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We explore the utility of d = 8 qudits, qu8its, for quantum simulations of the dynamics of 1+1D
SU(3) lattice quantum chromodynamics, including a mapping for arbitrary numbers of flavors and
lattice size and a re-organization of the Hamiltonian for efficient time-evolution. Recent advances
in parallel gate applications, along with the shorter application times of single-qudit operations
compared with two-qudit operations, lead to significant projected advantages in quantum simulation
fidelities and circuit depths using qu8its rather than qubits. The number of two-qudit entangling
gates required for time evolution using qu8its is found to be more than a factor of five fewer than for
qubits. We anticipate that the developments presented in this work will enable improved quantum
simulations to be performed using emerging quantum hardware.

∗ marcilla@uw.edu
† crobin@physik.uni-bielefeld.de
‡ mjs5@uw.edu; On leave from the Institute for Nuclear Theory.

ar
X

iv
:2

40
3.

14
53

7v
1 

 [
qu

an
t-

ph
] 

 2
1 

M
ar

 2
02

4

https://orcid.org/0000-0003-3570-2849
https://orcid.org/0000-0001-5487-270X
https://orcid.org/0000-0001-6502-7106
mailto:marcilla@uw.edu
mailto:crobin@physik.uni-bielefeld.de
mailto:mjs5@uw.edu


2

CONTENTS

I. Introduction 3

II. The Kogut-Susskind Hamiltonian for QCD and Mapping to Qubits 4

III. Qu8its for QCD 5
A. Mapping Quarks and Anti-Quarks to Qu8its 5

IV. The 1+1D QCD Hamiltonian Mapped to Qu8its 7
A. QCD with Nf = 1 on L = 1 Spatial Site with OBCs 8

1. Quantum Circuits and Givens Rotations 9
2. Restructuring 10

B. QCD with Nf Flavors on L Spatial Site and Quantum Resource Requirements 11

V. Summary and Outlook 12

Acknowledgments 13

A. Gell-Mann Matrices 14

B. Embedding Quarks and Anti-Quarks into Qu8its 14

C. Givens Rotations for SU(8) 15

D. Contractions of Color-Charge Operators 16

References 17



3

I. INTRODUCTION

Quantum simulations of Standard Model physics are expected to provide results and insights about fundamental
aspects of the structure and dynamics of matter that are not possible with experiment or with classical computing
alone [1–8]. A major objective for high-energy physics and nuclear physics quantum simulations is to perform real-
time simulations of non-equilibrium dynamics, such as of the low-viscosity quark-gluon liquid produced in heavy-ion
collisions [9, 10], of the high-multiplicity events produced in proton-proton collisions [11], and the creation of matter
in the early universe [12]. Progress toward such simulations is currently at early stages, in terms of the capabilities of
quantum computers, of the sophistication of relevant quantum algorithms and workflows, and in understanding how
to co-design quantum computers to best simulate quantum field theories. A degree of focus is being placed on 1+1D
systems, such as the Schwinger model, SU(3) quantum chromodynamics (QCD) and its SU(2) analog, and the Gross-
Neveu model, in order to prepare for simulating QCD in 2+1D and 3+1D, with the ultimate goal of providing robust
results (with a complete quantification of uncertainties) for observables that cannot be assessed in the laboratory or
with observation.

Most of the development so far has been centered around quantum computers utilizing qubits [10–52], such as
trapped-ion systems and superconducting qubit systems. However, in pursuit of hybrid qubit-qudit architectures [53,
54], further device capabilities, such as vibrational excitations [55–59] or superconducting radio-frequency (SRF)
cavities [21, 60–62], are being integrated into system functionalities. Compared to qubits alone, quantum simulations
using higher-dimensional qudits [63],1 which can allow for “better fit” Hilbert spaces and reductions in the number of
entangling gates [65], take us, in a sense, one more step away from classical computing. With recent developments
in quantum hardware, including results from qudit trapped-ion systems [66–69], superconducting circuits [70–72],
photonic systems [73], and nitrogen vacancy centers in diamond [74], and anticipating that such devices will become
increasingly capable and available (in particular, trapped-ion systems with d > 10 [68]), a more general consideration
of how one can utilize qudits in simulations of Standard Model quantum field theories is timely. Examples of such
applications can be found in Refs. [21, 53, 54, 75–79], where the larger Hilbert space of qudits is used to describe the
gauge fields of (non-)Abelian lattice gauge theories, or in Refs. [65, 80], where nuclear many-body systems naturally
map to qudits.

Quantum simulations of 1+1D SU(2) [10, 17, 22, 23, 33, 50] and SU(3) [21, 29, 30, 36–38, 43, 52] lattice gauge
theories have recently been performed. Those that included matter fields have used the Kogut-Susskind (KS) staggered
discretization2 of the quark fields [85, 86], and worked in axial gauge to utilize Gauss’s law to uniquely define the
gauge fields [36, 87], enabling their contributions to be included by non-local all-to-all interactions. In this mapping,
one color of one flavor of quark is mapped to two qubits, one describing the occupation of that quark and one of the
corresponding anti-quark. For example, to describe one site of two-flavor (Nf = 2) SU(3) QCD requires 12 qubits.3
Quantum circuits for preparing the ground state and implementing Trotterized time evolution have been identified,
and the quantum resources established (providing an upper bound) [36].

In this work, we explore the utility of qudits with d = 8, which we denote as qu8its,4 in simulating 1+1D lattice
QCD using the KS discretization. This is motivated, in part, by our demonstration of the utility of using qu5its
in quantum simulations of multi-fermion (nucleon) systems with pairing interactions [65] and an underlying SO(5)
symmetry. The 8 states associated with a single quark flavor mapped to three qubits can be mapped to the states of
a single qu8it, and the 8 states associated with single anti-quark mapped to three qubits can be mapped to another
qu8it (which we loosely denote as an anti-qu8it). While it does not seem to be an immediate gain by counting the
number of states, the advantage is in the number of entangling gates required to implement time evolution, and
in the number of units in a quantum register. Analogous to qubit operations, the single-qudit gate operations are
significantly faster and of higher fidelity than the two-qudit operations.5 Consequently, the factor of ≳ 5 reduction
in the number of two-qudit gates and the factor of 3 reduction in the number of units in the register that we find
in mapping to qu8its, suggest that quantum computers with qu8its are likely to provide enhanced capabilitied for
simulating non-Abelian lattice gauge theories.

1 For a recent review of qudits, see for example Ref. [64].
2 Different discretization approaches, such as Wilson fermions, are also being investigated [24, 81–84].
3 The lepton fields have also been included, in simulating the β-decay of a baryon [38], requiring four additional qubits per lepton

generation.
4 Which we suggest is pronounced q-huits.
5 For example, in IonQ’s current flagship trapped-ion qubit quantum computer, single-qubit operations require ∼ 100µs while two-qubit

operations require ∼ 600µs [88].
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II. THE KOGUT-SUSSKIND HAMILTONIAN FOR QCD AND MAPPING TO QUBITS

The 1+1D SU(3) KS Hamiltonian [85, 86] with Nf flavors formulated in A(a)
x = 0 gauge [36, 87] takes the form

H =
∑
f

[
1

2

2L−2∑
n=0

(
ϕ(f)n

†ϕ(f)n+1 + h.c.
)

+ mf

2L−1∑
n=0

(−1)nϕ(f)n
†ϕ(f)n

]
+

g2

2

2L−2∑
n=0

8∑
a=1

∑
m≤n

Q(a)
m

2

, (1)

where ϕ(f)n correspond to annihilation operators for fermions of flavor f . They are color triplets, with their color
indices are suppressed in Eq. (1). The color-charge operators on each lattice site are the sum of contributions from
each flavor. For example, for Nf = 2 (up and down quarks), the color-charge operators are

Q(a)
m = ϕ(u)†m T aϕ(u)m + ϕ(d)†m T aϕ(d)m , (2)

where the generators of SU(3), T a, are given in App. A. With open boundary conditions (OBC) and vanishing fields
at spatial infinity, corresponding to vanishing net color charge on the lattice (enforced by additional terms in the
Hamiltonian [36]), Gauss’s law is sufficient to determine the chromo-electric field at all lattice sites,

E(a)
n =

∑
m≤n

Q(a)
m . (3)

There are a number of ways that this system, with the Hamiltonian given in Eq. (1), can be mapped onto qubit
registers. In our previous works [36, 38], the KS Hamiltonian for an arbitrary number of colors Nc and flavors Nf was
mapped to qubits using the Jordan-Wigner (JW) transformation [89]. For the Nc = 3 and Nf = 2 case, each staggered
site requires six qubits, with ordering db, dg, dr, ub, ug, ur, and the antiquarks associated with the same spatial site
adjacent with ordering db, dg, dr, ub, ug, ur. This is shown in the left panel of Fig. 1. The resulting JW-mapped

FIG. 1. Mapping QCD with Nf quark flavors onto a lattice of qubits (left) or qu8its (right) describing a spatial site. Kogut-
Susskind (staggered) fermions are used for the quark fields, with (anti)quarks on (odd) even sites. Using qubits, color and
flavor degrees of freedom of each quark and antiquark site are distributed over six qubits with a JW mapping. Using qu8its,
with the quark (and anti-quark) degrees of freedom being mapped to the internal states, only two qu8its are required per each
quark flavor.

Hamiltonian is the sum of three terms [36, 38], neglecting the possible presence of chemical potentials,

H = Hkin + Hm + Hel ,

Hkin = −1

2

2L−2∑
n=0

1∑
f=0

2∑
c=0

[
σ+
6n+3f+c

(
5⊗

i=1

σz
6n+3f+c+i

)
σ−
6(n+1)+3f+c + h.c.

]
,

Hm =
1

2

2L−1∑
n=0

1∑
f=0

2∑
c=0

mf

[
(−1)nσz

6n+3f+c + 1
]
,

Hel =
g2

2

2L−2∑
n=0

(2L− 1− n)

 1∑
f=0

Q
(a)
n,f Q

(a)
n,f + 2Q

(a)
n,0Q

(a)
n,1

+ g2
2L−3∑
n=0

2L−2∑
m=n+1

(2L− 1−m)

1∑
f=0

1∑
f ′=0

Q
(a)
n,f Q

(a)
m,f ′ ,(4)

where repeated adjoint color indices, (a), are summed over, the flavor indices, f = {0, 1}, correspond to u- and d-quark
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flavors, and σ± = (σx ± iσy)/2. Products of charges, given in terms of spin operators, are given in Refs. [36, 38],

Q
(a)
n,f Q

(a)
n,f =

1

3
(3− σz

6n+3fσ
z
6n+3f+1 − σz

6n+3fσ
z
6n+3f+2 − σz

6n+3f+1σ
z
6n+3f+2) ,

Q
(a)
n,f Q

(a)
m,f ′ =

1

4

[
2
(
σ+
6n+3fσ

−
6n+3f+1σ

−
6m+3f ′σ

+
6m+3f ′+1 + σ+

6n+3fσ
z
6n+3f+1σ

−
6n+3f+2σ

−
6m+3f ′σ

z
6m+3f ′+1σ

+
6m+3f ′+2

+ σ+
6n+3f+1σ

−
6n+3f+2σ

−
6m+3f ′+1σ

+
6m+3f ′+2 + h.c.

)
+

1

6

2∑
c=0

2∑
c′=0

(3δcc′ − 1)σz
6n+3f+cσ

z
6m+3f ′+c′

]
. (5)

A constant has been added to Hm so that all basis states contribute a positive mass.
The time-evolution operator corresponding to this Hamiltonian can be implemented by sequences of unitary opera-

tors. These Trotterized quantum circuits, and hence the associated gate counts per Trotter step, have been determined
in Refs. [36, 38].

III. QU8ITS FOR QCD

The main drivers for considering mapping the KS Hamiltonian to qudits with d = 8, as discussed above, is to
reduce the number of two-qudit entangling gates from the number required for qubits. The single-component fermion
formulation (per color state) that defines the staggering of the quark fields draws comparisons with the constructions
used in describing nuclear many-body systems. We recently showed the utility of using d = 5 qudits (qu5its) to
describe spin-paired multi-nucleon systems in the context of the Agassi model [65]. We make use of this analogy in
mapping the quark (and anti-quark) fields to qu8its, as displayed in the right panel of Fig. 1.

A. Mapping Quarks and Anti-Quarks to Qu8its

For a single flavor quark staggered site and using the JW mapping to three qubits, the qubits define the occupation
of the three colors qr, qg, qb throughout a quantum simulation. Satisfying fermion anti-commutation relations, the
mapping of color occupations to qu8its can be chosen to be,{

|qu8it⟩
}

=
{
|Ω⟩ , |qr⟩ , |qg⟩ , |qb⟩ , |qgqb⟩ , −|qrqb⟩ , |qrqg⟩ , |qrqgqb⟩

}
=
{
|Ω⟩ , ĉ†r|Ω⟩ , ĉ†g|Ω⟩ , ĉ†b|Ω⟩ , ĉ†g ĉ

†
b|Ω⟩ , −ĉ†r ĉ

†
b|Ω⟩ , ĉ†r ĉ†g|Ω⟩ , ĉ†r ĉ†g ĉ

†
b|Ω⟩

}
=
{
|1⟩ , |2⟩ , |3⟩ , |4⟩ , |5⟩ , |6⟩ , |7⟩ , |8⟩

}
, (6)

where the fermionic vacuum state is |Ω⟩, and the ĉα operators are elements of the ϕ(f)j defined below Eq. (1).6 At first,
the group structure might be a little confusing, for instance the reason as to why there is only one state associated with
the three quarks in the maximally occupied state (|8⟩). Given that quarks reside in the fundamental representation of
SU(3), 3, products of two and three quarks give rise to the following irreducible representations (irreps): 3⊗3 = 6⊕3
and 3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1. For spinless fermions at the same lattice site, only the total antisymmetric irreps are
allowed, therefore the irreps of the mapping in Eq. (6) are constrained to be {1,3,3,3,3,3,3,1}, respectively. The
symmetric representation 6, for example, is forbidden by antisymmetry. The states in Eq. (6) map naturally to the
eight states of a single qu8it. Further details about this embedding can be found in App. B.

The anti-quarks are mapped to qu8its in an analogous way to the quarks, but with the replacement {r, g, b} →
{r, g, b}, {

|qu8it⟩
}

=
{
|Ω⟩ , |qr⟩ , |qg⟩ , |qb⟩ , |qgqb⟩ , −|qrqb⟩ , |qrqg⟩ , |qrqgqb⟩

}
=
{
|Ω⟩ , ĉ†r|Ω⟩ , ĉ†g|Ω⟩ , ĉ†b|Ω⟩ , ĉ

†
g ĉ

†
b
|Ω⟩ , −ĉ†r ĉ†b|Ω⟩ , ĉ

†
r ĉ

†
g|Ω⟩ , ĉ†r ĉ†g ĉ†b|Ω⟩

}
=
{
|1̄⟩ , |2̄⟩ , |3̄⟩ , |4̄⟩ , |5̄⟩ , |6̄⟩ , |7̄⟩ , |8̄⟩

}
. (7)

As is the case for the quark mapping, each state in Eq. (7) transforms as a single SU(3) irrep, which for the anti-quarks
are {1,3,3,3,3,3,3,1}, respectively.

6 The sign in the definition of |6⟩ results from the ϵ132 in constructing a 3 from 3⊗ 3.
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With the mappings defined in Eqs. (6) and (7), the relevant operators for quantum simulation can be formed. The
color-charge operator acting on the quarks is

Q̂(a) = ĉ†T aĉ , ĉ = (ĉr, ĉg, ĉb)
T
, (8)

As the 3 of di-quarks is also present in the mapping to qu8its, the color-charge operators acting on the anti-fundamental
representation (the same as the anti-quarks) is also required,

ˆ̄Q(a) = ˆ̄c
†
T̄ aˆ̄c , ˆ̄c =

(
ĉr, ĉg, ĉb

)T
, T̄ a = (−T a)

∗
. (9)

Therefore, the (8× 8) matrix representations of the color-charge operator acting on qu8its and anti-qu8its are

Q̂(a) → Q̃(a) =


0 0 0 0

0 T a 0 0

0 0 T̄ a 0

0 0 0 0

 , ˆ̄Q(a) → ˜̄Q(a) =


0 0 0 0

0 T̄ a 0 0

0 0 T a 0

0 0 0 0

 , (10)

where the blocks of Q̃(a) in Eq. (10) correspond to the action on {1,3,3,1} irreps, and the blocks of ˜̄Q(a) correspond
to the action on {1,3,3,1} irreps. A qu8it prepared in an arbitrary state |ψ⟩, acted on by the color-charge operator,
becomes

|ψ⟩ =
{
|qu8it⟩

}
· ξ =

8∑
k=1

|k⟩ ξk , Q̂(a)|ψ⟩ =
{
|qu8it⟩

}
· Q̃(a) · ξ =

8∑
k=1

|k⟩
(
Q̃(a) · ξ

)
k
, (11)

where ξ is the vector of complex numbers defining the state. The baryon-number operator has a diagonal matrix
representation,

B̂ → B̃ =
1

3
diag (0, 1, 1, 1, 2, 2, 2, 3) . (12)

Finally, the annihilation and creation operators acting on a qu8it have matrix representations

c̃r =



0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, c̃g =



0 0 1 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, c̃b =



0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


, (13)

with c̃r† = c̃r
T , c̃g† = c̃g

T , and c̃b† = c̃b
T , satisfying the (required) fermionic anti-commutation relations, {c̃α, c̃β †} =

δαβ and {c̃α, c̃β } = {c̃α†
, c̃β

†} = 0 (with α, β ∈ {r, g, b}). The annihilation and creation operators act on the states
analogously to the charge operators. For example, the action of ĉr on a state |ψ⟩ is

|ψ⟩ =
{
|qu8it⟩

}
· ξ , ĉr|ψ⟩ =

{
|qu8it⟩

}
· c̃r · ξ . (14)

The actions of the creation operators in Eq. (13) are shown in Fig. 2. The creation and annihilation operators acting
on the anti-qu8it have the same representations as those acting on the qu8it in Eq. (13): ˜̄cα = c̃α.
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FIG. 2. Transitions among the quark states mapped to a qu8it, defined in Eq. (6), induced by the creation operators ĉ†r (left),
ĉ†g (center) and ĉ†b (right) from Eq. (13). The color of the arrows corresponds to the color charge of the operator.

IV. THE 1+1D QCD HAMILTONIAN MAPPED TO QU8ITS

In terms of the annihilation and creation operators, the Nf = 1 SU(3) Hamiltonian in Eq. (1) can be written as

Ĥ = Ĥkin + Ĥm + Ĥel

=
1

2

2L−2∑
n=0

∑
α=r,g,b

(
ĉ†α,nĉ

†
α,n+1 − ĉα,nĉα,n+1

)
+ 3m

2L−1∑
n=0

B̂n +
g2

2

2L−2∑
n=0

8∑
a=1

∑
m≤n

Q̂(a)
m

2

. (15)

When written explicitly in terms of matrix-operators acting on qu8its (analogous to the JW mapping to qubits with
the operators written in terms of Pauli matrices), it becomes

Ĥ → 1

2

2L−2∑
n=0

∑
α=r,g,b

[(
c̃α

†
P̃
)
n
⊗ c̃α

†
,n+1 −

(
c̃α P̃

)
n
⊗ c̃α,n+1

]
+ 3m

2L−1∑
n=0

B̃n

+
g2

2

2L−2∑
n=0

8∑
a=1

(
n∑

m∈even

Q̃(a)
m +

n∑
m∈odd

˜̄Q(a)
m

)2

, (16)

where the phase matrix, P̃ , is

P̂ → P̃ = diag (1,−1,−1,−1, 1, 1, 1,−1) . (17)

The P̃ matrix is the generalized form of the σz Pauli matrix, generally acting on strings of qudits between quark
operators in order to satisfy Fermi statistics. Examining the connectivity map shown in Fig. 3, one observes that each
state is connected to either 3 or 5 other states within the qu8it. The states corresponding to color-singlet states have
connectivity of 3 (originating from the kinetic term), while those corresponding to color-triplet or anti-triplet states
have connectivity of 5 (originating from the kinetic and chromo-electric terms).

The extension to systems with a larger number of quark flavors, Nf > 1, is straightforward. For each flavor of
quark at a given lattice site, there is a corresponding qu8it, and similarly for anti-quark sites. The kinetic and mass
terms in the Hamiltonian are replicated for each flavor (with the appropriate masses), and the color-charge operators
are extended as in Eq. (2).



8

FIG. 3. A connectivity map among the eight qu8it states that is required by the Hamiltonian in Eq. (16). Colored connections
are for the kinetic term, while black ones are for the color charge-charge interactions (different line styles correspond to different
charge combinations).

A. QCD with Nf = 1 on L = 1 Spatial Site with OBCs

It is helpful to explore examples of mappings to qu8its. Consider L = 1, with lattice sites n = 0, 1, with one flavor
Nf = 1, which maps to two qu8its (one for the quarks and one for the anti-quarks), a system that we have studied
previously [36]. The matrix representation of the Hamiltonian, as given in Eq. (16), reduces to

H1 =
1

2

(
c̃r

† P̃ ⊗ c̃r
† + c̃g

† P̃ ⊗ c̃g
† + c̃b

† P̃ ⊗ c̃b
† − c̃r P̃ ⊗ c̃r − c̃g P̃ ⊗ c̃g − c̃b P̃ ⊗ c̃b

)
+ 3m

(
B̃ ⊗ Ĩ + Ĩ ⊗ B̃

)
+

g2

2

∑
a

(
Q̃(a) ⊗ Ĩ

)2
+

h2

2

∑
a

(
Q̃(a) ⊗ Ĩ + Ĩ ⊗ ˜̄Q(a)

)2

,

= H1kin + H1m + H1el + H1h , (18)

where Ĩ is the identity operator. The term with coefficient h has been included to enforce color-neutrality across the
lattice as h → ∞, as we implemented in previous work [36]. This generates a significant penalty for chromo-electric-
energy density beyond the end of the spatial lattice, and without this term color-edge states appear as low-lying states
in the spectrum due to OBCs [36]. In the large-h limit, only color-singlet states remain at low energies.

This system is sufficiently simple and of small dimensionality, involving a 64× 64 Hamiltonian matrix, that it can
be exactly diagonalized with classical computers. Projecting to states with good baryon number further reduces the
size of the matrix. For example, in the B = 0 sector, the contributing configurations correspond to i) both qu8its
in the vacuum (a 1); ii) the qu8its are in the one-quark one-anti-quark sector (3 ⊗ 3 = 8 ⊕ 1); iii) the qu8its are in
the two-quark two-anti-quark sector, (3 ⊗ 3 = 8 ⊕ 1); and, iv) both qu8its are in the completely occupied state, a
baryon-anti-baryon pair (a 1). Consequently, the total number of B = 0 basis states is nB=0 = 1 + 9 + 9 + 1 = 20.
However, a large value of h propels the 8’s high in the spectrum, leaving only four color-singlet states in the low-lying
spectrum. These are formed from linear combinations of the eight pairings of states in the qu8its.7

As this is a system we have analyzed previously using the JW mapping to qubits [36], the low-lying spectra and
time-evolution from arbitrary initial states are known. The (exact) time evolution found from matrix exponentiation
of the Hamiltonian in Eq. (18), is found to furnish results that agree with our previous analyses.

As shown in Eq. (21) below, the chromo-electric term Ĥ1el is diagonal in the qu8it computational basis for L = 1.
Thus, in the case of an ideal quantum computer, with an initial state that is a color-singlet, exact time evolution will
leave the system in a color-singlet state at all subsequent times, even without the “h-term” in Eq. (18). As such, that
term can be omitted in the time-evolution operator in the case of L = 1. For systems with L > 1, however, color-
charge is violated by Trotterized time evolution (in particular, due to Trotterization of the eight contributions to the
color sum in the chromo-electric field term, when the color-charge operators act on different sites), and consequently,
including the “h-term” is a means to mitigate this violation.

7 If we were working in U(1) lattice gauge theory describing quantum electrodynamics, the situation would be somewhat less complex
because each (tensor-product) basis state is an eigenstates of the electric-charge operator. This is not the situation for non-Abelian
theories, where the color-charge operator generally mixes basis states.
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1. Quantum Circuits and Givens Rotations

To establish the quantum circuits for the Nf = 1 and L = 1 system, the Hamiltonian is decomposed into unitary
operations on each of the qu8its. As is standard for quantum operations on qudits, the Hamiltonian in Eq. (18) is
decomposed into generators of Givens rotations, Xij , Yij , and Zi. In this case, d = 8, these provide a complete set of
generators for SU(8) transformations on a single qu8it. It is convenient, in an effort to better connect with hardware
aspects of simulations, to work with Hadamard-Walsh matrices, wi, rather than with Zi. For d = 8, there are 28 Xij ,
28 Yij , and 8 wi (including the identity), as defined in App. C.

The kinetic-energy operator in the Hamiltonian in Eq. (18) is comprised only of terms that act on both qu8its. As
the annihilation and creation operators induce multiple transitions within a qu8it, as depicted in Fig. 2, this term
decomposes into multiple tensor products of Givens matrices,

H1kin =
1

4

∑
r∈{(12),(13),(14),

(58),(68),(78),
−(26),−(27),−(35),
−(37),−(45),−(46)}

(Xr ⊗Xr − Yr ⊗ Yr)

+
1

4

∑
(r,s)∈{(12)(58),(13)(68),

(14)(78),(26)(35),
(27)(45),(37)(46)}

(Xr ⊗Xs + Xs ⊗Xr − Yr ⊗ Ys − Ys ⊗ Yr)

+
1

4

∑
(r,s)∈{(12)(37),(46)(12),
(27)(13),(13)(45),(14)(26),
(35)(14),(78)(26),(27)(68),
(35)(78),(58)(37),(68)(45),

(46)(58)}

(Xr ⊗Xs −Xs ⊗Xr − Yr ⊗ Ys + Ys ⊗ Yr) , (19)

where the minus sign in some of the indices in the first summation means a global minus sign for that corresponding
term. The mass term in the Hamiltonian is diagonal, given in terms of the action of the baryon-number matrix B̃
defined in Eq. (12), and which can be further decomposed into the wi,

H1m = 3m
(
B̃ ⊗ Ĩ + Ĩ ⊗ B̃

)
=

m√
2

(
(6w1 − 3w2 − w4 − w6 − w8)⊗ Ĩ + Ĩ ⊗ (6w1 − 3w2 − w4 − w6 − w8)

)
,

B̃ =
1

3
diag (0, 1, 1, 1, 2, 2, 2, 3) =

1

3
√
2
(6w1 − 3w2 − w4 − w6 − w8) . (20)

For a single site, the contribution of the chromo-electric-energy density to the Hamiltonian from within the lattice,
receiving contributions from the n = 0 qu8it site only, can be written as (details can be found in App. D),

H1el =
g2

2

∑
a

(
Q̃(a) ⊗ Ĩ

)2
→ 2g2

3
diag (0, 1, 1, 1, 1, 1, 1, 0)⊗ Ĩ

=
g2

2

(
8w1 ⊗ w1 −

8

3
(w3 + w5 + w7)⊗ w1

)
=
g2

2

(
Ĩ ⊗ Ĩ − diag

(
1,−1

3
,−1

3
,−1

3
,−1

3
,−1

3
,−1

3
, 1

)
⊗ Ĩ

)
. (21)

The h-term introduced to enforce color neutrality of an L > 1 lattice, requires computing the square of the total color
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charge of the lattice (see App. D),

H1h =
h2

2

8∑
a=1

(
Q̃(a)Q̃(a) ⊗ Ĩ + Ĩ ⊗ ˜̄Q(a) ˜̄Q(a) + 2Q̃(a) ⊗ ˜̄Q(a)

)
=
h2

2

(
16w1 ⊗ w1 −

8

3
w1 ⊗ (w3 + w5 + w7)−

8

3
(w3 + w5 + w7)⊗ w1

− (w3 − w5)⊗ (w3 − w5)−
1

3
(w4 + w6 − 2w8)⊗ (w4 + w6 − 2w8)

+
1

2

∑
r∈{(23),(24),(34),

(56),(57),(67)}

(Yr ⊗ Yr −Xr ⊗Xr)

+
1

2

∑
(r,s)∈{(23)(56),
(24)(57),(34)(67)}

(Xr ⊗Xs + Yr ⊗ Ys + Xs ⊗Xr + Ys ⊗ Yr)

 . (22)

Xab a b a b Xab

m Ymn Ymn GX
mn(−α

2 ) Ymn Ymn GX
mn(

α
2 ) m

Yab a b a b Yab

m Xmn Xmn GY
mn(−α

2 ) Xmn Xmn GY
mn(

α
2 ) m

FIG. 4. Quantum circuits acting on qu8its that implement (left panel) GXX
abmn(α) = e−iαXab⊗Xmn , and (right panel) GYY

abmn(α) =
e−iαYab⊗Ymn . These are required to implement Trotterized time evolution, along with single-qu8it gates, corresponding to the
Hamiltonian terms in Eqs. (19), (20), (21) and (22). This circuit structure is reproduced from our previous work [65].

The Trotterized time evolution arising from this Hamiltonian, written in terms of generators of Givens transfor-
mation, can be implemented on qu8its using known quantum circuits, requiring 96 two-qu8it Givens rotations, and
including the H1h contribution would require an additional 26 rotations.8 Figure 4 shows the quantum circuits for
implementing the unitary operations of the form GXX

abmn(α) = e−iαXab⊗Xmn and GYY
abmn(α) = e−iαYab⊗Ymn , which are

the only required entangling structures, as a function of controlled gates. The associated gate-count for implementing
one Trotter step of time evolution for Nf = 1 and L = 1 is, including the h-term, 732 controlled-X and -Y gates, and
249 single qu8it rotations, which is much larger compared to the direct application of GXX

abmn(α) and GYY
abmn(α) via

the generalized Mølmer-Sørensen (MS) gates [66, 90].

2. Restructuring

A recent paper [79], where a different route to implementing similar types of gates is taken, indicates significant
reductions in two-qu8it rotations can be gained by grouping operators. This is motivated by advances in quantum
hardware [66, 67] so that multiple of the transitions associated with, for instance, the addition of a red-quark at a
given site can be implemented simultaneously, as opposed to sequentially. This suggests that all of the operations
associated with the red-quark-creation operator can be grouped together. Similarly for the green and blue operations,
and for their corresponding annihilation. The kinetic-energy term in Eq. (19) can be greatly simplified, and written
as

H1kin =
1

4
(A

(r)
0 ⊗A

(r)
1 −B

(r)
0 ⊗B

(r)
1 ) +

1

4
(A

(g)
0 ⊗A

(g)
1 −B

(g)
0 ⊗B

(g)
1 ) +

1

4
(A

(b)
0 ⊗A

(b)
1 −B

(b)
0 ⊗B

(b)
1 ) , (23)

8 We had hoped that the qu8it mapping would eliminate or mitigate the violation of SU(3) color charge occurring for L > 1 lattices due
to Trotterization (that we identified in Ref. [36]). However, this is not the case, and Trotterization of the time-evolution arising from
the qu8its Hamiltonian also violates color-charge conservation for L > 1.
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where

A
(r)
0 = X(12) −X(37) + X(46) + X(58) , A

(r)
1 = X(12) + X(37) −X(46) + X(58) ,

A
(g)
0 = X(13) + X(27) −X(45) + X(68) , A

(g)
1 = X(13) −X(27) + X(45) + X(68) ,

A
(b)
0 = X(14) −X(26) + X(35) + X(78) , A

(b)
1 = X(14) + X(26) −X(35) + X(78) , (24)

and the B(α)
n operators are analogous to the A(α)

n operators with X ↔ Y. The 96 two-qu8it entangling terms in Eq. (19)
are reduced to just 6 in Eq. (23). The mass term is unchanged, as is the contribution from the chromo-electric field
proportional to g2, neither of which involve two-qu8it entangling gates.

For the h-term, a similar simplification of terms exists by groupings into commuting sets,

H1h =
h2

2

(
1

2
(D(12) ⊗D(12) − C(12) ⊗ C(12)) +

1

2
(D(45) ⊗D(45) − C(45) ⊗ C(45))

+
1

2
(D(67) ⊗D(67) − C(67) ⊗ C(67)) + 2Q̃(3) ⊗ ˜̄Q(3) + 2Q̃(8) ⊗ ˜̄Q(8)

+ 2Ĩ ⊗ Ĩ − diag

(
1,−1

3
,−1

3
,−1

3
,−1

3
,−1

3
,−1

3
, 1

)
⊗ Ĩ − Ĩ ⊗ diag

(
1,−1

3
,−1

3
,−1

3
,−1

3
,−1

3
,−1

3
, 1

))
.(25)

where the C and D terms are

C(12) = X(23) −X(56) , C(45) = X(24) −X(57) , C(67) = X(34) −X(67) ,

D(12) = Y(23) + Y(56) , D(45) = Y(24) + Y(57) , D(67) = Y(34) + Y(67) . (26)

The 26 two-qu8it operations in H1h in Eq. (22) is reduced to 8 in Eq. (25) by this restructuring.

B. QCD with Nf Flavors on L Spatial Site and Quantum Resource Requirements

Considering the general situation of an arbitrary number of spatial lattice sites and an arbitrary number of flavors of
quarks, the Hamiltonian becomes (including the h-term),

Ĥ = Ĥkin + Ĥm + Ĥel + Ĥh ,

=
1

2

2L−2∑
n=0

∑
f=u,d,s,...

∑
α=r,g,b

(
ĉ†α,f,nĉ

†
α,f,n+1 − ĉα,f,nĉα,f,n+1

)
+ 3

2L−1∑
n=0

∑
f=u,d,s,...

mf B̂f,n

+
g2

2

2L−2∑
n=0

8∑
a=1

∑
m≤n

∑
f=u,d,s,...

Q̂
(a)
f,m

2

+
h2

2

2L−1∑
n=0

8∑
a=1

∑
m≤n

∑
f=u,d,s,...

Q̂
(a)
f,m

2

. (27)

The mapping to qu8its is a generalization of that discussed above, and displayed in Fig. 1. There are 2NfL qu8its,
half support the quark sites and half support the anti-quark sites. The kinetic term connects adjacent qu8its and
anti-qu8its of the same flavor across the lattice, the mass term provides contributions from individual qu8its and
anti-qu8its, and the chromo-electric term(s) connects all qu8its and anti-qu8its. The kinetic term in the Hamiltonian
becomes,

Hkin =

2L−2∑
n=0

∑
f=u,d,s,...

∑
α=r,g,b

1

4
(A

(α)
0,f,n ⊗A

(α)
1,f,n+1 −B

(α)
0,f,n ⊗B

(α)
1,f,n+1) , (28)

where A(α)
0,f,n denotes A(α)

0 from Eq. (24), acting on the flavor f qu8it at site n. The mass terms given in Eq. (27),
with a straightforward generalization of the above, becomes

Hm = 3

2L−1∑
n=0

∑
f=u,d,s,...

mf B̃f,n . (29)
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Qudits Number of qudits Ukin ent. gates Uel ent. gates
Qubit (d = 2) 6NfL 6Nf (8L− 3)− 4 Nf (2L− 1)[23Nf (2L− 1)− 17]

Qu8it (d = 8) 2NfL 6Nf (2L− 1) 4Nf (2L− 1)[Nf (2L− 1)− 1]

Reduction in resources
(L→ ∞) 3 4 5.75

TABLE I. The number of qudits (d = 2 and d = 8) and entangling gates for applying a single Trotter step using the unitary
operators corresponding to the kinetic (Ukin) and the O(g2) chromo-electric (Uel) parts of the SU(3) Hamiltonian, comparing
qubit and qu8it implementations.

The color charge-charge contribution is somewhat more involved due to the number of terms, but can be simplified
using symmetries of the sums, as shown in App. D. The summation can be reorganized,

∑
n=0

8∑
a=1

∑
m≤n

∑
f=u,d,s,...

Q̂
(a)
f,m

2

=
∑
n=0

∑
m,m′≤n

∑
f,f ′

8∑
a=1

Q̂
(a)
f,mQ̂

(a)
f ′,m′

=
∑
n=0

n∑
m,m′∈even
m,m′∈odd

∑
f,f ′

(∑
a

Q̃
(a)
f,m Q̃

(a)
f ′,m′

)
+ 2

∑
n=0

n∑
m∈even
m′∈odd

∑
f,f ′

(∑
a

Q̃
(a)
f,m

˜̄Q(a)
f ′,m′

)
, (30)

where some of the terms act on the same site and flavor. Eq. (30) can be expanded in terms of the D and C operators
from Eq. (26).

Now that the full Hamiltonian has been decomposed into one-qu8it and two-qu8it operations, an estimate of
quantum resources can be performed for a single Trotter step of time evolution for the qu8it mappings, and compared
to previously established results for qubit mappings [36]. Table I displays the resource estimates for entangling gates
for qu8its and qubits. The number of entangling operations required for the qu8it mappings is significantly less by
factors ≳ 5 compared to qubit mappings.

V. SUMMARY AND OUTLOOK

Motivated by continuing advances in the development of qudits for quantum computing, we have explored mapping
1+1D QCD to d = 8 qudits. We have presented the general framework for performing quantum simulations of QCD
with arbitrary numbers of flavors and lattice sites, and provided a detailed discussion of the theory with Nf = 1 and
L = 1. The main reason for considering performing quantum simulations using qu8its is because the number of two-
qu8it entangling operations required to evolve a given state forward in time is significantly less (more than a factor of
5 reduction) than the corresponding number for mappings to qubits. This is an important consideration for two main
reasons. One is that the time to perform a two-qudit entangling operation on a quantum device is much longer than for
a single qudit operation, and the second is the relative fidelity of the two types of operations. The naive mapping with
sequentially-Trotterized entangling operations does not provide obvious gains, but the recently developed capabilities
to simultaneously induce multiple transitions within qudits, enabling multiple entangling operations to be performed
in parallel, is the source of the large gain. Thus, qudit devices of comparable fidelity gate operations and coherence
times to an analogous device with a qubit register, are expected to be able to perform significantly superior quantum
simulations of 1+1D QCD.

The results presented in this work readily generalize to an arbitrary numbers of colors. For the Nc = 2 case,
relevant for SU(2), ququarts (d = 4) are needed to embed the vacuum in 1 state, single quarks in 2 states, and
singlet two-quark in 1 state. The number of entangling gates for each term of the kinetic piece of the Hamiltonian
is reduced to 4, and for each Q̃(a) ⊗ Q̃(a) term, 3 entangling gates are required. For Nc = 4, analogous gains can be
achieved using qudits with d = 16, qu16its. The mapping is such that the vacuum occupies 1 state, single quarks
occupy 4, two quarks occupy 6, three quarks occupy 4, and four quarks occupy 1. It requires 8 entangling gates for
the kinetic piece, and 15 for each Q̃(a) ⊗ Q̃(a) term. Quarks transforming in higher-dimension gauge groups can be
mapped in similar ways, with 2Nc terms needed for the kinetic piece, and N2

c −1 for Q̃(a)⊗ Q̃(a). While the reduction
in resources compared to qubits remains constant for the kinetic part, for the chromo-electric piece it is found to
scale as Nc(2Nc + 17)/(3 + 3Nc), which increases as a function of Nc. Mapping fermion occupations to qudits, as we
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have presented in this work, inspired by quantum chemistry and nuclear many-body systems, are also expected to
accelerate quantum simulations of quantum field theories in higher numbers of spatial dimensions. This is the subject
of future work.
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Appendix A: Gell-Mann Matrices

The matrix representation of the generators of SU(3) transformations, T a, acting on the fundamental representation
are related to the Gell-Mann matrices via T a = 1

2λ
a, such that Tr[T aT b] = 1

2δ
ab. Using Gell-Mann’s convention,

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

 ,

λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 . (A1)

Appendix B: Embedding Quarks and Anti-Quarks into Qu8its

The fully antisymmetric quark states can be build from the vacuum and fermionic creation operators. Starting with
the vacuum state,

|1⟩ ≡ |Ω⟩ , (B1)

the one-quark states are,

ĉ†r|1⟩ = ĉ†r|Ω⟩ = |qr⟩ ≡ |2⟩ , ĉ†g|1⟩ = ĉ†g|Ω⟩ = |qg⟩ ≡ |3⟩ , ĉ†b|1⟩ = ĉ†b|Ω⟩ = |qb⟩ ≡ |4⟩ , (B2)

the two-quark states are,

ĉ†r|2⟩ = ĉ†r|qr⟩ = 0 , ĉ†g|2⟩ = ĉ†g|qr⟩ =
1√
2
|qgqr − qrqg⟩ ≡ −|7⟩ ,

ĉ†r|3⟩ = ĉ†r|qg⟩ =
1√
2
|qrqg − qgqr⟩ ≡ |7⟩ , ĉ†g|3⟩ = ĉ†g|qg⟩ = 0 ,

ĉ†r|4⟩ = ĉ†r|qb⟩ =
1√
2
|qrqb − qbqr⟩ ≡ −|6⟩ , ĉ†g|4⟩ = ĉ†g|qb⟩ =

1√
2
|qgqb − qbqg⟩ ≡ |5⟩ ,

ĉ†b|2⟩ = ĉ†b|qr⟩ =
1√
2
|qbqr − qrqb⟩ ≡ |6⟩ ,

ĉ†b|3⟩ = ĉ†b|qg⟩ =
1√
2
|qbqg − qgqb⟩ ≡ −|5⟩ ,

ĉ†b|4⟩ = ĉ†b|qb⟩ = 0 , (B3)

and the three-quark state is,

ĉ†r|5⟩ = ĉ†r
1√
2
|qgqb − qbqg⟩ =

1√
2

(
1√
3
|qrqgqb − qgqrqb + qgqbqr⟩ −

1√
3
|qrqbqg − qbqrqg + qbqgqr⟩

)
≡ |8⟩ ,

ĉ†r|6⟩ = ĉ†r
1√
2
|qbqr − qrqb⟩ = 0 , ĉ†r|7⟩ = ĉ†r

1√
2
|qrqg − qgqr⟩ = 0 ,

ĉ†g|5⟩ = ĉ†g
1√
2
|qgqb − qbqg⟩ = 0 , ĉ†b|5⟩ = ĉ†b

1√
2
|qgqb − qbqg⟩ = 0 ,

ĉ†g|6⟩ = ĉ†g
1√
2
|qbqr − qrqb⟩ ≡ |8⟩ , ĉ†b|6⟩ = ĉ†b

1√
2
|qbqr − qrqb⟩ = 0 ,

ĉ†g|7⟩ = ĉ†g
1√
2
|qrqg − qgqr⟩ = 0 , ĉ†b|7⟩ = ĉ†b

1√
2
|qrqg − qgqr⟩ ≡ |8⟩ . (B4)
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We note that with these definitions, it is equally profitable to denote the qu8it states as{
|qu8it⟩

}
=
{
|Ω⟩ , |qr⟩ , |qg⟩ , |qb⟩ , |qgqb⟩ , −|qrqb⟩ , |qrqg⟩ , |qrqgqb⟩

}
=
{
|1⟩ , |2⟩ , |3⟩ , |4⟩ , |5⟩ , |6⟩ , |7⟩ , |8⟩

}
=
{
|10⟩ , |31, 1⟩ , |31, 2⟩ , |31, 3⟩ , |32, 1⟩ , |32, 2⟩ , |32, 3⟩ , |13⟩

}
, (B5)

where the subindex in the irrep labels the number of quarks in the state. As discussed in the main text, an analogous
mapping for the anti-quarks is,{

|qu8it⟩
}
=
{
|ϕ⟩ , |qr⟩ , |qg⟩ , |qb⟩ , |qgqb⟩ , −|qrqb⟩ , |qrqg⟩ , |qrqgqb⟩

}
=
{
|1̄⟩ , |2̄⟩ , |3̄⟩ , |4̄⟩ , |5̄⟩ , |6̄⟩ , |7̄⟩ , |8̄⟩

}
=
{
|10⟩ , |31, 1⟩ , |31, 2⟩ , |31, 3⟩ , |32, 1⟩ , |32, 2⟩ , |32, 3⟩ , |13⟩

}
. (B6)

Appendix C: Givens Rotations for SU(8)

Givens rotations are a straightforward way to access SU(8) transformations, and are particularly convenient for
quantum operations that are sequential applications of two-level transformations, as are induced, for example, by
application of lasers to trapped ions. The notation that we will use parallels and extends the notation used for Pauli
operators, σx, σy and σz → Xij , Yij and Zi. For SU(8) transformations, there are 28 Xijs, 28 XYij and 7 Zis.

For the 7 diagonal generators Zis, one basis is a straightforward extension of Gell-Mann’s SU(3):

Z1 = diag (1,−1, 0, 0, 0, 0, 0, 0) , Z2 =
1√
3
diag (1, 1,−2, 0, 0, 0, 0, 0) ,

Z3 =
1√
6
diag (1, 1, 1,−3, 0, 0, 0, 0) , Z4 =

1√
10

diag (1, 1, 1, 1,−4, 0, 0, 0) ,

Z5 =
1√
15

diag (1, 1, 1, 1, 1,−5, 0, 0) , Z6 =
1√
21

diag (1, 1, 1, 1, 1, 1,−6, 0) ,

Z7 =
1√
28

diag (1, 1, 1, 1, 1, 1, 1,−7) , Tr [ZiZj ] = 2δij . (C1)

However, an alternate choice that makes better connection to sequency analysis, and which we have chosen to use in
our work, is the Hadamard-Walsh basis, which includes the identity operator,

w1 =
1√
8
diag (1, 1, 1, 1, 1, 1, 1, 1) , w2 =

1√
8
diag (1, 1, 1, 1,−1,−1,−1,−1) ,

w3 =
1√
8
diag (1, 1,−1,−1,−1,−1, 1, 1) , w4 =

1√
8
diag (1, 1,−1,−1, 1, 1,−1,−1) ,

w5 =
1√
8
diag (1,−1,−1, 1, 1,−1,−1, 1) , w6 =

1√
8
diag (1,−1,−1, 1,−1, 1, 1,−1) ,

w7 =
1√
8
diag (1,−1, 1,−1,−1, 1,−1, 1) , w8 =

1√
8
diag (1,−1, 1,−1, 1,−1, 1,−1) , (C2)

which are normalized such that Tr [wiwj ] = δij . The ordering of the wi is the same as those produced in Mathematica
from HadamardMatrix[8].

The matrix representations of the (symmetric) σx-type generators, Xij , have all zero entries except for the elements
defined by ij, such that Xij = Xji = 1. Similarly, the matrix representations of the (anti-symmetric) σy-type
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generators, Yij , have all zero entries except for the elements defined by ij, such that Yij = −Yji = −i. Examples are:

X13 =



0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, Y13 =



0 0 −i 0 0 0 0 0
0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (C3)

Appendix D: Contractions of Color-Charge Operators

Expressions for the contractions of color charge-charge operators can be found straightforwardly. Acting on a qu8it
lattice site twice (for a 2-site system), the summations over adjoint indices reduces to∑

a

(
Q̃(a) ⊗ Ĩ

)2
=

4

3
diag (0, 1, 1, 1, 1, 1, 1, 0)⊗ Ĩ

= 8w1 ⊗ w1 −
8

3
(w3 + w5 + w7)⊗ w1

= Ĩ ⊗ Ĩ − diag

(
1,−1

3
,−1

3
,−1

3
,−1

3
,−1

3
,−1

3
, 1

)
⊗ Ĩ , (D1)

and acting on a anti-qu8it lattice site twice, the summations over adjoint indices reduces to∑
a

(
Ĩ ⊗ ˜̄Q(a)

)2
=

4

3
Ĩ ⊗ diag (0, 1, 1, 1, 1, 1, 1, 0)

= 8w1 ⊗ w1 −
8

3
w1 ⊗ (w3 + w5 + w7)

= Ĩ ⊗ Ĩ − Ĩ ⊗ diag

(
1,−1

3
,−1

3
,−1

3
,−1

3
,−1

3
,−1

3
, 1

)
. (D2)

In general, there will be contributions from color-charge operators acting on two sites, of the form quark-quark,
anti-quark-anti-quark and quark-anti-quark. For color-charge operators acting on arbitrary quark-quark and anti-
quark-anti-quark sites,∑

a

Q̃(a) ⊗ Q̃(a) =
∑
a

˜̄Q(a) ⊗ ˜̄Q(a) =
1

2
(w3 − w5)⊗ (w3 − w5) +

1

6
(w4 + w6 − 2w8)⊗ (w4 + w6 − 2w8)

+
1

4

∑
r∈{(23),(24),(34),

(56),(57),(67)}

(Yr ⊗ Yr + Xr ⊗Xr)

+
1

4

∑
(r,s)∈{(23)(56),
(24)(57),(34)(67)}

(Yr ⊗ Ys −Xr ⊗Xs + Ys ⊗ Yr −Xs ⊗Xr) , (D3)

with

w3 − w5 =
1√
2
diag (0, 1, 0,−1,−1, 0, 1, 0) , w4 + w6 − 2w8 =

1√
2
diag (0, 1,−2, 1,−1, 2,−1, 0) . (D4)
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Similarly, for operators acting on quark-anti-quark or anti-quark-quark sites,∑
a

Q̃(a) ⊗ ˜̄Q(a) =
∑
a

˜̄Q(a) ⊗ Q̃(a) = − 1

2
(w3 − w5)⊗ (w3 − w5) − 1

6
(w4 + w6 − 2w8)⊗ (w4 + w6 − 2w8)

+
1

4

∑
r∈{(23),(24),(34),

(56),(57),(67)}

(Yr ⊗ Yr −Xr ⊗Xr)

+
1

4

∑
(r,s)∈{(23)(56),
(24)(57),(34)(67)}

(Xr ⊗Xs + Yr ⊗ Ys + Xs ⊗Xr + Ys ⊗ Yr) . (D5)

Rewriting these sums in terms of commuting operators gives,∑
a

Q̃(a) ⊗ Q̃(a) =
1

4
(D(12) ⊗D(12) + C(12) ⊗ C(12)) +

1

4
(D(45) ⊗D(45) + C(45) ⊗ C(45))

+
1

4
(D(67) ⊗D(67) + C(67) ⊗ C(67)) + Q̃(3) ⊗ Q̃(3) + Q̃(8) ⊗ Q̃(8) , (D6)

∑
a

˜̄Q(a) ⊗ ˜̄Q(a) =
1

4
(D(12) ⊗D(12) + C(12) ⊗ C(12)) +

1

4
(D(45) ⊗D(45) + C(45) ⊗ C(45))

+
1

4
(D(67) ⊗D(67) + C(67) ⊗ C(67)) + ˜̄Q(3) ⊗ ˜̄Q(3) + ˜̄Q(8) ⊗ ˜̄Q(8)

=
∑
a

Q̃(a) ⊗ Q̃(a) , (D7)

∑
a

Q̃(a) ⊗ ˜̄Q(a) =
1

4
(D(12) ⊗D(12) − C(12) ⊗ C(12)) +

1

4
(D(45) ⊗D(45) − C(45) ⊗ C(45))

+
1

4
(D(67) ⊗D(67) − C(67) ⊗ C(67)) + Q̃(3) ⊗ ˜̄Q(3) + Q̃(8) ⊗ ˜̄Q(8) , (D8)

∑
a

˜̄Q(a) ⊗ Q̃(a) =
1

4
(D(12) ⊗D(12) − C(12) ⊗ C(12)) +

1

4
(D(45) ⊗D(45) − C(45) ⊗ C(45))

+
1

4
(D(67) ⊗D(67) − C(67) ⊗ C(67)) + ˜̄Q(3) ⊗ Q̃(3) + ˜̄Q(8) ⊗ Q̃(8)

=
∑
a

Q̃(a) ⊗ ˜̄Q(a) , (D9)

where the C(ij) and D(ij) are given in Eq. (26), and ˜̄Q(3) = −Q̃(3) and ˜̄Q(8) = −Q̃(8) have been used.
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