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Abstract

It is known that the balance laws of hyperelasticity (Green elasticity), i.e., conservation of mass and
balance of linear and angular momenta, can be derived using the first law of thermodynamics by postulating
its invariance under superposed rigid body motions of the Euclidean ambient space—the Green-Naghdi-Rivlin
theorem. In the case of a non-Euclidean ambient space, covariance of the energy balance—its invariance
under arbitrary diffeomorphisms of the ambient space—gives all the balance laws and the Doyle-Ericksen
formula—the Marsden-Hughes theorem. We show that the Doyle-Ericksen formula as well as the balance
laws of hyperelasticity can be derived using the first and second laws of thermodynamics without assuming
any (observer) invariance.
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1 Introduction

In nonlinear hyperelasticity, one can derive all the balance laws by starting from an energy balance (the first
law of thermodynamics) and postulating its invariance under superposed rigid body motions of the ambient
space (observer invariance). This idea is due to Green and Rivlin [1964] in the context of Euclidean ambi-
ent spaces (Green-Naghdi-Rivlin theorem). More specifically, Green and Rivlin [1964] postulated the balance
of energy and its invariance under superposed translational and rotational motions of the Euclidean ambient
space. A different version of this theorem is due to Noll [1963] who thought of the superposed motions pas-
sively as time-dependent coordinate charts for the Euclidean ambient space.1 So, in [Green and Rivlin, 1964],
superimposed motions were viewed actively, whereas Noll [1963] viewed them passively. The invariance idea
was subsequently extended to hyperelasticity (Green elasticity) with Riemannian ambient space manifolds by
Hughes and Marsden [1977] who postulated the invariance of the balance of energy under arbitrary diffeo-
morphisms of the ambient space—covariance of the energy balance. Hughes and Marsden [1977] showed that
covariance of the energy balance gives all the balance laws of hyperelasticity and the Doyle-Ericksen formula
[Doyle and Ericksen, 1956]2 (see also [Marsden and Hughes, 1983; Yavari et al., 2006]). In this paper, as an
extension to the classical Coleman and Noll [1963] procedure, we show that instead of using the first law of
thermodynamics and its covariance, one can use the first and the second laws of thermodynamics to derive not
only the Doyle-Ericksen formula but also all the balance laws of hyperelasticity.

∗Corresponding author, e-mail: arash.yavari@ce.gatech.edu
1Recall that a matrix can be regarded as either a linear transformation (active) or representing a change of basis (passive).
2It is worth emphasizing that in both [Green and Rivlin, 1964] and [Hughes and Marsden, 1977] it was assumed that the body

is made of a material that has an underlying energy function, i.e., they restricted themselves to hyperelasticity. Similar invariance
arguments can be used to derive the balance laws of anelasticity, provided that there exists an underlying energy function, e.g.,
[Yavari, 2010].
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2 Kinematics of Finite Deformations

Consider a hyperelastic solid body B represented by an embedded 3-submanifold B within the ambient space
S.3 Motion of the body B is represented by a time-parametrized family of maps ϕt : B → Ct ⊂ S , mapping the
reference (material) configuration B of the body to its current (spatial) configuration Ct = ϕt(B) . We adopt
the following standard convention: objects and indices are denoted by uppercase characters in the material
manifold B (e.g., X ∈ B), and by lowercase characters in the spatial manifold S (e.g., x = ϕt(X) ∈ ϕt(B)). We
consider local coordinate charts on B and S denoted by {XA} and {xa}, respectively. The corresponding local
coordinate bases are denoted by {∂A = ∂

∂XA } and {∂a = ∂
∂xa }, and their respective dual bases are {dXA} and

{dxa} . We also adopt Einstein’s repeated index summation convention, e.g., uivi :=
∑

i u
ivi .

The ambient space has a background metric g = gab dx
a ⊗ dxb . Given vectors u ,w ∈ TxS, their dot

product is denoted by 〈〈u,w〉〉g = ua wb gab. Given a vector u ∈ TxS and a 1-form ω ∈ T ∗
xS, their natural

pairing is denoted by 〈ω,u〉 = ω(u) = ωa u
a. The spatial volume form is dv =

√
detg dx1 ∧ dx2 ∧ dx3. The

Levi-Civita connection of (S,g) is denoted by ∇g, with Christoffel symbols γa
bc. The metric g of S induces

the metric G on B by which the natural distances in the body before deformation are calculated. Given vectors
U ,W ∈ TXB, their dot product is denoted by 〈〈U,W〉〉G = UA WB GAB. Given a vector U ∈ TXB and a
1-form Ω ∈ T ∗

XB, their natural pairing is denoted by 〈Ω,U〉 = Ω(U) = ΩA UA. The material volume form

is dV =
√
detG dX1 ∧ dX2 ∧ dX3. The Levi-Civita connection of (B,G) is denoted by ∇G , with Christoffel

symbols ΓA
BC .

As a measure of strain in elastic solids, we typically use the derivative of the deformation mapping—known as
the deformation gradient—denoted by F(X, t) = Tϕt(X) : TXB → Tϕt(X)Ct ; in components it reads as Fa

A =
∂ϕa

∂XA . The dual F⋆ of F is defined as F⋆(X, t) : Tϕt(X)Ct → TXB , 〈α,FU〉 = 〈F⋆
α,U〉 , ∀U ∈ TXB , ∀α ∈

T ∗

ϕ(X)S ; it has components (F⋆)A
a
= Fa

A . The transpose FT of F is defined as FT(X, t) : Tϕt(X)Ct → TXB ,

〈〈FU,u〉〉g = 〈〈U,FTu〉〉G , ∀U ∈ TXB , ∀u ∈ Tϕ(X)S ; in components it reads as
(

FT
)A

a
= GAB Fb

B gba . Note

that FT = G♯F⋆g , where (.)♯ denotes the musical isomorphism for raising indices. The right Cauchy–Green
deformation tensor is defined as C := FTF . Denoting by (.)♭ the musical isomorphism for lowering indices,
one finds that C♭ corresponds to the pull-back of the spatial metric g by ϕ, i.e., C♭ = ϕ∗g = F⋆gF . The
Jacobian of the motion relates the material and spatial volume elements as dv = JdV , and it can be shown
that J =

√
detC =

√

detg/detG detF .

The material velocity of the motion is defined as V : B × R
+ → TS ,V(X, t) := ∂ϕ(X,t)

∂t ; it has components

Va = ∂ϕa

∂t . The spatial velocity is defined as v : ϕt(B)× R
+ → TS , v(x, t) := V(ϕ−1

t (x), t) . The material
acceleration of the motion is defined as A : B × R

+ → TS , A(X, t) := Dg
t V(X, t) , where Dg

t denotes the co-
variant derivative along ϕX : t 7→ ϕ(X, t) ; it reads in components as Aa = ∂Va

∂t
+ γa

bc V
b Vc . The spatial

acceleration of the motion is defined as a : ϕt(B)×R
+ → TS , a(x, t) := A(ϕ−1

t (x), t) ∈ TxS ; it has components
aa = ∂va

∂t
+ ∂va

∂xb v
b + γa

bc v
b vc .

3 Thermodynamics and the Balance Laws of Hyperelasticity

In this section, we first briefly review the first and the second laws of thermodynamics in the setting of nonlinear
hyperelasticity. We then show how all the balance laws of hyperelasticity can be derived assuming the first and
the second laws of thermodynamics without assuming any invariance.

Remark 3.1 (Hyperelasticity). In Cauchy elasticity, the stress at any given point is a function of the strain at
that same point [Cauchy, 1828; Truesdell, 1952] without any history dependence. However, it is important to
note that not all Cauchy elastic solids possess an energy function. Cauchy elastic solids that do possess energy
functions are often referred to as Green elastic [Green, 1838, 1839; Spencer, 2015] or hyperelastic [Truesdell,
1952]. It is worth noting that not all elastic solids are Cauchy elastic. There are indeed elastic solids whose
constitutive equations are implicit, such as those expressed as f(σ,b) = 0 [Morgan, 1966; Rajagopal, 2003,
2007, 2011]. Cauchy elasticity can be regarded as a subset of this class of solids.

3For most applications the ambient space is the three-dimensional Euclidean space, i.e., S = R
3. However, in general, the

ambient space may be curved, e.g., in modeling the dynamics of fluid membranes [Arroyo and DeSimone, 2009]. See [Yavari et al.,
2016] for a general framework on elasticity in evolving ambient spaces.
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3.1 First Law of Thermodynamics

The first law of thermodynamics posits the existence of an internal energy E as a state function, which satisfies
the following balance equation as an expression of the conservation of energy principle [Truesdell, 1952; Gurtin,
1974; Marsden and Hughes, 1983]

d

dt

∫

U

ρ0

Å

E +
1

2
‖V‖2g

ã

dV =

∫

U

ρ0
Ä

〈〈B,V〉〉g +R
ä

dV +

∫

∂U

Ä

〈〈T,V〉〉g +H
ä

dA , (3.1)

for any open set U ⊂ B , where E stands for the specific internal energy, ρ0 is the material mass density, B is the
specific body force, T is the boundary traction vector field per unit material area, R = R(X, t) is the specific
heat supply, and H = −〈〈Q,N〉〉G is the heat flux across a material surface where Q = Q(X,Θ, dΘ,C♭,G)
represents the external heat flux per unit material area, Θ is temperature, dΘ is its exterior derivative, and N is
the G-unit normal to the boundary ∂U . Cauchy’s stress theorem tells us that there exists a stress tensor P—the
first Piola-Kirchhoff stress tensor—such that T = PN♭, or in components, T a = P aA NA, where NA = GAB NB.
Expressed in localized form, the energy balance (3.1) is written as

ρ0 Ė = S : (
s

D+
a

D)−DivQ+ ρ0R+ 〈〈DivP+ ρ(B−A),V〉〉g − ρ̇0

Å

E +
1

2
‖V‖2g

ã

. (3.2)

In the local form of the balance of energy (3.2) a dotted quantity denotes its total time derivative, S = F−1P

is the second Piola-Kirchhoff stress tensor, and the relation P :∇V = S :
s

D+ S :
a

D has been used where

s

D =
1

2
[F⋆(∇V)F + F⋆(∇V)⋆ F] =

1

2
Ċ♭ ,

a

D =
1

2
[F⋆(∇V)F− F⋆(∇V)⋆ F] . (3.3)

s

D = 1
2Ċ

♭ is the symmetric material rate of deformation tensor and
a

D is an anti-symmetric tensor. It should be
noted that at this stage we do not assume the symmetry of S.4

3.2 Second Law of Thermodynamics

The second law of thermodynamics posits the existence of entropy N as a state function, which satisfies the
following inequality—known as the Clausius-Duhem inequality—as an expression of the principle of entropy
production,5 which steadily increases or remains constant within a closed system over time [Truesdell, 1952;
Gurtin, 1974; Marsden and Hughes, 1983]

d

dt

∫

U

ρ0N dV ≥
∫

U

ρ0
R

Θ
dV +

∫

∂U

H

Θ
dA , (3.4)

for any open set U ⊂ B , where N denotes the specific entropy. In localized form, the material Clausius-Duhem
inequality (3.4) reads

η̇ = ρ0Θ ˙N + ρ̇0ΘN +DivQ− ρ0R− 1

Θ
〈dΘ,Q〉 ≥ 0 , (3.5)

where η̇ denotes the material rate of energy dissipation density, and dΘ is the exterior derivative of Θ (in
components, 〈dΘ,Q〉 = ∂Θ

∂XA QA).

Remark 3.2. At a material point X ∈ B, Coleman and Noll [1963] called the set
{

ϕt(X),P(X, t),B(X, t), E (X, t),Q(X, t), R(X, t),N (X, t),Θ(X, t)
}

, (3.6)

a thermodynamic process when all its eight fields satisfy the first law of thermodynamics and the balance of linear
and angular momenta.6 A given material is specified by its constitutive equations, e.g., E = E (X,N ,F,G,g)

4We thank Sanjay Govindjee for bringing this to our attention.
5The entropy production for an open subset U in the body reads as

Γ =
d

dt

∫
U

ρ0N dV −

∫
U

ρ0
R

Θ
dV −

∫
∂U

H

Θ
dA .

6Instead of the first Piola-Kirchhoff stress, they used the Cauchy stress and assumed its symmetry—the balance of angular
momentum.
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and Q = Q(X,Θ, dΘ,F,G,g). A thermodynamic process is admissible if the constitutive equations hold ev-
erywhere in the body and at all times. Coleman and Noll [1963] showed that requiring (3.5) to hold for all
admissible thermodynamic processes puts certain constraints on the constitutive assumptions, e.g., the Doyle-
Ericksen formula.

At a material point X ∈ B, we define an extended thermodynamic process to be the set (3.6) when all its
eight fields satisfy the first law of thermodynamics. An extended thermodynamic process is admissible if the
constitutive equations hold everywhere in the body and at all times. We require that (3.5) hold for all admissible
extended thermodynamic processes.

3.3 Balance Laws of Nonlinear Hyperelasticity

Let us consider a body B made of a hyperelastic material at every material point X ∈ B for which there exists
an energy function E such that Ė = P :∇V [Truesdell, 1952]. The specific free energy Ψ = Ψ̂(X,Θ,C♭,G) is
the Legendre transform of the specific internal energy E with respect to the conjugate variables temperature Θ
and specific entropy N , i.e.,

Ψ = E −ΘN , (3.7)

such that E = Ê (X,N ,C♭,G) . Thus7

N = −∂Ψ

∂Θ
. (3.8)

Proposition 3.1. For a hyperelastic body,8 the first and second laws of thermodynamics (3.2),(3.5) imply that



































P = 2ρ0F
∂Ψ̂

∂C♭
,

DivP+ ρ0B = ρ0A ,

ρ̇0 = 0 ,

η̇ = − 1

Θ
〈dΘ,Q〉 ≥ 0 .

(3.9)

(3.10)

(3.11)

(3.12)

In other words, the first and second laws of thermodynamics imply the Doyle-Ericksen formula (3.9)—and

consequently the balance of angular momentum,9 the balance of linear momentum (3.10), and the conservation

of mass (3.11).

Proof. From (3.7), ρ0Θ ˙N = ρ0Ė − ρ0Ψ̇− ρ0Θ̇N . Substituting this relation and (3.2) into (3.5) one obtains

η̇ = S : (
s

D+
a

D)−ρ0Ψ̇−ρ0Θ̇N + ρ̇0ΘN + 〈〈DivP+ρ(B−A),V〉〉g− ρ̇0

ï

E +
1

2
‖V‖2g

ò

− 1

Θ
〈dΘ,Q〉 ≥ 0 . (3.13)

Note that

Ψ̇ =
∂Ψ

∂Θ
Θ̇ +

∂Ψ

∂C♭
:Ċ♭ = −N Θ̇ + 2

∂Ψ

∂C♭
:

s

D . (3.14)

Substituting this into (3.13), the rate of dissipation is simplified to read

η̇ =

ï

S− 2ρ0
∂Ψ

∂C♭

ò

:
s

D+ S :
a

D+ 〈〈DivP+ ρ(B−A),V〉〉g − ρ̇0

ï

Ψ+
1

2
‖V‖2g

ò

− 1

Θ
〈dΘ,Q〉 ≥ 0 . (3.15)

This inequality must hold for all motions, i.e., all extended thermodynamic processes. As
s

D (a symmetric

tensor) and
a

D (an antisymmetric tensor) can be chosen independently of all the other fields, one concludes

7Note that the Legendre transform (3.7) of E to Ψ with respect to the conjugate variables N and Θ is essentially a change of
variable from the former to the latter, respectively, satisfying (3.8). See [Arnold, 1989; Goldstein et al., 2002] for further details on
Legendre transform in the context of Lagrangian mechanics and thermodynamics.

8It should be emphasized that this result can be easily extended to hyper-anelasticity, where there is an energy function that
explicitly depends on elastic distortions.

9Using the symmetry of the right Cauchy-Green deformation tensor (i.e., C⋆ = C ) in the Doyle-Ericksen formula yields the

balance of linear momentum P⋆F−⋆ = F−1P, which is equivalent to FP⋆ = PF
⋆

, i.e., symmetry of the Cauchy stress.
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that10

S = 2ρ0
∂Ψ̂

∂C♭
, S⋆ = S . (3.16)

Note that as soon as the first relation (the Doyle-Ericksen formula) holds the second relation (balance of angular
momentum) is trivially satisfied. Now the rate of dissipation is simplified to read

η̇ = 〈〈DivP+ ρ(B−A),V〉〉g − ρ̇0

ï

Ψ+
1

2
‖V‖2g

ò

− 1

Θ
〈dΘ,Q〉 ≥ 0 . (3.17)

One can choose the velocity vector arbitrarily while its norm ‖V‖g is fixed. This implies that the inequality
(3.17) can hold only if

DivP+ ρ0B = ρ0A . (3.18)

Now the rate of dissipation takes the following form

η̇ = −ρ̇0

ï

Ψ+
1

2
‖V‖2g

ò

− 1

Θ
〈dΘ,Q〉 ≥ 0 . (3.19)

Next one can choose the velocity vector norm ‖V‖g arbitrarily while the other fields remain fixed. For all these
thermodynamics processes the above inequality must hold. This implies that ρ̇0 = 0 and η̇ = − 1

Θ 〈dΘ,Q〉 ≥
0.

Remark 3.3. Coleman and Noll [1963] showed that requiring (3.5) to hold for all admissible thermodynamic
processes gives the Doyle-Ericksen formula (3.9). We have shown that requiring (3.5) to hold for all admissible
extended thermodynamic processes gives all the balance laws and the Doyle-Ericksen formula (3.9).

Remark 3.4. For an incompressible hyperelastic solid, the Legendre transform (3.7) is modified to take into
account the constraint of volume preservation J = 1 on motions as follows

Ψ− p(J − 1) = E −ΘN , (3.20)

where p(X, t) is the Lagrange multiplier associated with the incompressibiity constraint. Consequently, since
J̇ = 1

2JC
−♯ :Ċ♭ , the Doyle-Ericksen formula (3.9) is modified to read

P = 2ρ0F
∂Ψ̂

∂C♭
− pg♯F−⋆ . (3.21)
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