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Quantum many-body scars are highly excited eigenstates of non-integrable Hamiltonians which violate the
eigenstate thermalization hypothesis and are embedded in a sea of thermal eigenstates. We provide a general
mechanism to construct partially integrable models with arbitrarily large local Hilbert space dimensions, which
host exact many-body scars. We introduce designed integrability-breaking terms to several exactly solvable spin
chains, whose integrable Hamiltonians are composed of the generators of the Temperley-Lieb algebra. In the
non-integrable subspace of these models, we identify a special kind of product states – the generalized spin helix
states as exact quantum many-body scars, which lie in the common null space of the non-Hermitian generators of
the Temperley-Lieb algebra and are annihilated by the integrability-breaking terms. Our constructions establish
an intriguing connection between integrability and quantum many-body scars, meanwhile provide a systematic
understanding of scarred Hamiltonians from the perspective of non-Hermitian projectors.

Introduction.– The Hamiltonians of isolated quantum
many-body systems typically respect the Eigenstate Thermal-
ization Hypothesis (ETH) [1–3], which leads to the quantum
thermalization dynamics and scrambling of local information
during the unitary evolution. Two mechanisms strongly vio-
lating the ETH have been extensively studied in previous lit-
erature, including the integrability [4] and many-body local-
ization [5, 6]. In the past few years, a type of weak ergodic-
ity breaking phenomena known as quantum many-body scars
(QMBS) has attracted considerable attention [7–9]. QMBS
refers to a vanishing fraction of highly excited eigenstates
that violate the ETH and possess relatively low entanglement
compared to neighboring thermal eigenstates. The studies of
QMBS were initiated by the discovery of nonthermal coherent
revival dynamics in Rydberg atom simulators [10, 11]. Since
then numerous theoretical works have been devoted to un-
derstanding these anomalous excited eigenstates [12–19] and
finding new models hosting QMBS [20–30].

Among the plethora of Hamiltonians hosting QMBS, there
exist many models in which scarred eigenstates have exact an-
alytical expressions [31–43]. These exact QMBS can be char-
acterized by several unified frameworks such as the projector
embedding [44], group-theoretic approach [45–48], and com-
mutant algebra [49]. In particular, the scar states in Ref. [39]
were constructed by adding integrability-breaking terms to ex-
actly solvable clock models [50]. These terms annihilate a set
of special excited eigenstates of the original integrable Hamil-
tonian. Although the integrability is broken in the presence of
perturbations, these special eigenstates are preserved as exact
QMBS in the resulting non-integrable Hamiltonian.

In this paper, we greatly extend this type of philosophy
by providing a general strategy to construct several partially
integrable models hosting exact many-body scars. Specif-
ically, we introduce designed integrability-breaking terms
to the higher-spin generalizations of the one-dimensional
anisotropic Heisenberg model. These models host a special
kind of product states – the generalized spin helix states [see
Fig. 1(a) for a schematic illustration] as excited eigenstates,
which are annihilated by the perturbation terms and thus pre-
served as exact QMBS in their non-integrable subspaces. To

FIG. 1. (a) Generalized spin helix states for higher-spin models.
The spin vectors (the black arrows) of the higher spins (the colorful
spheres) wind in the Sx–Sy plane, while maintaining a fixed angle
with the Sz axis. (b) A pictorial illustration for the partially inte-
grable Hamiltonian Eq. (1) hosting the generalized spin helix states
as exact quantum many-body scars. The local degrees of freedom on
each site are divided into two sets A and B. The interactions between
the basis states in A and those in B constitute the XXC Hamiltonian,
while the interactions between different basis states within A or B
take the form of Ph′P (see the main text).

provide some background, we introduce the exactly solvable
spin-1/2 XXZ Hamiltonian [51]:

HXXZ =

L∑

j=1

[
σx
j σ

x
j+1 + σy

j σ
y
j+1 − cos(γ)(σz

jσ
z
j+1 − 1)

]
,

where σα
j (α = x, y, z) denote Pauli matrices on the site

j, and cos(γ) parameterizes the anisotropy of the interac-
tion strength in the z direction. The following spin helix
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states are zero-energy eigenstates of the above Hamiltonian:
|ψ(β)⟩ = ⊗L

j=1(|↑⟩j + β exp(i(j − 1)γ) |↓⟩j), β ∈ C. The
term “spin helix” refers to the spatial spin configuration in
which the azimuthal angle of each spin increases by a fixed
value γ compared to the previous one. These highly excited
eigenstates are associated with the phantom Bethe roots with
zero energy and transparent scattering amplitudes [52–55]. In
addition, these states can exhibit intriguing non-equilibrium
many-body dynamics: After we couple a uniform z direction
Zeeman field to the spin chain, |ψ(β)⟩ is no longer an eigen-
state. Instead, the parameter β oscillates and shows perfect
revival, as observed in recent cold-atom experiments [56–58].

The long-lived non-stationary dynamics starting from the
spin helix states explicitly give rise to the violation of gen-
eralized thermalization in integrable models, which states
that generic initial states typically thermalize to generalized
Gibbs ensembles after long-time evolution [59, 60]. Recently,
Refs. [58, 61–67] have embedded spin helix states as “true”
QMBS through adding certain integrability-breaking terms to
the spin-1/2 XXZ Hamiltonian, or extending to higher spa-
tial dimensions. In the current work, we go beyond the spin-
1/2 cases by allowing arbitrarily large local degrees of free-
dom on each site, while maintaining the two-local property
of the Hamiltonians. After adding designed perturbations, the
Hilbert space factorizes into several integrable subspaces in
which the Hamiltonian reduces to the spin-1/2 XXZ Hamil-
tonian, together with one non-integrable subspace hosting the
generalized spin helix states as QMBS. This unique feature
makes our models versatile platforms for investigating the in-
terplay between integrability and weak ergodicity breaking.
More interestingly, we could interpret our partially integrable
Hamiltonian as the summation of local non-Hermitian projec-
tors annihilating the generalized spin helix states. We demon-
strate that this underlying mechanism also exists in many
other scarred Hamiltonians [45, 49, 68], which provides an-
other crucial unified framework for exact QMBS.

The scarred models with partial integrability.– Our con-
structed scarred models consist of two components:

H = HXXC +

L∑

j=1

Pj,j+1h
′
jPj,j+1. (1)

The first component is the integrable XXC model consist-
ing of of translational invariant two-local Hamiltonian den-
sities [69]:

HXXC =
L∑

j=1

∑

a∈A,b∈B

[ηbE
j
ab ⊗ Ej+1

ba + η−1
b Ej

ba ⊗ Ej+1
ab

− cos(γ)Ej
aa ⊗ Ej+1

bb − cos(γ)Ej
bb ⊗ Ej+1

aa ]. (2)

Here L is the number of sites on a one-dimensional chain with
the periodic boundary condition. For each site, the basis states
of the local Hilbert space are labeled by |c⟩ , c = 1, 2 · · · , N .
The local degrees of freedom are divided into two sets A and
B, with the dimension NA and NB respectively. The twist

parameter ηb = ±1. cos(γ) parameterizes the interaction
strength between basis states belonging to different sets on
the neighboring sites. The two-local Hamiltonian densities
hj,j+1 are represented in terms of the standard basis elements
of N ×N matrix Ej

ab = (|a⟩ ⟨b|)j .
The second component in the Ph′P form is introduced to

break the integrability. Pj,j+1 are two-local Hermitian projec-
tors given by

Pj,j+1 =
∑

a,a′∈A

(P+1
aa′)j,j+1 +

∑

b,b′∈B

(P
ηbηb′
bb′ )j,j+1, (3)

where P η
ab =

1
2 (|ab⟩ − η |ba⟩)(⟨ab| − η ⟨ba|). h′j is a generic

Hermitian operator with support on the vicinity of the site j.
We highlight an important feature of the XXC model,

which is not only closely related to its integrability, but also
plays a crucial role in hosting the generalized spin helix states.
We notice that the local Hamiltonian hj,j+1 in Eq. (2) can be
deformed into a non-Hermitian operator:

h̃j,j+1 = hj,j+1 + i sin(γ)
∑

a∈A

(Ej
aa ⊗ Ij+1 − Ij ⊗ Ej+1

aa )

=
∑

a∈A,b∈B

[ηbE
j
ab ⊗ Ej+1

ba + η−1
b Ej

ba ⊗ Ej+1
ab

− e−iγEj
aa ⊗ Ej+1

bb − eiγEj
bb ⊗ Ej+1

aa ], (4)

where Ij denotes the identity operator on site j. For the one-
dimensional chain with the periodic boundary condition, the
summation of h̃j,j+1 yields the same Hamiltonian HXXC due
to the consecutive cancellation of the on-site non-Hermitian
terms. We observe that the operators ej = h̃j,j+1 sat-
isfy the (periodic) Temperley-Lieb algebra relations [70, 71]:
e2j = −2 cos(γ)ej , ejej±1ej = ej , and ejej′ = ej′ej for
|j − j′| > 1. The second relation is a reformulation of the
Yang-Baxter equations [72]. The first condition implies that
h̃j,j+1 is proportional to a non-Hermitian projector. The lo-
cal null space of h̃j,j+1 is larger than that of hj,j+1: apart
from the simple states |a, a⟩j,j+1 and |b, b⟩j,j+1, there exist
one more state 1√

2
[|a, b⟩ − ηb exp(−iγ) |b, a⟩]j,j+1 that are

also annihilated by h̃j,j+1, for any a ∈ A, b ∈ B.
For the non-integrable Hamiltonian Eq. (1), we can identify

several Krylov subspaces that are preserved under the action
of the Hamiltonian. A Krylov subspace labeled by Ha,b is
spanned by computational basis states with only two kinds of
local bases |a⟩ and |b⟩, for a ∈ A and b ∈ B. Projected
into the subspace Ha,b, the Hamiltonian Eq. (1) is reduced
to the spin-1/2 XXZ Hamiltonian between |a⟩ and |b⟩, thus
making the subspace integrable. The complementary sub-
space of all the integrable subspaces is non-integrable due
to the presence of Ph′P terms. Therefore, the many-body
Hilbert space fragments into several integrable subspaces and
one non-integrable subspace.

By combining the non-Hermitian Hamiltonian densities
h̃j,j+1 and Hermitian projectors Pj,j+1, we find the follow-
ing generalized spin helix states in the E = 0 subspace of the
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perturbed Hamiltonian H as exact quantum many-body scars:

|Ψ({βc}Nc=1)⟩ =
L⊗

j=1

|ψj⟩ ,

|ψj⟩ =
∑

a∈A

(βa |a⟩j) + ei(j−1)γ
∑

b∈B

(ηj−1
b βb |b⟩j). (5)

Here, {βc}Nc=1 is a set of arbitrary complex parameters. Due
to the periodic boundary condition, we require γL/2π to be
an integer.

Several remarks come in order. First, the generalized spin
helix states span the scar subspace overcompletely. To extract
complete orthogonal bases for the scar subspace, we expand
the product state as a multi-variable polynomial with respect
to the parameters {βc}Nc=1:

|Ψ({βc}Nc=1)⟩ =
∑

{mc}N
c=1,∑

c mc=L

(
N∏

c=1

βmc
c ) |Sm1,··· ,mN

⟩ , (6)

such that the “coefficients” of the polynomial are orthogonal
scar states |Sm1,··· ,mN

⟩ labeled by the powers in the associ-
ated terms

∏N
c=1 β

mc
c . The procedure of unfolding scar states

according to certain parameters can be regarded as the rever-
sal of the compressed MPS technique used to find local an-
nihilators for a tower of scar states [35, 39, 43, 68]. The to-
tal dimension of the scar subspace can be determined through
combinatorially counting all the possible non-negative integer
arrays {mc}Nc=1 that sum up to L, resulting in the binomial
coefficient

(
L+N−1
N−1

)
. For large L, the dimension scales as

LN−1, which is significantly smaller than the dimension of
the entire Hilbert space NL, fulfilling the definition of weak
violation of ETH.

Second, we emphasize that our construction of the gen-
eralized spin helix states as zero-energy scars is distinct
from the Shiraishi-Mori embedding method [44], since
[Pj,j+1, HXXC] ̸= 0 in Eq. (1). The key aspect of our con-
struction lies in the crucial observation that HXXC can be ex-
pressed as the sum of underlying local non-Hermitian projec-
tors. In previous studies, the Hamiltonians hosting a tower
of exact scars typically include two ingredients: 1) Hamilto-
nian densities locally annihilating all the scar states, which
can be obtained by the compressed MPS technique; 2) Hamil-
tonians that lift the degeneracy of the scar states according
to their different values of a good quantum number [36, 68].
However, it has been discovered that certain scarred Hamilto-
nians annihilate the scar states as a whole rather than locally
[37, 45, 68, 73], which are referred to as “type II symmetric
Hamiltonians” in Ref. [49]. The integrable XXC Hamiltonian
annihilates the generalized spin helix states as a whole and
exactly serves as an example of this kind of Hamiltonians.
In [74] we show that most of these “annihilate-as-a-whole”
Hamiltonians (e.g., the spin-1 Affleck-Kennedy-Lieb-Tasaki
model) can be unified into the same framework by decom-
posing them into the summation of non-Hermitian densities,

FIG. 2. (a) Level spacing statistics of the non-integrable subspace
of the N = 3 partially integrable model. (b) Bipartite entanglement
entropy of the thermal eigenstates (gray dots) and scarred eigenstates
(red diamonds) within the non-integrable subspace, as a function of
the eigenenergy and the expectation value of total Sz . L = 9, γ =
2π/9, other parameters taken as the same as those in (a).

which annihilate the scar tower states locally. We further pro-
pose a systematic method to construct such special Hamiltoni-
ans based on the scar tower states, which highlights the neces-
sity of introducing the non-Hermitian decomposition method.
In the following we specifically discuss several models that
can be unified into our constructions.

The N = 3 case.– Consider the case of N = 3, NA =
1, NB = 2 without twisting (ηb = 1). We take the parti-
tion A = {1}, B = {2, 3} and map the model to the spin-1
chain through the correspondence |c = 1⟩ → |0⟩ , |c = 2⟩ →
|1⟩ and |c = 3⟩ → |−1⟩. We represent the non-Hermitian
term added to hj,j+1 as i sin(γ)[−(Sz

j )
2 + (Sz

j+1)
2], where

Sα
j (α = x, y, z) denotes the spin-1 operator on the site j. The

corresponding Hamiltonian Eq. (1) hosts the zero-energy gen-
eralized spin helix states |Ψ(β+, β−)⟩ =

⊗L
j=1{β+ exp[i(j−

1)γ] |1⟩j+|0⟩j+β− exp[i(j−1)γ] |−1⟩j}. The unfolded scar
states |Sm1,m2,m3

⟩ are labeled by two independent integers
(sincem1+m2+m3 = L). Scarred eigenstates withm2 = 0
or m3 = 0 belong to the integrable subspaces H0,± and are
actually the same as the spin-1/2 helix states. On the other
hand, when m1 = 0, the resulting scar states are built by cre-
ating m2 bi-magnons (flipping |−1⟩ to |1⟩) with zero momen-
tum on the reference state |S0,0,L⟩ = ⊗L

j=1 |−1⟩j (i.e., Dicke
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states for |±1⟩ ). In addition to these special cases, there exist
many scarred eigenstates simultaneously possessing the three
basis states {|−1⟩ , |0⟩ , |1⟩} within the non-integrable sub-
space. In order to break the energy degeneracy of the scar sub-
space, we add the terms

∑
j [J1S

z
j + J2(S

z
j )

2], leading to the
energy splitting asEm1,m2,m3

= (J1+J2)m2−(J1−J2)m3.
As shown in Fig. 2(a), we specifically take h′j = cjS

x
j−1 (cj

is a site-dependent random coefficient) for the integrability
breaking Ph′P terms and compute the statistics of the energy
level spacings s in the non-integrable subspace. The distribu-
tion P (s) follows the Wigner-Dyson distribution well with the
level-spacing ratio ⟨r⟩ = 0.5245, which confirms its chaotic
nature [75]. Fig. 2(b) displays the bipartite entanglement en-
tropy Sent of all the eigenstates within the non-integrable sub-
space, highlighting the atypical scarred eigenstates with red
diamonds. In [74] we have also obtained the analytical ex-
pression of Sent for the scar states |Sm1,m2,m3

⟩, and found that
it at most follows the sub-volume-law scaling Sent ∼ lnL.

Spinful fermion representation for N = 4.– Our construc-
tions of scarred models hosting generalized spin helix states
can be extended to fermionic degrees of freedom. Specifically,
we consider following SU(2)-symmetric fermionic model:

hj,j+1 =
∑

σ=↑,↓
(c†j,σcj+1,σ+c

†
j+1,σcj,σ)−cos(γ)V (nj , nj+1),

(7)
where c†j,σ(cj,σ) is the fermionic creation (annihilation) oper-
ator with spin σ at site j. nj = nj,↑ + nj,↓, nj,σ = c†j,σcj,σ .
The nearest-neighbor interaction is given by V (nj , nj+1) =
(nj − nj+1)

2(2 − nj − nj+1)
2, which could be realized

by engineering Coulomb repulsion between ultracold spinful
fermions on optical lattices [76].

To demonstrate how Eq. (7) fits in our scarred models
Eq. (1) as the N = 4, NA = NB = 2 case, first we estab-
lish the correspondence between the bosonic basis |c⟩ and the
fermionic basis as follows: |c = 1⟩ → |0⟩ , |c = 2⟩ → |↑⟩ =
c†↑ |0⟩ , |c = 3⟩ → |↓⟩ = c†↓ |0⟩ , |c = 4⟩ → |d⟩ = c†↑c

†
↓ |0⟩,

and A = {2, 3}, B = {1, 4}. Here |0⟩ is the empty state
and |d⟩ is the doubly occupied state. Notice that total fermion
number on the two sites n = nj + nj+1 is a conserved quan-
tity of hj,j+1. Therefore, the local Hamiltonian can be decom-
posed to blocks with definite n, denoted as hnj,j+1. For n = 1,
two pairs of basis states [|↑⟩ , |0⟩]j,j+1 and [|↓⟩ , |0⟩]j,j+1 are
involved. In this case, the single-fermion hopping and in-
teraction terms exactly match the corresponding terms in the
XXC model, without twisting (η0 = 1). Similarly, the n =
3 block consists of pairs [|↑⟩ , |d⟩]j,j+1 and [|↓⟩ , |d⟩]j,j+1,
but with a twisting factor ηd = −1 originating from the
fermion anti-commutation relation. Hamiltonian densities of
the above two blocks sum to the integrableN = 4 XXC model
[77], and their non-Hermitian deformation can be constructed
as i sin(γ)(|↑⟩ ⟨↑|j + |↓⟩ ⟨↓|j − |↑⟩ ⟨↑|j+1 − |↓⟩ ⟨↓|j+1) =
i sin(γ)(nj − nj+1)(2− nj − nj+1).

The remaining non-zero block of Eq. (7) is that with n = 2.
Intriguingly, hn=2

j,j+1 itself breaks the integrability and serves
as the perturbation term Pj,j+1h

′
jPj,j+1. Note that the local

null space of hn=2
j,j+1 includes states (|↑, ↓⟩ + |↓, ↑⟩)j,j+1 and

(|0, d⟩ − |d, 0⟩)j,j+1, which makes hn=2
j,j+1 locally annihilate

the following generalized spin helix states:

|Ψ(β↑, β↓, βd)⟩ =
L⊗

j=1

(|0⟩j + β↑e
i(j−1)γ |↑⟩j

+ β↓e
i(j−1)γ |↓⟩j + βd(−1)j−1 |d⟩j). (8)

To sum up, we have proved that the spinful fermionic Hamil-
tonian Eq. (7) is a realization of theN = 4 partially integrable
model Eq. (1) hosting the unfolded orthogonal scar states
|Sm1,m2,m3,m4⟩. Remarkably, the states with m2 = m3 = 0
(in the integrable subspace H0,d) are known as the η-pairing
states of the Fermi-Hubbard model [78], which have been re-
alized as scar states in several non-integrable models [36, 37].
Adding chemical potential, magnetic field pointing to the
spin-z direction, and Hubbard interaction can completely lift
the degeneracy of scar subspace.

Higher-spin helix states in the clock models.– The above
constructions of partially integrable scarred Hamiltonians are
all based on the spin-1/2 XXZ interaction and the correspond-
ing helix states. It is also possible to exploit higher-spin inter-
actions and their helix states as the building blocks. We now
shift our focus to the U(1)-invariant clock models proposed in
Ref. [50]. The local Hamiltonian is given by (up to a constant)

hj,j+1 =

M−1∑

a=1

1

2 sin(aγ)
[M(−1)a(S−

j S
+
j+1)

a + H.c.

+ (M/2− a) exp(iaγ)(τaj + τaj+1 − 2)],

where γ = π/M . S±
j and τj act on the local Hilbert space as

S+
j |a⟩j = (1 − δa+1,M ) |a+ 1⟩j , τj |a⟩j = exp(2iaγ) |a⟩j .

The total Hamiltonian commutes with the U(1) charge opera-
tor Q =

∑L
j=1Qj =

∑L
j=1

∑M−1
a=1 exp(iaγ)τaj /2i sin(aγ).

We identify the spin helix states in this model by perform-
ing the non-Hermitian deformation as h̃j,j+1 = hj,j+1 +
iM(Qj − Qj+1)/2. By the similar method in finding the lo-
cal null states of the spinful-fermion model Eq. (7), we de-
compose the local non-Hermitian Hamiltonian h̃j into blocks
with definite U(1) charge q = Qj + Qj+1. In each block
we discover a two-local null state as

∑q
p=0 exp(−ip(π −

γ)) |p, q − p⟩j,j+1, which constitutes the following higher-
spin helix states

|Ψ(β)⟩ =
L⊗

j=1

(
M−1∑

p=0

βpeip(j−1)(π−γ) |p⟩j). (9)

By utilizing the clock models and their higher-spin helix
states as a starting point, we can construct more similar par-
tially integrable scarred Hamiltonians. As a minimal exam-
ple, we can consider embedding two sets of M = 3 spin helix
states into a model with four local degrees of freedom, la-
beled by |0⟩ , |0̄⟩ and |1⟩ , |2⟩. Here, |0⟩ (|0̄⟩) interacts with
|1⟩ and |2⟩ as the M = 3 clock model. We can further add
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the Ph′P perturbation terms between the basis states |0⟩ and
|0̄⟩ on neighboring sites like Eq. (3) to break the integrability,
while preserving the generalized spin helix states as quantum
many-body scars.

Conclusions.– In summary, we have presented a general
method to construct a variety of partially integrable Hamilto-
nians hosting the generalized spin helix states as exact quan-
tum many-body scars. Our work further demonstrates that the
philosophy of adding designed integrability-breaking terms to
exactly solvable models serves as a promising avenue for sys-
tematic constructions of scarred Hamiltonians. Moreover, in-
spired by the Temperley-Lieb algebra relations satisfied by the
non-Hermitian deformation of the XXC Hamiltonian, we de-
compose several extensive local scarred Hamiltonians into the
summation of local non-Hermitian annihilators. This method
gives a unified framework to understand these special types
of “annihilate-as-a-whole” scarred Hamiltonians, which could
have intriguing connections with the language of commutant
algebra [49, 79].
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tions and spin helix eigenstates in integrable periodic and open
spin chains, Phys. Rev. B 104, L081410 (2021).

[56] P. N. Jepsen, J. Amato-Grill, I. Dimitrova, W. W. Ho, E. Demler,
and W. Ketterle, Spin transport in a tunable heisenberg model
realized with ultracold atoms, Nature 588, 403 (2020).

[57] P. N. Jepsen, W. W. Ho, J. Amato-Grill, I. Dimitrova, E. Demler,
and W. Ketterle, Transverse spin dynamics in the anisotropic
heisenberg model realized with ultracold atoms, Phys. Rev. X
11, 041054 (2021).

[58] P. N. Jepsen, Y. K. Lee, H. Lin, I. Dimitrova, Y. Margalit, W. W.
Ho, and W. Ketterle, Long-lived phantom helix states in heisen-
berg quantum magnets, Nat. Phys. 18, 899 (2022).

[59] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Relaxation
in a completely integrable many-body quantum system: An ab
initio study of the dynamics of the highly excited states of 1d
lattice hard-core bosons, Phys. Rev. Lett. 98, 050405 (2007).

[60] A. C. Cassidy, C. W. Clark, and M. Rigol, Generalized ther-
malization in an integrable lattice system, Phys. Rev. Lett. 106,
140405 (2011).

[61] K. Lee, R. Melendrez, A. Pal, and H. J. Changlani, Exact three-
colored quantum scars from geometric frustration, Phys. Rev. B
101, 241111 (2020).
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B. A. Malomed, T. Sowiński, and J. Zakrzewski, Non-standard
hubbard models in optical lattices: a review, Rep. Prog. Phys.

78, 066001 (2015).
[77] P. Dargis and Z. Maassarani, Fermionization and hubbard mod-

els, Nucl. Phys. B 535, 681 (1998).
[78] C. N. Yang, η pairing and off-diagonal long-range order in a

hubbard model, Phys. Rev. Lett. 63, 2144 (1989).
[79] S. Moudgalya and O. I. Motrunich, Hilbert space fragmentation

and commutant algebras, Phys. Rev. X 12, 011050 (2022).



Supplementary Materials for: Generalized Spin Helix States as Quantum Many-Body Scars in
Partially Integrable Models

He-Ran Wang1, ∗ and Dong Yuan2, †

1Institute for Advanced Study, Tsinghua University, Beijing 100084, People’s Republic of China
2Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People’s Republic of China

I. TEMPERLEY-LIEB RELATIONS OF THE XXC HAMILTONIAN

In this section, we prove that the non-Hermitian deformation of the local XXC Hamiltonian follows the Temperley-Lieb
relations. That is, the operator ej defined as

ej =
∑

a∈A,b∈B

(ηbE
j
ab ⊗ Ej+1

ba + η−1
b Ej

ba ⊗ Ej+1
ab − exp(−iγ)Ej

aa ⊗ Ej+1
bb − exp(iγ)Ej

bb ⊗ Ej+1
aa ) =

∑

a∈A,b∈B

ea,bj (S1)

satisfies the relations e2j = −2 cos(γ)ej , ejej±1ej = ej and ejej′ = ej′ej ,∀|j − j′| > 1. To prove the first relation, notice that
every single term ea,bj is orthogonal mutually, and (ea,bj )2 = −2 cos(γ)ea,bj . For the third one, the proof is straightforward since
the support of ej only covers the site j and j + 1. We show the lengthy derivations about the second relation:

ejej+1 =
∑

a,a′∈A;b,b′∈B

ea,bj ea
′,b′

j+1

=
∑

a,a′∈A;b∈B

(η−2
b Ej

ba ⊗ Ej+1
aa′ ⊗ Ej+2

a′b + Ej
aa ⊗ Ej+1

bb ⊗ Ej+2
a′a′

− exp(iγ)η−1
b Ej

ba ⊗ Ej+1
ab ⊗ Ej+2

a′a′ − exp(−iγ)η−1
b Ej

aa ⊗ Ej+1
ba′ ⊗ Ej+2

a′b )

+
∑

a∈A;b,b′∈B

(ηbηb′E
j
ab ⊗ Ej+1

bb′ ⊗ Ej+2
b′a + Ej

bb ⊗ Ej
aa ⊗ Ej+2

b′b′

− exp(−iγ)ηbEj
ab ⊗ Ej+1

ba ⊗ Ej+2
b′b′ − exp(iγ)ηb′E

j
bb ⊗ Ej+1

ab′ ⊗ Ej+2
b′a ), (S2)

ejej+1ej =
∑

a,a′∈A;b∈B

(ηbE
j
ab ⊗ Ej+1

ba ⊗ Ej+2
a′a′ − exp(−iγ)Ej

aa ⊗ Ej+1
bb ⊗ Ej+2

a′a′

− exp(iγ)Ej
bb ⊗ Ej+1

aa ⊗ Ej+2
a′a′ + η−1

b Ej
ba ⊗ Ej+1

ab ⊗ Ej+2
a′a′ )

+
∑

a∈A;b,b′∈B

(η−1
b Ej

ba ⊗ Ej
aa ⊗ Ej+2

b′b′ − exp(iγ)Ej
bb ⊗ Ej

aa ⊗ Ej+2
b′b′

− exp(−iγ)Ej
aa ⊗ Ej+1

bb ⊗ Ej+2
b′b′ + ηbE

j
ab ⊗ Ej+1

ba ⊗ Ej+2
b′b′ )

=(
∑

a∈A,b∈B

eabj )⊗ (
∑

a∈A

Ej+2
aa +

∑

b∈A

Ej+2
bb ) = ej . (S3)

II. EXTENSIVE LOCAL ANNIHILATORS OF TYPICAL SCARRED MODELS

In this section, we provide more discussions about the extensive local Hamiltonians annihilating a tower of given scar states.
By “extensive local”, we refer to the operators as summations of translational-invariant strictly local operators with finite support.
We mainly focus on those extensive local annihilators that cannot be decomposed to local Hermitian annihilators, and thus only
act as a whole. Ref. [1] noticed that the spin-1 AKLT Hamiltonian (minus the total spin-z Hamiltonian) is such an extensive
local annihilator of a tower of scars (see also Sec. II E). Subsequently, the similar Hamiltonians in the spin-1 XY model and
the generalized Fermi-Hubbard model have been proposed in Ref. [2], where the authors stated that those extensive local
Hamiltonians are exceptions to the Shiraishi-Mori embedding (Sec. II C and Sec. II D). Ref. [3] presented a numerical method
(the generalized covariance-matrix algorithm) to search the extensive local annihilators for several models.

Two unified frameworks have been proposed for understanding the extensive local annihilators. First, Moudgalya and
Motrunich established the mathematical relation between scar states and scarred Hamiltonians as mutually commutant algebras,
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where the extensive local annihilators are dubbed as “type II symmetric operators” and can only be constructed case-by-case
[4]. The other is Ref. [5], where the authors enlarged the local Hilbert space, then the extensive local annihilators in the en-
larged Hilbert space fit into the local embedding formalism. Different from aforementioned two frameworks, we decompose the
extensive local annihilators into local non-Hermitian projectors or annihilators, e.g., the XXC Hamiltonian in the main text. In
the following Secs. II A-II E, we review several known scarred eigenstates and their extensive local annihilators, and explicitly
show how the non-Hermitian decomposition applies to those models. Finally, in Sec. II F, we propose a systematic method to
find such extensive local annihilators for a given tower of scar states.

A. Spin-1/2 Dzyaloshinskii-Moriya Interaction

We begin with the Dzyaloshinskii-Moriya Interaction (DMI) terms defined on a spin-1/2 chain under PBC: Hα−DMI =∑L
j=1(S⃗j × S⃗j+1) · α̂. The DMI Hamiltonian as a whole annihilates the ferromagnetic Dicke states [2, 4, 6, 7]. These states

can be embedded as the scarred eigenstates in the toy model introduced by Ref. [8], and will persist as scars after adding the
DMI terms. Two-local components of these Dicke scar states are spin-1 triplets formed by two neighboring spin-1/2’s, so the
toy model in [8] is constructed through the Shiraishi-Mori embedding method [9] by using the local projectors onto the spin
singlets. We show that the local DMI term does the same projection after the following non-Hermitian deformation.

Without loss of generality, we set α̂ = ẑ, such that the local DMI term is given by

hj,j+1 = Sx
j S

y
j+1 − Sy

j S
x
j+1 =

i

2
(S+

j S
−
j+1 − S−

j S
+
j+1) =

i

2
(| ↑↓⟩⟨↓↑ | − | ↓↑⟩⟨↑↓ |)j,j+1. (S4)

We choose the non-Hermitian deformation as

h̃j,j+1 = hj,j+1 −
i

2
(Sz

j − Sz
j+1) =

i

2
[(| ↑↓⟩+ | ↓↑⟩)(⟨↓↑ | − ⟨↑↓ |)]j,j+1. (S5)

The non-Hermitian operator h̃j,j+1 transforms the spin singlet to the triplet with zero total spin-z component. Evidently, h̃j,j+1

annihilates the Dicke scar states locally, and they sum to the Hermitian DMI Hamiltonian under PBC. Another equivalent
viewpoint of the annihilation is to regard the Dicke states as the condensation of zero-momentum magnons, which undergo
destructive interference through the DMI terms. In the following, we will see that other extensive local Hamiltonians hosting
exact scar tower states resemble the similar structure of DMI terms.

B. Twisted DMI

Considering twisting the spin-1/2 DMI Hamiltonian through the unitary gauge transformation U = ⊗je
−ijγSz

j , which leads
to

Uhj,j+1U
† =

i

2
(eiγS+

j S
−
j+1 − e−iγS−

j S
+
j+1) =

i

2
(eiγ | ↑↓⟩⟨↓↑ | − e−iγ | ↓↑⟩⟨↑↓ |)j,j+1. (S6)

And accordingly, the same non-Hermitian deformation can be applied as

Uh̃j,j+1U
† = Uhj,j+1U

† − i

2
(Sz

j − Sz
j+1) =

i

2
[(eiγ/2| ↑↓⟩+ e−iγ/2| ↓↑⟩)(eiγ/2⟨↓↑ | − e−iγ/2⟨↑↓ |)]j,j+1. (S7)

Notably, Uh̃j,j+1U
† locally annihilates the spin helix states of spin-1/2 XXZ model. Therefore, both the twisted DMI Hamil-

tonian UγHz−DMIU
†
γ and the XXZ Hamiltonian serve as extensive local annihilators as the spin helix states [10], though the

non-Hermitian deformations of two models are different.

C. Spin-1XY model

Next, we consider the spin-1XY modelHXY =
∑

j [S
x
j S

x
j+1+S

y
j S

y
j+1+hS

z
j +D(Sz

j )
2] [11], with L+1 scarred eigenstates

generated from the ferromagnetic state |S0⟩ = | − 1, · · · ,−1⟩ by acting the ladder operator Q† =
∑

j(−1)j(S+
j )2. Ref. [2]

discussed an extensive local Hamiltonian annihilating the scar states:

H =
∑

j

hj,j+1 =
∑

j

i(| − 1, 1⟩⟨1,−1| − |1,−1⟩⟨−1, 1|)j,j+1 =
∑

j

i

4
[(S−

j )2(S+
j+1)

2 − (S+
j )2(S−

j+1)
2]. (S8)
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Note that hj,j+1 in Eq. (S8) is indeed the effective DMI term between |1⟩ and | − 1⟩. Subsequently, the non-Hermitian
deformation can be constructed as

h̃j,j+1 = hj,j+1+
i

2
[−Sz

j −(Sz
j )

2+Sz
j+1+(Sz

j+1)
2] = i[(|−1, 1⟩−|1,−1⟩)(⟨−1, 1|+⟨1,−1|)−|1, 0⟩⟨1, 0|+|0, 1⟩⟨0, 1|]j,j+1.

(S9)
Here h̃j,j+1 is the summation of two orthogonal projectors. Specifically, h̃j,j+1 annihilates (| − 1, 1⟩ − |1,−1⟩)j,j+1, thus
annihilating the whole scar tower of the spin-1 XY model.

D. η-pairing states

In this subsection we will investigate the η-pairing states, which are closely related to the η-pairing symmetry of the Hubbard
model on the bipartite lattice [12]. They are generated by acting Q† =

∑
j(−1)jc†j,↑c

†
j,↓ on the electron vacuum |Ω⟩ repeatedly.

The same scar states are also discovered in our N = 4 model in the main text. Recently, some other Hamiltonians hosting the
η-pairing states while breaking the pairing symmetry are searched and constructed [2, 13, 14]. Among them, we are interested
in the following extensive local Hamiltonian

H = i
∑

j

(c†j+1,↑c
†
j+1,↓cj,↓cj,↑ − c†j,↑c

†
j,↓cj+1,↓cj+1,↑). (S10)

Locally, it sends |d, 0⟩ to |0, d⟩ and vice versa, with opposite amplitude. This form of the local Hamiltonian implies the DMI-type
mechanism. We aim to annihilate the local state (|0, d⟩ − |d, 0⟩)j,j+1, so the deformation is given by

h̃j,j+1 = hj,j+1 + i(nj+1,↑nj+1,↓ − nj,↑nj,↓). (S11)

We can show the relations between the fermionic Hamiltonian Eq. (S10) and DMI Hamiltonian more clearly by applying the
particle-hole transformation, sending cj,↓ → (−1)jcj,↓, c

†
j,↓ → (−1)jc†j,↓. Then we define the local spin-1/2 operator as the

bilinear form of fermions as S+
j = c†j,↑cj,↓, S

−
j = c†j,↓cj,↑, the resulting extensive local Hamiltonian is given by

H = i
∑

j

(S+
j S

−
j+1 − S−

j S
+
j+1), (S12)

which shares the same form as Eq. (S5). Accordingly, the η-pairing states are transformed to the Dicke states with one fermion
occupied per site.

E. Spin-1 AKLT model

In this subsection, we consider the spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT) model HAKLT =
∑

j T
S=2
j,j+1, where TS=2

j,j+1

projects two adjacent spin-1’s onto a total spin-2 [15]. A tower of scarred eigenstates is generated from the ground state
|S0⟩ = |G⟩ by the ladder operator Q† =

∑
j(−1)j(S+

j )2, |Sn⟩ = (Q†)n|S0⟩ [16, 17]. The parent state |S0⟩ admits the
MPS representation:

|S0⟩ =
∑

µ1,µ2,··· ,µL

Tr
[
A(µ1)A(µ2) · · ·A(µL)

]
|µ1, µ2, · · · , µL⟩, (S13)

where µ = ±1 or 0, A(±1) = ∓
√

2
3σ

∓ and A(0) = − 1√
3
σz . For later convenience, we also introduce the notation of k-local

MPS as

|M(l, r)⟩ =
∑

µ1,··· ,µk

(A(µ1) · · ·A(µk))l,r|µ1, · · · , µk⟩, (S14)

where l, r are the left and right uncontracted indices (dangling bonds) of the local MPS.
Before dividing into detailed calculations, we clarify different concepts of type-II symmetric Hamiltonians in the AKLT model

[4]. First, the ground state |S0⟩ is annihilated by the total spin-z operator Sz
tot =

∑L
j S

z
j , which cannot be decomposed to local

Hermitian annihilators. In that sense, Sz
tot is a type-II Hamiltonian for the AKLT ground state. On the other hand, we can consider

the extensive local annihilators of the whole scar tower {|Sn⟩}L/2
n=0: It can be shown that HAKLT|Sn⟩ = Sz

tot|Sn⟩ = 2n|Sn⟩ ,
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therefore HAKLT − Sz
tot is a type-II Hamiltonian for the AKLT scar tower. In the following, we will discuss the non-Hermitian

deformation for the both cases.
For the ground state, we explicitly find that Sz

j |S0⟩ = (Oj−1,j − Oj,j+1)|S0⟩, where Oj,k is a two-local non-Hermitian
operator. The rigorous analysis goes as follows: The action of Sz

j on |S0⟩ manifests as a single-mode excitation in the MPS
representation:

Sz
j |S0⟩ =

∑

µ1,µ2,··· ,µL

Tr
[
A(µ1) · · ·A(µj−1)B(µj)A(µj+1) · · ·A(µL)

]
|µ1, µ2, · · · , µL⟩, (S15)

where B(±) = ±A(±), B(0) = 0. Noticing that B(µ) = [C,A(µ)] with C = − 1
2σ

z , the local action of Sz
j is given by

Sz
j |AAA⟩j−1,j,j+1 = |(ACA)A⟩j−1,j,j+1 − |A(ACA)⟩j−1,j,j+1. (S16)

where uncontracted indices are omitted. The matrices A(µ)CA(ν) can be rewritten into a bilinear form of A matrices as
A(µ)CA(ν) =

∑
µ′,ν′ cµ,ν;µ′,ν′A(µ′)A(ν′), where explicit values of the coefficients cµ,ν;µ′,ν′ are not shown here. Then we

can construct the operator Oj,k with the same coefficients as

Oj,k =
∑

µ,ν;µ′,ν′

cµ,ν;µ′,ν′(|µ, ν⟩⟨µ′, ν′|)j,k (S17)

Therefore, the non-Hermitian operator (Sz
j −Oj−1,j +Oj,j+1) annihilates the three-local states |AAA⟩ of |S0⟩. This technique

of decomposition works for other scarred models with zero-energy MPS eigenstates as well (e.g. E = 0 scar states in the PXP
model [18]). Notice that in this case the non-Hermitian deformation enlarges the support of the original local operator, which is
vastly different with those in the main text and the DMI Hamiltonian.

We give a brief comment on the type-II symmetric Hamiltonian for the AKLT scar tower. The Hamiltonian HAKLT − Sz
tot can

be decomposed to local terms as

HAKLT−Sz
tot =

∑

j

[TS=2
j,j+1−

1

2
(Sz

j +S
z
j+1)] =

∑

j

[2(TS=2,m=−2
j,j+1 +TS=2,m=−1

j,j+1 )+
1

2
(|0, 1⟩⟨1, 0|−|0,−1⟩⟨−1, 0|+H.c.)j,j+1].

(S18)
Here the projectors TS=2,m=−2

j,j+1 and TS=2,m=−1
j,j+1 directly annihilate the scar tower, so we should find the non-Hermitian de-

formation for the remaining terms hj,j+1 = (|0, 1⟩⟨1, 0| − |0,−1⟩⟨−1, 0| + H.c.)j,j+1. From the above analysis on the AKLT
ground state, we infer that the deformation of hj,j+1 may involve some three-local operators Õj,k,l, which results in the four-
local non-Hermitian operator hj,j+1 − Õj−1,j,j+1 + Õj,j+1,j+2 annihilating the scar tower.

F. Criterion for local non-Hermitian annihilators

In the previous subsections, we have shown that several scarred Hamiltonians can be decomposed to local non-Hermitian an-
nihilators, hosting the scar states in their common null space. Now, we shift our focus to the inverse problem: How to efficiently
find Hermitian Hamiltonians annihilating a given tower of scar states? To address the problem, we propose a systematic method,
particularly focusing on searching for those extensive local Hermitian annihilators which are not easily approached by previous
methods, i.e. the projector embedding. For the sake of simplicity, we will study those annihilators as the translational-invariant
summation of two-local operators under PBC.

Assuming that local projectors Pj,j+1 annihilating a tower of scar states have already been obtained, e.g. through the com-
pressed MPS technique [1, 19–21]. We can then construct local annihilators (not necessarily Hermitian) as h̃j,j+1, subjected to
two constraints:

h̃j,j+1(1− Pj,j+1) = 0, Pj,j+1h̃j,j+1Pj,j+1 = Pj,j+1h̃j,j+1 = 0. (S19)

The first constraint ensures that h̃j,j+1 locally annihilates the scar tower, while the second excludes those already known Hamil-
tonians within the framework of Shiraishi-Mori embedding. Under the two constraints, the local annihilator admits the form
h̃j,j+1 = (1 − Pj,j+1)h̃j,j+1Pj,j+1, with ker(Pj,j+1) × ker(1 − Pj,j+1) non-zero matrix elements to be determined. The
summation of those local annihilators under PBC is given by

H̃L =
L∑

j=1

h̃j,j+1, L+ 1 ≡ 1, (S20)



5

which is demanded to be Hermitian for any system size L.
We find that it suffices to impose the Hermitian conditions only for H̃2 and H̃3, rather than arbitrary L. Our proof is inductive:

Suppose that for a certain integer L ≥ 3, H̃L′ has been proved to be Hermitian for all 2 ≤ L′ ≤ L. We can rewrite H̃L+1 as

H̃L+1 =H̃L − h̃L,1 + h̃L,L+1 + h̃L+1,1

=H̃L − (h̃L,1 + h̃1,L) + (h̃1,L + h̃L,L+1 + h̃L+1,1) (S21)

Notice that (h̃L,1+ h̃1,L) is isomorphic to H̃2, while (h̃1,L+ h̃L,L+1+ h̃L+1,1) is isomorphic to H̃3. Hence, H̃L+1 is Hermitian,
and we have completed the proof.

Therefore, to exhaust all solutions h̃j,j+1 fulfilling the Hermitian conditions, we only need to solve two equations as the
criterion: H̃2(3) = H̃†

2(3). These equations for local operators can be quickly solved analytically or numerically. In the following,
we apply the method to the ferromagnetic Dicke states to solve their extensive local annihilators, and show that the DMI
Hamiltonians (Sec. II A) are the only non-trivial solutions.

Two-local projectors for the Dicke states project two adjacent spin-1/2’s onto the spin-0 singlet, which reads Pj,j+1 = (|S =
0⟩⟨S = 0|)j,j+1, where S denotes the total spin of two spins on site j and j + 1. Under the two constraints, we propose an
ansatz for the local annihilators as:

h̃j,j+1 =
∑

m=0,1,−1

am(|S = 1,m⟩⟨S = 0|)j,j+1, (S22)

where m denotes the total spin-z component of two spins on site j and j + 1, and am are three complex-valued coefficients
to be determined. The L = 2 PBC Hamiltonian is zero, since |S = 0⟩1,2 is anti-symmetric by exchanging two spins, while
|S = 1,m⟩1,2 are symmetric, and thus h̃1,2+ h̃2,1 = 0. Solving the Hermitian condition for the L = 3 PBC Hamiltonian results
in a0 = −a∗0, a1 = a∗−1, which correspond to three linearly independent solutions:

1. a0 = i, a±1 = 0: h̃j,j+1 = i(|S = 1, 0⟩⟨S = 0|)j,j+1, sums to Hz−DMI;

2. a±1 = 1, a0 = 0: h̃j,j+1 = [(|S = 1, 1⟩+ |S = 1,−1⟩)⟨S = 0|]j,j+1, sums to Hx−DMI;

3. a±1 = ±i, a0 = 0: h̃j,j+1 = i[(|S = 1, 1⟩ − |S = 1,−1⟩)⟨S = 0|]j,j+1, sums to Hy−DMI.

The DMI HamiltonianHα−DMI with arbitrary α̂ can be obtained by linear superpositions of the three solutions, which annihilates
the tower of Dicke states.

III. BIPARTITE ENTANGLEMENT ENTROPY

In this section, we obtain the bipartite entanglement entropy of scar states in the N = 3 model. Results for larger N follow
a similar route but the derivation will be much more sophisticated. To calculate the bipartite entanglement entropy of a scar
state |Sm1,m2,m3⟩ with m1 + m2 + m3 = L between two subsystems A and Ā, we need to trace out Ā and get the reduced
density matrix on the subsystem A: ρA = TrĀ[|Sm1,m2,m3

⟩⟨Sm1,m2,m3
|], then the entanglement entropy (EE) is given by

EE = −Tr[ρA ln(ρA)] = −∑
λA ln(λA), where λA are eigenvalues of ρA. To extract λA, we can apply Schmidt decomposition

on the target state so that λA are given by Schmidt coefficients. To this end, we introduce two raising operators

Q†
± =

L∑

j=1

exp(i(j − 1)γ)(| ± 1⟩⟨0|)j , (S23)

then the scar state can be generated from the “vacuum” |Ω⟩ = |SL,0,0⟩:

|Sm1,m2,m3
⟩ = 1√

N(m2,m3;L)
(Q†

+)
m2(Q†

−)
m3 |Ω⟩. (S24)

The normalization factor N(m2,m3;L) = (m2)!(m3)!(L)!/(L − m2 − m3)! is given by counting the number of different
configurations (computational basis states) in (Q†

+)
m2(Q†

−)
m3 |Ω⟩, and the multiplicity of each basis state [22]. In order for

the Schmidt decomposition, raising operators are divided as Q†
± = Q†

A± +Q†
Ā±, where for each part the summation of j only
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FIG. S1. Bipartite entanglement entropy Sent scaling (LA = L/2) of the scar states in the N = 3 model. Red squares: m2 = m3 = L/3,
blue dots: m2 = 0,m3 = L/2. Both Sent grow logarithmically with the system size.

covers the corresponding subsystem. Consequently, we have the bipartition:

|Sm1,m2,m3⟩ =
1√

N(m2,m3;L)
(Q†

A+ +Q†
Ā+

)m2(Q†
A− +Q†

Ā−)
m3 |Ω⟩

=
1√

N(m2,m3;L)

∑

k2

∑

k3

(
m2

k2

)(
m3

k3

)
(Q†

A+)
k2(Q†

A−)
k3(Q†

Ā+
)m2−k2(Q†

Ā−)
m3−k3 |Ω⟩

=

min(m2,LA)∑

k2=max[0,m2−(L−LA)]

min(m3,LA−k2)∑

k3=max[0,(m2+m3)−(L−LA)−k2)]

√
N(k2, k3;LA)N(m2 − k2,m3 − k3;L− LA)

N(m2,m3;L)

(
m2

k2

)(
m3

k3

)
|SLA−k2−k3,k2,k3

⟩ ⊗ |SL+m2+m3−LA−k2−k3,m2−k2,m3−k3
⟩, (S25)

and eigenvalues of the reduced density matrix can be extracted immediately:

λk2,k3 =
N(k2, k3;LA)N(m2 − k2,m3 − k3;L− LA)

N(m2,m3;L)

(
m2

k2

)2(
m3

k3

)2

. (S26)

Since
∑

k2,k3
λk2,k3 = 1, these eigenvalues can be regarded as the distribution probability of two random variables k2 and k3.

Further, it admits a form of λk2,k3 = p(k3)p(k2|k3), where

p(k3) =
∑

k2

λk2,k3 =

(
L

LA

)−1(
m3

k3

)(
L−m3

LA − k3

)
, (S27)

and

p(k2|k3) = λk2,k3/p(k3) =

(
L−m3

LA − k3

)−1(
m2

k2

)(
L−m2 −m3

LA − k2 − k3

)
(S28)

is the conditional probability of k2 conditioned on k3. Given the expression, we find the entropy can be decomposed as

Sent = −
∑

k2,k3

λk2,k3
ln(λk2,k3

) = −
∑

k3

p(k3) ln(p(k3))−
∑

k3

p(k3)
∑

k2

p(k2|k3) ln(p(k2|k3)). (S29)
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Consider the states with large L and finite m1,2,3/L (i.e. finite densities of excitations), the entanglement entropy can be
evaluated through the standard method of approximations [11, 22]: The first terms give

−
∑

k3

p(k3) ln(p(k3)) ≈
1

2
ln(

LA(L− LA)

L
) +

1

2
ln(2πe

m3(L−m3)

L2
) ≈ 1

2
ln(L) +O(1), (S30)

and the second is

−
∑

k3

p(k3)
∑

k2

p(k2|k3) ln(p(k2|k3)) ≈
∑

k3

1

2
p(k3)(ln(

(LA − k3)(L− LA −m3 + k3)

L−m3
) + ln(2πe

m2(L−m2 −m3)

(L−m3)2
))

≈ 1

2
ln(L) +O(1). (S31)

Therefore, conceptually two kinds of excitations | ± 1⟩ contribute equally to the leading order of the entanglement entropy,
and they sum to ∼ ln(L). In Fig. S1, we numerically calculate the entanglement entropy with LA = L/2 for the scar state
|SL/3,L/3,L/3⟩ through Eq. (S29). We find that Sent grows logarithmically with the system size L, with a coefficient approxi-
mating one as predicted. As a comparison, we also display the entanglement entropy scaling for |SL/2,0,L/2⟩, which exhibits
logarithmic growth with the coefficient ∼ 0.5, since only | − 1⟩ excitations contribute to the entanglement.

∗ whr21@mails.tsinghua.edu.cn
† yuand21@mails.tsinghua.edu.cn

[1] D. K. Mark, C.-J. Lin, and O. I. Motrunich, “Unified structure for exact towers of scar states in the affleck-kennedy-lieb-tasaki and other
models,” Phys. Rev. B 101, 195131 (2020).

[2] D. K. Mark and O. I. Motrunich, “η-pairing states as true scars in an extended hubbard model,” Phys. Rev. B 102, 075132 (2020).
[3] N. O’Dea, F. Burnell, A. Chandran, and V. Khemani, “From tunnels to towers: Quantum scars from lie algebras and q-deformed lie

algebras,” Phys. Rev. Res. 2, 043305 (2020).
[4] S. Moudgalya and O. I. Motrunich, “Exhaustive characterization of quantum many-body scars using commutant algebras,”

arXiv:2209.03377 (2022).
[5] K. Omiya and M. Müller, “Fractionalization paves the way to local projector embeddings of quantum many-body scars,” Phys. Rev. B

108, 054412 (2023).
[6] S. Dooley, “Robust quantum sensing in strongly interacting systems with many-body scars,” PRX Quantum 2, 020330 (2021).
[7] L.-H. Tang, N. O’Dea, and A. Chandran, “Multimagnon quantum many-body scars from tensor operators,” Phys. Rev. Res. 4, 043006

(2022).
[8] S. Choi, C. J. Turner, H. Pichler, W. W. Ho, A. A. Michailidis, Z. Papić, M. Serbyn, M. D. Lukin, and D. A. Abanin, “Emergent su(2)
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