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Altermagnets are crystallographic rotational symmetry breaking spin-ordered states, possessing
a net zero magnetization despite manifesting Kramers non-degenerate bands. Here, we show that
momentum-independent local spin nematic orders in monolayer, Bernal bilayer and rhombohedral
trilayer graphene give rise to p-wave, d-wave and f -wave altermagnets, respectively, thereby inher-
iting topology of linear, quadratic and cubic free fermion band dispersions that are also described
in terms of angular momentum ℓ = 1, 2 and 3 harmonics in the reciprocal space. The same con-
clusions also hold inside a spin-triplet nematic superconductor, featuring Majorana altermagnets.
Altogether, these findings highlight the importance of electronic band structure in identifying such
exotic magnetic orders in quantum materials. We depict the effects of in-plane magnetic fields on
altermagnets, and propose novel spin-disordered alter-valleymagnets in these systems.

Introduction. Magnetic materials commonly appear in-
side modern-day electronic devices. When doped, often
they also source unconventional and high-temperature
superconductors. Therefore, identifying new magnetic
phases and materials are of both fundamental and tech-
nological importance, possibly paving a path toward the
long sought room temperature superconductors.

Typically, magnetic materials are grouped into two
families, ferromagnet and anti-ferromagnet. The former
breaks only the time-reversal symmetry, thereby lifting
the Kramers degeneracy of electronic bands. It possesses
a finite magnetic moment, resulting from a population
imbalance between electrons with opposite spins. By
contrast, the Kramers degeneracy of electronic states is
protected in an anti-ferromagnet, stemming from the si-
multaneous lifting of the time-reversal and inversion sym-
metries, yielding a net zero magnetization.

Recently, a new type of magnetic order has been
proposed theoretically [1–20], and unearthed in quan-
tum materials [21–32]: Altermagnet. Despite lifting the
Kramers degeneracy, they manifest no net magnetization,
a peculiarity accomplished at the cost of discrete crys-
tallographic rotational symmetry with opposite signs for
complementary spin projections. They are represented in
terms of spherical harmonics (Y m

ℓ ), taking a generic form
σY m

ℓ (θ, ϕ)|k|ℓ. Vector Pauli matrix σ operates on the
spin space, m = −ℓ, · · · , ℓ, θ (ϕ) is the polar (azimuthal)
angle in the reciprocal space, and k is the momentum.
This classification allows p-wave (ℓ = 1), d-wave (ℓ = 2),
and f -wave (ℓ = 3) altermagnets, to name a few.

Although strongly correlated materials can in principle
harbor such exotic magnetic orders, their non-locality or
momentum-dependence can be energetically expensive,
forcing us to the raise the following question. Can alter-
magnets emerge from momentum-independent local mag-
netic orders? We show that its affirmative answer es-
tablishes a topology-based guiding principle to identify
quantum materials, capable of fostering altermagnets.

This question arises from a seemingly unrelated topic,
topological superconductors (TSCs), worth mentioning
despite a short detour. Consider their prime member, the
B-phase of 3He, a fully gapped p-wave paired state [33].
It can emerge from local or on-site odd-parity Cooper
pairing in 3D Dirac materials [34, 35], also modeled in
terms of odd-parity p-wave harmonics. Therefore, neu-
tral Bogoliubov de Gennes (BdG) quasiparticles inherit
topology from normal state charged Dirac quasiparti-
cles. Moreover, when such a local odd-parity pairing is
projected on the Fermi surface, realized by intercalat-
ing or doping topological insulators, it takes the form of
the B-phase of 3He [36, 37]. This one-to-one correspon-
dence between the normal state band topology and paired
state emergent topology guides us to identify candidate
materials, fostering charged TSCs, with CuxBi2Se3 and
InxSn1−xTe standing as promising candidates [38–40]. A
similar avenue has also been built to identify candidate
materials for higher-order TSCs [41–43]. In light of these
observations, the question from the last paragraph can
be rephrased in the following way. How does electronic
band topology get imprinted on altermagnets?

Such broadly defined questions can be efficiently an-
swered by considering minimal model Hamiltonian for
crystalline graphene heterostructures. Here, we focus
on monolayer graphene (MLG), Bernal bilayer graphene
(BBLG) and rhombohedral trilayer graphene (RTLG)
displaying linear, bi-quadratic and bi-cubic touching of
valence and conduction bands at two inequivalent corners
of the hexagonal Brillouin zone, described by p-wave, d-
wave and f -wave harmonics in the momentum space, re-
spectively [44]. In such systems, we show that local spin
nematic orders, transforming under the irreducible Eg or
Eu representation of the D3d group, give birth to emer-
gent p-wave, d-wave and f -wave altermagnets, respec-
tively, inheriting topology from the normal state band
dispersion. See Fig. 1. By the same token, a spin-triplet
nematic superconductor, belonging to the Eu representa-
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tion, fosters altermagnet for neutral Majorana fermions,
hereafter coined Majorana altermagnet. We recognize
that the valley or pseudo-spin degree of freedom permits
a spin-disordered charge nematic order, leading to (un-
nested) displaced or distorted Fermi surfaces near two
valleys, a phase hereafter named alter-valleymagnet.

Free fermions. The continuum models, resulting from
a minimal tight-binding Hamiltonian involving nearest-
neighbor intra-layer (t) and inter-layer dimer (t⊥) hop-
ping [44], in MLG, BBLG and RTLG graphene in a six-
teen component Nambu-doubled spinor basis read as

ĥℓ(k) = αℓ|k|ℓ
[
Γ1
ℓ cos(ℓϕ)− Γ2

ℓ sin(ℓϕ)
]
−∆ZΓ0100, (1)

with ℓ = 1, 2 and 3, respectively. Here, αℓ = (ta)ℓ/tℓ−1
⊥ ,

bearing the dimension of Fermi velocity (inverse mass)
for ℓ = 1(2), for example, a is the lattice spacing,
Γ1
1/3 = Γ3031, Γ

2
1/3 = Γ3002, Γ

1
2 = Γ3001 and Γ2

2 = Γ3032.

Hermitian matrices are Γκνρλ = ηκσντρβλ, where {ηκ},
{σκ}, {τκ}, {βκ} are Pauli matrices for κ = 0, · · · , 3,
operating on the particle-hole, spin, valley and sublat-
tice or layer indices, respectively. The Nambu spinor
is Ψ⊤

Nam(k) = [Ψ(k), σ2τ1β0Ψ
⋆(−k)], where the eight-

component spinor Ψ⊤(k) = [Ψ↑(k),Ψ↓(k)] with σ =↑, ↓
as two projections of electrons spin in the z direction
and Ψ⊤

σ (k) = [Ψσ,+(k),Ψσ,−(k)]. Here ⊤ denotes trans-
position. For each spin projection, the two-component
spinor near two opposite valleys at τK is defined as
Ψσ,τ (k) = [Aσ(τK + k), Bσ(τK + k)], where τ = ±.
A and B are fermionic annihilation operator on the sites
of two triangular sublattices of the honeycomb lattice.
They, however, live on the top and bottom layers of
BBLG and RTLG. Therefore, the sublattice and layer de-
grees of freedom are synonymous. Momentum |k|(≪ |K|)
is measured from the respective valley. We introduced
the Nambu doubling to facilitate a forthcoming discus-
sion on Majorana altermagnet. Until then, it is redun-
dant. The Zeeman term (∆Z) is due to in-plane magnetic
fields. In its absence, spherically symmetric energy spec-
tra of ĥℓ(k) are ±Eℓ(k), where + (−) corresponds to the
conduction (valence) band, and Eℓ(k) = αℓ|k|ℓ [45–50].
The effective Hamiltonian preserves the sublattice or

layer (S) and valley (T ) reflection symmetries, generated
by Γ0001 and Γ0010, respectively, and accompanied by
momentum reflections k → (kx,−ky) and k → (−kx, ky).
Its time reversal symmetry is generated by T = Γ0210K,
where K is the complex conjugation and T 2 = −1. Thus
electronic bands near two valleys are Kramers (spin)
degenerate. In the hole part of ΨNam, we absorb the
unitary part of the time-reversal operator. The gen-
erator of spatial rotation is Γ0033, and the low-energy
Hamiltonian possesses a rotational symmetry, generated
by Rπ/2 = exp[iπΓ0033/4], when the momentum axes
are rotated by an angle π/(2ℓ). The U(1) translational
symmetry is generated by Γ0030. Light mass of carbon
atoms allows us to neglect any spin-orbit coupling, and

FIG. 1. Constant energy (E = 0.25) contours, yielding Fermi
surfaces at chemical doping µ = E = 0.25, near the +K valley
for spin up (↑) and spin down (↓) electrons in the presence
of local spin nematic orders (belonging to the Eg or Eu rep-
resentation) without the Zeeman coupling in (a) MLG, (c)
BBLG and (e) RTLG, displaying p-wave, d-wave and f -wave
altermagnets, respectively. Here, we set ∆j = 0.2 and θj = 0,
where j = Eg and Eu [Eq. (2)]. The numbers in the color bar
represent the spin projection in the z-direction (in units of
ℏ/2). It is zero where the contours for opposite spin projec-
tions cross. They get split by a Zeeman coupling (∆Z) of an
in-plane magnetic field, as shown for (b) MLG (∆Z = 0.025),
(d) BBLG (∆Z = 0.05) and (f) RTLG (∆Z = 0.05). Near
the −K valley, the spin projection on each contour gets re-
versed (stays the same) in MLG and RTLG (BBLG) for the
Eg altermagnet. For the Eu altermagnet, this correspondence
is exactly the opposite. Momentum k is measured about the
valley momentum K. We set αℓ = 1 [Eq. (1)]. Black dashed
lines represent spin degenerate Fermi surface of free fermions.

all the Hamiltonian are invariant under SU(2) spin rota-
tion, generated by Γ0s00 with s = 1, 2, 3 [45, 49, 50].
Spin nematicity. The underlying D3d group allows two

spin nematic orders transforming under the irreducible
Eg and Eu representations. With respective amplitudes
∆Eg and ∆Eu , effective single-particle Hamiltonian are

ĥspin
Eg

(
∆Eg , θEg

)
= ∆Eg

[
Γ0301 cos θEg − Γ0332 sin θEg

]
,

ĥspin
Eu

(∆Eu
, θEu

) = ∆Eu
[Γ3331 cos θEu

− Γ3302 sin θEu
] .

(2)

The internal angles θEg
and θEu

are chosen sponta-
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neously in the ordered states [51], in which without any
loss of generality, the spin projection is picked in the z
direction. Two matrices of ĥspin

Eg/Eu
constitute a vector un-

der spatial rotation, generated by Γ0033. So, the ordered
state (with a fixed θEg

or θEu
) breaks the spatial rota-

tional symmetry, yielding nematicity. The Eg (Eu) spin
nematicity breaks (preserved) the T symmetry. Nucle-
ation of either order lifts the Kramers (spin) degeneracy
of the bands near each valley, which we discuss next.

The reconstructed band structure with the onset of the
spin nematic orders can be computed by diagonalizing

ĥalt
j (∆j , θj) = ĥℓ(k) + ĥspin

j (∆j , θj), (3)

with j = Eg and Eu. Near the +K valley, Kramers
non-degenerate bands touch each other at Weyl points,

located at |k| =
(
[∆2

j +∆2
Z ]

1/2/αℓ

)1/ℓ
and ϕ = (θj +

mπ)/ℓ. For spin-up (↑) fermions, odd integer m =
1, · · · , 2ℓ− 1, while for spin-down (↓) fermions even inte-
germ = 0, · · · , 2ℓ−2. Therefore, for each spin projection,
the linear band touching point of MLG shifts to a new
position in the reciprocal space, whereas the bi-quadratic
(bi-cubic) band touching point of BBLG (RTLG) splits
into two (three) Weyl points around which the energy-
momentum dispersion is linear. In the Eg spin nematic
phase, such a shift/splitting of the band touching points
for spin-up (spin-down) fermions near −K valley is same
as that of the spin-down (spin-up) fermions near +K val-
ley in MLG and RTLG, but is identical for each spin
projection near opposite valleys in BBLG. In the Eu

spin nematic state, this shift/splitting near the oppo-
site valleys is identical in MLG and RTLG for each spin
projection, whereas in BBLG such a shift/splitting near
−K valley for spin-down (spin-up) fermions is same as
that of the spin-up (spin-down) fermions near +K val-
ley. The resulting reconstruction of electronic bands and
its Kramers degeneracy lifting lead to altermagnetism in
these spin nematic states, which we promote now.

Altermagnets. Emergent altermagnetism in the spin
nematic phases can be recognized from the constant en-
ergy contours for opposite spin projections either in the
valence or conduction band of the corresponding effec-
tive single-particle Hamiltonian [Eq. (2)]. The results
are shown in Fig. 1 (left column). Such contours for
spin up and spin down electrons do not overlap, but al-
ways enclose equal area in the reciprocal space (Fermi
area). Thus these phases do not possess any net mag-
netic moment, despite lifting the Kramers degeneracy
from electronic bands. Hence, they represent altermag-
nets. Spin polarized constant energy contours cross each
other at two, four and six points in MLG, BBLG and
RTLG, respectively. From the topology of such con-
tours, it is evident that the same spin nematic order
gives birth to p-wave, d-wave and f -wave altermagnets
in MLG, BBLG and RTLG, respectively. Shortly, we
will justify this claim quantitatively and attribute this
emergent phenomena to the normal state band topology.

Application of a weak external in-plane magnetic field
(no Landau quantization) splits the crossing points be-
tween contours belonging to opposite spin projections,
where the z-component of electronic spin is zero, as seen
in Fig. 1 (right column). The Zeeman coupling then takes
place between the magnetic field and in-plane compo-
nents (such as x) of electronic spin. The orbital effect of
sufficiently weak in-plane magnetic fields is negligible in
BBLG and RTLG in comparison to its Zeeman cousin,
and is thus omitted here [52]. In-plane magnetic fields
project the spin of altermagnets in the orthogonal easy-
plane, and gap out the contour crossing points.
Classification of altermagnets, resulting from local spin

nematic orders, in terms of the spherical harmonics is
accomplished by casting their effective single-particle
Hamiltonian [Eq. (2)] in the band electron basis. Then

the kinetic energy term ĥband
ℓ (k) = αℓ|k|ℓΓ̄3003−∆ZΓ̄0100

becomes diagonal, achieved after a unitary rotation by
U , constructed by columnwise arranging the eigenvec-
tors of ĥℓ(k) with ∆Z = 0. Here, Γ̄κνρλ = ηκσντρζλ and
the newly introduced Pauli matrices {ζκ} operate on the
band index (conduction and valence). In this basis, the
local spin nematic orders from Eq. (2) take the form

ĥalt
j,band = ∆j

{
[cos θj cos(ℓϕ) + sin θj sin(ℓϕ)] Γ̄

j,ℓ
intra

+ [cos θj sin(ℓϕ)− sin θj cos(ℓϕ)] Γ̄
j,ℓ
inter

}
. (4)

The first (second) term captures the intraband (inter-
band) component of the j = Eg and Eu nematic orders,
ensured by the accompanying matrices taking the follow-
ing form with κ = 3 (0) for j = Eg (Eu)

Γ̄
Eg,1/3
intra = Γ̄Eu,2

intra = Γ̄κ333, Γ̄
Eg,2
intra = Γ̄

Eu,1/3
intra = Γ̄κ303

Γ̄
Eg,1/3
inter = Γ̄Eu,2

inter = Γ̄κ302, and Γ̄
Eg,2
inter = Γ̄

Eu,1/3
inter = Γ̄κ332.

The intraband component is responsible for the topology
of the constant energy contours (Fermi surface). From
the definitions of cubic harmonics in two dimensions{

cos(ℓϕ)
sin(ℓϕ)

}
∝ Y −ℓ

ℓ

(π
2
, ϕ

){
+
−

}
(−1)ℓY ℓ

ℓ

(π
2
, ϕ

)
, (5)

we identify that the altermagnets are p-wave, d-wave and
f -wave in nature in MLG (ℓ = 1), BBLG (ℓ = 2) and
RTLG (ℓ = 3), respectively, resulting from their normal
state band topology, described by the same harmonics.
Majorana altermagnet. As a penultimate topic, we

showcase the possibility of realizing altermagnets of neu-
tral Majorana fermions in local spin-triplet nematic su-
perconductors. The D3d group allows only one such
paired state, following the Eu representation [48, 49],
with the effective single-particle BdG Hamiltonian

ĥpair
Eu

(
∆p

Eu
, θpEu

)
= ∆p

Eu

[
Γαj31 cos θ

p
Eu

− Γαj02 sin θ
p
Eu

]
.

(6)
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Here ∆p
Eu

is the pairing amplitude, θpEu
determines the

spatial orientation of Cooper pairs, and α = 1, 2 reflects
the U(1) gauge redundancy in defining the superconduct-
ing phase. For simplicity, we choose α = 1 and the
Cooper pair spin in the z-direction (j = 3). All the
discussions for the Eu spin nematic order directly apply
here with the caveat that the Weyl nodes feature gapless
Majorana excitations. We now enjoy the liberty to com-
pletely neglect the inter-band component of the pairing
Hamiltonian (Eq. (4) with 3 → 1 in the Nambu sector),
as the effective attractive interaction exists only around
the Fermi surface, realized within the valence or conduc-
tion band upon doping these systems. Thus, the paired
state also hosts altermagnets, but for neutral Majorana
fermions [Fig. 1]. We name themMajorana altermagnets.
By the same analogy they are p-wave, d-wave and f -wave
in nature in MLG, BBLG and RTLG, respectively.

Alter-valleymagnet. Symmetry protected valley degree
of freedom in graphene heterostructures enters their low-
energy models as spin degrees of freedom [Eq. (1)], thus
named pseudo-spin. We envision to construct altermag-
netic states in terms of valley or pseudo-spin. Spin up and
down components in this case translate into two valleys
at ±K, and exchange of spin projections ↑↔↓, leading to
a change in spin angular momentum Sz = ±2 (in units
of ℏ/2), maps onto K ↔ −K, causing a 2K momen-
tum transfer. The proposed alter-valleymagnet is spin-
disordered, and stems from the charge nematic orders,
for which the effective single-particle Hamiltonian takes
the form shown in Eq. (2), with 3 ↔ 0 in the Nambu
sector and 3 → 0 in the spin sector of the corresponding
Γ matrices [49]. A charge nematic phase then represents
an alter-valleymagnet if the displaced (in MLG) or dis-
torted (in BBLG and RTLG) spin-degenerate Fermi sur-
faces near two inequivalent valleys do not map onto each
other under a 2K translation (pseudo-spin flip). With
this definition in hand, we recognize Eg (in MLG and
RTLG) and Eu (in BBLG) charge nematic orders as
alter-valleymagnet, with the corresponding spin degener-
ate Fermi surfaces from the opposite valleys shown in a
single frame in Fig. 1 (left column), where ↑ / ↓ ≡ +/−K.

Summary & discussions. We show that the band
topology of non-interacting electrons plays a decisive
role in determining the geometry of emergent altermag-
nets from the local spin nematic orders. As exam-
ples, we consider graphene-based crystalline heterostruc-
tures, namely MLG, BBLG and RTLG, displaying lin-
ear, quadratic and cubic band dispersion, captured by
ℓ = 1, 2 and 3 harmonics, respectively. As a result, the
local spin nematic orders foster p-wave, d-wave and f -
wave altermagnets, respectively, inheriting their geom-
etry from the free fermion band topology. The same
conclusions hold in a spin-triplet nematic local super-
conductor, harboring Majorana altermagnets. In ad-
dition, the valley or pseudo-spin degree of freedom al-
lows us to unfold the possibility of spin-disordered alter-

valleymagnetic phases. Present discussion opens up var-
ious fascinating future directions, among which gener-
alizing these concepts to strong spin-orbit coupled and
three-dimensional materials, emergent superconductors
in doped altermagnets [53–58] are the prominent ones.

Topological quantum chemistry nowadays is routinely
employed to mine quantum materials with unusual elec-
tronic band dispersion [59–64]. Our proposed symmetry-
based sufficiently general one-to-one correspondence be-
tween band topology and altermagnet geometry should
therefore open an unexplored and fascinating avenue to
harness these exotic quantum magnets in a predictive
way. Within the landscape of graphene heterostructures
recent experiments have unveiled several ordered phases
(including superconductors) in doped BBLG and RTLG,
when the layer-inversion symmetry is broken by an ex-
ternal displacement electric field [65–69]. New phases
in their global phase diagram are still being discovered.
They constitute a promising material platform, where
our predicted altermagnets, including their Majorana
and valley cousins, can in principle be observed, where
the trigonal warping does not affect our predictions [51].
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