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Abstract 
The effect of wall slip on the apparent flow curves of viscoplastic materials obtained using 

torsional parallel plate rheometers is analysed by considering Herschel-Bulkley fluids and 

assuming that slip occurs above a critical wall shear stress, the slip yield stress 
c , taken to 

be lower than the yield stress, 
0 . Thus, different flow regimes are encountered as the 

angular velocity of the experiment is increased. When the rim shear stress 
R  is below the 

slip yield stress, the exerted torque is not sufficient to rotate the disk and the material 

remains still. When 
0c R     the material is still unyielded but exhibits wall slip and 

rotates as a solid at half the angular velocity of the rotating disk. Finally, when 

0R  , the material exhibits slip everywhere and yields only in the annulus 
0r r R 

, where 
0r  is the critical radius at which the shear stress is equal to the yield stress and 

R  is the radius of the disks. In the general case, the slip velocity, which varies with 

the radial distance, can be calculated numerically and then all quantities of interest, 

such as the true shear rate, and the two branches of the apparent flow curve can be 

computed by means of closed form expressions. Analytical solutions have also been 

obtained for certain values of the power-law exponent. In order to illustrate the effect of wall 

slip on the apparent flow curve and on the torque, results have been obtained for different gap 

sizes between the disks choosing the values of the rheological and slip parameters to be 

similar to reported values for certain colloidal suspensions. The computed apparent flow 

curves reproduce the patterns observed in the experiments.  

 

Keywords: Parallel plates; Apparent flow curve; Wall slip; Herschel-Bulkley fluid; Yield 

stress; Navier slip; Slip yield stress; Gap effect. 

 

 

1. Introduction 
Wall slip has attracted considerable attention in the past few decades since it affects 

dramatically the stability of several flows of industrial interest and the accuracy of rheological 

measurements. The reader is referred to the recent reviews of Hatzikiriakos (2015), Cloitre 

and Bonnecaze (2017), and Malkin and Patlazhan (2018). Various slip laws have been 

proposed in the literature, which replace the classical no-slip condition that dictates that fluid 

particles stick at the wall, i.e., they move with the same speed as the wall. These laws relate 

the slip velocity 
wu , defined as the relative velocity of the fluid particles with respect 

of that of the wall, to the wall shear stress, 
w . The most common slip equation is that 

proposed by Navier (1827): 

 
w wu =  (1) 
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where    is the slip coefficient. In general,   depends on the fluid and wall properties, 

the temperature, the normal stress, and the pressure (Hatzikiriakos, 2015). Equation (1) tends 

asymptotically to the no-slip boundary condition when  →  ( 0wu = ). Its power-law 

generalization, 

 m

w wu =  (2) 

where m  is the slip exponent, is also widely used (Hatzikiriakos, 2015), e.g., for highly 

concentrated suspensions (Wilms et al., 2022) and viscoplastic microgels (Medina-

Bañuelos et al., 2017). 

 

Most experimental studies have demonstrated that wall slip occurs only above critical value 

of the wall shear stress, known as the slip yield stress, c  (Malkin and Patlazhan, 2018; for 

additional references see Damianou et al., 2019). It should be noted that non-zero slip-yield-

stress values have been reported not only for complex but also for Newtonian fluids (Spikes 

and Granick, 2003). The above slip equations have been extended to account for the slip yield 

stress. For example, Eq. (2) is generalized as follows: 

 
0,             

,

w w c

m

w c w w c

u

u

 

    

= 


= + 
 (3) 

More complex slip equations involving finite slip yield stress have also been proposed; see, 

for example, the non-monotonic slip equations proposed by Piau and El Kissi (1994) for 

certain polymer melts and the review in Damianou et al. (2014). 

 

The two-branch nature of slip laws with non-zero slip yield stress results in different flow 

regimes in viscometric flows. For example, in simple shear (plane Couette) flow there is 

critical speed of the moving plate separating the no-slip from the slip regime (Georgiou, 

2021). Additional flow regimes arise in one-dimensional flows, characterized by two 

characteristic wall shear rates, e.g., in circular (Damianou et al., 2019) and annular (Gryparis 

and Georgiou, 2022) Couette flows, or in two-dimensional flows, e.g., in pressure-driven flow 

in a rectangular duct (Damianou and Georgiou, 2014)  

 

Of special interest are viscoplastic flows, i.e., flows of materials with a finite yield stress, 
y . 

These include many classes of materials of industrial importance, such as pastes, 

cements, mortars, foams, muds, food products, etc. (Coussot et al., 2014). Ideal yield-

stress fluids behave as solids if the stress is below the yield stress and as fluids 

otherwise (Coussot et al., 2014). The constitutive equation proposed by Bingham 

(1922) is widely used. The scalar form of this equation is as follows:  

 
0,           

,  

y

y y

  

    

= 


= + 

 (4) 

where   is the shear stress,   is the shear rate, 
y  is the yield stress, and   is the 

plastic viscosity. Equation (4) reduces to the Newtonian constitutive equation when 

0y = . It has been extended by Herschel and Bulkley (1926) to 

 
0,           

,

y

n

y yk

  

    

= 


= + 

 (5) 

where k  is the consistency index and n  is the power-law exponent or flow index. By 

setting 0y = , Eq. (5) reduces to the power-law model. 
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There is ample experimental evidence that viscoplastic materials are prone to wall slip 

(Cloitre and Bonnecaze, 2017). In fact, wall slip may be exhibited below the yield stress, 

which implies that the slip yield stress is lower than the yield stress ( c y  ); see 

experimental data on hard-sphere colloidal suspensions (Ballesta et al., 2012) and Carbopol 

gels (Piau, 2017), as well the literature review provided by Damianou et al. (2019). It is clear 

that different regimes are encountered in viscoplastic flows with wall slip obeying a slip law 

with non-zero slip yield stress. In previous works, a number of basic viscoplastic flows with 

wall slip and non-zero slip yield stress have been analyzed, such as Poiseuille flows in pipes 

(Damianou et al., 2014), rectangular ducts (Damianou and Georgiou, 2014) and annuli 

(Gryparis and Georgiou, 2022), and the plane (Georgiou, 2021; Huilgol and Georgiou, 2022) 

and circular Couette flows (Damianou et al., 2019).  

 

The occurrence of wall slip greatly affects the apparent flow curves in all rheometric flows. 

Thus, the apparent flow curves are diameter-dependent in capillary rheometers and gap-

dependent in circular Couette or parallel plate rheometers. Therefore, studying wall slip is of 

utmost importance in correcting rheometric data obtained using different rheometers and 

geometries in order to determine the true rheology of materials. Mooney (1931) proposed a 

methodology to analyse rheological data from capillary and circular Couette rheometers and 

derived convenient explicit formulae for the determination of the slip velocity as a function of 

wall shear stress. Schofield and Scott Blair (1931) derived explicit formulae to calculate the 

slip velocity from capillary experimental data. Subsequently, Schofield (1934) derived simple 

relations to address and explain discrepancies of flow curves due to wall slip. Oldroyd (1949) 

also proposed a similar methodology for determining the slip velocity as a function of the 

wall shear stress and recovering the true rheological parameters. Based on Oldroyd’s ideas, 

Ghahramani et al. (2021) recently derived expressions for slip analysis of capillary rheometer 

data on Herschel-Bulkley fluids. Yoshimura and Prud’homme (1988) also analysed wall slip 

in Couette and parallel disc viscometers. As discussed in Section 2, in their analysis the slip 

velocity is assumed to vary with the wall shear stress and can be determined by carrying out 

experiments with two different gap sizes.  

 

All the above analyses are general, i.e., they hold for any fluid, and have been applied 

extensively in analysing experimental data on polymer melts and solutions as well as on many 

other complex fluids (Barnes, 1995; Hatzikiriakos, 2015). With viscoplastic materials, the 

shape of the apparent flow curve may suddenly change at the transitions from the no-yielding 

to the slip regime and then to the yielding regime. The data at the transition points may then 

be used for determining the slip yield stress and the yield stress (Moud et al., 2022). 

 

Moud et al. (2022) have carried out parallel-plate experiments with different gaps in order to 

characterize the wall slip of colloidal kaolinite suspensions, using both smooth and rough 

plates, which correspond to the no-slip and slip cases, respectively. They have identified two 

slip regimes below and above the yield stress. In the first regime, the material slips like an 

elastic solid and in the latter one the material yields and flows following a different slip law. 

The two slip laws were coupled with the Herschel-Bulkley constitutive equation, and the 

rheological and slip parameters have been calculated by numerically fitting all data 

(corresponding to different gap sizes). The numerical method allows the correct calculation of 

the yield stress value, confirmed with data obtained from parallel-plate, cone-and-plate, and 

concentric cylinder rheometers. 

 

The flow of a Herschel-Bulkley fluid in a parallel-plate rheometer in the presence of wall slip 

with non-zero slip yield stress, which is lower than the yield stress, has been considered in 

Huilgol and Georgiou (2022) under the assumption that the same slip law applies 

independently of the yielding status of the material. As mentioned above, Moud et al. (2022) 

employed different slip laws in yielded and unyielded regions demanding continuity of the 

slip velocity, which leads to a constraint between the slip parameters in the two regions, 
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including the slip yield stress. Huilgol and Georgiou (2022) formulated the general flow 

equations and provided analytical solutions for the special case when 1n m= =  (Bingham 

plastic flow).  

 

Quan et al. (2023) also studied the torsional flow of a viscoplastic hydrogel with wall slip 

with zero slip yield stress and presented both experimental and computational results. They 

reported two flow regimes below and above the critical torque at which the material yields 

and derived analytical expressions for the torque when the material is still unyielded and 

when the apparent shear rate is sufficiently large, so that wall slip is considered negligible. 

They also discussed the dependence of the slope of the torque as a function of the apparent 

rim shear rate on the rheological parameters and the flow conditions.  

 

The objective of the present work is to analyse the flow in the general case of a 

Herschel-Bulkley fluid and to investigate the effects of the gap size and wall slip on 

the apparent flow curve, which is more relevant to experimental studies. An analogous 

study has been recently carried out in Georgiou (2021) for the simple shear (plane 

Couette) flow. Eventhough the basic results for the apparent flow curves, i.e., the 

plots of the rim shear stress versus the apparent shear rate, are, of course, equivalent, 

the characteristics of the two-dimensional flow field and the different flow regimes 

that arise in torsional flow are worthy of investigation. The present analysis differs 

from that of Moud et al. (2022) in that the same slip law is assumed to hold uniformly 

below and above the yield stress. Moreover, analytical expressions for the torque are 

obtained in terms of the apparent rim shear rate and the determination of the 

rheological and slip parameters are discussed. 

 

The equations governing the general flow are presented in Section 2. The presence of 

two critical stress values, i.e., the yield stress and the slip yield stress, results in the 

appearance of different flow regimes as the angular velocity of the rotating disk is increased. 

In Section 3, the flow of a power-law fluid is considered first allowing different slip laws but 

with the same slip yield stress along the two disks (thus only the slip coefficients and the slip 

exponents may be different). When the rim shear stress ( )R z R =  is below the slip yield 

stress c , there is no wall slip and the standard textbook solution is obtained. Once 
R  

exceeds c , wall slip does occur but only in the annulus 
cr r R  , where 

cr  is the 

radius where ( )z c cr = ; the no-slip solution still holds for 0 cr r  . In the general 

case, the slip velocities corresponding to a given radial distance are different  and need 

to be calculated numerically solving a simple non-linear equation. Closed form 

expressions in terms of one of the two slip velocities can be obtained for the other slip 

velocity, the azimuthal velocity, the true shear rate, and the shear stress. However, 

full analytical solutions are obtained for special cases of the power-law and slip 

exponents, e.g., for Navier slip, or for special combinations of the slip exponents. The 

flow of a Herschel-Bulkley fluid is considered in Section 4. For the sake of simplicity, it is 

assumed that the same slip law with non-zero slip yield stress (
c y  ) applies at the two 

disks. It should be noted that the upper disk starts rotating only when the rim shear stress 

exceeds the slip yield stress. When 
c R y     the material remains unyielded, 

rotating at half the angular velocity of the rotating disk, due to wall slip. Once 
R  

exceeds 
y , the material continues to slip everywhere and yields only in the annulus 

0r r R  , 
0r  being the yield radius (where 

0( )z yr = ). Again, the slip velocity which 

varies with the radial distance is calculated numerically, whereas the azimuthal 

velocity, the true shear rate, the shear stress, and the torque can be computed by 

means of closed form formulas. Analytical solutions can also be obtained for special 
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cases of the power-law and slip exponents, e.g., for Bingham plastics and/or Navier 

slip. The effect of wall slip on the apparent flow curve is illustrated by carrying out 

calculations for different gap sizes between the disks and by comparing the computed 

apparent flow curves with experimental observations on certain colloidal suspensions. 

Finally, the conclusions of this work are summarized in Section 5. 

 

 

2. Analysis of the flow 
We consider the torsional flow between parallel concentric disks employing cylindrical 

coordinates ( , )r z , with the origin set at the center of the bottom disk,  as shown in Fig. 

1. It is assumed that the lower disk is fixed and that  the upper disk rotates at an angular speed 

  around the common symmetry axis, and that the gap H  between the two disks is 

narrow so that the stress 
z  for a given radial distance r  is approximately constant 

(Yoshimura and Prud’homme, 1988), i.e., ( )z z r  = . Hence, for a given value of r , the 

angular velocity u  varies linearly with z . If different slip laws apply at the two 

plates, the slip velocities at the two plates are different . Hence, the boundary 

conditions at the two disks are: 

 
1 2( ,0) ( )  and  ( , ) ( )w wu r u r u r H r u r = =  −  (6) 

 
 

Figure 1. Geometry of the torsional parallel plate flow.  

 

where 
1( )wu r  and 

2 ( )wu r  are the slip-velocity functions along the lower ( 1i = ) and the 

upper ( 2i = ) disk, respectively. It turns out that the angular velocity ( , )u r z
 is given 

by  

 1 2
1

( ) ( )
( , ) ( )w w

w

r u r u r
u r z z u r

H


 − −
= +  (7) 

which can also be written as follows: 

 1 2
1

( ) ( )
( , ) ( ) ( )w w

a w

u r u r
u r z r z u r

H
 

+ 
= − + 
 

 (8) 

where  

a

r

H



=  (9) 

is the apparent shear rate (Macosko, 1994). Thus, for the true shear rate one gets: 

 1 2( ) ( )
( ) ( ) w w

a

u r u r
r r

H
 

+
= −  (10) 

Let us note that the apparent and the true shear rates at the rim ( r R= ) are given by  



H

r

z
R
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 ( )aR a

R
R

H
 


= =  (11) 

and 

 1 2w R w R
R aR

u u

H
 

+
= −  (12) 

where the subscript R  denotes quantities at r R= . It is clear that in the case of no slip, the 

apparent shear rate coincides with the true one 

 ( ) ( )ar r =  (13) 

and the azimuthal velocity is given by  

 ( , ) ( )a

r z
u r z r z

H
 


= =  (14) 

(hence, 
aR  and R  coincide only in the absence of wall slip). 

 

If the same slip law applies at the two plates, Eqs. (8) and (10) are simplified to 

(Yoshimura and Prud’homme, 1988) 

 2 ( )
( , ) ( ) ( )w

a w

u r
u r z r z u r

H
 

 
= − + 
 

 (15) 

or 

 2
( , ) ( ) ( ) 1a w

z
u r z r z u r

H
 

 
= + − 

 

 (16) 

and 

 
2 ( )

( ) ( ) w
a

u r
r r

H
 = −  (17) 

where ( )wu r  is the common slip velocity at the two disks.  

 

The torque, M , required to observe torsional flow at a given apparent rim shear rate, aR  , is 

given by: 

 
2

0
2 ( )

R

zM r r dr =  , (18) 

which by means of (9) gives  

 

3
2

3 0

2
( )

aR

z a a a

aR

R
M d






   


=  . (19) 

Application of Leibniz’s rule leads to the well-known formula for the rim shear stress R  

(Macosko, 1994):  

 
3

ln
3

2 ln
R

aR

M d M

R d


 

 
= + 

 
 (20) 

 

Yoshimura and Prud’homme (1988) showed that in the presence of slip the true shear 

rate and thus the viscosity can be determined using data obtained for two gap heights 

1H  and 
2H . Setting r R=  in Eq. (17), one gets  
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2

, 1,2Rw

R aRj

j

u
j

H
 = − =  (21) 

and, thus, the rim slip velocity for a given shear stress at the edge of the upper disk, 

( )R z R = , is given by  

 1 2

1 2

( ) ( )
( )

1 1
2

aR R aR R
wR Ru

H H

   


−
=

 
− 

 

 (22) 

The corresponding true shear rate is (Yoshimura and Prud’homme, 1988) 

 1 1 2 2

1 2

( ) ( )
( ) aR R aR R

R R

H H

H H

   
 

−
=

−
 (23) 

 

The above analysis is general, since it holds for any fluid and is independent of the 

slip equations that apply at the two walls. In the next two sections we will first 

consider the flow of a power-law fluid with different slip equations and then the flow 

of a Herschel-Bulkley fluid with the same slip equation holding at the two disks.  

 

 

3. Torsional flow of a power-law fluid 
Consider the torsional flow of a power-law fluid assuming that different slip laws 

apply at the two disks: 

 
0,

,          1,2
,i

wi wi c

m

wi c i wi wi c

u
i

u

 

    

=  
=

= +  
 (24) 

where the subscripts 1 and 2 denote quantities corresponding to the lower and upper 

disks, respectively. For the sake of simplicity, the value of the slip yield stress ( c ) 

has been taken to be the same at both disks. Under these assumptions, two regimes are 

encountered as the angular velocity of the rotating disk, or, equivalently, the rim shear 

stress ( )R z R =  is increased: 

(i) When R c  , no wall slip is observed and hence one obtains the standard no-slip 

solution, given by Eqs. (13) and (14). By means of the power-law constitutive equation, the 

shear stress and the rim shear stress are given by  

 ( ) ( )

n

n

z a

r
r k r k

H
 

 
= =  

 
 (25) 

and 

 

n

n

R aR

R
k k

H
 

 
= =  

 
 (26) 

The critical angular velocity 
c  above which wall slip occurs corresponds to R c = , 

which gives 

 

1/n

c
c

H

R k

 
 =  

 
 (27) 

The corresponding critical apparent shear rate at the rim is  
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1 n

c c
ac

R

H k




  
= =  

 
 (28) 

By combining Eqs. (18) and (25) the torque in this regime is found to be  

 

32
,

3

n

aR
aR ac

R k
M

n

 
 = 

+
. (29) 

 

(ii) When R c  , (or c    ), slip does occur but only in the annulus cr r R  , where 

cr  is the critical radius at which ( )z c cr = ; in the core cylinder 0 cr r  , the no- slip 

solution still applies, and therefore Eq. (25) yields  

 

1/n

c
c

H
r

k

 
=  
  

 (30) 

In summary, the azimuthal velocity and the shear stress are given in terms of the two slip 

velocities by  

 
1 2

1

( ) ,                                               0

( , ) ( ) ( )
( ) ( ),

a c

w w
a w c

r z r r

u r z u r u r
r z u r r r R

H







 


= +  
− +    

 

 (31) 

and 

 
1 2

,                                       0

( ) ( ) ( )
( ) ,

n

a c

n
z

w w
a c

k r r

r u r u r
k r r r R

H








  


=  + 
−    

 

 (32) 

Another quantity of interest is the rim shear stress for which we get: 

 1 2

n

w R w R
R aR

u u
k

H
 

+ 
= − 

 

 (33) 

The unknown slip velocities in the annulus cr r R   are calculated by means of Eq. (32) 

and the slip equations (24): 

 1 2( ) ( )
( ) ,          1,2i

n

m w w
c i wi a

u r u r
u k r i

H
  

+ 
+ = − = 

 
 (34) 

In the general case when wall slip does occur along the bottom (fixed) plate, the top slip 

velocity 2wu  is given by  

 ( ) 2 1 2
1

2 1 2 1( ) ( )
m m m

w wu r u r =  (35) 

and, therefore, the bottom slip velocity at any radial distance can be found as the solution of 

 
( ) 2 1 2

1

1 1

1 2 1 1

1 1

1 ( ) ( )
( )

n
m m m

w w
m

c w a

u r u r
u k r

H

 
  

− +
 + = −
 
  

 (36) 

By means of Eqs. (9) and (27), the above equation can also be written as follows 

 ( ) 21 1 2
1 11

1 1 2 1 11 ( ) ( ) - 
n n

mm m m n n

w w w c

H
u r u r u r R

k


  − =  − + 

 
  (37) 

Equation (37) is easily solved using standard methods. Analytical solutions for the slip 

velocities can be obtained in some special cases. Table 1 shows such solutions for 1n =  
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(Newtonian fluid) and 1/ 2n = . These can also be expressed in terms of the apparent shear 

rate 
a  by means of ( ) ( )c a acr R H   − = − . Similarly, the rim slip velocities are 

obtained using ( ) ( )c aR acR H  − = − . When 0c = , 
c  vanishes and wall slip occurs 

for any finite angular velocity and any radial distance (the first branches of Eqs. (31) and (32) 

are not relevant).  

 

When the same slip law applies at the two disks, Eq. (34) becomes 

 
2 ( )

( )

n

m w
c w a

u r
u k r

H
  

 
+ = − 

 
. (38) 

The azimuthal velocity, the shear stress, and the apparent flow curve when aR ac   are 

respectively given by 

 

( ) ,                                0

( , ) 2 ( )
( ) ( ),

a c

w
a w c

r z r r

u r z u r
r z u r r r R

H







 


=  
− +   

 

 (39) 

 
,                          0

( ) 2 ( )
( ) ,

n

a c

n
z

w
a c

k r r

r u r
k r r r R

H








  


=   
−    

 

 (40) 

and 

 
,                0

2
,    

n

aR a ac

n
R

wR
aR a ac

k

u
k

H

  


  

  


=   
−   

 

 (41) 

Substituting Eq. (40) into Eq. (18) and integrating one finds the second branch of the torque 

in the case of a power-law fluid: 

 3

3 3
2

3 3 3

,                                                            
3

2
1

1 ,
3 3

aR

ac

n

aR
a ac

n
mac c ac
w a a a ac

aR aR aR

k

n
M R

k
u d

n






 


  

    
  

+




+
= 

  + − +  
 +  



 (42) 

For the derivative ln / ln aRd M d   one finds: 

 3
3 3 2 3

3

,                                                                                 
ln

2 3
3 ,ln

3

aR

ac

a ac

n m m

ac ac c w a a aR wR a acaR

aR

n
d M

R k
u d ud

M n





 


        



+




= −  
+ − +   + 


(43) 

It is straightforward to show that the torque is differentiable (smooth) at aR ac = .  

 

Figure 2 illustrates the effect of the gap size H  on the apparent flow curve, i.e., the plot of 

the rim shear stress 
R  versus the apparent rim shear rate. The initial branch 

corresponding to no-slip is the same for all gap sizes. The slope of the apparent flow 

curve changes at 
ac  and is more pronounced with the smaller gap size. In the special 

case when 1n m= = , one finds from Eq. (38) that  

 
2 /

a c
w

k
u

k H

 



−
=

+
 (44) 
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(The above expression is equivalent to the alternative form tabulated in Table 1.) The 

apparent flow curve in this case is described by 

 

,                       0

2 / ( )
,    

1 2 / ( )

aR a ac

R aR c
a ac

k

H
k

k H

  

   
 



 


= +
 +

 (45) 

It is clear that the two branches of the apparent flow curve collapse when 0c =  and that the 

slope of the second branch is lower, as illustrated in Fig. 2. 

 

To illustrate the gap height effect, we caried out numerical experiments on hypothetical 

power-law fluids in a parallel plate rheometer of radius 25 mmR = using three gap 

heights, i.e., 0.2H = , 0.5, and 1 mm and assuming that  1 Pa snk =  and 

=1000 Pa s / mm m . Figure 3 shows the apparent flow curves obtained in four representative 

cases. For a Newtonian fluid (Fig. 3a) exhibiting Navier slip, i.e., zero slip yield stress with 

1m = , only one flow regime is observed. The three apparent flow curves are parallel 

translations of the no-slip flow curve. As expected, slip effects become more 

pronounced as the gap height is reduced. When the slip yield stress is nonzero, two 

flow regimes are observed, as in Figs. 3b-c. Below the critical apparent shear rate 
ac , 

all flow curves coincide with the no-slip flow curve and then exhibit a plateau which 

is more visible and longer for smaller gap heights. At higher shear rates the flow 

curves approach asymptotically their counterparts for non-zero slip yield stress. It 

should be noted that for a shear thinning fluid (Fig. 3c) the flow curves are not 

parallel, but they approach asymptotically the no-slip flow curve. Finally, the plateau 

region after 
ac  is enhanced when the slip exponent m  is greater than unity (Fig. 3d).  

 

To visualize the effect of the apparent shear rate (i.e., the angular velocity  ) on the velocity 

distribution, let us first consider the variation of the dimensionless rim slip velocity 

/ ( )wRu R  for all the cases of Fig. 3. In the case of a Newtonian fluid with zero slip yield 

stress, / ( )wRu R  is constant and is reduced as the gap size is increased (Fig. 4a). With a 

finite slip yield stress, the relative slip velocity is zero below the critical apparent shear rate 

aRc  and then increases rapidly to converge asymptotically to its zero-slip-yield-stress 

counterparts (Fig. 4b). However, this final plateau is observed only with Newtonian 

liquids when the slip exponent m  is unity. For lower values of n  (Fig. 4c) or higher values 

of m  (Fig. 4d) the dimensionless rim velocity reaches a maximum and then is reduced 

rapidly as the apparent shear rate is increases. In all cases, the relative slip velocity is reduced 

with the gap size.  

 

The effect of the apparent shear rate on the contours of the dimensionless velocity / ( )u R   

when the slip yield stress is non-zero is illustrated in Figs. 5 and 6, for a Newtonian ( 1n = ) 

and a power-law fluid ( 0.5n = ). The corresponding no-slip solutions hold up to the critical 

angular velocity c , and as   is increased slip is observed only for cr r R  , where the 

radius cr  vanishes asymptotically. It can also be observed that, due to wall slip, the 

dimensionless velocity is reduced on the upper disk and increases on the lower disk as the 

apparent shear rate is increased approaching asymptotically the solid-body motion. The 

apparent shear rates corresponding to the contour plots of Figs. 5 and 6 are shown in Fig. 7 

along with the corresponding apparent flow curves.  
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The gap-size effects on the plots of the torque versus the apparent rim shear rate are 

essentially the same as those on the flow curves. This is easily deduced by comparing the 

torque plots in Fig. 8 with the corresponding flow curves shown in Fig. 3. When c  is zero, 

only one flow regime is observed (given by the second branch of Eq. (42)), and M  is 

everywhere gap dependent (Fig. 8a). When c  is non-zero, two regimes are observed 

(defined by ac ) and only the first branch of the flow curve is gap-independent; see 

Figs. 8b-d. Interestingly, the rheological parameters and the slip yield stress can be 

determined from the first branch of the plot of ln M  vs ln aR : the power-law 

exponent n  is simply the slope of this branch and the consistency index k  can be 

determined from ( )c acM M = : 

 
3

( 3)

2

c

n

ac

n M
k

R 

+
=  (46) 

Finally, the slip yield stress can be determined by means of 
n

c ack = . The other slip 

parameters, i.e.,   and m  can be determined from the second branch, which is gap 

dependent. If the fluid is not shear-thinning, M  tends asymptotically to its Navier-slip 

counterpart (Fig. 8b). Otherwise, it approaches asymptotically the gap-size-independent no-

slip curve (Fig. 8c). As illustrated in Fig. 8d, when the slip exponent m  is increased above 

unity, the second branch of the torque becomes flatter.  

 

 

4. Torsional flow of a Herschel-Bulkley fluid  
In this section we consider the torsional flow of a Herschel-Bulkley fluid, assuming that the 

same slip law with non-zero slip yield stress applies along the two plates and that 0 c y   . 

Therefore, three distinct regimes are encountered as the rim shear stress 
R  is 

increased. 

(i) If 
R c   the exerted torque is not sufficient to rotate the disk and the material 

remains unyielded. 

(ii) When 
c R y     the material is still unyielded, but exhibits slip and rotates as a 

solid at half the angular velocity of the disk 

 ( )
2

r
u r


=  (47) 

and the shear stress is given by 

 ( ) , 0
2 2

mm

a
z c c

Hr
r r R


    

   
= + = +     

   

 (48) 

Since ( )( ) / 2 / 2w aRu R R H= = , the rim shear stress, 

 
2

m

aR
R c

H
  

 
= +  

 
, (49) 

Is gap-size dependent. The critical angular speed 
y  at which the material starts 

yielding is obtained by demanding 
R y = , which gives  
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1/

2
m

y c

y
R

 



− 
 =  

 

 (50) 

Hence, the critical shear rate at the rim is  

 

1/

2
m

y c

aRy
H

 




− 
=  

 

 (51) 

and the critical rim slip velocity is 

 

1/m

y c

wRyu
 



− 
=  
 

 (52) 

 

We observe that 
aRy  decreases with the gap size H  in agreement with experimental 

observations. 

 

(iii) When 
R y  , the material exhibits slip everywhere but yields only in the 

annulus 
yr r R  , where 

yr
 is the critical radius at which 

z y = . Hence, for 0 yr r   

the material rotates unyielded following Eq. (47) and the shear stress is given by 

 ( ) , 0
2

m

z c y

r
r r r  

 
= +   

 
 (53) 

By demanding that 
z y = , one finds that 

 

1/

2
m

y c

yr
 



− 
=  
  

 (54) 

The slip velocity for 
yr r R   is found by solving  

 
2 ( )

( )

n

m w
z c w y a

u r
u k r

H
    

 
= + = + − 

 
 (55) 

which generalizes Eq. (38). The azimuthal velocity is given by  

 

( )
,                  0

2 2
( , )

2 ( )
( ) ( ),

a
y

w
a w y

H rr
r r

u r z
u r

r z u r r r R
H








=  

= 
  − +    

 (56) 

Then, the apparent flow curve is described by  

 
,      0

2

2
,    

m

aR
c a aRy

R n

wR
y aR a aRy

H

u
k

H


   



   

  
+    

  
= 

 
+ −  

 

 (57) 

The effect of the gap size on the apparent flow curve is illustrated in Fig. 9. As predicted by 

Eq. (51), the critical apparent shear rate 
aRy  is also gap-dependent. This fact can be 

exploited in order to determine the slip parameters   and m  from experimental data 

obtained using different gap sizes.  

 

The torque in the two flow regimes is found to be:  
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3
3 3

2

3

,                                                            
3 2 ( 3)

2
3

1 ,
3 3 3

aR

aRy

m
mc
aR a aRym

aRy y aRy mc
w a a a aRy

aR aR aR

H

m
M R

u d
m m





 
  


   

   
  


+ 

+


=        − + +     + +     


 (58) 

Quan et al. (2023) noted that an approximate analytical expression for the integral term in the 

second branch of Eq. (58) can be obtained  by assuming that in the yield region 
yr r R   the 

wall slip contribution to shear stress is negligible, that is  

 
2 ( )

( ) ( ),

n

m nw
z c w y a y a y

u r
u k r k r r r R

H
      

 
= + = + − +   

 
 (59) 

Under this assumption one gets: 

3 3 3 3

3

3 3 3 3
2 1 1 ,

3 2 ( 3) 3 3

    

m nm
aRy aRy y aRy aRync

aR a aRym n

aR aR aR aR

H k
M R

m n

     
   

   

+ +

+

     
= + + − + −        + +     

 (60) 

A limitation of the above approximation, however, is that the curve of ln  vs. ln aRM   

is not differentiable at a aR = . 

 

Some special analytical solutions for the slip velocity and the rim shear stress are 

tabulated in Table 2. Equivalent expressions for the flow curves have also been 

obtained in Georgiou (2021) for the case of simple shear flow. It is straightforward to 

express these results in terms of the apparent shear rate, by means of 

( ) ( )y a aRyr R H   − = − . For example, when 1n m= = , the solution of Eq. (55) is 

 
2 /

a y c

w

k
u

k H

  



+ −
=

+
 (61) 

by means of which one gets the following expression for the apparent flow curve: 

 

,            0
2

2 / ( )
,    

1 2 / ( )

aR
c a aRc

R

aR y c

a aRc

H

k k H

k H


   


   

 


  
+   

 
= 

+ + 
 +

 (62) 

Referring to Fig. 9, the slopes of the two branches are / 2H  and 1/ [1/ 2 / ( )]k H+ , 

respectively. Obviously, both slopes increase with the gap size. Extrapolating the second 

branch to 0aR =  leads to an expression relating the slip parameters with the rheological 

ones. Setting 0c =  leads to the zero-slip-yield-stress dashed curves of Fig. 9. In case 

c y = , then 0aRy =  and the apparent flow curve consists of a single branch the slope of 

which is lower than that corresponding to the no-slip apparent flow curve.  

 

Figure 9 shows representative apparent flow curves obtained from numerical experiments on 

Herschel-Bulkley fluids exhibiting wall slip. To illustrate the effect of the gap height we 

consider again a real parallel plate rheometer with 0.2H = , 0.5, and 1 mm and assume that 

2 Pay =  and 
c =0 or 0.5 Pa (the slip yield stress is lower than the yield stress).  Two 

flow regimes are observed. The first one corresponds to solid-body rotation (the material is 
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unyielded) and in the second the material is partially yielded far from the symmetry axis. If 

the slip yield stress is zero (Fig. 10a), the shear stress increases rapidly with the apparent 

shear rate and at the critical apparent shear rate where the yield stress is reached the flow 

curve passes through a plateau and eventually it increases again rapidly approaching 

asymptotically the no-slip flow curve. It is clear that the stress corresponding to the plateau of 

the flow curve provides an estimate for the yield stress of the material. Moreover, the values 

of the critical apparent shear rate 
aRy  at which the plateau starts for the different gap heights 

can be used to obtain initial estimates of the slip parameters   and m , by means of Eq. 

(51). In the case of non-zero slip yield stress (Figs. 10b-d), the apparent flow curve is 

characterized by two plateaux, the levels of which provide good estimates of 
c  and 

y . The first plateau, which is below the material yield stress, is referred to as 

‘dynamic yield stress’ (Ewoldt et al., 2015). 

 

When slip yield stress is nonzero, gap-size effects appear to be important only in an 

intermediate range of apparent shear rates, which includes the critical apparent shear 

rate 0aRy = . It can be observed in Figs. 10b-d that the apparent flow curves for 

different gap sizes tend to merge at low and high apparent shear rates, in agreement 

with experimental data on colloidal suspensions (Moud et al., 2021; Ewoldt et al., 

2015). 

 

The variation of the dimensionless rim slip velocity with the apparent shear rate in the case of 

yield stress fluids is quite different from that of the power-law fluids discussed in Fig. 4. This 

is due to the presence of the solid-body rotation regime where the slip velocity is at 

maximum, i.e., / ( ) 1/ 2.wRu R =  As illustrated in Fig. 11, where the slip velocities for the 

cases considered in Fig. 10 are plotted, beyond the critical shear rate 
aRc , the slip velocity 

reduces rapidly and then tends asymptotically to a constant value, which increases as 

the gap size is reduced. The reduction of the dimensionless slip velocity is much 

faster with shear thinning fluids (Fig. 11c) and no plateau is reached when 1n  . This 

reduction is also slower when the slip exponent m  is greater than unity (Fig. 11d).  

 

The yield radius yr  in the yielding regime (
a aRy  ) is inversely proportional to the gap 

height, as dictated by Eq. (54), which can also be written in the following form: 

 

1/

2
m

y y c

aR

r

R H

 

 

− 
=  

 

 (63) 

A representative plot showing the effect of the gap height H  on the yield radius is provided 

in Fig. 12a, where the parameter values are those of the flow curves depicted in Fig. 10b. It is 

clear that the rim slip velocity is reduced as more material becomes yielded. The variation of 

the rim slip velocity with the yield radius is shown in Fig. 12b. The maximum of the rim slip 

velocity (1/2) obviously occurs when the fluid is unyielded ( /yr R  is unity).  

 

Figures 13 and 14 show the dimensionless velocity contours at different apparent shear rates 

for a Bingham plastic and a Herschel-Bulkley fluid with 0.5n = , respectively, in the case 

of non-zero slip yield stress. Below the critical apparent shear rate 
aRy , the material 

rotates as a solid. Above 
aRy , the material yields only in the region 

yr r R  , which 

causes the relative velocity / ( )u R   to increase at the top plate and to reduce at the 

lower plate, since the relative slip velocity is reduced. This effect is opposite to that 

observed with the power-law fluids in Figs. 5 and 6. As a result, the velocity contours 

in the yielded region are bended to the right and the relative velocity at the rim 
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increases. The values of the apparent shear rates used for the contours plots of Figs. 

13 and 14, are shown in Fig. 15 along with the corresponding apparent flow curves.  

 

Finally, Figure 16 shows the calculated torques versus the apparent rim shear rates obtained 

for the three gap sizes and the geometric and material parameters used for the flow curves 

shown in Fig. 10. As already noted both branches of the resulting curves are gap 

dependent in contrast to the power-law fluids. When the slip yield stress is non zero 

the curves for different gap sizes are flat initially and essentially coincide. Another 

difference from the power-law-fluid case is that the critical shear rate aRy  is gap 

dependent (as dictated by Eq. (51). In fact, estimates of the yield stresses c  and y  as well 

as the slip coefficient   and the slip exponent m  can be determined from torque 

data obtained only in the first (unyielded) regime. More specifically, the slip yield 

stress is directly calculated from the initial torque plateau corresponding say to 0M , 

3

03 / (2 )c M R = . Then, the yield stress  and the slip exponent can be found from 

the critical torque ( )y aRyM M =  and the slope of the left branch of the 

ln   vs  ln aRM   curve at aRy , i.e., by solving the system 

 

32 ( 3 ) 3 ( )ln
  and  ( )

3( 3) ln 3

c y y c

y aRy

aR y c

R m md M
M

m d m

    


  

−
+ −

= =
+ +

 (64) 

It should be pointed out that the slope of the torque curve at aRy  is independent of the gap 

size. Finally, the slip coefficient can be determined by means of Eq. (51). Data in the yielding 

regime are required in order to determine the other rheological parameters ( k  and n ). 

 

 

5. Conclusions 

The torsional parallel plate flow of Herschel-Bulkley fluids has been studied assuming that 

wall slip with nonzero slip yield stress occurs at both plates. The slip yield stress was taken to 

be lower than the yield stress and the resulting flow regimes have been identified. The 

velocity and stress fields are obtained by means of explicit analytical expressions in terms of 

the slip velocity, which is calculated numerically in the general case. The gap-size effects on 

the apparent flow curve and the torque have been demonstrated for both power-law and 

Herschel-Bulkley flows. Analytical solutions for certain combinations of the power-law and 

slip exponents are provided and the effects of wall slip on the two-dimensional flow field 

have been discussed. 

 

 

Data availability 
The data that support the findings of this study are available from the corresponding author 

upon reasonable request. 
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Table 1. Slip velocities for Newtonian ( 1)n =  and power-law ( 1/ 2)n =  fluids 
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Table 2. Slip velocities and flow curves for Bingham ( 1)n =  and Herschel-Bulkley 

( 1/ 2)n =  fluids 
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Figure 2. Sketch of the gap-size effect (

2 1H H ) on the apparent flow curve of a non-

viscoplastic (e.g., power-law) fluid in the presence of wall slip with non-zero slip yield stress. 

The dashed lines show the apparent flow curves in the case of zero slip yield stress.  
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(a)                                                            (b) 

 

(c)                                                            (d) 

 
Figure 3. Representative apparent flow curves of power-law fluids obtained with three gap heights, 

0.2 mmH =  (o), 0.5 mm ( ), and 1 mm ( ), 25 mmR = ,  1 Pa snk =  and =1000 Pa s / mm m : (a) 

1,  0,    1cn m= = =  (Newtonian fluid, zero slip yield stress); (b) 1,  0.5 Pa,    1cn m= = =  

(Newtonian fluid, non-zero slip yield stress); (c) 0.5,  0.5 Pa,    1cn m= = =  (power-law fluid, non-

zero slip yield stress); (d) 1,  0.5 Pa,    2cn m= = =  (Newtonian fluid, non-zero slip yield stress). The 

solid line is the flow curve in the case of no-slip. 
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(a)                                                                        (b) 

 
(c)                                                                        (c) 

 
Figure 4. Dimensionless rim slip velocities of power-law fluids obtained with three gap heights 

( 0.2,  0.5 and 1 mm)H = , 25 mmR = ,  1 Pa snk =  and =1000 Pa s / mm m : (a) 

1,  0,    1cn m= = =  (Newtonian fluid, zero slip yield stress); (b) 1,  0.5 Pa,    1cn m= = =  

(Newtonian fluid, non-zero slip yield stress); (c) 0.5,  0.5 Pa,    1cn m= = =  (power-law fluid, non-

zero slip yield stress); (d) 1,  0.5 Pa,    2cn m= = =  (Newtonian fluid, non-zero slip yield stress). 
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(a)                                                            (b) 

 

(c)                                                            (d) 

 

Figure 5. Contours of the dimensionless velocity  / ( )u R   for various angular velocities in the case of 

Newtonian flow with non-zero slip yield stress, i.e., 25 mmR = , 1 mmH = ,  1 Pa sk = , 0.5 Pac = , 

=1000 Pa s / m , and 1m = : (a) c =  ; (b) 2 c =  ; (c) 20 c =  ; (d) 200 c =  . The critical 

angular velocity and apparent shear rate are 
10.02 sc

− =  and 
10.5 saRc −= . The dashed line denotes 

the radius cr , below which no slip occurs. 
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(a)                                                            (b) 

 

(c)                                                            (d) 

 

Figure 6. Contours of the dimensionless velocity / ( )u R   for various angular velocities in the case of 

the flow of a power-law fluid with non-zero slip yield stress, i.e., 25 mmR = , 1 mmH = ,  1 Pa sk = , 

1n = , 0.5 Pac = , =1000 Pa s / mm m , and 2m = : (a) c =  ; (b) 2 c =  ; (c) 20 c =  ; (d) 

200 c =  . The critical angular velocity and apparent shear rate are 
10.01 sc

− =  and 

10.25 saRc −= . The dashed line denotes the radius cr , below which no slip occurs. 
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(a) 

 

(b) 
Figure 7. Velocity contours for (a) a Newtonian fluid and (b) a power-law fluid with 0.5n =  at different 

apparent shear rates when wall slip with non-zero slip yield stress occurs. The material parameters and the 

contour plots are those provided in Figs. 5 and 6, respectively.   
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(a)                                                                 (b) 

 

(c)                                                                (d) 

 

Figure 8. Torque versus the apparent rim shear rate in the case of power-law fluids obtained 

with three gap heights, 0.2 mmH =  (o), 0.5 mm ( ), and 1 mm ( ), 25 mmR = , 

 1 Pa snk =  and =1000 Pa s / mm m : (a) n =1, c =0, m =1 (Newtonian fluid, zero slip 

yield stress); (b) n =1, c =0.5 Pa, m =1  (Newtonian fluid, non-zero slip yield stress); 

(c) n =0.5, c =0.5 Pa, m =1 (power-law fluid, non-zero slip yield stress); (d) n =1, c

=0.5 Pa, m =2  (Newtonian fluid, non-zero slip yield stress). 
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Figure 9. Sketch of the gap-size effect (
2 1H H ) on the apparent flow curve of a 

viscoplastic fluid in the presence of wall slip with non-zero slip yield stress. The dashed lines 

show the apparent flow curves in the case of zero slip yield stress.  
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(a)                                                            (b) 

 

(c)                                                            (d) 

 

Figure 10. Representative apparent flow curves of Bingham and Herschel-Bulkley fluids obtained with 

three gap heights, H =0.2 mm (o), 0.5 mm ( ), and 1 mm ( ), 25 mmR = ,  2 Pay = ,  1 Pa snk =  

and =10000 Pa s / mm m : (a) 1,  0,    1cn m= = =  (Bingham fluid, zero slip yield stress); (b) 

1,  0.5 Pa,    1cn m= = =  (Bingham fluid, non-zero slip yield stress); (c) 

0.5,  0.5 Pa,    1cn m= = =  (Herschel-Bulkley fluid, non-zero slip yield stress); (d) 

1,  0.5 Pa,    1.2cn m= = =  (Bingham fluid, non-zero slip yield stress). The solid line is the flow 

curve in the case of no-slip. 
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(a)                                                                        (b) 

 
(c)                                                                        (c) 

 
Figure 11. Dimensionless rim slip velocities of Bingham and Herschel-Bulkley fluids obtained with three 

gap heights ( 0.2,  0.5 and 1 mm)H = , 25 mmR = ,  2 Pay = ,  1 Pa snk =  and =10000 Pa s / mm m

: (a) 1,  0,    1cn m= = =  (Bingham fluid, zero slip yield stress); (b) 1,  0.5 Pa,    1cn m= = =  (Bingham 

fluid, non-zero slip yield stress); (c) 0.5,  0.5 Pa,    1cn m= = =  (Herschel-Bulkley fluid, non-zero slip 

yield stress); (d) 1,  0.5 Pa,    1.2cn m= = =  (Bingham fluid, non-zero slip yield stress).  
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(a) 

 
(b) 

 

Figure 12. (a) Gap size effect on the yield radius  yr ; (b) Rim slip velocity as a function of the yield radius 

 yr  for different gap sizes; 25 mmR = ,  2 Pay = ,  1 Pa snk = , 1n = , 0.5 Pac = , 

=10000 Pa s / mm m , and 1m = . The flow curves and the slip velocities for this case are those of Figs. 9b 

and 10b, respectively. 
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(a)                                                            (b) 

 

(c)                                                            (d) 

 

Figure 13. Contours of the dimensionless velocity  / ( )u R    for various angular velocities in the case 

of Bingham flow with non-zero slip yield stress, i.e., 25 mmR = , 1 mmH = ,  1 Pa sk = , 2 Pay = , 

0.5 Pac = , =10000 Pa s / m , and 1m = : (a) y= ; (b) 2 y=  ; (c) 20 y=  ; (d) 

200 y=  . The critical angular velocity and apparent shear rate are 
10.012 sy

− =  and 

10.3 saRy −= . The dashed line denotes the yield surface. 
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(a)                                                            (b) 

 

(c)                                                            (d) 

 

Figure 14. Contours of the dimensionless velocity  / ( )u R    for various angular velocities in the case 

of Herschel-Bulkley flow with non-zero slip yield stress, i.e., 25 mmR = , 1 mmH = ,  0.5n = , 

 1 Pa sk = , 2 Pay = , 0.5 Pac = , =10000 Pa s / m , and 1m = : (a) y= ; (b) 2 y=  ; (c) 

20 y=  ; (d) 200 y=  . The critical angular velocity and apparent shear rate are 
10.012 sy

− =  

and 
10.3 saRy −= . The dashed line denotes the yield surface. 
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(a) 

 
(b) 

Figure 15. Velocity contours for (a) a Bingham fluid and (b) a Herschel-Bulkley fluid with 0.5n =  at 

different apparent shear rates when wall slip with non-zero slip yield stress occurs. Solid body rotation is 

observed in the first flow regime. The first plateau corresponds to the slip yield stress and the second one 

to the yield stress. 
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(a)                                                         (b) 

 
(c)                                                         (d) 

 

Figure 16. Torque versus the apparent rim shear rate in the case of Herschel-Bulkley fluids 

for three gap sizes, 0.2 mmH =  (o), 0.5 mm ( ), and 1 mm ( ), R =25mm, y =2Pa, 

1 Pa snk =  and 10000 Pa s /m mm = : (a) n =1, c =0, m =1 (Bingham fluid, zero 

slip yield stress); (b) n =1, c =0.5 Pa, m =1 (Bingham fluid, non-zero slip yield 

stress); (c) n =0.5, c =0.5 Pa, m =1 (Herschel-Bulkley fluid, non-zero slip yield 

stress); (d) n =1, c =0.5 Pa, m =1.2 (Bingham fluid, non-zero slip yield stress).  

 

 


