

for each n ∈ 1 + 2Z.

Remark 2.8. While ωn is defined for every odd integer n, for our main construction in Section
4.4 we will consider only n = ±1. We note that ω±1 correspond to the two maps in [OS11,
Section 2.2] given by picking an orientation on K.

11



• •
v0

−1

vs+1

m1−1

v′1

Γ′
v0

=

•
v0

m1

v1
Γv0 =

(a) Type (A0) move.

•
v0

−1

vs+1
Γ′
v0

=

v0
Γv0 =

(b) Type (B0) move.

Figure 5. Two Neumann moves involving the marked vertex for negative definite
marked plumbing graphs.

We describe ωn in terms of the coordinate identifications (19) and (7). First, for each
x ∈ Zs+1, let

(22) x 7→ x|Γ

denote the projection Zs+1 ։ Zs given by forgetting the v0-th entry. Then, in coordinates,
we have

(23) ωn : spinc(Γv0)→ spinc(Γ), ωn([b]) = [b|Γ + n(λ+Mu)].

For those who prefer to use convention (9), we define the following map,

(24) pn : spinc(Γv0)→
δamb + 2Zs

2M Zs
, pn([b]) = [b|Γ + nλ].

We then have the below commutative diagram.

(25)

spinc(Γv0)

δamb + 2Zs

2M Zs
spinc(Γ)

pn ωn

∼

Next, we describe Neumann moves in the setting of marked plumbing graphs. The type (A)
and (B) Neumann moves from Section 2.1 still apply. We also have two additional Neumann
moves, called (A0) and (B0), that involve the marked vertex v0. They are described in Figure
5. The following is a consequence of [Neu81, Theorem 3.2]; see also [Jac21, Section 1] and
[NC24, Section 2].

Theorem 2.9 ([Neu81], [Jac21], [NC24]). Let Γv0 and Γ′
v0 be two negative definite marked

plumbing graphs. Then the marked plumbed knot complements described by Γv0 and Γ′
v0 are

diffeomorphic via a diffeomorphism identifying their specified boundary curves if and only if
Γv0 can be transformed into Γ′

v0
by a finite sequence of the type (A), (A0), (B), and (B0)

moves.

The type (C) move does not appear in the above theorem because we are restricting to the
case that our marked plumbing graphs are trees, but it does appear when considering how
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the ambient plumbing graphs transform. The (A), (A0), (B), (B0) moves on Γv0 result in
the (A), (B), (B), (C) on Γ, respectively. For later use, we now record how the intersection
forms of Γ and Γ′ transform under Neumann moves.

M ′ (A)=
(
M 0

0 0

)
+




−1 −1 0 · · · 0 1

−1 −1 0 · · · 0 1

0 0 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 · · · 0 0

1 1 0 · · · 0 −1



, M ′ (A0)=

(
M 0

0 0

)
+




−1 0 · · · 0 1

0 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · 0 0

1 0 · · · 0 −1




M ′ (B)
=
(
M 0

0 0

)
+




−1 0 · · · 0 1

0 0 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · 0 0

1 0 · · · 0 −1


, M ′ (B0)

=
(
M 0

0 0

)
+
(
0 0

0 −1

)

(26)

For a pair of marked plumbing graphs Γv0 and Γ′
v0

related by one of the four Neumann
moves, we define maps

αrel : spin
c(Γv0)→ spinc(Γ′

v0
)

(A) αrel([b]) = [(b, 0)]

(A0) αrel([b]) = [(b, 0)]

(B) αrel([b]) = [(b, 0) + (0, 1, 0, . . . , 0,−1)]

(B0) αrel([b]) = [(b, 0) + (1, 0, . . . , 0,−1)]

(27)

For each of the (A), (A0), (B), (B0) moves on the marked plumbing, there are α and β maps
on the spinc structures of the corresponding ambient plumbing given by (13), (14), (14),
(15), respectively. We summarize the relationship between these maps in the commutative
diagram (28). All maps except pn and ωn are isomorphisms and commute with conjugation,
and we have pn([−b]) = −p−n([b]) and ωn([−b]) = −ω−n([b]).

(28)

spinc(Γ′
v0)

spinc(Γv0)

δ′amb + 2Zs+1

2M Zs+1

m′ + 2Zs+1

2M ′ Zs+1

δamb + 2Zs

2M Zs
m+ 2Zs

2M Zs

pn ωn

pn

αrel

ψ

α

ψ

ωn

β
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3. Weighted graded roots for closed plumbed 3-manifolds

In this section we summarize the main construction in [AJK23], which takes the form of
a weighted graded root.

3.1. Graded roots. We begin by recalling the definition of a graded root from [Né05, Def-
inition 3.2].

Definition 3.1. A graded root consists of

• an infinite tree R, with vertices and edges denoted V and E respectively, and
• a grading function χ : V → D where D ⊂ Q is of the form D = nZ+∆ for some
n ∈ Z and ∆ ∈ Q.

We write an edge with endpoints u and v as [u, v] ∈ E . The following properties must also
be satisfied.

(1) χ(u)− χ(v) = ±n for any [u, v] ∈ E .
(2) χ(u) < max{χ(v), χ(w)} for any [u, v], [u, w] ∈ E with v 6= w.
(3) Each preimage χ−1(i) for i ∈ D is finite.
(4) χ is bounded above and |χ−1(i)| = 1 for all i ∈ D with i≪ 0.

An isomorphism of graded roots is an isomorphism of the underlying graphs that respects
the grading. For r ∈ Q, let R{r} denote the graded root with the same underlying tree
and whose grading function χ{r} is obtained from χ by shifting up by r; that is, χ{r}(v) =
χ(v) + r.

The graded roots considered in [Né05, AJK23] differ slightly from the above, in that item
(2) is replaced with χ(u) > min{χ(v), χ(w)} for any [u, v], [u, w] ∈ E with v 6= w, and item
(4) is replaced with the condition that χ is bounded below and |χ−1(i)| = 1 for i ∈ D with
i≫ 0. When the distinction is needed, we refer to graded roots in Definition 3.1 as downward
pointing and those with items (2) and (4) modified as described above as upward pointing.
One can be transformed into the other by negating the grading function χ.

In the present paper, we work with downward pointing graded roots whose grading function
χ takes values in 2Z+∆ for some ∆ ∈ Q. The goal of this section is in part to clarify the
relationship between these conventions appearing in the literature; see also [DM19, Section
2.3].

Let Γ be a negative definite plumbing tree with s vertices labeled v1, . . . , vs, weight vector
m = (m1, . . . , ms) ∈ Zs, degree vector δ = (δ1, . . . , δs) ∈ Zs, adjacency matrix M , and
corresponding 3-manifold Y . For K ∈ Char(Γ), set

(29) hU (K) =
K2 + s

4
,

where K2 is computed as in equation (4).
Let k ∈ m+ 2Zs be a representative for a spinc structure [k] on Y . For h ∈ 2Z+hU(k),

define the superlevel set

(30) Sh(Γ, [k]) = {K ∈ [k] | hU(K) ≥ h}.

These form the 0-cells of a 1-dimensional CW complex, denoted Sh(Γ, [k]), in which two
0-cells K,K ′ are connected by an edge if K − K ′ = ±2Mei for some 1 ≤ i ≤ s. Let
π0(Sh(Γ, [k])) denote the connected components of this CW complex. Since M is negative
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definite, hU may be viewed as a negative definite quadratic on [k]; in particular, hU has a
maximal nonempty superlevel set.

Remark 3.2. If k′ ∈ [k] is another representative, then hU(k
′) − hU (k) ∈ 2Z, so that

2Z+hU(k) = 2Z+hU(k
′).

Definition 3.3. The (downward pointing) graded root associated to (Γ, [k]), denotedR(Γ, [k]),
is the graph such that:

• Vertices of R(Γ, [k]) are connected components of the superlevel sets over all h ∈
2Z+hU(k):

V(R(Γ, [k])) =
⋃

h∈2Z+hU (k)

π0(Sh(Γ, [k])).

The grading of a vertex C ∈ π0(Sh(Γ, [k])) is defined to be h.
• Two vertices of the graded root, represented by connected components C ⊂ Sh(Γ; [k])
and C ′ ⊂ Sh′(Γ; [k]), are connected by an edge in R(Γ, [k]) if h′ = h− 2 and C ⊂ C ′.

Remark 3.4. Elsewhere in the literature [DM19] the graded root as described above also
includes an overall grading shift of −2.

We now summarize the translation between the above downward pointing graded root and
the upward pointing one appearing in [Né05, AJK23]. For the latter, one starts with a spinc

representative k ∈ Char(Γ) and considers the function

χk : Z
s → Z

given by χk(x) = −1
2
(k⊺x + x⊺Mx). Since M is negative definite, χk is a positive definite

quadratic. One then considers sublevel sets χ−1
k ((−∞, i]) for i ∈ Z, each of which is given

the structure of a 1-dimensional CW complex with vertices {x ∈ Zs | χk(x) ≤ i} and two
vertices x, x′ ∈ χ−1

k ((−∞, i]) connected by an edge if x − x′ = ±ei for some 1 ≤ i ≤ s.
The graded root in [Né05] is then defined to have vertices given by connected components
of all these sublevel sets, with two components C ⊂ χ−1

k ((−∞, i]) and C ′ ⊂ χ−1
k ((−∞, i′])

connected by an edge if i′ = i + 1 and C ⊂ C ′. The grading of a vertex C ⊂ χ−1
k ((−∞, i])

is defined to be 2i. We denote this graph by R∗(Γ, k). Since χk is negative definite and one
considers sublevel sets, R∗(Γ, k) has a minimal grading and is an upward pointing graded
root. As explained in [Né05, Proposition 4.4], if k′ = k + 2My is another representative of
[k], then there is an isomorphism

R∗(Γ, k′) ∼= R∗(Γ, k){−χk(y)}.

We normalize so that the minimal grading is

(31) −max
K∈[k]

hU(K)

and denote the resulting upward pointing graded root by R∗(Γ, [k]). Let −R∗(Γ, [k]) denote
the downward pointing graded root obtained by negating all the gradings in R∗(Γ, [k]).

In contrast, the present paper follows the conventions in [OSS14a, NC24]. Rather than
picking a representative of a spinc structure and working with the lattice Zs, one works with
the entire set [k] ⊂ Char(Γ) as the lattice. For a fixed choice of representative k ∈ [k],
there is an identification Zs ↔ [k] where a point x ∈ Zs corresponds to the characteristic
vector K = k + 2Mx. With this translation x↔ K = k + 2Mx, an edge connecting x and
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x′ = x± ei in Zs becomes an edge connecting K = k + 2Mx and K ′ = K ± 2Mei in [k]. A
straightforward computation reveals

−2χk(x) = hU(K)− hU(k),

so that there is a isomorphism R(Γ, [k]) ∼= −R∗(Γ, [k]).
We end this subsection by summarizing the relationship between graded roots and Hee-

gaard Floer homology. Let Z[U ] denote the graded polynomial ring with U in degree −2.
A (downward or upward pointing) graded root (R, χ) determines a graded Z[U ]-module
H(R, χ) as follows. Suppose χ takes values in nZ+∆. As an abelian group, H(R, χ) is
freely generated by vertices of R, with gradings given by χ. For v ∈ V(R) with χ(v) = i,
let {u1, . . . , uℓ} denote the set of vertices in χ

−1(i− |n|) and which are connected to v by an
edge, and set U · v = u1 + · · ·+ uℓ (note that if R is downward pointing, then ℓ = 1). For a
downward (resp. upward) pointing graded root (R, χ), H(R, χ) is precisely the homological
degree zero part of lattice homology (resp. cohomology).

Theorem 3.5 ([Né08]). If Γ is almost rational, then there are isomorphisms of graded Z[U ]-
modules

H(R∗(Γ, [k])) ∼= HF+(−Y (Γ), [k]),

H(R(Γ, [k]){−2}) ∼= HF−(Y (Γ), [k]),

where in the first isomorphism, −Y (Γ) denotes Y (Γ) with reversed orientation.

Remark 3.6. Although in the present paper we focus on (bi)graded roots, which encode the
homological degree zero part of (knot) lattice homology, a version of the above isomorphisms
is known to hold in much greater generality. There is a completed version of lattice homol-
ogy, built over F[[U ]] where F = Z /2Z, which can be defined for not necessarily negative
definite plumbing trees [OSS14b]. Zemke [Zem21] has established the equivalence between
this completed lattice homology and the corresponding completed version of HF−.

3.2. BPS q-series for closed plumbed 3-manifolds. In this section, we review the BPS
q-series for negative definite plumbings from [GPPV20]; see also [GM21, Section 4.3].

Let Γ be a negative definite plumbing tree with s vertices. We follow the conventions
established in Section 2.1. Let a ∈ δ + 2Zs be a representative of a spinc structure [a] on
Y (Γ), using the convention (9). Define

(32) Ẑa(q) := q−
3s+

∑
v mv

4 · v.p.

∮

|zv|=1

∏

v∈V(Γ)

dzv
2πizv

(
zv − z

−1
v

)2−δv
·Θ−M

a (z),

where

(33) Θ−M
a (z) :=

∑

ℓ∈a+2M Zs

q−
ℓ⊺M−1ℓ

4

∏

v∈V(Γ)

zℓvv .

In (32), v.p. indicates principal value, the average of the integrals over |zv| = 1 + ǫ and
|zv| = 1− ǫ for small ǫ > 0. Concretely, the integral is

1

2




∮

|zv|=1−ε

∏

v∈V(Γ)

dzv
2πizv

(
zv − z

−1
v

)2−δv
Θ−M
a (z) +

∮

|zv|=1+ε

∏

v∈V(Γ)

dzv
2πizv

(
zv − z

−1
v

)2−δv
Θ−M
a (z)
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where for δv ≥ 3 the term (zv − z
−1
v )

2−δv is expanded as

(34)

(
−
∑

i≥0

z2i+1
v

)δv−2

if |zv| < 1 and

(∑

i≥0

z−(2i+1)
v

)δv−2

if |zv| > 1.

Applying

∮

|z|=1

dz

2πiz
to a Laurent series in z or in z−1 returns the constant term of the

series. Consequently, the integral in (32) may be computed by taking one-half the sum of
the two expansions in (34) (which is a bi-infinite series in the variables zv for v ∈ V(Γ)),
multiplying with Θ−M

a (z), and recording the constant term. That M is negative definite
guarantees that the result is a well-defined Laurent series in q. For a further discussion we
refer the reader to [AJK23, Section 7]. From now on we will omit v.p. and the domain of
integration from the notation.

Unifying the graded root and Ẑ required an identification of the lattices used to define
each theory. Namely, in (32), the sum is over a + 2M Zs = [a], whereas lattice homology
is defined in terms of a sub-lattice of characteristic vectors Char(Γ). In equation (12) we
identify [a] with [a + Mu] ∈ spinc(Γ). At the level of lattices, after translating between
characteristic vectors and Zs as described in Section 3.1, the identification used in [AJK23]
is

a+ 2M Zs ←→ a+Mu + 2M Zs

ℓ←→ K = ℓ+Mu.

This is not canonical: any odd integer n provides an identification ℓ↔ K = ℓ+nMu. Note
that, at the level of spinc structures, [a +Mu] = [a + nMu] for any odd n. However, for
the main constructions of this paper to be invariant under Neumann moves, this odd integer
must be ±1. To emphasize this restriction, we denote by ε, rather than n, a fixed choice of
±1. The lattices are then identified via

a+ 2M Zs ←→ a+Mu + 2M Zs

ℓ←→ K = ℓ+ εMu.
(35)

With the identification (35) at hand, if we set k = a +Mu, we can rewrite (32) as

(36) Ẑa(q) = q−
3s+

∑
mv

4

∑

K∈[k]

ŴΓ(K)q−
(K−εMu)2

4

The coefficient ŴΓ(K), which depends on the choice of ε, will be discussed in the next
subsection.

3.3. The weighted graded root for closed plumbed 3-manifolds. The main construc-
tion of [AJK23] introduces additional weights on the graded root. These weights depend on
a choice of an admissible family of functions, which we review now.

Definition 3.7 ([AJK23, Definition 4.1]). Let R be a commutative ring. A family of func-
tions W = {Wn : Z→ R}n≥0 is called admissible if

(AD1) W2(0) = 1 and W2(i) = 0 for all i 6= 0.
17



(AD2) For all n ≥ 1 and i ∈ Z,

Wn(i+ 1)−Wn(i− 1) = Wn−1(i).

Remark 3.8. In [AJK23] an admissible family was denoted by F . Here we use a different
notation to avoid confusion with the Gukov-Manolescu series FK .

Remark 3.9. We will actually only use the value ofWn at even numbers (resp. odd numbers)
when n is even (resp. odd), so we could have defined an admissible family as a family of
functions W = {Wn : 2Z+n → R}n≥0 satisfying the two conditions above, and this would
not change any of the discussions in this paper.

As noted in [AJK23, Equation (15)], conditions (AD1) and (AD2) determine W1 and W0:

(37) W1(i) =





1 if i = −1,

−1 if i = 1,

0 otherwise.

W0(i) =





1 if i = ±2,

−2 if i = 0,

0 otherwise.

Let us briefly discuss the above definition. In computing Ẑ (for both closed plumbed
manifolds and for plumbed knot complements) one encounters terms of the form (z−z−1)2−n,

n ≥ 0. When n > 2, such terms are expanded as a bi-infinite power series, and for Ẑ the
principal value dictates how to perform the expansion (see [AJK23, Section 7]). Such an
expansion is not unique but is essentially controlled by a choice of admissible family, as
follows.

Fix an admissible family of functions W = {Wn : Z→ R}n≥0. Let R[[z, z−1]] denote the
set of bi-infinite power series in a variable z,

R[[z, z−1]] =

{∑

j∈Z

cjz
j | cj ∈ R

}
.

In general, one cannot multiply two elements of R[[z, z−1]]. However, R[[z, z−1]] is naturally
a module over the ring of Laurent polynomials R[z, z−1]. For n ≥ 0, set

(38) (z − z−1)2−n =
∑

j∈Z

Wn(−j)z
j ∈ R[[z, z−1]].

The defining properties of an admissible family of functions implies that the above definition
is coherent, in the following sense. First, property (AD1) and equation (37) imply that if
0 ≤ n ≤ 2 then (38) agrees with the usual expansion of (z−z−1)2−n as a Laurent polynomial.
Moreover, property (AD2) implies that if 0 ≤ n′ ≤ n then

(z − z−1)n
′

· (z − z−1)2−n = (z − z−1)2−(n−n′).

Note that the first term on the left-hand side of the above equality is a Laurent polynomial,
while the second term as well as the right-hand side are, in general, elements of R[[z, z−1]].
In particular, if n ≥ 2, then (z− z−1)n−2 · (z− z−1)2−n = 1, so that (z− z−1)2−n, interpreted
as in (38), provides an “inverse” to (z − z−1)n−2 as an element of R[[z, z−1]].
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For x ∈ Zs, let xi denote its i-th coordinate. Given an admissible family W and a fixed
ε ∈ {±1}, we define WΓ : Char(Γ)→R by

(39) WΓ(K) =

s∏

i=1

Wδi((K − εMu)i)

where u = (1, . . . , 1) ∈ Zs as defined in (11). Recall that for a spinc structure [k] ∈ spinc(Γ),
a vertex of the graded root R(Γ, [k]) corresponds to a connected component C of some
superlevel set. Its weight is defined to be

(40) WΓ,[k](C; q, t) = q−
3s+

∑
mv

4 t−
εu⊺Mu

2

∑

K∈C∩[k]

WΓ(K)q−
(K−εMu)2

4 t
K⊺u
2

where on the left-hand side we include [k] in the subscript to indicate that we are working
within the sub-lattice of Char(Γ) determined by the chosen spinc structure [k], and in the
sum on the right-hand side we write K ∈ C ∩ [k] to emphasize that the sum is over vertices
(0-cells) of C. Note that C has finitely many vertices since it is compact. We do not include
the choice of ε in the notation in the left-hand sides of (39) and (40) to avoid clutter. The
graded root equipped with these weights is called the weighted graded root and denoted by

Rε(Γ, [k],W ).

Let us explain the origin of the above weights. In (36) the coefficients ŴΓ(K) can be
computed via (39) using the admissible family

(41) Ŵ =
{
Ŵn : Z→ Q

}

as defined in [AJK23, Definition 7.1] (denoted by F̂ therein). Each Ŵn is obtained from

expanding (z − z−1)
2−n

as a bi-infinite power series in a specific way. Namely, this expansion
is one-half the sum of the two expansions in (34); see also [AJK23, Equations (33) and (34)].
Using the identification of lattices ℓ↔ K = ℓ+ εMu as in (35), the contribution of ℓ to the
integral in (32) is precisely

ŴΓ(K)q−
3s+

∑
mv

4
−

(K−εMu)2

4 ,

where [k] = [a +Mu].

The variable t in (40) was introduced in [AJK23]. When the admissible family is Ŵ , this

gives a two-variable4 refinement of Ẑ, denoted ̂̂Z in [AJK23, Section 7.3]. This two-variable
series can also be defined by modifying the integrand in (32):

(42) ̂̂Za(q, t) := q−
3s+

∑
v mv

4 ·

∮ ∏

v∈V(Γ)

dzv
2πizv

(
t−1/2zv − t

1/2z−1
v

)2−δv
·Θ−M

a (z).

Negative powers of t−1/2zv − t
1/2z−1

v are interpreted according to (38) via the substitution

z 7→ t−1/2zv and with respect to the admissible family Ŵ . The integral is interpreted as
recording the coefficient of the constant term of the integrand, as discussed in Section 3.2.
Therefore, the contribution to the t-power for a fixed K ∈ [k] is precisely

−εu⊺Mu+K⊺u

2
.

4To clarify, the result is a Laurent series in q whose coefficients are Laurent polynomials in t.
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More generally, for any admissible family W , consider

(43) q−
3s+

∑
v mv

4 ·

∮ ∏

v∈V(Γ)

dzv
2πizv

(
t−1/2zv − t

1/2z−1
v

)2−δv
·Θ−M

a (z).

As for ̂̂Z, in the above formula negative powers of t−1/2zv − t
1/2z−1

v are expanded according
to (38) with respect toW , and the integral records the constant term. The result is precisely
the two-variable series defined in [AJK23, Section 6]. Equivalently, as in [AJK23, Remark
6.5], (43) is equal to

(44) q−
3s+

∑
v mv

4 t−
εu⊺Mu

2

∑

K∈[k]

WΓ(K)q−
(K−εMu)2

4 t
K⊺u
2 .

Note that this two-variable series does not depend on the choice of ε.
When ε = 1, the downward pointing weighted grading root R1(Γ, [h],W ) is obtained from

the upward pointing one introduced in [AJK23] by negating gradings. To see this, using the
translation x↔ K = k + 2Mx described in Section 3.1, one can see that for ε = 1 we have

−
3s+

∑
mv + (K −Mu)2

4
= −

3s +
∑
mv + (k −Mu)2

4
+ 2χk(x) + x⊺Mu,

K⊺u− u⊺Mu

2
=
k⊺u− u⊺Mu

2
+ x⊺Mu.

(45)

Therefore the contribution of K to the weight (40) is equal to the contribution of x in
[AJK23]; see in particular [AJK23, Equation (13), Notation 5.1, and Definition 5.2].

Theorem 3.10 ([AJK23, Theorem 5.9]). Let W be an admissible family of functions. Sup-
pose Γ and Γ′ are negative definite plumbing trees related by a type (A) or type (B) Neumann
move. Let β : spinc(Γ) → spinc(Γ′) denote the corresponding bijection as in (13) and (14),
and let [k] ∈ spinc(Γ). Then the weighted graded roots Rε(Γ, [k],W ) and Rε(Γ

′, [β(k)],W )
are isomorphic.

For ε = 1 Theorem 3.10 follows from the above discussion and [AJK23, Theorem 5.9].
Since the proofs of invariance in the two cases ε = ±1 are essentially identical, rather than
treating the case ε = −1 separately we will provide a proof for a general ε.

To begin, we define how the lattices will transform under Neumann moves. These maps
are lifts of the maps β in (13), (14), (15) and will also be used later in Section 4.5. To that
end, we define maps β± : m+ 2Zs → m′ + 2Zs+1 as follows:

Type (A)

β±(k) = (k, 0)± (−1,−1, 0, . . . , 0, 1)(46)

Type (B)

β±(k) = (k, 0)± (−1, 0, . . . , 0, 1)(47)

Type (C)

β±(k) = (k,±1)(48)

We note that while we record the maps β± for the Type (C) move, as in Remark 2.4 it will
only be relevant in Section 4.3 when considering marked plumbing graphs.
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Lemma 3.11. For negative definite plumbing trees Γ and Γ′ related by a type (A) or (B)
Neumann move, the corresponding map β± from (46) and (47) induces an isomorphism of
graded roots R(Γ, [k]) ∼= R(Γ′, [k′]).

Proof. Let K ∈ Char(Γ) and set K ′ = β±(K). We first verify that in all cases, hU(K
′) =

hU(K), so that β± restricts to a map Sh(Γ, [k])→ Sh(Γ
′, [k′]), for all h ∈ hU(k) + 2Z. Note

that this is equivalent to (K ′)⊺(M ′)−1K ′ = K⊺M−1K − 1.
For the type (A) move, if M−1K = x = (x1, x2, . . . , xs), then it follows from (26) that

M ′(x, x1 + x2 ∓ 1) = K ′. Then

(K ′)
⊺
(M ′)−1K ′ = [(K, 0)± (−1,−1, 0, . . . , 0, 1)]⊺(x, x1 + x2 ∓ 1) = K⊺M−1K − 1.

For the type (B) move, if M−1K = x = (x1, . . . , xs), then from (26) we see that M ′(x, x1 ∓
1) = K ′. Then

(K ′)
⊺
(M ′)−1K ′ = [(K, 0)± (−1, 0, . . . , 0, 1)]⊺(x, x1 ∓ 1) = K⊺M−1K − 1,

which verifies hU(K
′) = hU (K).

After performing the translation explained in Section 3.1, one of β+ or β− is equal to
the map in [Né05, Proposition 4.6], [Né08, Proposition 3.4.2], which is shown to induce an
isomorphism of graded roots. However, β+(K) and β−(K) are connected by an edge in
Sh(Γ

′, [k′]) since β−(K) = β+(K) + 2M ′es+1. Therefore β+ and β− induce (equal) isomor-
phisms of graded roots.

�

Proof of Theorem 3.10. Fix h ∈ hU(k) + 2Z. For a connected component C ⊂ Sh(Γ, [k]),
let C ′ ⊂ Sh(Γ, [k]) be the corresponding component of Sh(Γ

′, [k′]) under the isomorphism
in Lemma 3.11. Precisely, C ′ is the connected component which contains β±(K) for any
K ∈ C. For the type (A) move we will use the map βε from (46) corresponding to our fixed
ε ∈ {±1}, while for the type (B) move we will use both maps β± from (47).

Let us address the type (A) move. For K ′ ∈ Char(Γ′), K ′ − εM ′u = K ′ − ε(Mu, 0) −
ε(−1,−1, 0, . . . , 0, 1). Since δ′s+1 = 2, property (AD1) implies that WΓ′(K ′) = 0 if K ′

s+1 6= ε.
IfK ′

s+1 = ε, then by setting K = (K ′
1+ε,K

′
2+ε,K

′
3, . . . , K

′
s) ∈ Char(Γ) we have βε(K) = K ′.

Therefore only vertices in the image of βε contribute to WΓ′,[k′](C
′; q, t). The contributions

of K and K ′ are equal because

WΓ′(K ′) =
s+1∏

i=1

Wδ′i
((K ′ − εM ′u)i) =

s∏

i=1

Wδi((K − εMu)i) ·W2(0) = WΓ(K),

(K ′)
⊺
u = K⊺u− ε,

εu⊺(M ′)u = εu⊺Mu − ε,

3(s+ 1) +
∑

v∈V(Γ′)

m′
v = 3s+

∑

v∈V(Γ)

mv,

(K ′ − εM ′u)2 = (K − εMu)2,

which completes the proof in the type (A) case.
Let us now address the type (B) move. For K ′ ∈ Char(Γ′), K ′ − εM ′u = K ′ − ε(Mu, 0).

Since δ′s+1 = 1, from (37) we see that WΓ′(K ′) = 0 if K ′
s+1 6= ±1. If K

′
s+1 = ±1, then K

′ is
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in the image of β±:

K ′ =

{
β+(K

′
1 + 1, K ′

2, . . . , K
′
s) if K ′

s+1 = 1,

β−(K
′
1 − 1, K ′

2, . . . , K
′
s) if K ′

s+1 = −1,

so only vertices in the image of β± contribute to the weight. For K ∈ Sh(Γ, [k]), we set

K̃ = K − εMu. Then, using (AD2) and (37), we have

WΓ′(β−(K)) +WΓ′(β+(K))

=

s+1∏

i=1

Wδ′i
(((K̃, 0) + (1, 0, . . . , 0,−1))i) +

s+1∏

i=1

Wδ′i
(((K̃, 0) + (−1, 0, . . . , 0, 1))i)

= Wδ1+1(K̃1 + 1)W1(−1)

s∏

i=2

Wδi(K̃i) +Wδ1+1(K̃1 − 1)W1(1)

s∏

i=2

Wδi(K̃i)

=
[
Wδ1+1(K̃1 + 1)−Wδ1+1(K̃1 − 1)

] s∏

i=2

Wδi(K̃i)

= WΓ(K).

We also have

(β±(K)− εM ′u)
2
= (K − εMu)2 − 1,

3(s+ 1) +
∑

v∈V(Γ′)

m′
v = 3s+

∑

v∈V(Γ)

mv + 1,

(β±(K))⊺u− εu⊺M ′u = K⊺u− εu⊺Mu,

and it follows that WΓ,[k](C; q, t) = WΓ′,[k′](C
′; q, t). �

3.4. Conjugation of spinc structures revisited. In this section we analyze the effect of
spinc conjugation on the weighted graded root. We begin by recalling the following property
of an admissible family of fuctions W , introduced in [AJK23, Section 8]:

(AD3) Wn(−i) = (−1)nWn(i) for all n ≥ 0 and i ∈ Z .

While Ŵ satisfies (AD3), not all admissible families do (see, for example, the admissible fam-

ilies F̂± from [AJK23, Definition 7.2]). As discussed in [AJK23, Example 8.4], the weighted
graded root is not invariant under spinc conjugation. However, we have the following result,
which may be viewed as a refinement of [AJK23, Proposition 8.1].

Proposition 3.12. Let W be an admissible family of functions which satisfies (AD3). For
any negative definite plumbing tree Γ and spinc structure [k] ∈ spinc(Γ), R−ε(Γ, [−k],W ) is
obtained from Rε(Γ, [k],W ) by the change of variables t 7→ t−1.

Proof. Consider the involution ι of Char(Γ) given by ι(K) = −K. We have hU(K) =
hU(ι(K)), so that ι restricts to a map of superlevel sets ι : Sh(Γ, [k])→ Sh(Γ, [−k]), which is
evidently an isomorphism of 1-dimensional CW complexes. Thus ι induces an isomorphism
of graded roots ι∗ : R(Γ, [k])

∼
−→ R(Γ, [−k]), and we will show ι∗ respects the weights.
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We have
∏

v∈V(Γ)

Wδv((−K + εMu)v) = (−1)
∑

v δv
∏

v∈V(Γ)

Wδv((K − εMu)v) =
∏

v∈V(Γ)

Wδv((K − εMu)v)

where the first equality follows from property (AD3), and the second equality follows from
the fact that the sum of degrees in any graph is even. The left-most term above is the weight
of −K, equation (39), for −ε, while the right-most term is the weight of K for ε. To address
the powers of q and t, we have

(−K + εMu)2 = (K − εMu)2,

εu⊺Mu + (−K)⊺u

2
= −
−εu⊺Mu+K⊺u

2

which completes the proof. �

The above result implies that if [k] is self-conjugate, then the corresponding weighted
graded roots for ε and −ε differ by replacing t and t−1.

4. Weighted bigraded roots for plumbed knot complements

4.1. Knot lattice homology and bigraded roots. In this subsection we review part of
the construction in [NC24], following the notation established in Section 2.2.

Let Γv0 be a negative definite marked plumbing graph with |V(Γv0)| = s + 1. As usual,
we set Γ = Γv0 \ {v0} and Y = Y (Γ). Denote by m ∈ Zs and by M the weight vector and
adjacency matrix of Γ, respectively. Let k ∈ Char(Γ) = m + 2Zs be a representative of a
spinc structure [k] ∈ spinc(Γ).

Recall the function hU : [k]→ 2Z+hU(k) from (29). Given K ∈ [k], define

hV (K) = hU(K + 2λ),(49)

A(K) =
hU(K)− hV (K)

2
,(50)

where λ is as defined in (17). The quantity A(K) is called the Alexander grading of K.
Let us discuss a useful alternative perspective on the Alexander grading. For m0 ∈ Z,

recall that Γv0,m0 denotes the plumbing tree obtained from Γv0 by giving v0 the framing
m0, with corresponding intersection form on its associated 4-manifold X(Γv0,m0) denoted by
Mv0,m0 . Pick any m0 so that Γv0,m0 is negative definite. A computation yields

(51) M−1
v0,m0

e0 =
1

m0 − λ⊺M−1λ

(
1

−M−1λ

)
.

Following [OSS14a, Equation (3.1)], let

Σ ∈ H2(X(Γv0,m0);Q) ∼= Qs+1

denote the element whose v0-th entry is 1 and which satisfies ei
⊺Mv0,m0Σ = 0 for 1 ≤ i ≤ s.

This element exists and is unique. In fact, it follows from (51) that

(52) Σ =
M−1

v0,m0
e0

e0⊺M−1
v0,m0

e0
= (1,−M−1λ).
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The Alexander grading of K ∈ Char(Γ) in [OSS14a, Definition 3.2] is defined to be

1

2
(LK(Σ) + Σ2)

where LK = (−m0, K) ∈ Char(Γv0,m0). In terms of our coordinates, when writing L ∈ Zs+1

and Σ ∈ Qs+1, L(Σ) is L⊺Σ and the homology pairing Σ2 of Σ with itself is given by
Σ⊺Mv0,m0Σ. Note, Σ

2 < 0 since Mv0,m0 is negative definite. From (52) we see that

(53) Σ2 = m0 − λ
⊺M−1λ,

and it follows that 1
2
(LK(Σ) + Σ2) = A(K).

For (i, j) ∈ (2Z+hU(k))× (2Z+hV (k)), we define the following sets:

SUi (Γv0 , [k]) = {K ∈ [k] | hU(K) ≥ i},

SVj (Γv0 , [k]) = {K ∈ [k] | hV (K) ≥ j},

Si,j(Γv0 , [k]) = S
U
i (Γv0 , [k]) ∩ S

V
j (Γv0 , [k]).

We give each of these sets the structure of a 1-skeleton by declaring the elements of the above
sets to be the 0-cells, two of which K1, K2 share an edge if and only if K1−K2 = ±2Mei for
some 1 ≤ i ≤ s. We denote these 1-skeleta by SUi (Γv0 , [k]),S

V
j (Γv0 , [k]), and S i,j(Γv0 , [k]), and

denote their connected components by π0(S
U

i (Γv0 , [k])), π0(S
V

j (Γv0 , [k])), π0(S i,j(Γv0 , [k])).

Remark 4.1. We note that S i,j(Γv0 , [k]) are the 1-skeleta of the double filtration studied in
[NC24], see in particular [NC24, Section 5.2].

Definition 4.2. We define three graphs associated to this data:

• The bigraded root Rbi(Γv0 , [k]). Its set of vertices is⋃

i∈2Z+hU (k)
j∈2Z+hV (k)

π0(Si,j(Γv0 , [k])).

Two vertices corresponding to connected components Ci,j ⊂ S i,j(Γv0 , [k]) and Ci′,j′ ⊂
Si′,j′(Γv0 , [k]) are connected by an edge in Rbi(Γv0 , [k]) if either i

′ = i+ 2, j′ = j and
Ci′,j′ ⊂ Ci,j, or if i

′ = i, j′ = j + 2 and Ci′,j′ ⊂ Ci,j. The vertex Ci,j lies in bigrading
(i, j).
• The U-graded root RU(Γv0 , [k]) whose set of vertices is

⋃

i∈2Z+hU (k)

π0(S
U
i (Γv0 , [k])),

and two vertices Ci ⊂ S
U

i (Γv0 , [k]) and Ci′ ⊂ S
U
i′ (Γv0 , [k]) are connected by an edge if

i′ = i+ 2 and Ci′ ⊂ Ci. The grading of Ci is defined to be i.
• The V -graded root RV (Γv0 , [k]) is defined in an entirely analogous way to the U -
graded root, but with the U replaced with V .

Note that RU(Γv0 , [k]) = R(Γ, [k]) and that RV (Γv0 , [k]) = R(Γ, [k + 2λ]).

Example 4.3. Consider the graph Γv0 shown below.

•
−1
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The ambient 3-manifold Y is S3, and the image of the unknot corresponding to the marked
vertex is the unknot in S3. There is one spinc structure on Y , which we denote s0. For
K ∈ Char(Γ) = 1 + 2Z,

hU(K) =
K2 + 1

4
, hV (K) =

(K + 2)2 + 1

4
,

The maximal nonempty superlevel set S i,j(Γv0 , s0) is at bigrading (i, j) = (0, 0), and since
in this case the lattice is 1-dimensional, by convexity we see that S i,j(Γv0 , s0) consists of one
connected component for each (i, j) ∈ 2Z≤0×2Z≤0. The bigraded root is shown in (54).

(54)

•

• •

• • •

• • • •

• • • • •
...

...
...

0

−2

−4

−6

−8

0

−2

−4

−6

−8

hUhV

Remark 4.4. Both the U -graded root and the V -graded root can be obtained from the
bigraded root as follows. For a given i ∈ 2Z+hU(k), by picking j ≪ 0 we have SUi (Γv0 , [k]) ⊂
SVj (Γv0 , [k]), so that

S i,ℓ(Γv0 , [k]) = S
U
i (Γv0 , [k])

for all ℓ ≤ j. The vertices at height i in RU(Γv0 , [k]) = R(Γ, [k]) can then be read off
from Rbi(Γv0 , [k]) at bigrading (i, j). Similarly, if i′ = i − 2, then by potentially decreasing
j further, edges between vertices at height i and i′ of R(Γ, [k]) can be determined from
edges in the U -direction of Rbi(Γv0 , [k]) in bigradings (i, j) and (i′, j). The graded root
R(Γ, [k+2λ]) = RV (Γv0 , [k]) can analogously be recovered from Rbi(Γv0 , [k]). We refer to the
above procedure of obtaining either the U -graded root or the V -graded root as collapsing
the bigraded root.

Definition 4.5. The coordinate of a node η of Rbi(Γv0 , [k]) in bigrading (i, j) is the pair
(η1, η2) where η1 (resp. η2) is the unique node of R(Γ, [k]) (resp. of R(Γ, [k+2λ])) in grading
i (resp. j) which corresponds to η1 after collapsing to the U -graded (resp. V -graded) root.

We stress that the notion of coordinates is finer than the notion of bigrading, since in
general, nodes in Rbi(Γv0 , [k]) in the same bigrading may have different coordinates.

Remark 4.6. For simplicity, the examples provided in the present paper have the property
that each (i, j)-superlevel set has at most one connected component, so that there is at most
one node at each bigrading. Consequently, the bigraded root can be depicted in the plane.
Moreover, whenever the ambient manifold is S3 (which is the case in our examples) all the
nodes in a given bigrading have the same coordinate.

The following theorem is a special case of [NC24, Theorem 1.2].

Theorem 4.7. [NC24] Suppose Γv0 and Γ′
v0

are related by a Neumann move. Let β :
spinc(Γ)→ spinc(Γ′) be the corresponding bijection as defined in (13), (14), and (15), and let
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[k] ∈ spinc(Γ) be a spinc structure. Then the bigraded roots Rbi(Γv0 , [k]) and R
bi(Γ′

v0
, β([k]))

are isomorphic.

4.2. Surgery formula for (bi)graded roots. In this section, we explain how to determine
the graded root of a surgered manifold from the bigraded root of a plumbed knot comple-
ment. We note that Ozsváth-Stipsicz-Szabó [OSS14a] established a surgery formula using
the algebraic rather than superlevel set approach to knot lattice homology, the latter of
which was introduced in [NC24]. The results in this section may be viewed as a degree zero
analogue of their surgery formula for the superlevel set approach to (knot) lattice homology.

Let Γv0 be a negative definite marked plumbing graph, with ambient manifold Y and
plumbed knot complement Yv0. Pick a framing m0 on v0 such that the surgered plumbing
graph Γv0,m0 is negative definite.

For L ∈ Char(Γv0,m0), define the Alexander grading5 of L to be

(55) a(L) :=
L(Σ) + Σ2

2
,

where Σ is as in (52). Given a spinc structure t ∈ spinc(Γv0,m0), set

Char(Γv0,m0 , t) := {L ∈ Char(Γv0,m0) | [L] = t},

and let
A(t) := {a(L) | L ∈ Char(Γv0,m0 , t)} ⊂ Q.

We observe that

(56) a(L+ 2Mv0,m0ei) =

{
a(L) + Σ2 if i = 0,

a(L) if 1 ≤ i ≤ s.

It follows that A(t) = a(L) + Σ2 Z for any choice of L ∈ Char(Γv0,m0 , t). For a ∈ A(t), we
set ta ∈ spinc(Γ) to be the spinc structure represented by L|Γ, for any L ∈ Char(Γv0,m0 , t)
with a(L) = a. Lemma 4.10 shows that ta is independent of the choice of L. Equation (56),
together with Mv0,m0e0 = (m0, λ), implies that

ta+Σ2 = [2λ] · ta,

where · denotes the homology action (20).
For a, h ∈ Q, we define

σ(a) := −
1

Σ2

(
a−

Σ2

2

)2

−
1

4
,

h[a] := h+ σ(a).

(57)

The rest of this subsection is dedicated to the proof of the following proposition.

Proposition 4.8. The graded root of (Γv0,m0, t) is determined by the bigraded roots of Γv0,
according to the following algorithm:

(1) Consider the graded graph
⊔

a∈A(t)

R(Γ, ta){−σ(a)}, where {d} denotes up upwards grad-

ing shift by d.

5Technically, Alexander grading is defined for K ∈ Char(Γ), so here we are abusing the terminology and

call a(L) = L(Σ)+Σ2

2 the Alexander grading of L ∈ Char(Γv0,m0
).
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(2) For each pair of nodes η1 of R(Γ, ta){−σ(a)} and η2 of R(Γ, ta+Σ2){−σ(a + Σ2)}
which are in the same grading, we identify η1 and η2 if there is a node in the bi-
graded root Rbi(Γv0 , ta) with coordinate (η1, η2) (see Definition 4.5). After all of these
identifications, we remove multiple edges connecting the same pair of vertices.

Examples 4.12 and 4.13 demonstrate the above algorithm. In Theorem 5.3 we extend the
surgery formula to weighted graded roots.

For a spinc structure t ∈ spinc(Γv0,m0), we partition Sh(Γv0,m0 , t) according to Alexander
grading,

Sh(Γv0,m0 , t) =
⊔

a∈A(t)

Sah(Γv0,m0 , t),

where

Sah(Γv0,m0, t) :=

{
L ∈ Char(Γv0,m0, t) |

L2 + (s+ 1)

4
≥ h, a(L) = a

}
.

Each Sah(Γv0,m0, t) forms the 0-cells of a 1-dimensional CW complex, denoted Sah(Γv0,m0 , t).
Two vertices L, L′ ∈ Sah(Γv0,m0 , t) are connected by an edge if L − L′ = ±2Mv0,m0ei for
some 1 ≤ i ≤ s (note that (56) prevents edges in the 2Mv0,m0e0 direction). We would
like to express each Sah(Γv0,m0 , t) in terms of superlevel sets of Γ. This is accomplished in
Proposition 4.11 below. For this purpose, the following lemma expressing L2 in terms of L|Γ
is useful. Recall that v∗ ∈ H2(X ;Z) denotes the image of the Poincaré dual of v under the
map H2(X, ∂X ;Z)→ H2(X ;Z).

Lemma 4.9. For any L ∈ Char(Γv0,m0 , t) with a(L) = a,

L2 = K2 +
1

Σ2
(Σ2 − 2a)2,

where K = L|Γ.

Proof. For any 1 ≤ i ≤ s, let i′ denote the unique vertex adjacent to v0 that is in the same
connected component as vi in Γ. As a consequence of equations (51) and (53),

(M−1
v0,m0

)00 =
1

Σ2
, (M−1

v0,m0
)i0 = −

1

Σ2
(M−1)ii′ ,

(M−1
v0,m0

)ij = (M−1)ij +
1

Σ2
(M−1)ii′(M

−1)jj′

for any 1 ≤ i, j ≤ s. Therefore, we can express L2 in terms of K in the following way:

L2 =
∑

0≤i,j≤s

L(vi)L(vj)v
∗
i · v

∗
j

=
∑

1≤i,j≤s

K(vi)K(vj)v
∗
i · v

∗
j + 2L(v0)

∑

1≤i≤s

K(vi)v
∗
0 · v

∗
i + L(v0)

2(v∗0)
2

= K2 +
1

Σ2

(∑

1≤i≤s

K(vi)(M
−1)ii′

)2

−
2L(v0)

Σ2

(∑

1≤i≤s

K(vi)(M
−1)ii′

)
+
L(v0)

2

Σ2

= K2 +
1

Σ2

(∑

1≤i≤s

K(vi)(M
−1)ii′ − L(v0)

)2

,
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where v∗i · v
∗
j = (M−1

v0,m0
)ij denotes the dual intersection pairing. Plugging in

L(v0) = 2a− Σ2 −K(Σ− v0) = 2a− Σ2 +KM−1λ

and ∑

1≤i≤s

K(vi)(M
−1)ii′ = KM−1λ

into the last expression, we get the desired equation:

L2 = K2 +
1

Σ2
(Σ2 − 2a)2.

�

To relate Sah(Γv0,m0 , t), the slice of Sh(Γv0,m0 , t) with fixed Alexander grading a, to super-
level sets of Γ, we need to specify which spinc structure of Γ we are considering. Recall
that the pair (t, a) for a ∈ A(t) determines a spinc structure on Γ, denoted by ta, which is
represented by L|Γ ∈ Char(Γ) for a choice of L ∈ Char(Γv0,m0 , t) satisfying a(L) = a. The
following demonstrates that ta is independent of the choice of L.

Lemma 4.10 ([OSS14a, Section 5]). Let L, L′ ∈ Char(Γv0 , t) with a(L) = a(L′) = a. Then
L|Γ and L′|Γ represent the same spinc structure on the ambient manifold.

Proof. We have L − L′ = 2Mv0,m0x for some x ∈ Zs+1 and (L − L′)(Σ) = 0. This implies
that x0 = 0, so that L|Γ − L

′|Γ = 2M(x|Γ). �

Proposition 4.11. For any a ∈ A(t), there is an isomorphism of 1-dimensional CW com-
plexes

Sah(Γv0,m0, t)
∼= Sh[a](Γ, ta)

given on 0-cells by L 7→ L|Γ, where h[a] is as defined in (57). It follows that the connected
components of Sah(Γv0,m0 , t) correspond to the nodes of the graded root R(Γ, ta) at height h[a].

Proof. Lemma 4.9 implies that if L ∈ Sah(Γv0,m0 , t), then L|Γ ∈ Sh[a](Γ, ta). Given K ∈
Sh[a](Γ, ta), we will show that there is precisely one L = (L0, K) ∈ Sah(Γv0,m0 , t). Indeed,

a =
1

2
(L(Σ) + Σ2) =

1

2
(L0 +m0 + 2A(K))

forces L0 = 2(a− A(K))−m0. We need to verify that this choice of L is in Sah(Γv0,m0 , t).
First, let L′ ∈ Sah(Γv0,m0 , t) and set K ′ = L′|Γ. Lemma 4.10 implies that K = K ′ + 2Mx

for some x ∈ Zs. We have

2(a− A(K)) = L′
0 − 2x⊺λ+m0,

which shows L0 ≡ m0 mod 2, so that L ∈ Char(Γv0,m0). Lemma 4.10 gives [L] = [L′] = t,
and Lemma 4.9 shows hU(L) ≥ h, which completes the proof. �

Proof of Proposition 4.8. With Proposition 4.11 at hand, together with (56), we see that in
order to determine the connected components of the whole superlevel set Sh(Γv0,m0, t) in
terms of superlevel sets of the ambient plumbing, we need to know when there are edges in
the 2v∗0|Γ = 2λ direction. Equivalently, we need to know when

K ∈ Sh[a](Γ, ta)
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Sah(Γv0,m0 , t) Sa+ph (Γv0,m0, t)
Sa+2p
h (Γv0,m0 , t)

∼ =

Sh[a](Γ, ta)
∼ =

Sh[a+p](Γ, ta+p)

∼ =

Sh[a+2p](Γ, ta+2p)

Figure 6. A schematic depiction of slicing the superlevel sets of Γv0,m0 by the
Alexander grading, where we have set p = Σ2. The dashed horizontal lines represent
edges in the v0 direction. Note that ta and ta+rp, for r ∈ Z, may be different spinc

structures on Γ.

representing a connected component C1 and

K ′ ∈ Sh[a+Σ2](Γ, ta+Σ2)

representing a connected component C2 are connected by an edge in the 2v∗0|Γ direction, so
that

K ′ = K + 2v∗0|Γ = K + 2λ.

See Figure 6 for a schematic.
This information is captured exactly by the bigraded root. More precisely, such K must

satisfy hU (K) ≥ h[a] and hV (K) ≥ h[a+Σ2], and therefore represents a connected component
of Sh1,h2(Γv0 , t) where h1 = h[a], h2 = h[a + Σ2]. Such connected components can be read
off from the bigraded root. That is, we can check if there is any node of the bigraded root
representing a connected component of Sh1,h2(Γv0 , t) for which its images under inclusion
to SUh1(Γv0 , t) and S

V
h2
(Γv0 , t) lie in C1 and C2 − 2v∗0|Γ, respectively. Thus the bigraded root

encodes precisely the information needed to perform surgery and recover the full graded root
according to the algorithm in Proposition 4.8. �

Below, we illustrate how the surgery of (bi)graded roots work in practice through examples.
First, we set sf = λ⊺M−1λ ∈ Q. If K is nullhomologous then sf ∈ Z, and moreover from
(51) we see that sf is the Seifert framing of K since Mv0,sf is not invertible. We also set

p := Σ2 = m0 − λ
⊺M−1λ = m0 − sf ∈ Q .

If K is nullhomologous, then performing p surgery on K ⊂ Y yields precisely Yv0,m0 .
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Example 4.12 (−1 surgery). Let K be an algebraic knot in S3. We will describe how to
obtain the graded root for the −1 surgery (i.e. Σ2 = −1) of K, from the bigraded root of K.

The ambient 3-manifold is S3, and its only graded root is given by an infinite linear graph
with one node at each non-positive even degree. Take Z copies of the graded root, and
arrange it so that the height of the a-th copy is shifted by

h− h[a] = −σ(a) =
1

4
+

1

Σ2

(
a−

Σ2

2

)2

= −a(a + 1).

That is, for the a-th copy of the graded root, nodes which would normally be called of height
h[a] are now placed at height h. See Figure 7.
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Figure 7. Z copies of the graded root arranged for −1 surgery

The graded root of the surgered manifold will be obtained by collapsing the horizontal
a-axis. That is, for each height h, we will replace the nodes at height h with the actual nodes
corresponding to the connected components for the surgered manifold. For this, we need to
know when a node at (a, h) is connected by an edge in 2v∗0 direction to a node at (a− 1, h).

To illustrate this, we now specialize to the (right-handed) trefoil knot, whose bigraded
root is given in Figure 8. As discussed in Definition 4.5, each node of a bigraded root carries
a pair of coordinates valued in the graded root of the ambient 3-manifold, which in this case,
is the same as a pair of non-positive even numbers. As drawn in Figure 8, the bigraded
root of the trefoil has a single node at every coordinate (hU , hV ) ∈ (2Z≤0)

2, except for (0, 0),
where it doesn’t have any node.

From our earlier discussion, the nodes at (a, h) and (a − 1, h) in Figure 7 are connected
by an edge if and only if there is a node in the bigraded root at coordinate (h[a], h[a− 1]).6

Since the bigraded root of the trefoil knot has nodes at every coordinate except at (0, 0), this
means that the only missing edge is between the nodes at (a, h) = (0, 0) and (a, h) = (−1, 0).

6When the ambient 3-manifold is not S3, we need to check if there is a node in the bigraded root at the
coordinate specified by a pair of nodes of the graded root.
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Figure 8. Left: a plumbing diagram for the trefoil knot. Right: the bigraded root
for the trefoil knot.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• ••

0−1 1−2 2−3 3−4

0

−2

−4

−6

−8

−10

−12

a
h

0

−2

−4

−6

−8

−10

−12

h

••

•

•

•

•

•

•

Figure 9. −1 surgery on the trefoil. The dashed horizontal lines indicate which
vertices are identified in step (2) of Proposition 4.8.

See the left part of Figure 9. Collapsing the horizontal a-coordinate by taking the connected
components, we obtain the graded root of S3

−1(31) = Σ(2, 3, 7) (the right part of Figure 9).
For an arbitrary algebraic knot in S3, the graded root for the −1 surgery can be obtained

in the same way; the dictionary between the nodes of the bigraded root and edges connecting
nodes from different a’s in the −1 surgery is summarized in Figure 10.

Example 4.13 (−2 surgery). We illustrate the surgery of (bi)graded roots through one
more example: the −2 surgery (i.e. Σ2 = −2). As in the previous example, let K be an
algebraic knot in S3. We can proceed in the same way.
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Figure 10. −1 surgery dictionary

Take Z copies of the graded root, but now a even and a odd represent two different spinc

structures, t0 and t1, of the surgered manifold. For either of the spinc structures, arrange
the copies of the graded root so that the height of the a-th copy is shifted by

h− h[a] = −σ(a) =
1

4
+

1

Σ2

(
a−

Σ2

2

)2

= −
1

4
−

1

2
a(a+ 2).

Then, to compute the graded root of the surgered manifold, we need to determine if the
nodes at coordinates (a, h) and (a − 2, h) are connected by an edge or not. As before, this
can be directly read off from the bigraded root of the knot by looking at the coordinate
(h[a], h[a − 2]) of the bigraded root and see if there is a node or not. We summarize the
dictionary in Figure 11 and 12 below.

Remark 4.14. The examples given above can be easily generalized to any −p surgery. For
Σ2 = −p surgery, the a-th copy of the graded root is shifted by

h− h[a] =
1

4
−

1

p

(
a+

p

2

)2
.

The nodes at coordinates (a, h) and (a− p, h) are connected by an edge if and only if there
is a node in the bigraded root at (hU , hV ) = (h[a], h[a− p]).

Note that

h[a]− h[a− p]

2
= a,
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Figure 11. −2 surgery dictionary for t0
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Figure 12. −2 surgery dictionary for t1
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so if a spinc structure t of the surgered manifold corresponds to a’s with a ≡ b mod p, then

only the nodes in the bigraded root whose Alexander grading A =
hU − hV

2
is b mod p are

used in the surgery.

4.3. BPS q-series for plumbed knot complements. In this subsection we discuss (a
renormalization of) the Gukov-Manolescu [GM21] series invariant of negative definite plumbed
knot complements. For a negative definite marked plumbing graph Γv0 with s + 1 vertices
and a choice of relative spinc structure

[b] ∈
δ̂ + 2Zs+1

2Mv0(0× Zs)
∼= spinc(Yv0),

the corresponding BPS q-series is given by

Ẑ[b](q, t) :=

∮
dz0
2πiz0

(t−
1
2 z0 − t

1
2 z−1

0 )1−δ0
∮ ∏

v 6=v0

dzv
2πizv

(
t−

1
2 zv − t

1
2 z−1
v

)2−δv

× q−
3s+

∑
v 6=v0

mv+λ⊺M−1λ

4

∑

ℓ∈b|Γ+2MZs

q−
ℓ⊺M−1ℓ

4 z
λ⊺M−1(ℓ−b|Γ)+b0
0

∏

v 6=v0

zℓvv .

(58)

Note, our expression is slightly different from the expression given in [GM21, Section

6], which depends on a triple of labels, ([a], n0, ζ0), where [a] ∈ δ+2Zs+1

2Mv0 (0×Zs)
, n0 ∈ Z, and

ζ0 ∈ 1+2Z is the exponent of z0.
7 A framing m0 on v0 is also fixed in [GM21]; we denote the

corresponding adjacency matrix byMv0,m0 . Under conjugation of the relative spinc structure,
the triple transforms in the following way:

([a], n0, ζ0) 7→ (−[a],−n0,−ζ0).

In fact, the triple of labels determines a relative spinc structure by

[(a, ζ0, n0)] := [a− ζ0e0 + 2n0(Mv0,m0e0)] ∈
δ̂ + 2Zs+1

2Mv0(0× Zs)
∼= spinc(Yv0).

Different triples representing the same relative spinc structure are related by the symme-
try described in [GM21, Section 6.6], but the resulting BPS q-series differ by some overall
monomial factor if we use the expression given in [GM21]. In (58), we have fixed the overall
normalization so that it depends only on the relative spinc structure [b], not on the triple of
labels representing [b].

Remark 4.15. It is possible to leave the z0 variable unintegrated:

Ẑ[b](z0, q, t) := (t−
1
2 z0 − t

1
2z−1

0 )1−δ0
∮ ∏

v 6=v0

dzv
2πizv

(
t−

1
2zv − t

1
2 z−1
v

)2−δv

× q−
3s+

∑
v 6=v0

mv+λ⊺M−1λ

4

∑

ℓ∈b|Γ+2MZs

q−
ℓ⊺M−1ℓ

4 z
λ⊺M−1(ℓ−b|Γ)+b0
0

∏

v 6=v0

zℓvv .

(59)

7In [GM21] the label [a] is called the “relative spinc structure”, which differs from our conventions. See
Remark 2.7.
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This expression is again a well-defined invariant, but it does not contain any more information
than (58). This is because

Ẑ[b](z0, q, t) =
∑

k

(∮
dz0
2πiz0

Ẑ[b](z0, q, t)z
−k
0

)
zk0 =

∑

k

Ẑ[b−ke0](q, t)z
k
0 .

Note, when Y is an integer homology sphere so that the set of relative spinc structures is
spinc(Yv0)

∼= 1+2Z and the meridian acts on it by shifting by 2, then up to overall power of
z0, this is the generating series ∑

[b]∈1+2Z

Ẑ[b](q, t)z
[b]
0 .

In our main construction of weighted bigraded roots, we will actually slightly shift the
exponent of z0 and use the following simpler form of BPS q-series

Ẑ[b|Γ](z0, q, t) := (t−
1
2 z0 − t

1
2 z−1

0 )1−δ0
∮ ∏

v 6=v0

dzv
2πizv

(
t−

1
2 zv − t

1
2 z−1
v

)2−δv

× q−
3s+

∑
v 6=v0

mv+λ⊺M−1λ

4

∑

ℓ∈b|Γ+2MZs

q−
ℓ⊺M−1ℓ

4 zλ
⊺M−1ℓ

0

∏

v 6=v0

zℓvv

(60)

which depends only on

[b|Γ] ∈
δamb + λ+ 2Zs

2MZs
.

Recall the map ωn from (25). While it is defined for all odd integers n, as in Section 3.2,
only the two choices ω±1 will transform properly with respect to Neumann moves, in our
construction of weighted bigraded roots. This is apparent in the proof of Theorem 4.25. As
in Section 3.2, we write ε in place of n to emphasize this restriction.

With a choice of ε ∈ {±1}, the label [b|Γ] can be identified with

ωε([b]) = [b|Γ + ε(λ+Mu)] ∈
m+ 2Zs

2MZs
∼= spinc(Y ),

the spinc structure on the ambient 3-manifold obtained by gluing (via∞-surgery) the relative
spinc structure [b] on Yv0 with the relative spinc structure on the solid torus determined by

the choice ε ∈ {±1} ⊂ 1 + 2Z ∼= spinc(S1 ×D2). In other words, Ẑ[b|Γ](z0, q, t) depends only
on the spinc structure on the ambient manifold determined by [b] and ε ∈ {±1}.

It is straightforward to check that the expression (59) is independent of the choice of
representative b of [b], and that both (59) and (60) are invariant under Neumann moves.
This will follow from the stronger statement in Theorem 4.25.

To begin our unification of Ẑ and knot lattice homology, just as in Section 3.2, we need to
identify the lattices which are used to define each theory. Namely, the sum in the definition

of Ẑ in (60) is over the lattice b|Γ + 2M Zs while the (bi)graded root is defined in terms of
the lattice ωε([b]) = b|Γ + ε(λ+Mu) + 2M Zs ⊂ Char(Γ). With the identification

b|Γ + 2M Zs ←→ b|Γ + ε(λ+Mu) + 2M Zs

ℓ←→ K = ℓ+ ε(λ+Mu),
(61)
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we can rewrite Ẑ[b|Γ](z0, q, t) from (60) as

(62) Ẑ[b|Γ](z, q, t) = (t−
1
2z − t

1
2z−1)1−δ0

∑

K∈ωε([b])

ŴΓv0
(K)qξ(K)zζ(K)tθ(K).

We will often write z in place of z0 as above. The coefficient ŴΓv0
(K) is given by

(63) ŴΓv0
(K) =

s∏

i=1

Ŵδi((K − ε(Mu+ λ))i)

where Ŵ = {Ŵn}n≥0 is the admissible family in (41). The exponents of q, z, and t are

ξ(K) = −

3s + δ⊺u+ 2
∑
v 6=v0

mv + 2λ⊺M−1λ

4
−
K⊺M−1K

4
+
εK⊺M−1λ

2
+
εK⊺u

2
,

(64)

ζ(K) = λ⊺M−1K − ελ⊺M−1λ− εδ0,(65)

θ(K) =

K⊺u− ε
∑
v 6=v0

(δv +mv)

2
.

(66)

The series (59) can be similarly rewritten as a sum over ωε([b]). The only modification is
that the power of z is given by

ζ[b](K) = λ⊺M−1K − ελ⊺M−1λ− εδ0 − λ
⊺M−1(b|Γ) + b0 = ζ(K)− λ⊺M−1(b|Γ) + b0.(67)

See Remark 4.26 for a further discussion.

4.4. The weighted (bi)graded root for plumbed knot complements. In this section
we introduce the main construction of the paper: three-variable weights assigned to each
node of the graded roots of the ambient plumbing graph. We can equivalently package this
as a three-variable weight assigned to each node of the bigraded roots, as in Definition 4.21,
which is often more convenient. Invariance of these objects under Neumann moves is proven
in Section 4.5.

To begin, let Γv0 be a negative definite marked plumbing graph with s + 1 vertices. As
usual, Γ = Γv0 \ {v0} denotes the ambient plumbing graph with intersection form M . We
also have a fixed choice of ε ∈ {±1}, which is often omitted from the notation. Let R be a
commutative ring and let W = {Wn : Z → R}n≥0 be an admissible family of functions, as
in Definition 3.7. As a generalization of (63), define WΓv0

: Char(Γ)→R by

(68) WΓv0
(K) =

s∏

i=1

Wδi((K − ε(Mu+ λ))i).

We now assign 3-variable Laurent polynomial weights to the graded root of Γ at a spinc

structure [k] ∈ spinc(Γ). For a connected component C ⊂ S i(Γ, [k]), we define the weight of
C to be

WΓv0
(C; z, q, t) = (t−

1
2 z − t

1
2 z−1)1−δ0

∑

K∈C∩[k]

WΓv0
(K)qξ(K)zζ(K)tθ(K).(69)
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In the above sum, we intersect with [k] to indicate that we only consider the lattice points

(0-cells) of the component C. For δ0 ≥ 2, the factor (t−
1
2z−t

1
2z−1)1−δ0 is expanded according

to (38) with the change of variables z 7→ t−1/2z.

Definition 4.16. The object obtained by assigning to each vertex C of the graded root
R(Γ, [k]) the weightWΓv0

(C; z, q, t) is called the weighted graded root for the knot complement
Γv0 and denoted by Rε(Γv0 , [k],W ).

Remark 4.17. While the BPS q-series (60) does not depend on the choice of ε, the weighted
graded root does. The relationship between the two choices of ε is the content of Proposition
4.23.

Remark 4.18. From the construction, it is evident that in the limit hU → −∞, the weights
stabilize (in a sense analogous to [AJK23, Definition 6.1]) to the series

(t−
1
2 z − t

1
2z−1)1−δ0

∑

K∈[k]

WΓv0
(K)qξ(K)zζ(K)tθ(K).

In particular, when the admissible family is Ŵ , we recover the BPS q-series (60) from the

weights of the weighted graded root Rε(Γv0 , [k], Ŵ ).

Example 4.19 (Weighted graded root for the unknot). Consider the marked plumbing
graph Γv0 from Example 4.3, representing the unknot in S3. The graded root for S3 consists
of a single node in each non-positive even integer grading.

For K ∈ Char(Γ) = 1 + 2Z, we have K − ε(Mu+ λ) = K, so that WΓv0
(K) = W1(K) is

zero unless K = ±1. We compute:

WΓv0
(±1) = ∓1, ξ(±1) = 0, ζ(±1) = ∓1, θ(±1) = ∓

1

2
.

Observe that hU(±1) = 0, so 1 and −1, the only two characteristic vectors that contribute
to the weight, are already contained in the maximal non-empty superlevel set. We also note
that the above weights in this example are independent of the choice of ε ∈ {±1}. The
weighted graded root of the unknot is shown in Figure 13.

•

•

•

0

−2

−4

t−1/2z − t−1/2z−1

t−1/2z − t−1/2z−1

t−1/2z − t−1/2z−1

...
...

Figure 13. The weighted graded root for the unknot.

Example 4.20 (Weighted graded root for the trefoil knot). A plumbing representation for
the trefoil as well as its bigraded root was given in Figure 8. The corresponding weighted
graded root at t = 1 is shown in Figure 14.
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•

•

•

•

0

−2

−4

−6

1
2
(−qz + q2z5 + q3z7)

1
2
(qz−1 − qz + q2z5 + q3z7 − q6z11 − q8z13)

1
2
(−q2z−5 + qz−1 − qz + q2z5 + q3z7 − q6z11 − q8z13)

1
2
(−q3z−7 − q2z−5 + qz−1 − qz + q2z5 + q3z7 − q6z11 − q8z13 + q13z17)

...
...

Figure 14. The weighted graded root for the trefoil at ε = +1, specialized to t = 1.

Definition 4.21. For a negative definite marked plumbing graph Γv0 , consider its bigraded
root Rbi(Γv0 , [k]) for some spinc structure [k] ∈ spinc(Γ) of the ambient manifold. Given a
node of the bigraded root corresponding to a connected component C in some S i,j(Γv0 , [k]),
let CU denote the connected component of SUi (Γv0 , [k]) which contains C, and define the
weight of C to be

(t−
1
2 z − t

1
2z−1)1−δ0

∑

K∈CU∩[k]

WΓv0
(K)qξ(K)zζ(K)tθ(K)

for some fixed choice of ε ∈ {±1} and admissible family W . We call the result the weighted
bigraded root, denoted Rbi

ε (Γv0 , [k],W ).

If D ⊂ S i,j−2(Γv0 , [k]) is a connected component containing C (meaning there is an edge
in the bigraded root in the V -direction between the nodes represented by C and D) then
CU = DU , so it follows that the weights of C and of D in Rbi

ε (Γv0 , [k],W ) are equal. In other
words, all the nodes in a fixed U -coordinate (in the sense of Definition 4.5) have the same
weight in Rbi

ε (Γv0 , [k],W ). See, for example, Figure 1. In light of the procedure in Remark
4.4, it follows that Rbi

ε (Γv0 , [k],W ) carries the same information as the pair consisting of the
weighted graded root Rε(Γv0 , [k],W ) (as defined in Definition 4.16) and the bigraded root
Rbi(Γv0 , [k]).

Remark 4.22. Let us demonstrate that the weights in (69) do not constitute an invariant if
one were to sum over lattice points in connected components of S i,j(Γ, [k]), the intersection
of the hU and hV superlevel sets.

For simplicity, we set q = t = 1. Consider the three marked plumbing graphs Γv0 ,Γ
′
v0 ,Γ

′′
v0

below.

•
−1

Γv0

••
−1−2

Γ′
v0

••
−1−1

Γ′′
v0

Each of them represents the unknot in S3; indeed, Γ′
v0 (resp. Γ′′

v0) is obtained from Γv0 by a
type (A0) move (resp. a type (B0) move). We denote by Γ,Γ′, and Γ′′ the ambient plumbing
graphs, and let s0 denote the unique spinc structure on the ambient manifold in each case.

For K ∈ Char(Γ),

hU(K) =
K2 + 1

4
, hV (K) =

(K + 2)2 + 1

4
,
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so that the maximum value of both hU and hV is equal to zero. Then S0,0(Γv0 , s0) = {−1}
is a singleton. One can verify that, at q = t = 1,

WΓv0
(−1) = z

for both choices of ε ∈ {±1}.
Next, for K = (n1, n2) ∈ Char(Γ′),

hU(K) =
−n2

1 − 2n1n2 − 2n2n2 + 2

4
,

hV (K) =
−n1n1 − 2n1(n2 + 2)− 2(n2 + 2)(n2 + 2) + 2

4

It is straightforward to verify that S0,0(Γ
′
v0 , s0) = {(0,−1)} is again a singleton. At q = t = 1,

we have

WΓ′
v0
(0,−1) =

{
0 if ε = 1,

z if ε = −1.

Finally, for a characteristic vector K = (n1, n2) ∈ Char(Γ′′), we have

hU(K) =
−n1n1 − n2n2 + 2

4
,

hV (K) =
−(n1 + 2)(n1 + 2)− (n2 + 2)(n2 + 2) + 2

4
.

It is straightforward to check that again S0,0(Γ
′′
v0
, s0) = {(−1,−1)} is a singleton. The weight

at q = t = 1, for both choices of ε, is

WΓ′′
v0
(−1,−1) = (z − z−1)−1z2.

A modification of the notion of an admissible family or the weight assigned to a characteristic
vector could potentially yield an invariant weighted bigraded root in which weights are
assigned by summing over lattice points in connected components of S i,j(Γv0 , [k]); however,
we do not pursue this in the present paper.

We end this subsection with an analogue of Proposition 3.12 for knot complements.

Proposition 4.23. Let W be an admissible family satisfying property (AD3). For any nega-
tive definite marked plumbing graph Γv0 and spinc structure [k] ∈ spinc(Γ), R−ε(Γv0 , [−k],W )
is obtained from Rε(Γv0 , [k],W ) by the change of variables z 7→ z−1, t 7→ t−1, and negating
each weight.

Proof. Recall the involution ι of Char(Γ), ι(K) = −K, which induces an isomorphism of
graded roots R(Γ, [−k]) ∼= R(Γ, [k]). We refine the notation in equations (64), (65), (66) and
(68) to include the choice of ε, writing ξε, ζε, θε, and WΓv0 ,ε

. It is straightforward to verify
that

ξ−ε(−K) = ξε(K), ζ−ε(−K) = −ζε(K), θ−ε(−K) = −θε(K).

Property (AD3) implies

WΓv0 ,−ε
(−K) = (−1)

∑
v 6=v0

δv

WΓv0 ,ε
(K).

We also have

(−1)

∑
v 6=v0

δv

(t
1
2z−1 − t−

1
2 z)1−δ0 = (−1)

1+
∑
v

δv
(t−

1
2 z − t

1
2 z−1)1−δ0 = −(t−

1
2z − t

1
2 z−1)1−δ0 ,
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which completes the proof. �

4.5. Invariance. In this section we establish invariance of the weighted graded root for knot
complements. The following notation will be used throughout. Recall the maps αrel from
(27). Fix ε ∈ {±1} and a pair of negative definite marked plumbing graphs Γv0 and Γ′

v0 with
s + 1 and s + 2 vertices, respectively, such that Γ′

v0
is obtained from Γv0 by one of the four

Neumann moves. Recall from the discussion surrounding the diagram (28) that the ambient
plumbing graphs Γ = Γv0 \ {v0} and Γ′ = Γ′

v0
\ {v0} transform according to one of the type

(A), (B), or (C) moves. We fix [k] ∈ spinc(Γ) and [k′] ∈ spinc(Γ′) such that [k′] = β([k]),
where β is the corresponding map from (13), (14), (15).

It follows from [Né05, NC24] that the graded roots R(Γ, [k]) and R(Γ′, [k′]) of the ambient
plumbing graphs are isomorphic. For our proof of Theorem 4.25, we would like to have a
specific map of lattices which induces this isomorphism.

Lemma 4.24. For each of the four Neumann moves, the corresponding map β± from (46),
(47), (48) induces an isomorphism R(Γ, [k]) ∼= R(Γ′, [k′]) of graded roots of the ambient
plumbing graphs.

Proof. Each of the type (A), (A0), and (B) moves have the effect of transforming Γ according
to the type (A) or (B) moves, so the statement is given by Lemma 3.11.

It remains to verify the type (B0) move, which transforms the ambient plumbing graphs
according to the type (C). From (26), we see that hU(β±(K)) = hU(K) for all K ∈ Char(Γ).
Moreover, for h ∈ hU(k) + 2Z and 1 ≤ i ≤ s, if K,K + 2Mei ∈ Sh(Γ, [k]), then

β±(K + 2Mei) = (K + 2Mei,±1) = β±(K) + 2M ′ei.

Therefore β± induces a map β̃± from the connected components of Sh(Γ, [k]) to the connected
components of Sh(Γ

′, [k′]), given by sending a component C containing a characteristic vector

K to the component β̃±(C) containing β±(K). We will show β̃± is a bijection. First, for a
vertex K ′ in Sh(Γ

′, [k′]) and 1 ≤ i ≤ s+ 1, we have

(K ′ + 2M ′ei)
⊺
(M ′)−1(K ′ + 2M ′ei) = (K ′)

⊺
(M ′)−1K ′ + 4K ′ei + 4M ′

ii,

(K ′ − 2M ′ei)
⊺
(M ′)−1(K ′ − 2M ′ei) = (K ′)

⊺
(M ′)−1K ′ − 4K ′ei + 4M ′

ii.
(70)

To show surjectivity of β̃±, write K
′ = (K ′, Ks+1) for K ′ ∈ Char(Γ, [k]), Ks+1 ∈ 1 + 2Z.

Applying (70) with i = s+ 1, we see that if Ks+1 ≥ 1 then

h ≤ hU(K
′) ≤ hU(K

′ + 2M ′es+1) = hU (K
′ − 2es+1),

and if Ks+1 ≤ −1 then

h ≤ hU(K
′) ≤ hU(K

′ − 2M ′es+1) = hU(K
′ + 2es+1).

In either case, K ′ is always connected by a sequence of edges lying inside Sh(Γ
′, [k′]) to a

vertex of Sh(Γ
′, [k′]) that is in the image of β±, which establishes surjectivity.

We now prove injectivity. First, note that hU (K
′) ≤ hU(K ′). Setting L = K ′ + 2M ′ei, we

have

L =

{
K ′ + 2Mei if i ≤ s,

K ′ if i = s+ 1

Therefore any path of edges in Sh(Γ
′, [k′]) projects to a path of edges in Sh(Γ, [k]), which

demonstrates injectivity. �
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Theorem 4.25. For any negative definite marked plumbing graph Γv0, spin
c structure [k] ∈

spinc(Γ), admissible family of functions W , and fixed ε ∈ {±1}, the weighted graded root
Rε(Γv0 , [k],W ) for plumbed knot complements is invariant under Neumann moves. It follows
that the weighted bigraded root Rbi

ε (Γv0 , [k],W ) is also invariant under Neumann moves.

Proof. Fix i ∈ hU(k) + 2Z, a connected component C ⊂ Si(Γ, [k]), and set C ′ = β̃±(C),

where β̃± is the induced map on components of superlevel sets as in the proof of Lemma
4.24 (note C ′ is independent of ± since β+ and β− differ by an edge). For each of the four
Neumann moves, we will show that

(71) WΓv0
(C; z, q, t) =WΓ′

v0
(C ′; z, q, t).

Note that hU(β±(K)) = hU(K) for all K ∈ Char(Γ), which is equivalent to

(β±(K))⊺(M ′)−1β±(K) = K⊺M ′−1K − 1.

Note also that the degree of the marked vertex changes only for the (B0) move, so

(t−
1
2 z − t

1
2z−1)1−δ0 = (t−

1
2z − t

1
2z−1)1−δ

′
0

for the other three moves. For this reason, we will not mention this factor in the proof until
the (B0) move. In the same spirit, due to how the ambient graphs transform, the proofs
of invariance under the type (A), (A0), and (B) moves are similar in structure to the proof
of [AJK23, Theorem 5.9], though the weights in the present paper are quite different. The
(B0) move, left to the end, is the most technical.

Type (A): Let K ∈ Char(Γ) and let K ′ = βε(K). We begin by showing

WΓv0
(K)qξ(K)zζ(K)tθ(K) = WΓ′

v0
(K ′)qξ(K

′)zζ(K
′)tθ(K

′).

First, observe that if M−1K = x = (x1, x2, . . . , xs) then M ′(x, x1 + x2 − ε) = K ′. We also
have λ′ = (λ, 0), so

(K ′)
⊺
(M ′)−1λ′ = (x, x1 + x2 − ε)

⊺(λ, 0) = K⊺M−1λ.

Similarly, if M−1λ = y then M ′(y, y1 + y2) = λ′, which implies

(λ′)
⊺
(M ′)−1λ′ = λ⊺M−1λ.

We also have

(δ′)
⊺
u = δ⊺u+ 2,

∑

v 6=v0

m′
v =

∑

v 6=v0

mv − 3, and (K ′)
⊺
u = K⊺u− ε.

These calculations together imply ξ(K) = ξ(K ′), ζ(K) = ζ(K ′), and θ(K) = θ(K ′).
It remains to verify WΓv0

(K) = WΓ′
v0
(K ′). We have

K ′ − ε(λ′ +M ′u) = (K − ε(λ+Mu), 0),

which, using the formula for W2 from (37), gives

WΓ′
v0
(K ′) = WΓv0

(K) ·W2(0) =WΓv0
(K).

To finish invariance under the type (A) move, we will show that any characteristic vec-
tor H ∈ C ′ which is not in the image of βε has weight zero. To that end, note that the
(s + 1)-st entry of H − ε(λ′ + M ′u) is equal to Hs+1 − ε. Since δ′s+1 = 2, we see that
if Hs+1 6= ε then WΓ′,[b′](H) = 0. On the other hand, if Hs+1 = ε, then we may take
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βε((H1+ ε,H2+ ε,H3 . . . , Hs)) = H . Therefore equation (71) is established for the type (A)
move.

Type (A0): Let K ∈ Char(Γ) and let K ′ = βε(K). We again begin by showing

WΓv0
(K)qξ(K)zζ(K)tθ(K) = WΓ′

v0
(K ′)qξ(K

′)zζ(K
′)tθ(K

′).

If M−1K = x then M ′(x, x1 − ε) = K ′. We also have λ′ = (λ, 0) + (−1, 0, . . . , 0, 1), which
gives

(K ′)
⊺
(M ′)−1λ′ = K⊺M−1λ− ε.

Further, if M−1λ = y, then M ′(y, y1 − 1) = λ′, which implies

(λ′)
⊺
(M ′)−1λ′ = λ⊺M−1λ− 1.

We also have

(δ′)
⊺
u = δ⊺u+ 2,

∑

v 6=v0

m′
v =

∑

v 6=v0

mv − 2, and (K ′)
⊺
u = K⊺u.

It follows that ξ(K) = ξ(K ′), ζ(K) = ζ(K ′), and θ(K) = θ(K ′).
Next, we have

K ′ − ε(λ′ +M ′u) = (K − ε(λ+Mu), 0),

which gives

WΓv0
(K ′) = WΓv0

(K) ·W2(0) =WΓv0
(K).

To finish the proof of equation (71) in this case, just like in the type (A) move we will show
that any characteristic vector not in the image of βε has weight zero. Let H ∈ [k′]. Then
the (s + 1)-st entry of H − ε(λ′ +M ′u) is equal to Hs+1 − ε. Since δ

′
s+1 = 2, we see that if

Hs+1 6= ε then WΓ′(H) = 0. If Hs+1 = ε, then we may take βε((H1+ε,H2, H3 . . . , Hs)) = H ,
which establishes equation (71) for the type (A0) move.

Type (B): The proof of this case will use both β+ and β−, even though our choice of ε is
fixed. For K ∈ C, set

K ′
+ = β+(K) = (K, 0) + (−1, 0, . . . , 0, 1),

K ′
− = β−(K) = (K, 0) + (1, 0, . . . , 0,−1).

Our first goal for the type (B) move is to show that

(72) WΓv0
(K)qξ(K)zζ(K)tθ(K) = WΓ′

v0
(K ′

+)q
ξ(K ′

+)zζ(K
′
+)tθ(K

′
+) +WΓ′

v0
(K ′

−)q
ξ(K ′

−)zζ(K
′
−)tθ(K

′
−).

To that end, if M−1K = x, then M ′(x, x1 ∓ 1) = K ′
±. Since λ′ = (λ, 0), we have

(K ′
±)

⊺(M ′)−1λ′ = K⊺M−1λ. Similarly, if M−1λ = y, then M ′(y, y1) = λ′, which gives

(λ′)
⊺
(M ′)−1λ′ = λ⊺M−1λ.

We also have

(δ′)
⊺
u = δ⊺u+ 2,

∑

v 6=v0

m′
v =

∑

v 6=v0

mv − 2, and (K ′
±)

⊺
u = K⊺u.

These computations imply that ξ(K) = ξ(K ′
+) = ξ(K ′

−), ζ(K) = ζ(K ′
+) = ζ(K ′

−), and
θ(K) = θ(K ′

+) = θ(K ′
−).
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Next, setting K̃ = K − ε(λ+Mu), we have

K ′
+ − ε(λ

′ +M ′u) = (K̃, 0) + (−1, 0, . . . , 0, 1),

K ′
− − ε(λ

′ +M ′u) = (K̃, 0) + (1, 0, . . . , 0,−1).

Using the formula for W1 from (37), it follows that

WΓ′
v0
(K ′

+) =Wδ′1
(K̃1 − 1)Wδ′s+1

(1)

s∏

i=2

Wδ′i
(K̃i)

=Wδ1+1(K̃1 − 1)W1(1)

s∏

i=2

Wδi(K̃i) = −Wδ1+1(K̃1 − 1)

s∏

i=2

Wδi(K̃i),

and similarly, WΓ′
v0
(K ′

−) = Wδ1+1(K̃1 + 1)
∏s

i=2Wδi(K̃i). Property (AD2) gives

Wδ1+1(K̃1 + 1)−Wδ1+1(K̃1 − 1) = Wδ1(K̃1),

which implies WΓv0
(K) = WΓ′

v0
(K ′

+) +WΓ′
v0
(K ′

−). Together with the earlier computations

of the q, z, and t exponents we arrive at (72).
To finish the proof of invariance under the (B) move, we will show that H ∈ [k′] has weight

zero unless it is in the image of β+ or β−. To see this, observe that the (s + 1)-st entry of
H − ε(λ′ +M ′u) is equal to Hs+1. Since δ

′
s+1 = 1, we see that the weight of H is zero unless

Hs+1 = ±1. On the other hand, β±((H1 ± 1, H2, H3 . . . , Hs)) = H , which completes the
proof of invariance under the type (B) move.

Type (B0): Let K ∈ C. For this move we will again use both maps β+ and β−. As in the
(B) move, set

K ′
+ = β+(K) = (K, 1),

K ′
− = β−(K) = (K,−1).

Our first goal is to show that
(
t−

1
2z − t

1
2 z−1

)1−δ0
WΓv0

(K)qξ(K)zζ(K)tθ(K) =

(t−
1
2z − t

1
2z−1)1−δ

′
0

[
WΓ′

v0
(K ′

−)q
ξ(K ′

−)zζ(K
′
−)tθ(K

′
−) +WΓ′

v0
(K ′

+)q
ξ(K ′

+)zζ(K
′
+)tθ(K

′
+)
]
.

(73)

To start, (M ′)−1K ′
± = (M−1K,∓1). Since λ′ = (λ, 1), this gives

(K ′
±)

⊺
(M ′)−1λ′ = K⊺M−1λ∓ 1,

(λ′)
⊺
(M ′)−1λ′ = λ⊺M−1λ− 1.

We also have

(δ′)
⊺
u = δ⊺u+ 2,

∑

v 6=v0

m′
v =

∑

v 6=v0

mv − 1, and (K ′
±)

⊺
u = K⊺u± 1.

The above calculations imply that

ξ(K) = ξ(K ′
+) = ξ(K ′

−).
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Next, observe that δ′0 = δ0 + 1 in this move, which together with the above equalities gives

ζ(K ′
+) + 1 = ζ(K) = ζ(K ′

−)− 1,

θ(K ′
+)−

1

2
= θ(K) = θ(K ′

−) +
1

2
.

Next, as in the proof of the type (B) move, if we set K̃ = K − ε(λ+Mu), then

K ′
+ − ε(λ

′ +M ′u) = (K̃, 1) and K ′
− − ε(λ

′ +M ′u) = (K̃,−1).

Since δs+1 = 1, it follows that

WΓ′
v0
(K ′

+) = W1(1)

s∏

i=1

Wδ′i
(K̃i) = −WΓv0

(K),

WΓ′
v0
(K ′

−) = W1(−1)

s∏

i=1

Wδ′i
(K̃i) =WΓv0

(K),

which, together with δ′0 = δ0 + 1 and the earlier calculations of the q, z, and t, exponents,
establishes equation (73).

To finish the proof of invariance under the (B0) move, we will show that any H ∈ [k′]
contributes zero to the weight of C ′ unless H is in the image of β+ or β−. To that end,
we see that the (s + 1)-st entry of H − ε(λ′ +M ′u) is equal to Hs+1, so that the weight
of H is equal to zero unless Hs+1 = ±1, in which case we have β±(H1, . . . , Hs) = H . This
verifies equation (71) for the type (B0) move and concludes the proof of the first part of the
theorem.

Invariance of the weighted bigraded root follows almost immediately. Theorem 4.7 states
that the bigraded root is invariant under Neumann moves. The weights of all nodes in a
fixed U -coordinate in Rbi

ε (Γv0 , [k],W ) are equal to the weight of the corresponding node in
Rε(Γv0 , [k],W ). Invariance of Rbi

ε (Γv0 , [k],W ) then follows from invariance of Rε(Γv0 , [k],W ).
�

Remark 4.26. One could define weights based on Ẑ[b] from (59), which depends on a relative

spinc structure [b], rather than based on Ẑ[b|Γ] from (60), which depends only on the spinc

structure ωε([b]). The only modification is to use ζ[b] from (67) as the exponent of z. The
resulting weighted graded root is also an invariant under Neumann moves, where the relative
spinc structures transform according to the maps αrel given in (27). Letting b′ = αrel(b),
for the type (A), (A0), and (B) move we have λ′⊺M ′−1(b′|Γ′) = λ⊺M−1(b|Γ) and b′0 = b0,
while for the type (B0) move we have λ′⊺M ′−1(b′|Γ′) = λ⊺M−1(b|Γ) + 1 and b′0 = b0 + 1.
Since ζ[b] = ζ − λ⊺M−1(b|Γ) + b0, invariance of this alternative weighted graded root then
follows from the proof of Theorem 4.25. Also, it is a straightforward calculation to see that
if [b1], [b2] ∈ spinc(Γv0) satisfy ωε([b1]) = ωε([b2]), then for any K ∈ ωε([b2])

ζ[b1](K) = ζ[b2](K) + 2r,

where r ∈ Z is some fixed integer. Therefore different relative spinc structures in the same
fiber of ωε lead to power series which differ by some even power of z.
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5. Surgery formula for weighted graded roots

Let Γv0 be a negative definite marked plumbing tree with s + 1 vertices, and let m0 ∈ Z

be a framing on v0 such that the surgered graph Γv0,m0 is negative definite. As usual, we set
Γ = Γv0 \ {v0}. In Section 4.2 we described how to obtain the graded root for Γv0,m0 at a
spinc structure t ∈ spinc(Γv0,m0) from the bigraded roots of Γv0 . A surgery formula for the

q-series Ẑ of the closed manifold Yv0,m0 in terms of the q, z-series of the knot complement
represented by Γv0 was given in [GM21, Theorem 1.2 and Section 6.8]. We note also that a
more general gluing formula was provided in [GM21, Section 6.3]. In this section we unify
and refine the surgery formulas: namely, we describe how to obtain the weighted graded
roots of Γv0,m0 from the weighted bigraded roots of Γv0 .

As in Section 4.2, in this section we will use L to denote a characteristic vector of Γv0,m0

and K to denote a characteristic vector of Γ. We introduce the following additional notation.
For L ∈ Char(Γv0,m0), set

WΓv0,m0
(L; q, t)

= q−
3(s+1)+

∑
mv+(L−εMv0,m0u)2

4 t
L⊺u−εu⊺Mv0,m0u

2 WΓv0,m0
(L)

= q−
3(s+1)+

∑
mv

4

(∮ ∏

v

dzv
2πizv

(t−1/2zv − t
1/2z−1

v )2−δvq−
ℓ⊺M

−1
v0,m0

ℓ

4

∏

v

zℓvv

)∣∣∣∣∣
ℓ=L−εMv0,m0u

.

Throughout this section, (t−1/2zv − t
1/2z−1

v )2−δv is expanded according to (38) via the sub-
stitution z 7→ t−1/2zv, and the integral is interpreted as recording the constant term of the
integrand as discussed in Section 3.2.

Note that WΓv0,m0
(L; q, t) differs from WΓv0,m0

(L) in that the former includes also the
monomial in q and t that L contributes. The weight in (40) is then obtained by summing
WΓv0,m0

(L; q, t) over the 0-cells of a connected component C. Analogously, for K ∈ Char(Γ),
define

WΓv0
(K; z, q, t) = (t−

1
2z − t

1
2z−1)1−δ0WΓv0

(K)qξ(K)zζ(K)tθ(K)

= (t−
1
2z − t

1
2z−1)1−δ0q−

3s+
∑

v 6=v0
mv

4 ×
(∮ ∏

v 6=v0

dzv
2πizv

(t−1/2zv − t
1/2z−1

v )2−δvq−
ℓ⊺M−1ℓ

4

∏

v 6=v0

zℓvv

)∣∣∣∣∣
ℓ=K−ε(λ+Mu)

.

Recall that sf = λ⊺M−1λ ∈ Q is the (rational) Siefert framing and that

p = Σ2 = m0 − λ
⊺M−1λ = m0 − sf ∈ Q .

Lemma 5.1. Let L ∈ Char(Γv0,m0 , t) with a = a(L), and let K = L|Γ ∈ Char(Γv0 , ta). Then

WΓv0,m0
(L; q, t) =

∮
dz

2πiz
(t−

1
2z − t

1
2 z−1)WΓv0

(K; z, q, t) z2(a−
1+ε
2
p)q

−3−p

4 q−
1
p
(a− 1+ε

2
p)2 .

Proof. We first establish the following regarding the q-power in WΓv0,m0
(L; q, t):

(74) −
3(s+ 1) +

∑
mv + (L− εMv0,m0u)

2

4
= −

3 + p

4
−

(
a− 1+ε

2
p
)2

p
+ ξ(K).
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We have

(L− εMv0,m0u)
2 = K2 +

(p− 2a)2

p
− 2εu⊺L+ u⊺Mv0,m0u

= K2 +
(p− 2a)2

p
− 2εu⊺K − 2εL0 +m0 + δ⊺u+

∑

v 6=v0

mv,

where in the first equality we use Lemma 4.9. From the proof of Lemma 4.9, we also have

L0 = 2a−m0 + λ⊺M−1λ+K⊺M−1λ = 2a− p+K⊺M−1λ.

The left-hand side of (74) is then

−
3 + 2m0

4
−

(p− 2a)2

4p
+
ε(2a− p)

2
+

[
−
3s+ δ⊺u+ 2

∑
v 6=v0

mv

4
−
K2

4
+
εK⊺u

2
+
εK⊺M−1λ

2

]
.

Note that the term in square brackets above is equal to ξ(K) + λ⊺M−1λ
2

. On the right-hand
side of (74), we have

(
a− 1+ε

2
p
)2

p
=

(p− 2a)2

4p
−
ε(2a− p)

2
+
m0 − λ

⊺M−1λ

4
,

so that

−
3 + p

4
−

(
a− 1+ε

2
p
)2

p
= −

3 + 2m0

4
−

(p− 2a)2

4p
+
ε(2a− p)

2
+
λ⊺M−1λ

2
,

which completes the proof of (74). This together with the straightforward computation

ζ(K) = λM−1(K − ε(λ+Mu)) = −2

(
a−

1 + ε

2
Σ2

)
+ L0 − ε(m0 + δ0)

implies the statement of the lemma. �

Definition 5.2. Define the Laplace transform L
(a,ε)
p to be

L(a,ε)
p : zu 7→

∮
dz

2πiz
(t−

1
2 z − t

1
2z−1)zu z2(a−

1+ε
2
p)q

−3−p

4 q−
1
p
(a− 1+ε

2
p)2

=





t−
1
2 q−

1
p
(a− 1+ε

2
p)2+−3−p

4 if u = −2(a− 1+ε
2
p)− 1

−t
1
2 q−

1
p
(a− 1+ε

2
p)2+−3−p

4 if u = −2(a− 1+ε
2
p) + 1

0 otherwise

,

and extend linearly.

Combining Lemma 5.1 with the proof of invariance of weighted (bi)graded root (Theorem
4.25) and the surgery algorithm for (bi)graded roots (Proposition 4.8), we immediately have:

Theorem 5.3. The weighted graded root of (Γv0,m0, t) is determined by the weighted bigraded
roots of Γv0, according to the following algorithm:
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(1) Consider the weighted graded graph
⊔

a∈A(t)

L(a,ε)
p [Rε(Γv0 , ta,W )] {−σ(a)},

where {d} denotes up upwards grading shift by d, and we are applying the Laplace

transform L
(a,ε)
p to the individual weights of the weighted graded root.

(2) For each pair of nodes η1 of

L(a,ε)
p [Rε(Γv0 , ta,W )] {−σ(a)}

and η2 of

L(a+Σ2,ε)
p [Rε(Γv0 , ta+Σ2 ,W )] {−σ(a+ Σ2)}

which are in the same grading, we identify η1 and η2 if there is a node in the bigraded
root Rbi(Γv0 , ta) with coordinate (η1, η2) (see Definition 4.5). When we identify the
nodes, we add up the weights. After all of these identifications, we remove multiple
edges connecting the same pair of vertices.

Let us explain how Theorem 5.3 yields Gukov-Manolescu’s Dehn surgery formula [GM21,
Theorem 1.2] (see in particular [GM21, Section 6.8]) in a special limit. First, from (52) we
see that

(75) p =
1

e0M−1
v0,m0

e0
.

For the following discussion, as in [GM21, Section 6.8], assume that the ambient manifold Y
is an integer homology sphere. In this case, λ⊺M−1λ = m0− p is an integer, and performing
p surgery on K ⊂ Y yields precisely Yv0,m0 .

Lemma 5.4. If Y is an integer homology sphere, then the map

spinc(Yv0,m0)→ Z /pZ

given by [L] 7→ a(L) mod p is a well-defined bijection.

Proof. Note that Σ is an integer vector since the ambient manifold is an integer homology
sphere. Therefore, since L is characteristic, L(Σ) + Σ2 is even. Next, suppose [L] = [L′], so
that L′ = L+ 2Mv0,m0x for some x ∈ Zs+1. We have

L′(Σ) + p

2
=
L(Σ) + p

2
+ x⊺Mv0,m0Σ =

L(Σ) + p

2
+ px0,

so the map is well-defined. For any L ∈ Char(Γv0,m0), [L+ 2ne0] maps to

(a(L) + n) mod p.

So by varying n, we see that this map is surjective. By cardinality considerations this map
must also be a bijection. �

Remark 5.5. Lemma 5.4 is analogous to [OS08, Lemma 2.2]

Remark 5.6. We point out that the map in Lemma 5.4 is a well-defined bijection in the
more general setting where K is nullhomologous in Y , since in this case the Seifert framing
sf = λ⊺M−1λ is an integer as well.
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Lemma 5.4 tells us that A(t) is a coset of pZ inside Z determined by the spinc structure
t ∈ spinc(Yv0,m0)

∼= Z/pZ. It follows that, in the hU → −∞ limit, Theorem 5.3 says that the

BPS q-series Ẑt(q, t) of the surgered 3-manifold Yv0,m0 can be obtained as

Ẑt(q, t) =
∑

a∈A(t)

L(a,ε)
p [Ẑ(z, q, t)]

=

∮
dz

2πiz
(t−

1
2 z − t

1
2 z−1)Ẑ(z, q, t)

∑

a∈A(t)

z2(a−
1+ε
2
p)q

−3−p

4 q−
1
p
(a− 1+ε

2
p)2

=

∮
dz

2πiz
(t−

1
2 z − t

1
2 z−1)Ẑ(z, q, t)

∑

a∈A(t)

z2aq
−3−p

4 q−
a2

p ,

where Ẑ(z, q, t) is the BPS q-series of the plumbed knot complement (with respect to the
unique [b|Γ]). The last expression is exactly the integer surgery formula of Gukov-Manolescu.

Example 5.7 (−1-surgery on trefoil). Figure 15 illustrates how the weighted graded root
of S3

−1(31) = Σ(2, 3, 7) can be recovered from the weighted (bi-)graded root of 31 (Figure 1)
using the surgery formula. We have set t = 1 for simplicity.

Appendix A. Remarks on invariants of plumbed manifolds

In this appendix we discuss more precisely the sense in which constructions both in this
paper and elsewhere in the literature constitute invariants of plumbed manifolds (or plumbed
knot complements).

One way to formulate the notion of an invariant of a closed, oriented 3-manifold Y equipped
with s ∈ spinc(Y ) is to assign an object in some category to (Y, s), such that if g : Y → Y ′ is
a diffeomorphism with g∗(s) = s

′ ∈ spinc(Y ′), then (Y, s) and (Y ′, s′) are assigned isomorphic
objects. For instance, Heegaard Floer homology is known to be an invariant8 of the pair
(Y, s) in the above sense [JTZ21].

Restricting to the present setting of negative definite plumbed manifolds, suppose one has
an object I(Γ, [k]) for each negative definite plumbing tree Γ and [k] ∈ spinc(Γ). One way
to ensure that I constitutes an invariant in the above sense is to verify the following: given
negative definite plumbing trees Γ and Γ′, spinc structures [k] ∈ spinc(Γ) and [k]′ ∈ spinc(Γ′),
and a diffeomorphism g : Y (Γ) → Y (Γ′) with g∗([k]) = [k]′, there is a sequence of moves
through negative definite plumbings (Γ, [k]) = (Γ1, [k]1) → · · · → (Γn, [k]n) = (Γ′, [k]′) such
that I(Γi, [k]i) are all isomorphic. Theorem 2.3 describes how to relate Γ and Γ′, but, to
our knowledge, Neumann moves alone do not address the additional spinc structure labels.
Compare with Kirby’s calculus of framed links [Kir78], as formulated in [GS99, Theorem
5.3.6], which says that for any framed links L and L′ in S3 and any orientation-preserving
diffeomorphism g between the manifolds obtained by surgery on L and L′, there is a sequence
of Kirby moves (adding or removing a ±1 framed unknot and handle slides) which realizes
g up to isotopy.

A similar discussion applies to the case of marked plumbed knot complements equipped
with a relative spinc structure. In light of this, invariance of the main construction in the

8We note that the properties established in [JTZ21] are much stronger than the type of invariance con-
sidered in this appendix.
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present paper, Theorem 4.25, is with respect to Neumann moves and their induced map on
spinc structures. Theorem 4.7 and Theorem 3.10 are stated analogously.

Automorphisms of plumbing trees also act on the set of spinc structures. Precisely, let Γ be
a negative definite plumbing tree and let ϕ be a graph automorphism of Γ which preserves
the weight at each vertex. Pick an ordering v1, . . . , vs of V(Γ) for convenience, and view
ϕ as a permutation of {1, . . . , s}. This gives a map Zs → Zs, still denoted ϕ, given by
ϕ(x1, . . . , xs) = (xϕ−1(1), . . . , xϕ−1(s)), which in turn induces a map ϕ∗ : spin

c(Γ)→ spinc(Γ).

Proposition A.1. For any ε ∈ {±1}, admissible family of functions W , and s ∈ spinc(Γ),
the weighted graded roots Rε(Γ, s,W ) and Rε(Γ, ϕ∗(s),W ) are isomorphic.

Proof. It is straightforward to see that K2 = (ϕ(K))2 for any K ∈ Char(Γ), so that ϕ
restricts to a map Sh(Γ, s) → Sh(Γ, ϕ∗(s)) for each h ∈ hU(k) + 2Zs. This evidently yields
an isomorphism of 1-dimensional CW complexes, and the contribution of K ∈ Sh(Γ, s) to
the weight of the connected component it lies in is equal to the contribution of ϕ(K) ∈
Sh(Γ, ϕ∗(s)). �

It is natural to ask if Neumann moves and graph isomorphisms suffice to generate all
maps of spinc structures induced by orientation-preserving diffeomorphism between negative
definite plumbed manifolds. Example A.4 below demonstrates that this is not the case. We
first record some preliminary observations.

Let Y be a closed oriented 3-manifold. In Turaev’s convention [Tur02, Chapter I, Section
4.3], the first Chern class is viewed as a map c : spinc(Y ) → H1(Y ;Z). It satisfies c(s) =
−c(s), where s is the conjugate of s, and c is injective if H1(Y ;Z) has no 2-torsion.

Lemma A.2. For a plumbing graph Γ, its associated framed link L(Γ) ⊂ S3 is strongly
invertible.

Proof. By induction on the number of vertices, a diagram of L(Γ) can be arranged so that
each component is an unknot which intersects a fixed line in two points. A rotation of π
about this line demonstrates that L(Γ) is strongly invertible. �

Now fix a plumbing graph Γ, and let f be an orientation-preserving diffeomorphism of
S3 sending L(Γ) to itself with orientation reversed (for instance, the one constructed in the

proof of Lemma A.2). Denote by f̃ : Y (Γ)→ Y (Γ) the induced diffeomorphism.

Proposition A.3. With the above notation, if H1(Y (Γ);Z) has no 2-torsion, then the map

spinc(Y (Γ))→ spinc(Y (Γ)) induced by f̃ is given by s 7→ s.

Proof. Naturality of the Chern class gives a commutative diagram

spinc(Y (Γ)) H1(Y (Γ);Z)

spinc(Y (Γ)) H1(Y (Γ);Z)

c

f̃∗

c

with injective horizontal arrows. The right vertical map is given by f̃∗(x) = −x for all
x ∈ H1(Y (Γ);Z). The statement follows. �

Example A.4. Consider the plumbing tree Γ, shown below.
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In [AJK23, Example 8.4], a spinc structure s ∈ spinc(Y (Γ)) was found such that the weighted
graded roots of (Γ, s) and (Γ, s) are distinct. On the other hand, H1(Y (Γ);Z) ∼= Z /769Z has
no 2-torsion, so by Proposition A.3 there is a diffeomorphism of Y (Γ) acting as conjugation
on spinc(Y (Γ)).

Since the weighted graded root is invariant under Neumann moves and graph isomor-
phisms, this shows that these moves alone are not enough to induce the action of any given
diffeomorphism on the set of spinc structures.

We discuss the behavior of the weighted graded root under spinc conjugation in more
detail in Section 3.4.

Remark A.5. Manifolds associated with negative definite plumbing trees are perhaps more
naturally viewed from the perspective of singularity theory rather than the perspective of
low-dimensional topology. For a negative definite plumbing tree Γ, there is a canonical spinc

structure scan, which is represented by the characteristic vector (−m1 − 2, . . . ,−ms − 2).
This spinc structure is the restriction to Y (Γ) of the spinc structure determined on X(Γ)
by an almost-complex structure; see for instance the discussion in [NN02, Section 2]. The
diffeomorphisms associated with Neumann moves preserve the canonical spinc structure,
while a general diffeomorphism need not.
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