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Abstract

The presence of inequity is a fundamental
problem in the outcomes of decision-making
systems, especially when human lives are at
stake. Yet, estimating notions of unfairness or
inequity is difficult, particularly if they rely on
hard-to-measure concepts such as risk. Such
measurements of risk can be accurately ob-
tained when no unobserved confounders have
jointly influenced past decisions and outcomes.
However, in the real world, this assumption
rarely holds. In this paper, we show a surpris-
ing result that one can still give meaningful
bounds on treatment rates to high-risk in-
dividuals, even when entirely eliminating or
relaxing the assumption that all relevant risk
factors are observed. We use the fact that in
many real-world settings (e.g., the release of
a new treatment) we have data from prior to
any allocation to derive unbiased estimates
of risk. This result is of immediate practical
interest: we can audit unfair outcomes of ex-
isting decision-making systems in a principled
manner. For instance, in a real-world study of
Paxlovid allocation, our framework provably
identifies that observed racial inequity can-
not be explained by unobserved confounders
of the same strength as important observed
covariates.

1 INTRODUCTION

A fundamental problem in the outcomes of decision-
making systems across a variety of domains, such as
healthcare, housing assistance, and the criminal justice
system, is the presence of inequities across demographic
lines (Nelson, 2002; Tonry, 2010; Artiga et al., 2020;
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Buchmueller and Levy, 2020; Shinn and Richard, 2022).
To reduce these unfair outcomes, it is essential that
we are first able to measure and quantify them ap-
propriately. We primarily consider settings where we
desire a resource to be allocated at equal rates (across
groups) to those who would otherwise experience ad-
verse events: a formalization of the idea that we want to
allocate to “high-risk” individuals. In healthcare, these
members could be individuals who would die without
treatment, or in housing, individuals who would be-
come homeless if not provided housing assistance. We
refer to the allocation rate to these types of individuals
as the “treatment rate among the needy” (see Defini-
tion 1).! Yet, this notion is counterfactual and difficult
to measure—once an individual is treated, we cannot
say what would have happened had they been denied
treatment.

Equity, quantified in these terms, can be estimated
from data, but only if we observe all confounders—
variables that jointly influence both the decision to
allocate and the outcome under no allocation. Our
work fits in the broader literature on causal fairness,
a literature that has produced a variety of causality-
informed measures of equity, which we further discuss
in Section 2. Throughout the literature, it is frequently
assumed that all confounders are observed, permitting
the identification of causal fairness measures from data
(Kusner et al., 2017; Nilforoshan et al., 2022).2

Yet, in the real world, this assumption rarely holds. In
reality, resources are often allocated based on indicators
of need or risk that we do not observe in our datasets
(“unobserved confounders”), which could lead us to
understate or overstate the amount of inequity. On the
one hand, similar rates of allocation across groups could

!There is a wealth of literature on causal measures of
fairness, and our chosen metric, when used to quantify
inequity, can be seen as a special case of counterfacutal
equalized odds, or more specifically, the “opportunity rate”
as defined in Definition 4.2 of Mishler et al. (2021).

2There are exceptions to this pattern—Rambachan and
Coston (2022), for instance, is closer in spirit to our work,
proposing a sensitivity analysis framework for causal fair-
ness metrics under unobserved confounding. We discuss
differences to our approach in detail in Section 2.
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Figure 1: A conceptual figure to build intuition for our main partial identification result (Theorem 1). For
simplicity, let the treatment rate P(T = 0) = 0.3 and mortality rate P(Y(0) = 1) = 0.3. We denote upper (blue)
/lower (red) bounds on treatment rate among the needy P(T = 1|Y(0) = 1, X). In the marginal case (left), we
see that the bounds are vacuous. However, when we exploit covariate information (right) (e.g., selecting 2 samples
from X=0 and 1 sample from X=1), we observe that the bounds are much tighter.

mask inequity, given unobserved differences in need.
On the other hand, these differences could explain
apparent inequities in allocation across groups.

To make progress in the face of unobserved confound-
ing, we use the fact that in many real-world settings,
we have data from a period where no individuals re-
ceived resources (e.g., prior to a new drug entering the
market, or a similar region where housing assistance is
unavailable). Such data allows us to derive unbiased
estimates of what would happen to individuals with-
out the allocation of resources, under an assumption
that this baseline risk generalizes to the setting where
resources are available. Unfortunately, if unobserved
confounders exist, we still cannot exactly identify the
treatment rate of needy individuals.

In this setting, we show a surprising result that one
can derive meaningful bounds on the treatment rate
among the needy, even without any assumptions on the
strength of unobserved confounders. Figure 1 builds
intuition for this result, which is given in Theorem 1.
We provide bias-corrected estimators for our bounds
that are consistent and asymptotically normal, and
extend recent results in the partial identification litera-
ture to handle the non-smooth nature of our estimators
(Theorem 2) that make them more precise. As a result,
our bounds can incorporate machine learning (ML)
estimators that converge at slower than parametric
rates, while retaining the benefits of asymptotic nor-
mality (e.g., confidence intervals). Finally, we derive
even tighter bounds that incorporate assumptions on
the plausible strength of unobserved confounding with
a sensitivity model (Theorem 3) and corresponding
estimators that attain similar asymptotic properties to
those discussed above.

This result is of immediate practical interest. Since
our framework can account for the effects of poten-
tial unobserved confounders, it provides a principled
approach to audit instances of inequity in existing
decision-making systems. As an example, we demon-

strate the effectiveness of our framework on real-world
data, to audit inequities in the allocation of Paxlovid — a
potentially life-saving treatment for COVID-19 patients.
Our framework provably identifies and quantifies racial
inequity in Paxlovid allocation, even if unobserved con-
founders had effects (on decisions and outcomes) similar
to that of important observed covariates (Centers for
Disease Control and Prevention, 2023). Finally, we
provide empirical comparisons on both semi-synthetic
and synthetic data, demonstrating that our framework
more accurately and more efficiently (i.e., requiring less
data) captures ground truth treatment rates, improving
upon alternative methods. In short, our work provides
principled conditions under which machine learning
estimators can be used as a tool to both identify and
quantify inequity in existing decision-making systems
for important limited resources.

2 RELATED WORK

Fairness and Causality The literature on fairness
and decision-making is vast, and we will not claim
to summarize it here. Of particular relevance to our
work is the literature on causal fairness, where fairness
metrics are defined with respect to e.g., counterfac-
tual outcomes. Even in this sub-literature, there are a
wealth of ways to characterize fairness, such as coun-
terfactual fairness (Kusner et al., 2017) and variants
thereof,® counterfactual equalized odds (Mishler et al.,
2021), and so on. Our choice of metric is similar in
spirit to counterfactual equalized odds, and is precisely
equivalent to the notion of “opportunity rate” given
by Mishler et al. (2021) (see Def. 4.2 of that work).

There are a variety of research directions pursued in the
causal fairness literature, such as learning predictive
models that lead to fair decisions, or giving conditions

3See Nilforoshan et al. (2022) and Section 4.4.1 of Plecko
and Bareinboim (2022) for discussions of the nuances of
various definitions of counterfactual fairness.
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under which various notions of causal fairness can be
“identified” from data—that is, written in terms of the
observed distribution, instead of counterfactual out-
comes. Our work is most similar to a nascent line of
work considering scenarios where these measures cannot
be identified, but can nonetheless be bounded. Closest
to our work is that of Rambachan and Coston (2022),
who provide bounds on causal fairness measures under
a different sensitivity analysis framework. Their frame-
work assumes a bound on the differences in conditional
means of potential outcome, whereas our results are
derived from bounds on treatment propensities (see Sec-
tion 4.4). However, the most notable distinction from
their work is that we additionally derive bounds that
partially identify inequity without any assumptions on
the strength of confounders, under our assumption on
the availability of pre- and post-treatment data.

Partial Identification and Sensitivity Analysis
In statistics and econometrics, partial identification
refers to the derivation of bounds on causal quantities
when the exact value cannot be identified from assump-
tions (Manski, 2003). Sensitivity analysis often refers
to the derivation of bounds under assumptions about
the “strength” of unobserved confounding. Sensitivity
analysis has been pursued under a variety of models,
dating back to Cornfield et al. (1959). We will not at-
tempt to summarize the literature here, except to note
a few ideas that we draw upon. First, one insight in
our analysis is that incorporating covariate information
can improve the tightness of our bounds, an insight
similarly leveraged in recent work (Yadlowsky et al.,
2018; Levis et al., 2023). Second, our sensitivity model
can be viewed as a variant of the sensitivity model in-
troduced by Tan (2006), although our causal quantity
of interest differs substantially, requiring the derivation
of novel bounds. Finally, we draw inspiration from the
sensitivity analysis literature to assess the plausibility
of our sensitivity parameters via an informal compar-
ison to the strength of observed confounders (Frank,
2000; Hsu and Small, 2013).

3 PRELIMINARIES

Notation We use upper-case letters to denote ran-
dom variables (e.g., X), and lower-case letters to de-
note their realizations (e.g., ). We use X € X to
denote covariates, T € {0,1} to denote treatment, and
Y € {0,1} to denote a binary outcome. We let Y =1
denote an adverse outcome (e.g., mortality), and Y =0
denote a benign outcome (e.g., survival). We addition-
ally define the potential outcome Y (0) as the outcome
of each individual without treatment.

Given our interest in identifying inequity across differ-
ent subpopulations, we use G € {1,..., K} to denote

subpopulation membership, where group membership
is a known function of X. We define some quantities
(e.g., Definition 1 and some bounds) in terms of the
overall population for simplicity of notation, where the
extension to group-wise quantities is straightforward.

We further use D € {0,1} to denote whether a sample
belongs to pre-treatment or post-treatment data. Pre-
treatment data (D = 0) is drawn from a setting where
the resource is not available (e.g., a time period before
a drug entered the market) and post-treatment data
(D =1) from a setting where the resource is available.
We consider our data to be drawn from a common distri-
bution P, where P(- | D =0) and P(- | D = 1) denote
pre- and post-treatment distributions respectively.

Availability of Treatment and Outcome Data
During the pre-treatment period (D = 0), the treat-
ment is not available by definition, and so D =0 =
T = 0. In post-treatment data (where D = 1), we do
not assume access to outcome data—for instance, the
outcome of interest may be a long-term outcome not
immediately measurable in the post-treatment period.
As a result, when D = 1, we set Y to an arbitrary
value. Because T is fixed when D = 0, and because Y
is unknown when D = 1, we observe data as follows

(X,0,Y)
(X7T7N)

if D =0 (pre-treatment)
if D =1 (post-treatment)

(X,T»Y)Z{

where ~ indicates that Y is not observed.

4 ANALYSIS OF INEQUITY

4.1 Equity in Treatment Allocation

We first define a notion of effective allocation.
Definition 1 (Treatment Rate Among the Needy).

P(T=1|Y(0)=1,D=1) (1)

(1) captures the proportion of individuals who receive
treatment when it is available (D = 1), among those
who would experience an adverse event Y (0) = 1 if they
do not receive treatment. This is similar to the notion of
“opportunity rate” in the work of Mishler et al. (2021).
Definition 1 suggests a measure of inequity in treatment
allocation, when applied to specific subgroups.

Definition 2. We define inequity in treatment rate
among the needy for a pair of subpopulations g # ¢’ as

|[P(T=1Y(0)=1,D=1,G=g)
P =1Y(0)=1,D=1,G=4)| (2)

When Y corresponds to mortality, Definition 2 captures
the notion that patients who would die if treatment
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were withheld should receive a potentially life-saving
intervention at equal rates across subgroups G4

4.2 Identification under Strong Assumptions

We note that it is not possible to directly estimate (1)
and (2). In the post-treatment setting, we never observe
the outcome Y. Further, we can never simultaneously
observe T'= 1 and Y (0), which necessitates the use of
strong additional assumptions to re-write this quantity
in terms of quantities that we do observe. For instance,
one could estimate (1) directly if one were willing to
assume that X captures all variables that influence
both treatment assignment and Y (0), often referred to
as the assumption of no unmeasured confounding.

Assumption 1 (No Unmeasured Confounding). The
untreated outcome is independent of treatment in the
post-treatment period, given observed covariates, i.e.,

Y(0)LT|X,D=1

A main thesis of this work is that Assumption 1 may not
be realistic in most real-world settings. Assumption 1
is violated if treatment is allocated on the basis of
variables other than X, which in turn provide more
information on how likely a patient is to experience
an adverse outcome without treatment. Given that
this assumption is often violated in practice, we will
later discuss bounding (1) under a relaxed version
of Assumption 1 (Section 4.4), and even in the case
where we drop Assumption 1 entirely (Section 4.3).

For now, we state assumptions relating the pre- and
post-treatment periods, which we maintain throughout.

Assumption 2 (Consistency). In pre-treatment data,
we directly observe the untreated potential outcome,
e, D=0 = Y =Y(0).

Assumption 2 is analogous to the assumption of consis-
tency in causal inference and captures the fact that no
treatment is available in the pre-treatment period, so
all outcomes are untreated outcomes by definition.

Assumption 3 (Covariate Stability). Within each sub-
group, the distribution of covariates of needy patients
is the same across pre- and post-treatment periods, i.e.,

X1D|Y(0) =1G

“We note that one could define other metrics based on
potential outcomes, such as seeking equal allocation across
individuals who would not only die if treatment were with-
held, but who would also survive if given treatment, e.g.,
P(T'=1]Y(0) =1,Y(1) = 0). However, for novel treat-
ments (like Paxlovid in our example) treatment guidelines
often focus on treating high-risk patients in the absence of
definitive evidence that some patients have substantially
different responses to treatment. Moreover, estimating
or bounding such quantities would require substantially
stronger assumptions than those presented here.

Assumption 3 is a relatively weak assumption, where
the observable characteristics X of needy patients
(where Y (0) = 1) are distributed the same across the
pre- and post-treatment periods.

Given these assumptions, one can directly identify the
treatment rate among the needy from (1).

Proposition 1. Under Assumptions 1 to 3, (1) (condi-
tioned on G) can be written as the following functional
of the observed distribution P

P(T=1|Y(0)=1,D=1,G=g) (3)
—E[P(T=1|X,D=1)|Y =1,D=0,G = g|

This result (with some notational differences) is a
known fact in the literature (Coston et al., 2020; Mish-
ler et al., 2021). For completeness, we provide the
proof in Appendix A.2. Notably, as discussed above,
this result requires the hard-to-justify assumption that
there are no unmeasured confounding variables (As-
sumption 1). In the following sections, we develop
bounds under different relaxations of this assumption.

4.3 Partial Identification under Arbitrary
Unmeasured Confounding

To begin, we consider the case where we consider As-
sumption 1 to be unrealistic and drop it entirely. We
demonstrate that it is still possible to obtain informa-
tive bounds on the treatment rate in (1) that can be
estimated from data, and provide intuition as to why
informative bounds are possible to obtain. We proceed
under one additional assumption linking the pre- and
post-treatment periods.

Assumption 4 (Stable Baseline Risk). Across the
pre- and post-treatment periods, the conditional base-
line risk (i.e., the risk of an adverse outcome without
treatment) does not change, i.e.,

Y(0)LD|X

This is the key assumption relating the pre- and post-
treatment periods, which allows us to estimate the
baseline risk in the post-treatment period, by leveraging
data from the pre-treatment period. We expect it
to be satisfied when the underlying mechanistic or
biological determinants of risk are unchanged around
the time period a treatment was introduced. To build
further intuition, we depict a causal graph (Figure 2)
where Assumptions 3 and 4 hold, but no unmeasured
confounding (Assumption 1) fails to hold.

To build intuition for our first main result, consider
an extreme case where all individuals will die without
treatment. Here, the treatment rate among the needy is
simply given by the observed treatment rate. Our result



Yewon Byun, Dylan Sam, Michael Oberst, Zachary C. Lipton, Bryan Wilder

gives informative bounds in less extreme scenarios: For
instance, suppose we knew that out of 100 patients, 90
would die if untreated, and that we have treated 50
patients. In this case, the worst-case scenario is that
we have treated all 10 patients who would not die if
untreated, but we must have treated at least 40 of the
patients who would die if untreated.

To begin to formalize this idea, consider the simplified
scenario where Y (0) L D, a stronger version of As-
sumption 4. Further, observe that P(T'=1,Y(0) =1 |

D=1)< P(T=1|D = 1), which yields
P(I'=1|D=1)
P(T=1Y(0)=1,D=1) <

where we switch D = 1 for D = 0 in the denomi-
nator due to the assumed independence. Note that
P(T'=1|D=1)and P(Y(0) =1| D =0) are both
observable (in the post- and pre- periods respectively).
Unfortunately, this bound may be vacuous on its own
(e.g. if P(Y(0) = 1) is small). We can sharpen it by
noting that the same inequality holds at every value of
the covariates X, under Assumption 4, such that

PT=1X,D=1
PT=1Y(0)=1,D =1, X) < 2L = 11X, )

Now, given calibrated classifiers for the treatment and
outcome (to estimate the numerator and denominator),
the bound will become tighter. Averaging over the
appropriate distribution for X then yields a tighter
overall bound. To further build intuition, see Figure 1.
This idea is formalized in the following theorem.

Theorem 1 (Bounds under arbitrary unmeasured con-
founding). Consider the setting described in Section 3.
Under Assumptions 2, 3 and 4, and if P(Y/(0) =1 |
D=1,X=uz)>0, then

Y < P(T

=1y(0)=1,D=1) < ¢"

where

y! = Blmax{¢}(X), 05(X)}]
" = Emin{}'(X), 05 (X)}]
)

0L (X) = P(Y( - (l))l)i 5 (P(T —1D=1X)
+P(Y|D=0,X) - 1)
05(X) =0
wior  P(D=0]X)P(T =1|D = 1,X)
1) = P(Y =1,D =0)
_ P(D=0[X)P(Y =1|D =0,X)

P(Y =1,D =0)

P(Y(0)=1X,D=0)

g

Figure 2: A causal graph consistent with Assumptions 3
and 4, even given unobserved (light gray) confounders
C. Dark gray variables are observed. This causal struc-
ture is sufficient, but not necessary, for our assumptions
to hold: See Appendix A.1 for more details.

The proof is given in Appendix A.3. At a high level, we
first derive bounds (!,1%) on the quantity of interest.
The max/min structure in each bound arises from the
complementary fact that the probabilities are upper-
and lower-bounded by both a quantity we develop and
by 1 and 0 (respectively). The max/min takes the
tighter of these two bounds at every level of the covari-
ates. The underlying intuition for our result is that we
incorporate information about X in our bound, and
estimate these quantities (e.g., 0} (X),0%(X),0%(X))
with machine learning (ML) models. With these esti-
mates, we compute the expectation over the conditional
distribution over X to produce our bounds ' and ¥™.
This results in a tighter bound, when compared to
using population-level bounds, e.g., only looking at the
marginals over T and Y.

We remark that Theorem 1 expresses our upper and
lower bounds only in terms of functions of the observed
data, i.e., potential outcomes do not appear in the ex-
pression. This establishes that the bounds are identified
from the observed data (and without any assumption
on the presence of confounders).

Estimation of Partial Identification Bounds
Given the identification results in Theorem 1, we are
ready to construct estimators of the upper and lower
bounds ", 4'. We define the following short-hand for
the relevant conditional distributions

u(X) = E[Y | D=0,X] (4)
m(X):=E[T|D=1,X] (5)
9(X) = E[D=0] X] (6)

These conditional expectations can be estimated by
training classifiers fi, 7 on the pre- and post-treatment
data respectively, and ¢ to distinguish the two. These
are referred to as “nuisance functions”, quantities that
we have to estimate as part of estimating our bounds,
but which are not of intrinsic interest. The simplest
strategy would be to “plug-in” such estimators wher-
ever the corresponding conditional expectation appears
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in the expression for ¢ or *. However, it is difficult
to provide guarantees for this plug-in estimator, as
ML models generally converge slower than O(n~2),
creating substantial bias in our estimate of the bound.

Our proposed method is instead based on influence
functions and semiparametric estimation to find and
subtract a first-order approximation to the bias of the
plug-in estimator. The corresponding estimators will
then converge at O(n~2) rates even if the ML mod-
els converge more slowly (as nonparametric methods
typically will) and enable us to give valid confidence
intervals based on asymptotic normality.

To present our estimator for the upper bound, define
d*(z) € argmin{0}(z), 0% (z)} to be the identity of a
bound achieving the minimum value at z, with d“(z)
being the same quantity estimated from the plugin
estimate of 6. Our proposed estimator is

(P, d) = b x)(X) + A x) (X, Y, D, T)  (7)
(P = Ep [P, d")]

where we will employ the common strategy of estimat-
ing the expectations and the nuisance functions in 0
and \ on independent samples (averaging over K-fold
cross-validation). We now present the detailed con-
struction and analysis of this estimator, including the
bias-correction term A and asymptotic guarantees. Our
estimator for the lower bound is defined analogously,
using an arg max.

Bias-corrected estimators The influence function
can be used to provide a first-order approximation to
the bias of the estimator; correcting for this bias will
(hopefully) leave a remainder that depends in second
order on error of the nuisance functions. Let 0} =
E[0¥(X)] and 6y = E[04(X)]. We now derive the
influence functions corresponding to 6} and 6%.

Lemma 1. The influence functions for 6} and 0% are
given by

IF(0Y) =
1 1[Y =1,D = 0]
PY =1,D=0) (- P =1, D=0y PlX)mX)+
+9(X)R(X) + 1[0 = (T~ w(X) 2Tt

+7(X)(1D = 0] - g(X)))

D=9 (u(x)

[F(03) = P(Y =1,D = 0)

1y = 1]

=B =0 (g g ) + (O 0)).

To obtain first-order bias-corrected estimators, we set
A% in (7) to the values

v = [F(0Y) and = [F(6Y).

Similarly, let 6} = E[¢!(X)] and 65 = E[05(X)]. Then,
we can derive their influence functions as follows

Lemma 2. The influence functions for 6% and 0 are
given by

IF(0}) = IF(0Y) +

1 1Y =1,D = 0]
P(Y:l,D:O)(P(Y:l,D:O)

- Brlg(X)(u(X) = D] +1[D = 0](Y — 1))
IF(65) = 0.

To obtain first-order bias-corrected estimators, we set

No=TF(6) and AL =o0.

We leave the proofs of the influence functions and bias-
corrected estimators of our upper and lower bounds to
Appendix A.5 and A.6, respectively.

Asymptotics for nonsmooth bounds Providing
inferential guarantees for our final bounds is compli-
cated by the fact that each is the expectation of a
nonsmooth function, i.e., averaging over a max or min
operator. As we have derived influence functions for the
smooth functions #} and 6, simple asymptotic normal-
ity results (albeit for weaker bounds) can be obtained
by dropping the min and max, averaging only over one
or the other separately. These can be obtained via
standard techniques, and are given in Appendix A .4.

For the stronger nonsmooth bounds, we will need an
additional assumption to guarantee asymptotic nor-
mality and provide valid confidence intervals. Our
results build on a framework introduced by Levis et al.
(2023) in the context of estimating bounds in instru-
mental variable models. They show that bounds with a
similar expectation-of-max structure can be estimated
under a margin condition which requires that the terms
appearing in the max (or min) are separated with suffi-
ciently high probability. We generalize their framework
beyond the instrumental variable setting to provide
conditions for estimation of any expectation-of-max
structure where the terms inside the max admit first-
order bias-corrected estimators. Suppose we want to
estimate a bound of the form E[max;—;  ;0;(X)] (in
general, we can allow more than two components, al-
though this is all we use so far). We adopt a margin
assumption similar to Levis et al. (2023), itself inspired
by similar assumptions used in a variety of other statis-
tical settings (Audibert and Tsybakov, 2007; Luedtke
and Van Der Laan, 2016; Kennedy et al., 2020).

Assumption 5. For some fixed a > 0,
P [minj¢d(x) Hd(X) (X) — Gj (X) S t] S ta

This condition will be satisfied when the distribution
of 04(x)(X) —6;(X) has bounded density near 0. With
this condition, we obtain the following result for the
stronger estimator of the upper bound.
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Theorem 2 (Asymptotic Normality of Estimators).
Let § denote the plugin estimate of any of the individual
components of each bound. Under the conditions that
Assumption 5 is satisfied, p and g are lower bounded,
and each 0 is consistent (i.e., ||0 — 0] = op(1)), the
error of the estimator satisfies.

g — vt = 0p (118 — o3l

max Ep[é;-‘ + 5\? - 9;}) + OP(n_%)

G=1,..,J

Provided that &, fi, and § converge at a 0p(n_%) rate,
and the plugin estimators satisfy 0% — 0%[|1F> =

0p(n’%), then 1y, is asymptotically normal with
V(" —4") = N0, Var(p(P,d))).

The full proof is contained in Appendix B. The error
in our bias-corrected estimator of 6} reduces to a sum
of (i) a term on the order of P(Y =1,D = 0) — P(Y =
1, D = 0), which converges at a parametric rate and (ii)
a product of differences in (7 —7) and (§—g). As such,
we only require each of these estimators to converge
at the slower rate of op(n~7) to achieve our fast rate.
The plugin estimators 6 may also converge at slower
rates depending on « in the margin condition, e.g., if

o > 1 then op(n~1) suffices for them as well.

As asymptotic normality holds, we can construct stan-
dard confidence intervals for the relevant estimator
7,/;. First, we can obtain a consistent estimator of the
variance of 1/; as

2
n

5= 25 (b - S d) |
i=1 j=1

which results in a confidence interval

- . a.l . G
Clyt yu = {W - 217(1/2%,1#“ + Zla/Q\/ﬁ:| )

where 6! and 6% are the estimated standard deviations
of ! and ¢". Therefore, we can use our estimators,
and their corresponding confidence intervals to pro-
vide confidence bounds on the treatment allocation
rates of interest. When these intervals are disjoint and
non-overlapping across groups, our results suggest the
presence of inequity (i.e., when our assumptions hold).

4.4 Sensitivity Analysis under Bounded
Confounding

If it is plausible to impose an assumption that con-
founding in treatment assignment is bounded, we can

in turn obtain tighter bounds on our estimand of in-
terest. We introduce a sensitivity parameter v that
captures the extent of the impact of the potential out-
come Y (0) on treatment assignment, similar in spirit
to the sensitivity model used by Tan (2006), adapted
to our problem setting. This model allows us to, un-
der the assumption that confounding is limited, assess
whether there are verifiable discrepancies in allocation
rates across subgroups. With this framework, we can
vary « over a range of values to determine to how much
confounding our finding is robust.

Definition 3. We define a sensitivity parameter =y as

P(T =1]Y(0)=0,D =1, X)
P

< < .
SPT=1y(0)=1,D=1,%x) '

=~

We note that v = oo is equivalent to arbitrary unmea-
sured confounding. In this scenario, we can recover the
result in Theorem 1. Assuming a finite value of v, we
obtain the following stronger upper and lower bounds:

Theorem 3 (Bounds with v). Using Definition 3, we
achieve the following set of bounds

PP < P(T=1Y(0)=1,D=1) <"
where

UM = Elmax{6y”,057,657}]
™7 = E[min{6"7,65"}]
007 =061 6y =6

P(T=1|D=1,X)

0L =

2 P(Y(0)=1|D=1,X)+~(1—P(Y (0)=1|D=1,X))
g P(T=1|D=1,X)

LT P()=11D=1.X)+ 1 (1- P(¥ (0)=1|D=1.X))
03 = 0y

We defer the proof to Appendix A.8. This is again
similar in style to Theorem 1, where we incorporate co-
variate information to achieve tigther bounds " and
™. We note that these bounds converge to our earlier
ones as y — 00, and at v = 1 (i.e., no confounding with
respect to Y'(0)), which implies point identification at
P(r=1Y(0)=1,D=1,X)=P(T =1|D =1,X).
Notably, the lower bound takes a max over the two
terms appearing in the bound in Theorem 1 (valid
without any assumption on confounding) and a new
quantity (that is dependent on ).

We present a high-level overview of methods and re-
sults for the construction of estimators for the bounds
in Theorem 3, with details in Appendix A.9. The pic-
ture is very similar to before: we can construct first
order bias-corrected estimators for each term appearing
inside the max and min, by adding the expectation
(over P) of the influence functions we have derived.
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Again, one option, requiring fewer assumptions, is to
take expectations over each term individually and then
choose the stronger of the bounds after averaging (ap-
plying a multiple-comparisons correction such as union
bound to the level of the CIs). Under Assumption 5,
we further obtain that the expectation-of-max estima-
tor is also asymptotically normal with sufficiently fast
convergence rates for the estimators of the nuisance
functions, which we defer to Appendix B.

4.5 Benchmarking Sensitivity Analysis

The sensitivity parameter 7y is an assumption, not some-
thing we can estimate from data. To assess the plausi-
bility of different ~ values, we can compute an analo-
gous 7 for an observed random variable (e.g., diabetes)
which is held out of the covariate set X. This quantity
can be estimated from data to perform benchmarking.

Similarly, we determine this value of v/ by training a
discriminative model to compute the following inequal-
ity, where X’ denotes all covariates X except Z,

P(T=1Z=0D=1X)

<
S PT=12Z=1,D=1X)

<+,

1
o
where Z is the random variable that represents if the
patient has the covariate of interest and where Z ¢ X'.

5 RESULTS

We apply our analysis framework to understand treat-
ment allocation inequity in the real-world setting of
Paxlovid allocation for high-risk COVID-19 outpatients.
Further, we provide comparisons on semi-synthetic
and synthetic settings, to demonstrate that our frame-
work more accurately and more efficiently captures
ground truth treatment rates, improving upon alterna-
tive methods®. In our experiments, we use a logistic
regression model for our estimators. For each estima-
tor, we perform cross-fitting/sample-splitting over 5
disjoint folds. In all of our reported bounds, we use a
95% confidence interval; in the case where our bounds
use two quantities, we use a 97.5% confidence interval
for each, so that the resulting confidence interval is
95% (via an application of the union bound).

5.1 Dataset and Cohort Definition

We use the NCATS NC3 cohort (Haendel et al., 2020),
consisting of national line-level data of 18,438, 581 total
patients, including 7,149,421 confirmed COVID-19
positive patients, pooled from 76 different data sharing
centers across the United States. We focus our analysis

"We release our code at
https://github.com/lasilab/inequity-bounds.git.
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Figure 3: Upper (solid) and lower (dashed) bounds for
P(T =1Y(0) =1,D = 1,G = g) are computed for
each racial group g, with varying values of v € [1,1.5].
The shaded area represents a 95% confidence interval.

on outpatients with a positive SARS-CoV-2 test result,
satisfying eligibility requirements (see Appendix C).

5.2 Real-world Study Results

Under bounded unobserved confounding as in Defi-
nition 3, with parameter v, we are able to identify
non-overlapping bounds for our quantity of interest
P(T = 1Y (0) = 1,D = 1) for particular subgroups.
We identify non-overlapping bounds between Black and
White patients (7 < 1.12) as well as Black and Asian
patients (y < 1.2). Hence, treatment rates for Black
patients that would die without treatment are strictly
lower than treatment rates for White and Asian pa-
tients, up to v = 1.12, v = 1.2 respectively, highlight-
ing substantial inequity. For a better interpretation
of v, we perform the following benchmarking analysis.

5.3 Benchmarking Sensitivity Analysis

In our benchmarking, we select diabetes as our covari-
ate of interest, based on its well-documented association
with high risk of severe COVID-19 (Centers for Dis-
ease Control and Prevention, 2023). We again proceed
by training a classifier to predict treatment, letting
Z be diabetes and X’ be all other covariates. Then,
we compute the following ratio on post-treatment test
data, using counterfactual features of having diabetes
(Z = 1) or not having diabetes (Z = 0) for each patient:

P(T=1/Z=0,D=1,X")
P(I=1Z=1,D=1,X')

< <~

1
o
We observe that the smallest value of +' that satisfies
the above equation for all post-treatment test data is
1.09. Therefore, our result in identifying disparities in

allocation (e.g., non-overlapping bounds for (1) Black
and White v ~ 1.12 and (2) Black and Asian v~ 1.2)
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Figure 4: (Semi-Synthetic Data) Upper and lower
bounds for treatment rate among the needy, with 95%
confidence intervals, for each racial group g, with vary-
ing values of v € [1,2] (true value of v = 1.5).

is robust to unobserved confounding variables
that exhibit an influence on COVID-19 treatment allo-
cation up to the impact of a patient’s diabetes, which
is evidenced to be associated with high risk of severe
COVID-19 (Centers for Disease Control and Preven-
tion, 2023).

5.4 Semi-synthetic and Synthetic Settings

We generate both semi-synthetic and synthetic tasks
from the Folktables dataset comprised of US Census
data (Ding et al., 2021). In these tasks, we know the
ground truth rates of treatment among the needy, so
we can study whether our bounds are indeed valid and
empirically compare them to alternative approaches.
In the semi-synthetic setting, we use two racial groups
of White and Black patients, and we simulate both
Yand T. We defineY =T «Y(1)+ (1 -T) *xY(0)
and sample Y (0) ~ Bernoulli(o(|z|; +2)) and Y (1) ~
Bernoulli(o(]x|;142)/2), where o represents the sigmoid
function. To produce a known value of v, we use
Y (0) to confound the generation of T. We sample
T ~ Bernoulli(p). For White patients, p = o(|z|; — 1)
and for Black patients, p = o(|z|; — 2). If Y(0) = 1,
we divide p by 1.5, making v = 1.5.

We generate our fully synthetic task in a similar fashion,
where our covariates are sampled from a 2D Gaussian of
N(0,0.2) x N(0,0.1). In this task, we control v = 1.5,
similar to the semi-synthetic task.

In our semi-synthetic experiments, we observe that our
estimates of our bounds successfully capture the
true treatment rates among the needy, given the
true amount of unobserved confounding (i.e., ¥ = 1.5)
(Figure 4). To the best of our knowledge, no other
approach provides valid bounds in this setting. To
illustrate the benefit of our approach over alternative
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Figure 5: (Synthetic Data) Accuracy of our bias-

corrected bounds compared to their plugin counterparts
in capturing the true treatment rates. We use the de-
rived 95% confidence interval from our bias-corrected
estimates for both methods.

approaches (e.g., plugin estimates), we run synthetic
experiments (Figure 5) over 100 different trials given
limited data (4000 ~ 20000 samples). We capture the
rates at which our bounds and the plugins capture the
true rates given the actual value of v = 1.5. We observe
that our bounds capture the true rates at a signifi-
cantly higher rate given limited data compared
to alternative plug-in based approaches.

6 DISCUSSION

In this work, we introduce a principled approach that
allows practitioners to audit need-based inequity in
existing decision-making systems, under unobserved
confounding. We consider a causal notion of equity
whereby allocation rates should be equalized across
groups when conditioning on the population who would
suffer an adverse outcome without resource allocation.
We demonstrate that one can robustly quantify need-
based inequity when relaxing the assumption on no
unmeasured confounding, and interestingly, can still
obtain informative bounds when entirely eliminating
this assumption. Furthermore, we apply our method to
analyze a real-world case study of Paxlovid allocation to
high-risk COVID-19 patients, and we find that observed
inequity between racial groups cannot be explained
by unobserved confounders at the same influence of
important observable covariates. More broadly, we
remark that our setting and design are quite general
and have wide potential applications; they can easily be
applied to different settings such as the creation of new
services, government programs, and so on. Equivalently,
it can be applied to policies, benefits, or treatments
that roll out in one location and not the other.
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Figure 6: Example of a single-world intervention graph (SWIG) (Richardson and Robins, 2013), mirroring Figure 2,
that satisfies Assumptions 3 and 4, but where unobserved confounding is present. Note that we use Yj in lieu
of Y(0) for consistency with typical SWIG notation, but these notations equivalently represent the potential
outcome under 7' = 0. We use node-splitting notation, where all outgoing edges from 7" propagate the chosen
value T' = 0, all incoming edges go to T, and there is no connection between 7" and 7" = 0. This graph illustrates
causal relationships in the ‘single world’ where we intervene upon T and set it to the chosen value.

A Additional Proofs & Statements

In this section, we provide additional remarks as well as the omitted proofs for the Propositions, Lemmas, and
Theorems in the main paper, except for Theorem 2. The proof of Theorem 2 is separately located in Appendix B.

A.1 Representing Assumptions in a Causal Graph

In Figure 2, we gave an illustrative causal graph and claimed that this causal structure is sufficient, but not
necessary, for our assumptions to hold. A more precise characterization is given here, using the framework of
single-world intervention graphs (SWIGs), developed by Richardson and Robins (2013). Single-world intervention
graphs are a useful tool for relating assumptions that use potential outcome notation to those that use the
framework of causal directed acyclic graphs.

Figure 6 applies the intervention 7' = 0 to the causal graph given in Figure 2, via a ‘node splitting’ operation
(see Richardson and Robins (2013) for more details), where the node T is split, all incoming edges go to T, and
all outgoing edges propagate the value 7' = 0, yielding Y} instead of Y in this example. This graph allows us
to characterize the causal relationships between the potential outcome Y, and other variables, in the ‘single
world’ where we intervene upon 7" and set it to the desired value T' = 0. Note that in the resulting graph, the
nodes T and T' = 0 are not connected. From d-separation in the graph given in Figure 6, we can observe that
both Assumption 3 and Assumption 4 hold, namely that

X1D|Y, and Yy L D| X,

where the former implies Assumption 3 and the latter is equivalent to Assumption 4. However, our assumptions
are only a subset of the implications of this causal structure. For instance, this causal structure would imply
similar relationships for Y7, which does not appear in our assumptions. Hence our claim that this causal structure
is sufficient, but not necessary, for our assumptions to hold.

A.2 Proof of Proposition 1

Proposition 1. Under Assumptions 1 to 3, (1) (conditioned on G) can be written as the following functional of
the observed distribution P

P(T=1|Y(0)=1,D=1,G =) 3)
—EP(T=1|X,D=1)|Y=1,D=0,G = g
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Proof.
P(T=1|Y(0)=1,D=1,G=g)
:/P(T:l\X:x,Y(O):LD:LG:g)
' P(X=2|Y(0)=1,D=1,G = g)dx
:/P(T:l\X:x,Dzl)
' P(X=2|Y=1,D=0,G=g)dz

where the first equality follows from standard rules of probability, and the second equality invokes our three
assumptions given above. O

A.3 Proof of Theorem 1

Theorem 1 (Bounds under arbitrary unmeasured confounding). Consider the setting described in Section 3.
Under Assumptions 2, 3 and 4, and if P(Y(0)=1|D =1,X =2x) > 0, then

W' <P(T=1Y(0)=1,D=1) < 4"
where

v! = Blmax{0](X), 05(X)}]
P* = Emin{6y(X), 65 (X)}]
)

6l (X) = P(Y(_ - %')i 5 (P(T =1D=1,X)
+P(Y|D=0,X) - 1)
6L(X) =0
wror  P(D=0[X)P(T=1|D =1,X)
O (X) = P(Y =1,D =0)
«(x) o PO =0OPO = 1D = 0, X)

PY=1,D=0)
Proof. First, we remark that
PT=1D=1,X)=PY(0)=1D=1,X)P(T=1Y(0)=1,D=1,X)
+PY(0)=0D=1,X)P(T'=1]Y(0)=0,D=1,X)
We can rearrange this equation, giving us that

P(T=1Y(0)=1,D=1,X)=
P(T=1D=1,X)-P(Y(0)=0D=1,X)P(T=1Y(0)=0,D =1,X)
PY(0)=1D =1,X)

Then, we observe that 0 < P(T'=1|Y(0) =0,D =1, X) < 1, which gives us that

PT=1Y(0)=1,D=1X)< <&;Jf;Lf%’
P(T =1|D =1,X) — P(Y(0)

P(T=1]Y(0)=1,D =1, X)

| \/

P(Y(0)=0|D =1, X)
P(Y(0)= 1D =1, X) '

Next, we remark that our quantity of interest is given by

P(T=1Y(0)=1,D=1)=Ex[P(T=1|Y(0)=1,D =1,X)|Y(0)=1,D = 0],
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where we can switch from D =1 to D = 0 in our conditional expectation due to Assumption 3. Then, we note
that in our estimate of P(T = 1|Y(0) = 1,D =1, X), we can apply simple [0, 1] bounds since it is a probability.
Therefore, we get that our target is now given by

E[m“{&fwr:1D;;£1:£g}i;mD }IY—lDO}

gP@_lwmy_LD_ng{mm{l<f = 1, X)

T AL

Finally, we can convert this to be computed over the unconditional expectation as follows. The upper bound is
given by a min over two terms. The term involving 1 simplifies to

EMY:LD:N:/LP@:MY:LD:@

P(X =x)
P(Y =1,D =0)

:/PW:LD:mX:@

1
:PW:LD:meszD:mm]

1
=Py =1 oo PV =D =0.X)-P(D=0[X)

The other term is given by

P(T=1|D =1,X)
E{Pﬂﬂnle:LX)

|Y:LD:®]

Note that with Assumption 4, we can replace the denominator with P(Y(0) =1|D =0, X) as Y(0) and D are
independent conditioning on covariates X. Then, we have that

P(T'=1D=1,X) _ ] P(T=1/D=1,X) B B
HEOE |LXNY_LD—Q—E[(()1wOXHY_LD_ﬂ
_ [ P(T=1D=1X) o P(X =z)
_/ (U=|D_omPW—LD—WX—@PW:LD:m

—_

P(T=1|D =1,X)

:szlDsz.HHW:HD:QQPWZLDZWK
1
:PW:lD:mew:mXWGZHD:LXﬂ

Next, we can consider the lower bound. The lower bound is given by a max of two terms. The zero term is
trivially 0. The other term is given by

P(T=1D=1,X)—P(Y(0)=0|D =1, X)

E
P(Y =1|D =0)

Y =1,D=0

We can again switch D =1 to D = 0 in both the Y (0) term in the numerator and in the term in the denominator
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using Assumption 4. Then, we get that

P(T'=1|D=1,X)— P(Y(0) =0|D =0, X)

E P(Y =1|D =0)

|Y:1’D:0} :/P(T:l\D:l,X)—P(Y(O):0|D:O,X)

P(Y =1|D =0)
‘P(Y =1,D =0|X :m)%

1
- P(Y:1,D:0)E[P(D:0|X)
P(T:1|D:1,X)—P(Y(0):O|D:0,X)]

P(Y =1D=0,X)

1
- P(Y:1,D:0)E[P(D:0|X)
P(T=1D=1,X)+P(Y(0)=1/D=0,X) — 1

P(Y =1D=0,X)

O

as desired.

A.4 Analysis of Plugin Estimators

We now present some analysis of a standard plugin estimator, which will be useful in proofs in the error analysis
of our bias-corrected estimators. At a high level, this section demonstrates that a simple plugin estimator for the

(ratio) estimand of E {Zgg

an additional term that is the variance of our plugin estimator.

} achieves a rate that is a combination of the rates of our estimators of 7w and pu, plus

First, we will prove a technical lemma that bounds the expected error of a ratio estimator that directly takes a
ratio of plugins.

Lemma 3. Let R = %, and R =%, Then, we have that

ol

|Eonp[R] = BonplR]| < 5*22 (Eenpllm — ] + Eznpllio — pl])

for some 0 < 6§ < p, fi.
Proof. We first observe that
|Eynp[R) = Eynp[R)| < Evup [|R - R|]

T — T
—E,p {|’“‘ ”@
1

1 L
< spBenrp [T — pl]
Let = be an arbitrary data point. We observe that
min{mp — Ff, *fp — wpt +wh — 7p < wo— 7p < +max{rp — T, TL— THE + T — TR,
since one of wyu — T, T — mp must be non-positive, and one must be non-negative.

We first consider the term of mp — 7ji. This satisfies that
i — 7T+ — wp = p(r —7) 4 j(r — 7)
= (u+p)(m =)
Then, noting that pu, i € [0,1], we have that

[T = Fh+ = | < 2w — 7
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Next, we can consider the other case of the term 71 — wu. We have that
=Tt — = (00— p)(r + %),
and with 7, 7 € [0, 1], we get that
|ftp — mp+ mi— 7| < 2| + 7,
Therefore, we observe that

|mi — #p| < 2max{|i — pl, |7 — 7|}
Eyp[|mi — 7pl] < 2By p [max{|f — pl, |7 — #[}]
< 2(Bg~pllm = 7] + Exnpllit — pl])

Plugging this in gives us the result that

| Eonp[R] = EpoplR]| < 5% (Eonpllm = 7l] + Exnp(li — pl])

O

Now, we can consider the estimator Ep[- PG X)] To verify consistency, note that as P — P and [t — p we have

e 0] 2 []

and using iterated expectation yields that

[T E[T|X]

Erxer | im0] ‘E”{ H(X) }
w(X)}
wX) ]

=FEx~p {

Next, we analyze the total expected error of this estimator. To start with, note that

: o) = (5 ] =[] )+ (o [700] - [
Ep|l——| —Ex~p|——=|=|Fp|——| - FEp|——| |+ | Ep|——| —Ep|—=| ).
" [um} o [um Placo] T LAx) LA T LX)
Provided that we employ sample splitting, so that /i is trained on an independent sample from the Samples used

to estimate the expectation P, the first term is easily controlled in terms of the variance of . Specifically,

suppose that P is estimated using n samples. We have that

= iee ] - [zt ] - = /7 ] -2 [ ZQHH

=

where the first equality follows because £ [#X)} is an unbiased estimator for Ep [%} , the second line follows

by Cauchy-Schwartz, and the third because the samples in P are independent.

For the second term, note that since Ep x~p {%} =Fx-.p [%Eg?ﬂ} we can apply Lemma 3 with # = 7 to

obtain that

Br ||~ e | || < S Eeno - o
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Combining the bounds on the first and second terms using the triangle inequality yields

T 7m(X)
oo ] o 251)-
H }’{MLX)] u(X)
Note that a high-probability bound could be obtained by using a Bernstein bound for the first term combined
with any high-probability generalization guarantee for the ML model in the second term.

An analogous argument for the alternate plugin estimator Ep [%} yields the bound on its expected error

o 50 )

2 ~ ~
(X) u(X) + 25 (Ep(lp(X) = (X)) + Ep[ln(X) = #(X)]).

Comparing these two bounds, we observe a form of bias-variance tradeoff. In the second bound, we accumulate
additional potential error from the estimation of 7 instead of directly plugging in the samples T. However, we
often expect that 7 will have lower variance than T since estimated treatment probabilities will take less extreme
values than binary treatment indicators, in which case the variance term will be smaller for the second estimator.

A.5 Proof of Lemma 1

Next, we will derive the influence functions for our upper bounds under no additional assumptions. Recall that
our estimands are given by

P(D =0|X)P(T =1|D =1,X)

Or(X) = P(Y =1,D =0) ’
gy o P(D=0X)P(Y =1]D = 0,X)
2 (X) = P(Y =1,D=0)

Our relevant conditional distributions (i.e., our nuisance functions) are given by

u(X) = E[Y =1|D = 0,X],
7(X)=E[T =1|D =1,X],
g(X) = E[D = 0[X].

We now proceed to derive the influence functions for our upper bound under no additional assumptions.

Lemma 1. The influence functions for 6} and 0% are given by

IF(0Y) =
1 1y =1,D = (|
P(Y =1,D = 0) (* Py =1,D =) Lrla()m(X)]+
+ﬂXMM3+uD=1wr—ﬂxnﬁ%%ﬂ+

+7(X)(1[D = 0] - g(X)))
IFO) = p iy =g (#X)

- BUXID =0} (g ) + O w(X)).

Proof. First, we will derive the influence function for 6}.
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17 ) =17 (1 gy ) EliORCO+ ppr—g =gy I F (BrlaCOR(X)

_ [y = 1,1137(; (i] ;g(izf 0:)21, D =0) Eplg(X)m(X)]

P = LY 4l — pe) sl (o)

_|_

B = 11)D —0) zw:p(:c) (;[())((::i]) (1[D =0] - g(m))) m(x)

(o= @)

1
T P S1 D=0 Zx:p(x)g( )

1Y =1,D =0 Eplg(X)m(X)]

= P =1,b oy PO X)+ P(1P/ —1,D=0)

g(X)r(X) Elg(X)m(X)]
P(Y=1,D=0) P(Y=1,D=0)
m(X)(A[D = 0] — g(X))

P(Y =1,D =0)
1D =1J(T' - 7(X)) g(X)

P(Y =1,D=0) 1-g(X)

B 1 1Y =1,D =0
~ P(Y=1,D=0) ( Py =1 D:O)

+

+9(X)m(X) + 1D = 1)(T — n(X))

Next, we derive the influence function for 65.

1

IF (92)IF<P e L)

_ —1|D—o ( _13|/|DD_—00])E[M(X)|D=0]+IF(E[;L(X)|D:()])>
B0 (v — E[Y | D =0))
_ P(DO _
B —1|D—0 ( Y=1|D=0) Elu(X) | D =0]
+IF( :czd:pmd p(d) M(x)))
1 ~1-1[D=0](Y — E[Y | D=0)) -
:P(YllDO)( P(Y=1|D=0)P(D=0) Elu(X) | D=0]

+ 3 PG ap =0
x,d p

1
+ ;p(ﬂc,d)l[d = 0|IF (p(d)) )+ > p(x,d)1[d = O]T‘Z)IF( ( )))

This further simplifies as
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N 1 —1-1[D =0](Y — E[Y | D = 0)]) B
HW”PQ:ﬂD:@( Py =1|D=0)pD=0) WX ID=0]
+ 0K =00 = d = plo. ) (o
z,d
1[D = d] — p(d)
- x,d)1l|d = 5 x
N

1 1[D=0,X =z
p(d) P(D = 0] X)P(X)

+ Zp(x,d)l[d =0]

z,d

(Y —E[Y | D=0,X))

We'll consider each of the four terms, one at a time, and ignore the initial P(Y =1 | D = 0)~" term for now.

—1-1[D=0](Y — E[Y | D =0])

P(Y=1|D=0P(D=0) E[u(X) | D =0]
o 1[D=0] Y—E[Y | D=0] B
=-1- P(D:O)P(Y:HD:O)E[H(X)|D_0]
Now we will consider the second term
_ _ 1[d = 0] B B - u(2)
g;ﬂXfLD—ﬂ*ML@)pw mmfzyquQDf]fmﬁpfm%w:)
1[X=2,D=0 "

:Z [ p(D*()) }:U’(x)_zp(l‘,D:O)pu/;(_))
— 2= 0 - ) | -0

Now we will consider the third term

— Zp(w, d)1[d = 0]
x,d

Now we will consider the fourth term, where we (in the first line) replace all instances of d (lowercase) with 0, and
remove the sum over d, which eliminates the 1[d = 0] term. Similarly in the next line we remove the indicator
X =z by replacing all instances of z with X, and removing the sum over X.
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1 1[D=0,X = 4]

2o = 0L B =5 X7 P Y]

(Y-E[Y|D=0,X])

1 1D =0,X = 1]
= 200D =0 G b =0 | P
1[D = 0]
:OU%D:0|Xﬂ%Xﬂ
p(X, D =0)
p(D=0)P(D=0]X)P(X)
p(D=0]X)
p(D=0)P(D=0]X)

D=0 p(D=0]|X)

“PD=0]X) po=0 O E¥ID=0X])

(Y — E[Y | D=0,X])

Y — E[Y | D=0,X])

—1[D = 0] (Y — E[Y | D =0,X])

=1[D =0

(Y —E[Y | D=0,X])

Putting it all together gives us the following
1 1[D=0] Y —E[Y | D=0
1F(0%) = 1.
(62) PﬂEﬂD:m< P(D=0)P(Y =1|D=0)

EuX) | D =0]

=g ~ Elu(x) | D=0
(5ip=g 1) Blx) D=0

1D=0] p(D=0]X)
P(D=0]X) p(D=0)

(Y—-EY|D= O,X])>

which simplifies with some cancellations in the second and third lines
. 1 1ID=0] Y —E[Y | D=0]
Hw”:PQEAD:m<4'mD=mP@24D:m
1[D = 0]
p(D =0)
1[D=0] pD=0]X)
P(D=0]|X) p(D=0)

E[u(X) | D = 0]

+

(W(X) — E[u(X) | D =0])

(Y-E[Y|D= O,X]))

This further simplifies by factoring out the term involving E[u(X) | D = 0]

H;ut?]m(Mm—EmaHD:m<L+;;ﬂ§%?i§yuy—mmpzqm0

IF(03) =

This further simplifies by E[Y|D = 0] = P(Y = 1|D = 0) and Ilzgiﬂgigg =1.

IF() = Bt g (#0) ~ EWX) | D=0 (g 1= ) + OV - BWID=0.x)))

This gives us the following final result
1[D = 0]

IP03) = prr ot =)
1[D = 0] B 1Y =1]
PWZLDZmEMX”Dm<HY=uD=m>
1[D = 0]

HY:LDZWW—EWW:QXD
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O

Next, we move on to discussing our estimator of this upper bound, using our derived influence function. Our
procedure (as is standard in literature (Kennedy, 2022)) is to use a first order correction of our simple plugin
estimator by adding in the expectation of our influence function.

Proposition 2. Our one-step estimator of 0% is given by
0y = 1.
Proof. We compute the one-step estimator as

03 (P) = 03(P) + Ep[LF(63(P)].

The first term is given by

upPy 1 R _
GQ(P)_—P(Y:HD:O)EP[“(X”D_O]

and the second term is given by

Ep[IF(03(P) = Ep

D=9 ﬂmﬂ
)

P(Y=1,D=0
L 1[D = 0] > _ 1y =1]
Ep P(Y:LD:O)EP[”(X)'D O]<P(Y:1|D:0)>]
A 1[D = 0] . B
+Ep P(Y:LD:O)(Y EplY|D =0, X))

The first two terms cancel out, using the same logic (that we used to cancel terms out for proving that an influence
function has mean zero).

Therefore, we get that

Al 1 . 1[D = 0] .
05(P) = ——— E5[(X)|D=0]+ E5 | = X
5 (P) Py =1D=0) plA(X)] I+ Ep P(Y:1,D:0)( ( ))]
1
= — E-l(p(X)+Y —u(X)|D=0
B iTp =) P Y — GO =
— s Bl D=0 = L
PY=1D=0)
Thus, the estimator for this term is constant. O

Proposition 3. Our one-step estimator of é}‘(ﬁ’) is given by

9(X)7(X) (X)(A[D =0] -
P(Y =1,D =0) P(Y =1,D =0)

Proof. We can compute our one-step estimator by 0%(P) = 0%(P) + Ep[IF(0%(P))).

The first term is given by
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The second term is given by

hu( By _ 9(X)7(X) #(X)(A[D = 0] — 9(X)) | UD =T - #(X))  9(X)
P) = Ep 15(1/:1,1):0)Jr P(Y =1,D=0) *Pp P(Y=1,D=0) 1-g(X)
_ | AX)(A[D =0]) | UD =1)(T - #(X))  §(X)
=Fr P(Y =1,D=0) P P(Y=1,D=0) 1-g(X)

Next, we perform error analysis for our derived one-step estimator of the upper bound.

Lemma 4 (Error of one-step estimator of upper bound under arbitrary unobserved confounding). Let the error
of our one-step estimator be given by

R(P,P) = 01(P) — 03(P) + Ep |IF(0}(P))| (8)

Then, we have that

when our estimates of m and g converge at rates of OP(n’%).
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Proof.
R(P, P) = 6%(P) — 0%(P) + Ep [IF (9;!(15))}

_ Eplg(X)a(X)]  Ep[g(X)m(X)] 1

- _ E
Py=1,D=0) PY=1,D=0) P(Y=1,D=0)

+3(X)7(X) +1[D = 1)(T — #(X))

P(Yy=1,D=0) PY=1D=0) Py =1,D=0)PY =1,D=0)
1
+ =
P(Y =1,D =0)

_ (1 PY=1D= 0)) Eplg(X)7(X)]  Eplg(X)m(X)]

(
Eplg(X)a(X)] _ Eplg(X)n(X)] P =1,D=0) Ep[P(X)7(X)]
(

o [g(X)fr(X) 10 =1 - #(x) Y =0 - g(X))}

P(Y=1,D=0)) Py =1,D=0) P =1,D=0)
N 1 9(X)
P(Y =1,D =0) 1-g(X)

_ <1 _P(Y=1D= 0)) plIX)F(X)]  Eplg(X)m(X)]
(

Ep [g(X)ﬁ(X) LD = 1)(T - #(X)

P(Y=1,D=0)) P(Yy=1,D=0) PY =1,D=0)
1
+ =
P(Y=1,D=0
where we have used that Ep[T -1[D =1]|=Ep[l[T =1,D=1]|=Ep[P(T=1,D=1|X)|=Ep[P(T =1|

D=1,X)P(D=1]|X)]=Ep[T(X)(1 - g(X))]- Now, to deal with the first few terms, we are going to add zero
(on the second line after the equality below).

0u(P) — 0“(P) + Ep [IF (e )}
_(;_ P =1D=0)\ Ep[g(X)n(X)]
P(Y=1,D=0)) P(Yy =1,D =0)

_ Erlg(Xn(X)] | Eplg(X)n(X)] | Eplg(X)(X)] | Ep[gX)T(X)]

PY=1,D=0) P(y=1,D=0) PY =1,D=0) PY =1,D=0)

1 ) ix) . A
* T =B |1~ 900 = #00) 2 + #0000 — 600

9(X)

X)r(X) + (1 = g(X))(x(X) — ﬁ(X))m + #(X)(9(X) = ?/(X))}

Ep|g
)

. The second line after the equality can be re-written as
Eplg(X)n(X)] | Eplg(X)n(X)] | Eplg(X)n(X)] = Eplg(X)#(X)]
PY=1,D=0) pP(Yy=1,D=0) P(Y=1,D=0) PY =1,D=0)

(,_PY=1.D=0)| Elox)r(x) 1 R
N (1 P(Y:LDZO)> P(Y:LDZO)JrP(Y:LD:())EP[g(X) (X) — 9(X)7(X)]

So that the entire expression can be written as
01(P) - 0(P) + Ep [TF (03(P))]

_ (1 _P(Y=1,D= 0>> ( Eplg(X)#(X)]  Ep[g(X)n(X)] )

Py=1,D=0))\P(v=1,D=0) PY =1,D=0)
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The first line is a product of estimation error of P(Y = 1, D = 0) and the estimation error of the original plug-in
estimator. We remark that the estimation error of of this product overall achieves a fast rate of op(n~1/2),
assuming that our estimator of P(Y = 1, D = 0) has a rate of op(n—'/?), which is relatively straightforward since
it can be estimated by a simple sample average of the indicator variable 1[Y = 1, D = 0].

(1 _PY = LD=0>) ( Eplg(X)#(X)] _ Ep[g(X)m(X)] ) — op (n2)
) P

Py=1,D=0))\P(v=1,D=0) PY=1D=0

9)

:OP(H71/2) =op(1)

1

Finally, we can analyze the last two lines from above. Ignoring the Fp and the common multiplier of PY=1.0=0)"

we have that

(

— 9
)

Q>

9(X)m(X) = g(X)(X) + (1 = g(X))(m(X) = 7(X))7 &() T(X)(9(X) = 9(X))

= (1 = 9(X))g(X)(m(X) = 7(X)) + (1 = §(X))g(X)(7(X) — 7(X))

where we can ignore the m in the denominator. This further simplifies as

= (7(X) = (X)) [(1 = 9(X))g(X) — (1 = 9(X))9(X))

We can observe that this is given by a product-of-errors structure in terms of our estimator of 7 and of g. This in
turn, implies that our overall estimator has asymptotic normality (and converges at a rate of 0p(n_1/ 2)) if our
estimators of 7(X) and g(X) converge at op(n~/4) rates.

O

A.6 Proof of Lemma 2

Next, we will derive the influence functions for our lower bounds under no additional assumptions. Recall that
our estimands are given by
P(D=0X)

01 (X) = P(Y =1,D=0)
0L(X) =0
Our relevant conditional distributions (i.e., our nuisance functions) are given by
u(X) = B[Y = 1/D = 0,X],
m(X)=E[T=1|D =1, X],
9(X) = E[D =0|X].

(P(T: 1D = 1,X)+P(Y\D:O,X:x)—1),

We now proceed to derive the influence functions for our lower bound under no additional assumptions.
Lemma 2. The influence functions for 6% and 0, are given by

1 —~1[Y =1,D = 0]
P(Y:l,D:O)(P(Y:l,D:O)

 Eplg(X)(u(X) = 1)] + 1[D = 0](Y — 1))

IF(6)) = IF(8}) +

IF(63) =

Our estimand for our lower bound will be as follows,
m(X)  (1-p(X))
1(X) (X))

e T
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Looking at the second term,

S0 =1 0-01
= [P0 =10 =0 P
TPy = 11,D —g Z1P0 =0X)(1 - P(Y = 1|D = 0,2))]

_ E[P(D = 0|X)(1 — u(z))]

- Elg(X)(1 = u(X))]

where again note g(X) = P(D = 0|X). Putting it together with the first term,

g — ElrX)|D=0] E[P(D=0X)(1 -~ p(X))
' P(Y=1D=0) P(Y =1,D =0)

Elg(X)m(X)] 1
“ Py =1.D=0 Py =1D=0" W0 -nX)]
_ B[(m(X) + p(X) — Dg(X)]
P(Y=1,D=0)

Now, we will derive the influence function for our lower bound #%. First, we observe that the influence function of
6% can be written as follows

IF(0L) = IF(0Y) + IF <E1;[((“(X) - Dg(X”) (10)

Taking the second term, we have that

1

VEPlg(X)(WX) = DI+ 57 =7 5 =gy

IF[Ep[g(X)(n(X) = D)]]

where in the last term, we cancel out 1, since TF(1) = 0. Further simplifying gives,
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p(Y:LD: )
9(X)(w(X) -1)  Eplg(X)(u(X) - 1)]
PY=1,D=0) PY=1,D=0)
((X) - DA[D = 0] — g(X))

PY=1,D=0)
1D = )Y — (X))
PY=1,D=0)

with some cancellations in the first and second line, and some re-ordering of the third and fourth terms, we can
then write that

= (El;[((}lj(i()l,_fjl)_g(o))()]) TPy = 11,D ~0) (;1([;/_:11,75_:00)] Brlg(X)(u(X) — 1]
+9(X)((X) = 1) +1[D = 0](Y — (X)) + (u(X) = 1)(1[D = 0] — g(X)))
B 1 ~1[Y =1,D = (]
 P(Y=1,D=0) (P(Yzl,DzO)

Therefore, the final influence function is given by
1 —1[Y =1,D =]
PY=1,D=0)\ P(Y=1,D=0)

IF(01) = IF(67) + Ep[g(X)(u(X) = D]+ 1[D = 0](Y — 1)>

Now, we will compute the one-step estimator as follows.
Proposition 4. Our one-step estimator of 6% is given by

TN
el(P)_p

Proof. We compute the one-step estimator as 0} (P) = 0} (P) + Ep[IF(0}(P))].
The first term is given by

0i(P) = P(Y =1,D=0)
and the second term is given by
e (1;([;,”‘11’5— 0)] Bpl§(X) (#(X))
OO 11D = 11T - #(0) 25 ks + 700D = 0] - 5(0)) )
1 Y =1,D=0] _ oo
- P(Y =1,D =0) (P(Y =1,D=0) Eplg(O(A(X) = 1)

+9(X)((X) = 1) + 1D = 0](Y — (X)) + (i(X) = D)(A[D = 0] = §(X)))
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We see that the first and third term cancels out with 6} (15) Thus, we have that

— 1 (X T — 4 9x) . 0l —4
A(P) = 51— (F00F0) 411D = 1T - #00) 20 4 #00)01D = 0] - ()
1 o PN o o
b o = GO = 141D = 0 = () + () = DAID = 0]~ 5(X)
. 1D = 1) — #(x)—2E)_ 1D = 0)a(x)

04(P)

= 1 — —ﬁ' g(X) _ ’ﬁ' _ . R B

= T 150 (1[D =1)(T (X))1 ~ 00 +1[D = 0)#(X) 4+ 1[D = 0](Y — a(X) + a(X) 1)>
= ! TR (0.9 o o
 P(Y=1,D=0) <1[D_1](T (X))1f§(X) +1[D = 0]7(X) + 1[D = 0](Y 1))

Lemma 5 (Error of one-step estimator of lower bound under arbitrary unobserved confounding). Let the error
of our one-step estimator be given by

R(P, P) = 04(P) — 04(P) + Ep [IF(6}(P))]

Then, we have that

when our estimates of g and w converge at rates of 0p(n_%)
Proof. We will analyze the remainder term of the one-step estimator. We leverage the fact that 6! is the sum of
an additional term and 65 and that influence functions are additive:

R(P, P) = 0}(P) - 0}(P) + Ep[IF (6} (P))]
— 03(P) - 63(P) + EplIF03(P)]

i@ -1 [aX0wx) — 1)
+Ep P(Y =1,D =0) E {P(YLDO)
N ! WY=L D=0 ) ((X) - D] + 11D = 01(Y — 1)

P(Y =1,D =0)

We note that from our error analysis in Lemma 4, the error term from the terms involving 65 all converge at
fast rates when our estimates of = and g converge at rates of OP(n’i). Thus, it suffices to look at the remaining
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terms (and drop the asymptotic term after the first line):

R(P,P) = Op<n_%)
9(X)(a(X) — 1) g(X)(u(X) - 1)
tEp P(Y =1,D =0) _E”{P(Y:LDZO)}
1 1Y =1L,D=0], . o B -
+]3(Y:17D:0) P p(Y:LD:O)Ep[g(X)(u(X) D] +1[D=0](Y - 1)
-~ gX)(MX) 1) | g(X)(u(X) - 1)
“P by =1p=0)] " {P(Y=1,D= J
_PY=1D0=0, (4XEX) =1 | p (D=0 1)
Py=1,D=0) " |P(Y=1,D=0) PlPy=1,D=0)
Rearranging terms gives us that
R(P,P) = E, | WX =1 | PO =1,D=0)p | §(X)(X) = 1)
’ PlPy=1,D=0)| PY=1,D=0) "|P(Y=1,D=0)
1D =0J(Y —1) g(X)(u(X) — 1)
thr P(Y =1,D=0) ~ Ep [P(Y:I,D:O)}

gy | IOE0 -1 g(X) () ~1) ]
P(Yy=1,D=0) PY =1,D=0)
_<1_P<Y=17D=o>>EA 9<X><ﬂ<x>—1>1
(1L |4
P(Y =1,D=0) P(Y =1,D=0)

We finally note that our estimator of P(Y = 1,D = 0) has a rate of Op(n~2). Thus, we get that both of
the above terms will have fast rates and that our overall error term will converge at a rate of op(n~2), given
estimators of g, 7 that converge at rates of op(n~1).

O

A.7 Algorithm for Estimators in Propositions 4, 3, 5, and 6

We perform estimation of our upper and lower bounds as follows, using cross-fitting:
1. We first split our data M = {(X,T,Y,D)} into My = {(X;,T;,Y;, D;)|Vi where D; = 0} and M; =
{(XZ,TZ,Y;,DINV’L where Dl = 1}
2. Next, we split our data into IV disjoint folds of equal sample size to perform cross-fitting.
3. For each fold k, we estimate the upper and lower bounds in Lemmas 1 and 2:
K K
Tu N, Tu n Ni, »
Pr=D (R =) (),
k=1 k=1

where ﬁ}j, 1[)2 represent our estimates of the upper and lower bounds evaluated on fold k and where our
nuisance functions used in estimating v are trained on all folds except k.
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4. In computing 1/3“, 1[)“’7, $l7 1/%7 on fold k, and we estimate the following nuisance functions:

o Estimate w(z) on My —; and evaluate on My U My .

o Estimate u(x) on My —x and evaluate on Mo U My .

o Estimate g(z) on My . U M; —j and evaluate on My U My g

e Estimate P(Y =1,D = 0) on My . U M7~ and evaluate on Mg, U M7 j.

A.8 Identification of Bounds with a Sensitivity Analysis Model

Next, we will derive our results under certain assumptions on the strengths of underlying confounders by adopting
a sensitivity analysis model. We impose a condition on confounding in treatment assignment,

1 _ PT=1Y(0)=0,D=1X)

— < <7

v~ P(T=1Y(0)=1,D=1,X)

We now represent the result from the main body in the identification of our bounds under our sensitivity model.
Theorem 3 (Bounds with v). Using Definition 3, we achieve the following set of bounds

P < P(T=1Y(0)=1,D =1) < ¢*"
where

b = E[max{@ll’v, Géﬂ, oéﬁ}]
¥ = Elmin{0}", 05"7}]

Ly ._pgl. pglv ._ pl
0L = 0% 6L =6}

Iy P(T=1|D=1,X)

27 P(Y(0)=1|D=1,X)+7(1-P(Y (0)=1|D=1,X))
g P(T=1|D=1,X)

LT P(r(0)=11D=1,X)+ 1 (1-P(Y (0)=1|D=1,X))
0L = 0y

Proof. Now, using the same expansion of P(T = 1|D =1, X) as before, we have
PT=1D=1,X)=PY(0)=1D=1,X)P(T'=1Y(0)=1,D=1,X)
+P(Y(0)=0|D =1,X)P(T =1]Y(0) =0,D = 1, X).

Consider first the upper bound. As before, we know that P(T = 1Y (0) = 0,D = 1, X) > 0. However, given
the sensitivity assumption, we also have P(T'=1|Y(0) =0,D =1,X) > %P(T =1Y(0)=1,D =1, X). Since
%P(T =1Y(0)=1,D =1,X) > 0, the tightest bound combining these two constraints is

PT=1D=1,X)>PY(0)=1D=1,X)P(T'=1Y(0)=1,D=1,X)
1
+PY(0)=0D=1,X)-P(T=1Y(0)=1,D =1,X)
Y
which yields

B B B P(T=1|D =1,X)
PT=1¥(©0) =1D=1X)< P(Y(0)=1|D=1,X)+ 2 P(Y(0) = 0|D =1, X)

P(T=1|D =1,X)
P(Y(0)=1D=1,X)+ (1 - P(Y(0) =1|D =1,X))

As v — 1 (no unmeasured confounding), this bound converges to P(T =1|Y(0)=1,D=1,X) < P(T =1|D =
1,X). As v — oo (arbitrary unmeasured confounding), it converges to our earlier bound without the sensitivity
assumption.

Turning now to the lower bound, we have that P(T = 1|Y(0) = 0,D = 1,X) < 1 as before. The sensitivity
assumption adds the further constraint P(T'= 1Y (0) =0,D =1,X) <yP(T =1|Y(0) =1,D =1, X). The
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first constraint is not necessarily redundant because as v — oo, yP(T = 1|Y(0) = 1,D = 1, X) will exceed 1.
Therefore, we obtain a tighter bound by taking the stronger of the two constraints:

P(T =1|D =1,X)
PY(0)=1D=1X)+~r(1— P(Y(0) = 1|D =L, X))’

PTr=1Y(0)=1,D=1,X) > max{

P(T=1/D=1,X)— P(Y(0) =0|D =1, X)
P(Y(0)=1/D=1,X) '

As~y — 1, wehave P(T'=1|Y(0)=1,D=1,X) > P(T =1|D =1, X). Combined with the v — 1 upper bound,
this shows we achieve point identification at the expected value under no unmeasured confounding. As v — oo,
the first term in the max eventually becomes vacuous, and we revert to the bound from before. O

A.9 Estimation of Bounds with a Sensitivity Analysis Model

Now that we have shown the identification results under our sensitivity analysis model in Theorem 3, we can
construct our estimator of the upper and lower bounds, given by %7, "7, First, we consider estimating the
upper bound.

Recall that our estimands are given by

07 =0
P(T =1|D =1,X)
P(Y(0)=1|D=1,X) +~(1— P(Y(0) = 1|D = 1, X))
P(T =1|D =1,X)
P(Y(0) = 1|D =1,X) + (1 - P(Y(0) = 1|D = 1, X))

w,y . gu
0y = 6}

Ly .
0y =

w,y
0 =

Our relevant conditional distributions (i.e., our nuisance functions) are given by

u(X) = E[Y =1|D = 0,X],
7(X) = E[T =1|D =1, X],
g(X) = E[D = 0/X]

We now proceed to derive the influence functions for our upper and lower bounds under our sensitivity analysis
model.

Lemma 6. Let our estimand 67”7 (P) be given by

w(py 1 A (X)pu(X)
b (P)*P(Y:LDzo)E (v = Du(X) +1

Then, we have that our influence function is given by

[F (6“7 (P)) = _Pl([; : 11:3 : gizEp[g(X)A(X)] i P(Xg()_f)l/’léxi -+ A();)((;[Iz Tzl _ggx))
1[D =1] Yu(X) 9(X)
TRV =1,0=0) (- Du) 1D T
e )y )

P(Y =1,D=0) ((y - Du(X) + 1)°

where A(X) = A, (X) = %



Yewon Byun, Dylan Sam, Michael Oberst, Zachary C. Lipton, Bryan Wilder

Proof. First, we will simplify the upper bound term. It can be written as

Our target function of interest is given by

ym(X) _ 2V = 1.D = ym(z)
CE RN 1D‘O} /P ¥V =LD=0r—ya v
B P(x) ym(x)
/P =L D=0 e = D=0 (7~ D) 1

= E|P(Y =1,D =0/X)

ym(X) ]
(v = DuX)+1
[ ym(X)
= F¥ 1D = O)E _P(Y =1|/D =0,2)P(D = 0|X)—(7 T J
y7(X) }
(v = DX) +1
7 (X)p(X) }
(v = Du(X) +1

= B u(X)g(X)

= Elg(X)

Let

ym(X)p(X)

AX) = o+

and let g(X) = P(D = 0|X), as is done previously. We begin as follows

Ep[g(X)A(X)]
PY=1,D=0)

LF(077(P)) =

We remark that this is the same form as in the proof for the upper bound with arbitrary unobserved confounding,
except that we have switched m(X) for A(X). Therefore, we can apply an intermediate result

1p(ee (P = LY =LD =0 - P =1,D=0)

Eplg(X)A(X)]
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This simplifies as follows (combining the first three lines)

w1V =1,D=0] 1
TP O27(P) = = o = S BrloX0A) + e Bl A
gX)AX) __ ElgX)AX)]
P(Y =1,D =0) D =0)

P(Y =1
AX)(A[D =0] — g(X))
P(Y =1,D=0)

TPy = 11 D =0) ;p(”;)g(m)fF(A(w))

_ 1Y =1,D=0] g(X)AX AX)(AD = 0] — g(X))
. P(Y=1,D= O)QEP[g(X)A(X)] TPy =1,D=0)  P(Y=1,D=0)
1
* P ST D) LI AG)
Next, we address I F(A(X)). This is computed as
IF ( m(X)p(X) ) _ HUE@EXOp(X)) (v = Dplz) +1)  yr(X)(X) (v = DIF((X))
(v = Du(X) +1 ((v = Dpul(X) +1)° ((v = Dul(X) +1)°
_ MFEX)X))  am(X)u(X)(y = DIF(p(X))
(v =Du(X) + 1) ((v = Dp(X) + 1)
VTP (r(X)p(X) +yr()IF(a(X))  yr(X)u(X)(y = DIF(a(X))
(v = Du(X) + 1) (v — Du(X) +1)°
_ MFEX)uX) | ar(XOIFuX)) — yr(X)uX)(y = DIF(u(X))
(v =DuX)+1) (v = Du(X) +1) ((v = Du(X) + 1)
_ (X)) ym(X)
S G ey T G )
Y (X)p(X)(y = 1)
(=) 1 )
We now compute the influence functions for 7(X) and p(X) in the last line.
yr(X)u(X) ) _ YH(X) I D=1,X] ., _
7 (GE 0 11) = Gt (o=t T )
v (X) 1[D =0, X] _
oo (o )

Cr(XpX)(y-1) (1[D=0,X] .
(v — Dp(X) +1)2 (P(D:&X) v MXD)
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Then, plugging in this above and removing our indicator function on X = z gives us

F672%37;65§:Mww@»UﬁAm»

_ wX) (1D =UP(X)(X)
- (((7—1)M(X)+1)< Do)

1[D = 0]P(X)g(X)
( ) o u(X)))

m(X)p(X)(y — 1) (1[1) = 0]P(X)g(X) (v — M(X))) )

P(D=0,X)

_ 1 Y(X) (1[D = 1]g(X)
P(Y=1,D=0)\ ((v—1u(X)+1)

m(X) 1[D = 0]g(X)
* (v =DH(X) +1) < P(D =0|X) (Y — (X))

r(X)p(X)(y = 1) <1[D = 0]g(X) (v — M(X))) )

(7 — Du(X) + 1) \ P(D = 0[X)
= ! yi(X) _
PY =1,D=0)\ ((v - )uX)+1) 2%
m(X) 3 -
oD 7 P = 007 = (X))

- D =0 M(X)))>
“pwto S o T

+ P eI D=0 = DT

- P(Yl[:D 1,:DO ]: 0) Z(:(i(il;,i)(()l()l_l? (¥ = ()

Then, we note that we can combine the two bottom lines, where

m(X) CmXOpX)(y =1 ar(XO)uX)(y =D +yr(X)  An(XOuX)(y - 1)
(= DuO)+1 (v = Du(X) +1)° ((y = Du(X) +1)° ((y = Du(X) +1)°
Y (X)

(v = Du(X) +1)
which gives that

1 __ 1[D=]1] yu(X) 9(X)
P =10 =0) 2 "DIOIFAW) = 5 5 g 0 ¢ T
. 1D=0 y(X)

PV =10=0 (- pux)+

Finally, we can put everything together to get

10 - D0, OGO AGUD =0 )
1D =1] yu(X) 9(X)
TPV =1.D0=0) (D) 1D~ "
,_ 1D yr(X)

PO =1,0=0) ((— v+ 20 M)
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Next, we move on to discussing our estimator of the upper bound, using this influence function.
Proposition 5. Our one-step estimator of 6)"” is given by

AUy _ 1 A _
o = sy 1D [Ax)ap = o)
| IR S i)
TPy —1D=0°" [“D = na @ —g(XJ
1 _ 7 (X) il
Thy-1p=0 " l”D‘O]«v—lm(X)H)?( h ”]

Proof.
017(P) = 017 (P) + EB[IF (6, (P))]

The first term is given by

017 (P) = g EAICOA)
The second term is given by
BP0 (P)] = p | - 3o = D= pyfanaon) + 5 S04 AU =0l 60)
+ B |55 o1 —o e T O >]
tE P(YI[D 1,_DO - 0) (7 - f;z(é)) T W”]

The first expectation term in the second term is exactly 91""7(15)7 so it cancels out with the original first term.
This gives us that

6,7 (P) = = 11 570 Epla(X)AX)] + T 11’D " B, [A(X)(up =0 - g(X))}

- P(Y = 11,D = 0) Ep [ 1D ]((7 Kgig) +1) T =#X)y 9(2&)}
TR = 11 D=0 " _1[D ~e 17)7;(();)) T ﬂ(X))]

= 5= 11 50 Eplg(X)A(X)] T 117D —oy 7 [A(X)(l[p =0 - g(X))}
Py = 11,D —o)r =17 —Z;L/Ef’g) T ) g(gi‘)’f)}
By = 11 IO _1[D (- 17)2(();)) + 1)2( B M(x))]

- 5 — 5 Br [Ac0aip = )|
R o e =i =T e
T R e 17;1(?) T W]
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O

Lemma 7 (Error of one-step estimator of upper bound with «). Let the error of our one-step estimator be given
by
R(P,P) = 6{(P) — 617(P) + Ep [IF(6{ (P))

Then, we have that
R(P,P) = op(n™?),
when (7 — ), (i — ), (§ — g) have rates of at least op(n~%).
Proof.
R(P,P) = 07 (P) — 0“7 (P) + Ep [IF (9;‘77(15))}
(X)A(X } _ P(Y=1,D=0)
0)

o [e0do T o
=Fr P(Y =1,D=0) Er {P(Y:LD: (P(Y = LD:O))QEP[Q(X)A(X)]
(@ ® NS
JXAX) AX)(1[D = 0] - §(X)
o |P(Y =1,D=0) e P(Y=1,D=0)
(@)
1D =1] VA(X) §(X) )
+ Ep | P(Y =1,D=0) ((7—1)/1(X)+1> 1_g(X)(T—7r(X))]
[ 1D =0] VA(X) A
By —1p-0) (((7 — D(X) + 1)2) ¥ - “(X»}

First, we take the terms (a) and (c),

0AX)

P(Y =1,D =0)

_ P(Y=1,D=0) . R B
(P(Y =1,D = 0))2EP[Q(X)A(X)] — (1

_PY=1D=0)) .
pPy=1,D=0)) "

IX)AX)
P(Y =1,D=0)

P

As shown in the proof of Lemma 4 in (9), this converges at op(n~'/?) rate. Now, we take the terms (b) and (d),

g(X)A(X J0AX)
~br {P(Y: 1,D:O)} +or P(Y=1,D :0)1
[, PY=1D=0) 9(X)AX) i(x) —
(1 P(Y =1,D = 0)) "|Py=1D=0)] P(Y=1D= )EP[Q(X)A(X) sRA

Again, we see that the first term converges at 0p(n_1/ 2) rate. We defer analysis of the second term to later. We
will first turn to analyzing the remaining terms.

Er p(yl[:D D - ) (F=hicoer) Tte ™70
+ B p(y”—_D o 0 (e Tacerrae) O~ + B AO;)((;[Z D ;%()X))]
e e e 0 (=) 00 x| + B Aﬁfgf‘q:(? b i(ff)))]
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The equality here holds through an application of iterated expectation over X and with the observation
E[D =1]Tq(X)] = E[(1 — g(X))m(X)q(X)],

for any function g of X.

We now look at these remaining terms with the last remaining term from above (e), resulting in the following
expression:

AX)(9(X) — §(X))
P(Y =1,D=0)

where the terms that disappear at the parametric rate are contained within the additional term of o p(n’%). This
further simplifies to

1-9(X) vi(X) §(X) .
i P(Y =1,D =0) <(771)/1(X)+1> =500 " X) (X))}
9(Xx) yit(X) ) 2
e p(Y:LDZO)(((’y—l)ﬂ(x)+1)2)(M(X)—M(X)) +op(n"2)

(4)

i
TPl By Z1p—0) <(v— 1)/1(X)+1> 1—9(X) " P(Y =1,D = 0)(1— (X))

+ Ep | =

+op(n"?)

Now, we let d = (y — 1)(X) + 1 and d’ = (y — 1)u(X) 41 (i.e., the denominators of A and A, respectively). We
first look at combining terms (e) and (h)

. ! 5 (& [1 _ggigmvﬂ(ﬁf)w(ﬁf)} -E[2Ax)))
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This simplifies to give us that

_ 1 E[(l — 9(X))g(X) (va(X)m (X)) (v = Da(X) + 1) — (1 — §(X))g(X)ya(X)7(X)
P(Y =1,D=0) (1— g(X))dd

1 1 . . .
= 5 =15 =0 P LT gy (L~ 9O RET(0)(r — DAX)
+ (1= g(X))G(X)i(X)(X)
~ (1= §(X))g(X)a(X)7 (X)) |
1 1 N . N
= 5 =10 o E a0 (L~ 9E0IE00aX)mX)) (0 - D)

= 9X)g(XPya(X)F(X) + §(X)g(X)yi(X)7(X)
+ g(X)FXWV(X)m(X) = §(X) 7 X)m <X>)}

- S (0 - AX)T(X)) (3~ DA(X)
) -

P(Y=1,D=0) L(1—g(
+ 7(X)(9(X)m(X

9(X)7(X)) + g(X)GX)A(X) (R(X) = 7(X)) )]
()
We remark that we can simplify (i) (ignoring the common multiple of v/i(X) for now),
9(X)m(X) — g(X)7(X) + g(X)g(X)7(X) — g(X)g(X)m(X)
= g(X)F(X)(9(X) = 1) = g(X)m(X)(g(

Plugging this in yields that
1 1
P(Y =1,D = O)E[(l — §(X))dd’
+ () (9(X)F(X)(G(X) = 1) = HX)7(X)(9(X) 1)) )]
(

1 s 7 ~
1 - §(X))dd’ (1= g(X))g(X)(vi(X)m (X)) (v = D X)} (11)

((1 = g(X))FX) (X (X)) (7 = D(X)

1 Iy i ~ ~
=15 =) P LA (sC0RXIE0 = 1) — 4(XN)n(X0(9(X) - 1)

Next, we look at combining terms (f) and (g)

1 9(X)yw(X)pu(X) 1 —g(X) 1
P(Y =1,D =0) (E{ dd ]E[l—Q(X)g(X)A(X)D
_ 1 B ((1 —§(X))g(X) ya(X)pu(X) 1- g(X)g( )vfr(X)ﬂ(X)d)
P(Y=1,D=0) (1—9(X))d d 1—9(X) dd

We first try to simplify the numerator inside the expectation. First, we substitute d = (v — 1)4(X) 4+ 1 and
expand the terms.

(1= g(X))g(X)yA(X)u(X) — (1 = g(X))g(X) v (X) (X )d

= (1 - g(X)g(X)(X)u(X) — (1 = g(X))g(X) v (X) (X)) ((v = Da(X) +1)

= (1= g(X))g(X)#(X)u(X) — (1 = g(X))g(X )7 (X)u(X) (v = D(X) — (1 = g(X))g(X )7 (X)a(X)
= g(X ) (X)u(X) — 9(X)g(X )y (X)p(X) — (1 = g(X))§(X )y (X)u(X) (v — D (X)

— (X (X)a(X) + g(X)g(X )y (X)a(X)
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Grouping the and together, grouping (1) and together, and keeping term , we have

V(X)) (9(X)(X) = §(X) (X)) + 7 (X)g(X)g(X)(A(X) — u(X)) = (1 = g(X))g(X)ya(X)a(X) (v — 1)ja(X)
= (v (g(X)u(X) = §(X)A(X) + g(X)g(X)i(X) — g(X)G(X)u(X))

— (1= g(X))g(X )y (X)a(X) (v — Da(X)

= (v (g(X)a(X)(g(X) = 1) = g(X)u(X)(9(X) = 1)) = (1 = g(X)) (X )y& (X)a(X) (v — D(X)

Reintroducing the denominator results in the following expression

=150 Pl 600 1) - g G) - 1) 12
(L g(X)IX AKX (3~ D(X)
(- §(X))dd

Next, we combine terms from (11) and (12), which gives us that (ignoring the B 1 5=0) and the expectation
for now)

T (1~ SN AR (X) (= D) (13)

+ TS 0T @) — 1) - S0 ((X) - 1) (14)

A GUORXE(X) = 1)~ (O E(X) - 1) (15

Combining terms (13) and (16) gives us

T~ S (= DAX)(F(X) = 7(X)).

Combining terms (14) and (15) gives us

1 . . .
W(WQ(X)W(X)(Q(X) = ) (a(X) — (X)) +

The remaining term (j) from above is simplified as

1 . 1 N .
mE[g(X)A(X) - 9(X)AX)] = mE {Q(X)*’Y(’Y = Du(X) (X)) (#(X) - W(X))} (17

T () ~ DEE) - #(X))

P(Y=1,D=0)E |g(X)—
P = 1,0 =0)F |9(X) g3

as we note that

_ vRX)MX)  Ar(XuX) _ dya(X)uX) — dym(X)u(X)
d d dd’

:g%QW—UMXWﬂXﬁWm—%7—UMXhﬂXnmm+yﬂXmuj_W¢mmxo
1

=E%%v—UMXMMMHX»—MX»+EEﬂﬂxmu3_ﬂxmmw

Now, we can combine (17) and the combination of (13) and (16), giving us that

1

P(Y=1,D=0)
1 1

+PW:LD:mELL-(DM( Y

B [9(X) 35900 = DRCRACOGX) = ()

(X)X )ya(X) (v = Da(X)(r(X) - 7(X))
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which simplifies by factoring to give that

1 V(v = DAX) (R (X) — 7(X)) (9(X) (1 —g(X))g(X)a(X)
_mY:LD:mE d ( X) - (1-9(X))d )}

Now we can focus on the difference term, which simplifies as

9(X)(1 = 9(X))dp(X) (1 = g(X))g(X)d'x(X)
(1 —g(X))dd (1—g(X))dd~

and when only simplifying the numerator, we get that

(9(X) = 9(X)g(X))dp(X) — (§(X) — g(X)§(X))d u(X)
(9(X) = g(X)g(X)((v = D(X) + (X)) — (9(X) — g(X)g(X))((v — Du(X) + 1) a(X)
(9(X) = g(X)g(X)) (v — Da(X)u(X)

g )

+ (9(X) = 9(X)g(X))u(X) = (§(X) = 9(X)g(X)) (v = Du(X)a(X) = (§(X) — 9(X)g(X))a(X)

\/

This further simplifies to give us that

= (v = Da(X)u(X)(g(X) — g(X)g(X) = §(X) + g(X)g(X)) + (9(X) — 9(X)g(X))u(X) — (9(X) — g(X)§(X))a(X)
= (v - DX)u(X)(g(X) — 3(X)) + g(X)(X) — g(X)a(X) + g(X)g(X)a(X) — g(X)g(X)u(X)

= (v = DA (9(X) = 40X ) + (9(X)n(X) = §X)X) ) + g(X)a(X) ((X) - u(X))

Then, plugging this back with the denominator and factored out term in the numerator gives us that

- 1 YO = DAX) ey 1) -
TRy =LD=0) [ P ERX) = (X)) - (r = D(X)u(X) (9(X) guoﬂ
(v = Da(X)
+p(yz1,D:0)E{ 7 (7(X) — (X)) (Q(X)/L(X)g(X)u(X)ﬂ
1 Y(y = Da(X) A
+ P(Y=1,D = O)E { ] (7(X) — m(X)) g(X)g(X)(M(X) — M(X))}

Note that in each line, we have squared terms in differences of our estimated quantities on P and P. In the
second line, we have (& — 7) - (g — gfi); the term (gji is a plugin estimator, which we have previously shown in
Appendix A.4 to have a rate of the sum of the rates of § and fi. Thus, when multiplied by the difference & — m,
we still achieve squared terms. Thus, this term converges at a rate of OP(n’%) if our estimates of m and g and p,
cach converge at a rate of op(n=7).

Note that #(X)i(X) — m(X)u(X) = #(X)A(X) — 7(X)(X) + #(X)u(X) — #(X)u(X) = #(X)(EX) - u(X)) +
(7(X) — m(X))u(X). Now looking at (18), we can write it as

! 9X) o
p(Y: LD_O)E{ dd'’ V(T(X)H(X)—W(X),u(X))]

9(X)
B P(Y:LD:O)E{ da "

(p) (@)

First, we look at the two terms with (f(X) — (X)) (which are (p) and (15)).

g(X) . X 1 1—9(X)
ﬁ(Y—l,D:O)E{ — ’YW(X)(M(X)—M(X))} - P(Y:l,D:O)E{( —
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Looking at ﬁ - d—ld, we unify the denominator as follows

d 1 1 _ 1 _ (= DaX) +1 - ((v = Dp(X) +1)
dd' dd  (y—-DuX)+1 (y=DaX)+1 d'd
_ (= DHaX) = X))
dd'

Putting this back together, the complete i — p term is

1 P (v = DUX) = p(X))
- O)E {QW(X)(M(X) = 1(X)) I }

We observe that this is in the form of squared differences of (f(X) — u(X)). Thus, this term converges at a rate
of op(n=2) if our estimate of ji(X) converges at a rate of op(n=%).

Now, looking at the (#(X) — 7(X)) terms (which are (q) and (14)), we have

Y —1.D = O)E {gdld,w(X)(ﬁ(X) - w(X))} ~P¥ = 117D — O)E {Q(X)i — gg; %wl(X)(fr(X) — (X))
_ ! Y ) — mio) (290 ) — 9 =900 -
_P(Yl,DO)E[d( 0 (X))< g HX) == 1_9(X)u(X)>}

Looking at the terms inside the parentheses, £ (d),() w(X) — 9(X) 1=9(X) [i(X), we unify the denominator as follows

= (9(X)u(X)d — g(X)p(X)d') + (9(X)§(X)uX)d' — g(X)§(X)u(X)d)

= 9(X)p(X) (v = Da(X) + g(X)u(X) — (9(X)a(X)(y = Du(X) + §(X) (X))

= 9(X)g(X)u(X) (v = Du(X) + g(X)g(X) (X)) = (9(X)g(X)a(X) (v = D(X) + gg(X) (X))
= (v = Du(X)i(X)(9(X) = §(X)) + (9(X)u(X) = §(X) (X)) + g(X)G(X) (A(X) — p(X))

1 5 ) )
ST [0 = 70 = DO 6(X) 90
1 o -

P i =0 E [0 ~ TR — 90R)]
1 o ) )
TRy -1p=0" |2 () = m(X))g (0O (RX) — p(X))]

We observe the that first and third terms are in the form of squared differences, so they converge at a rate of
oP(n_%), when the individual estimators converge at a rate of OP(TL_%). We observe that the second term scales
with |g(X) — §(X)| + |#(X) — (X)| (again by the logic in Appendix A.4) and is multiplied by (#(X) — 7(X)),

. . 1
so it converges in op(n~2). O

Now, for the following Lemmas and proofs, we let A(X) = AR Ghere ~ = %

T (Y -De(X)+1
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Lemma 8. Let our estimand 912”(13) be given by

Ly _ 1
)= ey =0 [T ux) +1

Let v/ = % Then, we have that our influence function is given by

1[Y =1,D =0

N / 9(X)A'(X) A'(X)(A[D = 0] — g(X))
IF(05) = TPV —1D= O)QEP[g(X)A (X)] + PY LD =0) + PY —1.D=0)
1[D = 1] 7 p(X)
TRV =10 =0) (7 = hux) T

PV =10=0) g(X) (i~ Hu(X) + 1)°
where A'(X) = Ay (X).

Proof. This holds via a direct application for the proof for the upper bound with our sensitivity model, except
using v = % O
Next, we move on to discussing our estimator of the lower bound, using this influence function.

Proposition 6. Our one-step estimator of 0l2’7 is given by

~ Ly 1 ) -
6, =pW:LD:m&¢MXMW—Nﬂ
) i)
v :m&{m”*Ww—n¢m+n@ <)H—mXJ
1 -~ V7 (X) il
TRy, =mEP1wm«vnmxwlfW’“(w

Proof. This holds via a direct application for the proof for the upper bound with our sensitivity model, except
: / 1
using v = =. O

¥
Lemma 9 (Error of one-step estimator of lower bound with ). Let the error of our one-step estimator be given
by

R(P, P) = 05 (P) — 05" (P) + Ep [IF (65" (P))]

Then, we have that

when (7 — 1), (i — 1), (§ — g) have rates of at least op(n™7).

Proof. This holds via a direct application for the proof for the upper bound with our sensitivity model, except

using 7' = % O

B Margin-based Analysis and Asymptotic Normality of our Estimators

In this section, we provide the proof for Theorem 2. First, we provide a general analysis of estimating a quantity
that consists of a max or min operator, showing that the resulting estimator is asymptotically normal. Next, we
show that the individual components of our estimators satisfy the assumptions in our margin analysis, concluding
that our resulting estimator is asymptotically normal (i.e., Theorem 2).
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B.1 Preliminaries and Assumptions for Theorem 2

Let W = (X,Y, D, T) denote all of our observed variables. The estimators we introduce in this paper all fit within
a common framework, where we consider the general problem of estimating a bound given by either of

W= Bp L_nll?fje;(W; P)} = Ep [%m(W; P)} di(W) = arg_max 6;(W:P) (19)
V"= Ep L_nﬁi?,J 07 (W; P)} =Ep [%(w)(W; P)] dy(W) = argj€T§§7J9?(W; P) (20)

where the 0% (W; P),0;(W; P) are individual bounds that can be evaluated at each sample W and we wish to
take the pointwise maximum (for our lower bounds) or minimum (for our upper bounds) and then marginalize
over WW. Note that the set of individual bounds 6;(W; P) will differ depending on whether we are estimating
upper and lower bounds. Furthermore, we define for each 8;(W; P) (regardless of whether it is a lower or upper
bound) the corresponding functional

In each of the estimators we consider in this work, we have derived a plug-in estimator for each 0;,
0; == Eplo;(W; P)], (22)
and we similarly have access to a one-step (or “debiased”) estimator for each 6;,
¥j = Epl0;(W; P) + A;(W; P)] (23)

where \;(W; P) is the influence function for 6; in (21), though in the following results we will only require that
this additional term satisfies certain conditions (e.g., being zero-mean Ep[X;(W; P)] = 0) and that the plug-in
estimator in (22) and the one-step estimator in (23) converge to #; at certain rates.

Our estimator of the lower bound in (19) is given by the following, where we introduce the short-hand (W; P, d)
= By S Wi P (24)
(PI(W; paczl) = OEZ(W)(W; P) + Alil(W)(W; P)
dy(W) == arg ‘maXJG;-(W; P)

JEL,...,

and our estimator of the upper bound in (20) is analogously given by

9 = Bp " (Wi Pd)] (25)
WP dy) =05 0 (Wi P)+ 28 ) (WS P)
d, (W) = argjgﬁ%l] 03 (W; P).

In words, each estimator uses the plug-in estimators Gj(W;P) to estimate which bound is tightest at each
observation W, uses the tightest bound for each observation, and then averages the bias-corrected version of the
bound at each W to give the final estimate.

Our goal is to demonstrate that these estimators for the lower bound in (24) and for the upper bound in (25) are
asymptotically normal, and to characterize the resulting asymptotic variance, so that we can provide asymptotically
valid confidence bounds. The main technical challenge is that these estimators are non-smooth, given the presence
of the max/min operator.

To do so, we will require a few technical assumptions, which we state in a general form, since they apply equally
whether we are considering upper or lower bounds. Our first assumption states that our estimators are bounded.

Assumption 6 (Boundedness). For every j € {1,...,J}, A\;(W;P) and 6;(W; P) are both uniformly bounded
by constants with respect to n.
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We will also require that for the estimator of each individual component of the bound, the chosen one-step
correction A; has zero mean, which will be satisfied whenever A is derived via an influence function-based debiasing
step (related to the fact that influence functions have mean 0).

Assumption 7 (Zero-mean Correction Term). For every j € {1,...,J}, Ep[A\;(W;P)] = 0.

We also require a consistency assumption for the plugin estimator, although no assumption about its rate of
convergence is required just yet.

Assumption 8 (Consistent Plug-in Estimator). For every j € {1...J}, ||éj —0;|| = op(1).

Finally, we require a technical “margin” condition, such that P puts bounded density on the event that
min;q 00wy (W) — 0;(W) is close to zero, i.e., that there are two near-optimal bounds at a given W.

Assumption 9 (Margin Condition). There exists some a > 0 such that

P | min |0 WY =6, (W) <t| <t*
i o (W)~ 0,)] < 1| £

Assumption 10 (Independent Samples). In (24) and (25) the expectation is taken with respect to Pp, while the
estimator (W P2, d) uses an independent sample Ps.

B.2 Proof of Technical Lemmas for Theorem 2

To prove Theorem 2, we require Lemma 10 and Lemma 11.
Lemma 10. Let Assumptions 6, 7, 8, 9 and 10 hold. Then

=t = Epo (W P, dy)] — Epl (W; P, dy)]

+0r (18] = 815+ max ERl6}(: P) 4 ALV P) - 65075 P)] )

+0p(n*%)
——

and similarly

P =" =Ep[p"(W; P dy)] — Eple"(W; P, dy)]

......

+op(n72)
where Y, b are defined in (19) and (20), and P',4" are defined in (24) and (25).

Proof. Throughout the proof, we use 9, ¢ in place of e.g., ", 9" when the proof technique applies equally to
either estimator 1", 1!. We use P, and P to denote two independent empirical distributions (per Assumption 10),

where the latter is used to estimate the nuisance parameters. With some abuse of notation, we will occasionally
write (W) = 0(W; P) and (W) := O(W; P).

To start, we use the following standard decomposition, with the short-hand Pyp(W; P, ci) = Ep[p(W; P, ci)]7 and
(P — P,)(-) = Ep[] — Ep,[-]. This gives us that
¥ = = Po(W; P.d) — Pop(W; P, d)
= (P = P){p(W; P,d) — o(W; P,d)} + P{p(W; P,d) — o(W; P,d)} + (P — P,){p(W; P,d)}
=Ry + Ry + (P — P,){p(W;P,d)},
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and we proceed by separately bounding R; and Rs.
Part 1: (Bounding R;) First, we show that under the given conditions, Ry = o(n™2).

We make use of Lemma 2 of Kennedy et al. (2020), which states that this term is Op(||¢ — ¢|| - n~/?), where
we have used the shorthand ¢ == o(W; P,d) and ¢ := o(W; P,d). Therefore, the entire term is o(n~/2) if the
following condition holds:

We first bound

S B | (¢0ViPod) = Wi Pd)) | 4 B | (w07 = o P0)) | (26)

where we simply add and subtract ¢(W; P, cz) in the second line, and the third line follows from the inequality
that (a + b)* = a® + 2ab + b2 < 2(a2 + b?), since (a —b)*> > 0 = 2ab < a® + b2. Note that we absorb the
constant factor into <. We now bound the two terms on the right-hand side of (26), showing that both are Op(1).
The first term on the right-hand side of (26) satisfies

J
Epl(o(W; P,d) — (W sz [( WP>+A<W;P>—ej<W;P>—Aj<W;P>)2]:0p<1>

via consistency of the underlying estimator for each bound in Assumption 8. The second term on the right-hand
side of (26) satisfies

B | (p7iPd) - p7i )| = ZEP [1tdw) = 37— 1aw) = 5y w2 P) + 0,09))7]

P(6 d(W) # ed(W))

where we write 04wy = Oqow)(W; P) to simplify notation, and where the last step uses that 6; and \; are
uniformly bounded per Assumption 6, and that J is fixed. Next, we will show that P(HJ(W) # 0qowy) = op(1) by

using the consistency of ci, combined with the margin condition from Assumption 9. For any ¢ > 0, we have that
P(QJ(W) 7& Hd(W)) = P( d(W 7& Gd(W Hlln \Hd(w — 9 | < t)
+ P06 0 , min |6, -0 >t
( aw) 7 Oaew), min {0aw) = 0;] )

< | < _ 0.
<p ( min faqw) — 03] < t) +P (|9d(w) Biam| > t) (27)

where the last line uses that whenever 6y, # 0a(w), it must hold that d(W) # d(W) and hence ‘GJ(W) — Oqowy| >
minqw) [aew) — 051-
Note that, if we are considering d;, then Gdl(W) 0 QW) > 0, since we take a maximum over ; when considering

d;, and similarly 6, QW) Hdl(W) > 0, since d; considers the maximum over 0 As a result, we can write that

Oa,(w) — 93,(W)‘ =0a,w) = 04,0w)
< ba,wy = Oa,ow) + 04, 0wy — i, (w)

< ’edl(w) - 9dl<w>‘ + ’%(W) = Oa,om) 28)
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and if we are considering d.,, then 04, ) — Hciu(W) <0, and G(iu(w) — 04, (w) <0, and by similar logic
Oa,(w) — %(W)’ =04, w) — ba.ow)
<04,y = 0, ow) T ba.ow) = O, )
< ‘%(W) - %(W)’ + ‘édu(W) - %(vv)‘ (29)
Returning to (27), let C' be the universal constant from the margin condition in Assumption 9. Using the margin

condition, and our reasoning above, coupled with the fact that for a < b, P(a > t) < P(b > t), we continue to
bound as follows

P(e(i(w) 3’é ed(W)) <Ct*+P (|9d(W) - éd(W)(W)| + |éd(w)(X) - QJ(W)| > t)
J

<Ct*+P 2(0; — ;] >t

1

J

J
2 A
< Ct* + n Z Ep[|0; —6,]] (using Markov’s inequality and linearity of expectation)
i=1
2,
< Ct* + ;Z 1105 — 0;1]2-
i=1

Now, we obtain the desired result by using consistency of the underlying plug-in estimators (Assumption 8)
that for each j, ||éj —0;||2 = op(1). For any € > 0, set t. = (&) “ so that Ct® = e. Next, define the sequences
X, = P(OJ(W) #+ Qd(w)) and Zf, = % Z;]:l ||é] —0j]]2. Since |X,,| < e+ Z5 and Z5 = op(1), X" = op(1) as well,
concluding the proof of the bound on R;.

Part 2: (Bounding Ry) We now show that

yeeny yeeny

Ral = O (16, — 3155+ max | By (W5 P) + A, P) — W )] )
j= j=
Our goal is to bound Ry = Ep[p(W; P,d) — o(W; P,d)]. We decompose this as
Ry = Ep {A iy W5 P) - B0y (W3 P) = 6500, (W P)] + Ep {9 iy (W3 P) = By (W3 P)} (30)

noting that Ep[\;(W;P)] = 0 by Assumption 7. For the first term of (30), we have that

B [Nagy (W3 P) + 80 (W5 P) = 05, (W3 P)] | < XJ: B [\ (W3 P) + 0,03 P) = ;W3 P)] |

j=1

S max |Ep [Aj(w;ﬁ) +0,(W; P) — oj(w;p)}

)

which gives us the second term in the desired expression for |Rs|. For the second term of (30), we use the margin

condition. First, since this difference is equal to zero whenever d(W) = d(W), we can write the absolute value of
this expression as

‘Ep[eg(m(w; P) = Baqwy (W; P)}\
< Ep Hﬂﬂw)(W; P) — 040wy (W; P)H
= Ep [1[d(W) #d(W)]- ‘9«1(W)(W§ P) = 00wy (W5 P)H

=Ep {1 L;C}}IV},) |Oaqw) (W P) — 0;(W; P)| < ‘9d<W>(W;P) - OJ(W)(W;P)” : ’9d<W>(W;P) - 94<W>(W%P)H (31)
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where the indicator follows from the simple fact that d(W) # d(W). Recall from (28) and (29) that regardless of
whether we are using dy, d,,, we can write that

Baw) (W3 P) = 00 (W5 P)| < |8 (W5 P) = agury (W3 P)| + (800 (W5 P) = 0, (W P)

<2 max ||0;(W;P)—0;(W; P)H (32)
j=1,..., J 0o
Moreover, we can observe that
Y<7Z = Ep[l[X<Y] Y|<Ep[l[X <Z]-Z]. (33)

Putting it all together, we observe that (31), combined with (32) and (33), gives us the desired result, where we
use the shorthand 0; := 6;(W; P) and 6; := 6;(W; P) for simplicity

Ep[ed(w)(W;P) — Qd(W)(W;P)]‘ < Ep { |:j;£(dIHV1V) |9d wy — 0; | <2 nl1ax } 2J:nr11ax 6; — 0, OJ
= — < 0. . .
P(]EH‘}V)wd(W 0;] <2 jmax | 0; — 0, Oc) 2]_311?% 0; — 0, N

< max H — 0|2
j=1,....,J
using the margin condition. Combining the bounds on the two individual components of Ry yields the result.
We can now plug in the bounds derived in Parts 1 and 2 (for Ry and Rs) to conclude our result for Lemma 10. O

Now, to show that an estimator is asymptotically normal (Lemma 11), we make two more assumptions, which
require that each of the one-step estimators converge at a sufficiently fast rate.
Assumption 11. ||§; — 0,/ = op(n=2), where a is defined in Assumption 9

1

Assumption 12. For each j € {1...J}, Ep[0;(W; P) + \;(W; P) — 6;(W; P)] = op(n~7)

Lemma 11. Under the conditions of Lemma 10, as well as Assumptions 11 and 12, then
Vi (9= ') = N, Var(g (W3 P,dy))

and

N (J}u _ 1/,“) — N(0, Var(e“(W; P,dy)))

Proof. Under Assumptions 11 and 12, the second and third terms ((b) and (¢)) in Lemma 10 vanish asymptotically
at fast rates, so only the first term remains. The desired result directly follows from an application of the
Central Limit Theorem on the remaining first term. O

Thus, we have shown that a general estimator is asymptotically normal, given that it satisfies the aformentioned
assumptions. We will now show that our estimators satisfy these assumptions.

B.3 Verifying Assumptions for Our Estimators
B.3.1 Setup and Notation

First, let W = (X,Y, D, T) denote all observed variables, as in the previous section. Let 61 (W; P) be defined as
the quantity that gives us the upper bound based on the partial identification, i.e.,

Ep[07(W; P)] =" (34)

and let 02(TW) = 1, the constant function. Furthermore, let 85(W; P) be defined similarly as the quantity that
gives us the upper bound based on 7, i.e.,

Ep[03(W; P)] = 3 (35)
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where J = 2 for the partial identification bound, and J = 3 for the bound that includes . Furthermore, we define

our estimators as follows

BOV:P) = A0

B P) = o s d 000 00 1)

NOViP) = s (— B =1 = o PB4 (X))
+1[D = 1T - #(); fg&)

NOVEP) = XV P) 4 o ( B = D=y PP ICG) )

and, with letting

BOViP) = G i (A:(3))
AW P) = p 900 (4:00)
e s Y =1D=0 . IXA(X)  AX)([D =0] - §(X))
MV P) = 13(Y=1,D:0)2EP[9(X)A”(X)]Jr13(1/:1,1)=0)Jr P(Y =1,D =0)
1D = 1] i X) ey )
PV —1,0-0) (- D) +10 T
1[D = 0] v (X) .
P(Y=1,D= )((v—l)A(X)Jrl)Q(Y_M(X))
o Ay—1p-0 H(X)A(X)  As(X)([D=0] - §(X))
As(W: F) _P(Y:1,D—0)2EP[9(X)A%(X)]+P(Y:LD:O)+ P(Y =1,D=0)
1[D = 1] Sp(X) . 9(X)
Py —1.D—0)C-nax 10 TG0
= iax
D=0 )y )

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

Then our desired quantity to estimate, and the combined estimator, is defined as in the previous section (see (24)

and (25)).

Our goal is now to demonstrate that the conditions of Lemma 11 hold. If so, then we can conclude that our
estimator is asymptotically normal, with variance given by Var(p(W, P,d)), which we can in turn estimate from

data. Let us discuss each condition in turn.
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B.3.2 Verifying Assumptions for the Partial Identification Bound

Throughout, we will assume that there exists some « such that Assumption 9 holds. With this in hand, we will
verify that the remaining assumptions of Lemma 11 hold for our estimators. For each assumption, we re-state the
assumption for ease of reading, then discuss whether or not it is satisfied in our case.

Assumption 6 (Boundedness). For every j € {1,...,J}, X\j(W; P) and 6;(W; P) are both uniformly bounded
by constants with respect to n.

In all cases, this assumption holds. For each 6; and A;, we have a denominator that contains P(Y =1,D=0).
While this can be zero, we assume that our dataset contains instances of Y = 1 in our pre-treatment dataset,
which makes this value nonzero. Similarly, we also have that 1 — §(X) is in the denominator as well; given that
our observed training data for our models has non-zero support on pre-treatment data, this will also be greater
than zero.

Assumption 7 (Zero-mean Correction Term). For every j € {1,...,J}, Ep[A\;(W;P)] = 0.

In our error analysis, we have shown that the correction functions that we derived have error terms that are
second order in differences in quantities estimated on P and P. Therefore, by an application of the results in the
work of Kennedy et al. (2021), we have that our correction functions are efficient influence functions (and that
our usage of the discretization trick in deriving this influence functions is valid). As influence functions have zero
mean, this assumption is satisfied.

Assumption 8 (Consistent Plug-in Estimator). For every j € {1....J}, ||f; — 6,]| = op(1).

This assumption is directly implied by Assumption 12 below, so we defer discussion until then.

Assumption 9 (Margin Condition). There exists some a > 0 such that

P | min |60 WY =6, (W) <t| <t*
#d(w)|d(W)( ) =0 (W) <t S

As discussed above, we assume this condition, rather than verifying it directly, since it depends on the underlying
data-generating process.

Assumption 10 (Independent Samples). In (24) and (25) the expectation is taken with respect to P;, while the
estimator (W Py, CZ) uses an independent sample Ps.

As we use cross-fitting to estimate our nuisance functions, this assumption holds by construction.

Assumption 11. ||6; — 0,||13* = op(n~2), where « is defined in Assumption 9

For our values of 0;, we have that our estimates converge at a rate of OP(n*%). We can consider an estimate of
0} (W; P). This is given by

9(X)#(X)
P(Y =1,D=0)

P n P(Y =1,D =0) }{PW=LD=®

9(X)m(X) a2
L]

§X0R(X) } - g(X)m(X) ] ’

where o2 is the variance of our estimator, following the steps in Appendix A.4. Given that our estimator is
bounded and, thus, has finite variance, we observe that the variance term has a rate of 0p(n*%). The remaining
error term is on the same order as the sum of the individual estimators’ error terms. In other words, @ and ¢

must converge at a rate of op(n”~ e ), which is easily satisfied with o = 1.
Assumption 12. For each j € {1...J}, Ep[0;(W; P) + X\;(W; P) — 6;(W; P)] = op(n=z)

We have shown in Lemma 4 and Lemma 5 that given estimators of p, m, g that converge at rates of OP(n’%),
then our one step corrected estimator converges at a oP(n*%) rate.

B.3.3 Verifying Assumptions for the Sensitivity Analysis Bound

We repeat the same discussion for our sensitivity analysis bound. Throughout, we will assume that there exists
some « such that Assumption 9 holds. With this in hand, we will verify the remaining assumptions of Lemma 11.
For each assumption, we re-state the assumption for ease of reading, then discuss whether or not it is satisfied in
our case.
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Assumption 6 (Boundedness). For every j € {1,...,J}, X\;(W;P) and ;(W; P) are both uniformly bounded
by constants with respect to n.

In all cases, this assumption holds. For each §; and \;, we have a denominator that contains P(Y =1,D=0).
While this can be zero, we assume that our dataset contains instances of Y = 1 in our pre-treatment dataset,
which makes this value nonzero. Similarly, we also have that 1 — §(X) is in the denominator as well; given that
our observed training data for our models has non-zero support on pre-treatment data, this will also be greater
than zero. In our sensitvity analysis bound, we have an additional term of m, but this is always greater
than 0 because of the 1 that is added in the denominator.

Assumption 7 (Zero-mean Correction Term). For every j € {1,...,J}, Ep[\;(W;P)] =0.
In our error analysis, we have shown that the correction functions that we derived have error terms that are
second order in differences in quantities estimated on P and P. Therefore, by the results in the work of Kennedy

et al. (2021), we have that our correction functions are efficient influence functions. As influence functions have
zero mean, this assumption is satisfied.

Assumption 8 (Consistent Plug-in Estimator). For every j € {1....J}, ||6; — 6,]| = op(1).

This assumption is directly implied by Assumption 12 below, so we defer discussion until then.

Assumption 9 (Margin Condition). There exists some a > 0 such that

P | min |0 WY =6, (W) <t| <t*
min fhaqu () — 6,00)] < 1] <

As discussed above, we assume this condition, rather than verifying it directly, since it depends on the underlying
data-generating process.

Assumption 10 (Independent Samples). In (24) and (25) the expectation is taken with respect to P;, while the
estimator (W; P2, d) uses an independent sample Ps.
As we use cross-fitting to estimate our nuisance functions, this assumption holds by construction.

Assumption 11. HHAJ —0;]| 1> = op(n~7), where a is defined in Assumption 9

For our values of 6;, we have that our estimates converge at a rate of op (n‘é). We can consider an estimate of
6% (W; P). This is given by

9(X)7(X)

Ep | —1200)
PlP(y=1,D=0)

_IXAX) | [ e(X)A(X)
E{PW:LD:@} E{PW:,D:@

where 02 is the variance of our estimator, following the steps in Appendix A.4. Given that our estimator is
. . . 1 ..

bounded and, thus, has finite variance, we observe that the variance term has a rate of op(n~2). The remaining

error term is on the same order of the sum of the individual estimators’ error terms. We can again argue that A

is a plugin estimator for A, which gives us that it also converges at a sum of the rates of i and 7. In other words,

these must converge at a rate of op(n~ e ), which is easily satisfied.
Assumption 12. For each j € {1...J}, Ep[0;(W; P) + \;(W; P) — 6;(W; P)] = op(n=z)

We have shown in Lemma 7 and Lemma 9 that given estimators of u, 7, g that converge at rates of 0p(n_%),
then our one step corrected estimator converges at a 0p(n_%) rate.

B.4 Proof of Theorem 2

Having proven the required technical lemmas and having demonstrated that our estimators indeed satisfy the
required assumptions, we can now derive Theorem 2.

Theorem 2 (Asymptotic Normality of Estimators). Let 6 denote the plugin estimate of any of the individual
components of each bound. Under the conditions that Assumption 5 is satisfied, u and g are lower bounded, and
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each 0 is consistent (i.e., ||0 — 0|| = op(1)), the error of the estimator satisfies.

g =t =0 (|I0y — o311

+ max Ep[0) +X; —03]) + Op(n~})

j=1,...,J

Provided that 7, fi, and § converge at a op(n~%) rate, and the plugin estimators satisfy HQA;L — 0|t = op(n~2),

then 1[)u is asymptotically normal with
VAt =) = N0, Var(p(P,d))).

Proof. We can directly apply Lemma 10 and Lemma 11, given that our estimators satisfy all the given assumptions
(as discussed in Appendix B.3), to prove this result. O

C Dataset and Cohort Details

C.1 Dataset Consent and Acknowledgement Statement

The analyses described in this publication were conducted with data or tools accessed through the NCATS
N3C Data Enclave https://covid.cd2h.org and N3C Attribution & Publication Policy v1.2-2020-08-25b
supported by NCATS U24 TR002306, Axle Informatics Subcontract: NCATS-P00438-B. This research was possible
because of the patients whose information is included within the data and the organizations (https://ncats.
nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories) and scientists who
have contributed to the on-going development of this community resource: https://doi.org/10.1093/jamia/
ocaal96.

C.2 Cohort Detalils

The patient cohort is filtered out based on the following eligibility requirements:

e Satisfy all FDA-approved Paxlovid eligibility requirements U.S. Food and Drug Administration (Year of
Access)

e Not taking any medications, where coadministration with Nirmatralvir-Ritonavir is contraindicated (Marzolini
et al., 2022; Larkin, 2022)

e First COVID-19 diagnosis visits are between 22 December 2021 (date of FDA approval for Paxlovid) and 31
May 2023

e From sites with at least a 10% treatment rate—to exclude sites where treatment is potentially underreported.


https://covid.cd2h.org
https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories
https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories
https://doi.org/10.1093/jamia/ocaa196
https://doi.org/10.1093/jamia/ocaa196
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