QUANTITATIVE STEINITZ THEOREM AND POLARITY

GRIGORY IVANOV

Abstract

The classical Steinitz theorem asserts that if the origin lies within the interior of the convex hull of a set $S \subset \mathbb{R}^{d}$, then there are at most $2 d$ points in S whose convex hull contains the origin within its interior. Bárány, Katchalski, and Pach established a quantitative version of Steinitz's theorem, showing that for a convex polytope Q in \mathbb{R}^{d} containing the standard Euclidean unit ball \mathbf{B}^{d}, there exist at most $2 d$ vertices of Q whose convex hull Q^{\prime} satisfies $r \mathbf{B}^{d} \subset Q^{\prime}$ with $r \geq d^{-2 d}$. Recently, Márton Naszódi and the author derived a polynomial bound on r.

This paper aims to establish a bound on r based on the number of vertices of Q. In other words, we demonstrate an effective method to remove several points from the original set Q without significantly altering the bound on r. Specifically, if the number of vertices of Q scales linearly with the dimension, i.e., $c d$, then one can select $2 d$ vertices such that $r \geq \frac{1}{5 c d}$. The proof relies on a polarity trick, which may be of independent interest: we demonstrate the existence of a point p in the interior of a convex polytope $P \subset \mathbb{R}^{d}$ such that the vertices of the polar polytope $(P-p)^{\circ}$ sum up to zero.

1. Introduction

The goal of this paper is to establish a quantitative version of the following classical result of E. Steinitz [Ste13].

Proposition 1.1 (Steinitz theorem). Let the origin belong to the interior of the convex hull of a set $S \subset \mathbb{R}^{d}$. Then there are at most $2 d$ points of S whose convex hull contains the origin in the interior.

The first quantitative version of this result was obtained in [BKP82], where the authors showed that for a convex polytope Q in \mathbb{R}^{d} containing the standard Euclidean unit ball \mathbf{B}^{d}, there exist at most $2 d$ vertices of Q whose convex hull Q^{\prime} satisfies $r(d) \mathbf{B}^{d} \subset Q^{\prime}$ with $r(d) \geq d^{-2 d}$.

With the exception of the planar case $d=2$ [KMY92, Bra97, BH94], no significant improvement on $r(d)$ has been obtained (see also [DLLHRS17]). Márton Naszódi and the author derived the first polynomial bound $r(d) \geq \frac{1}{6 d^{2}}$ in [IN24], and extended this result to a spherical version [IN23].

The main result of the paper is as follows.
Theorem 1.2. Let Q be a set of m points of \mathbb{R}^{d} such that its convex hull conv Q contains the Euclidean unit ball \mathbf{B}^{d}. Then there is $Q^{\prime} \subset Q$ of size at most $2 d$ satisfying conv $Q^{\prime} \supset r \mathbf{B}^{d}$, where $r=\frac{1}{2(m+d)+1}$.

Starting with the breakthrough [BSS14], which led to new results in the area of quantitative combinatorial convexity (see [DLLHRS17], [Nas16], [Bra16], [Bra18], [Bra17], [FVGM22]), one approach to the problems was to initially identify more than $2 d$ points (facets, subsets) with desired properties, typically linear in the dimension, and then select the best $2 d$ among them. It is worth noting that in some cases, eliminating additional objects poses challenges [DFN21]. The next corollary, which trivially follows from the main result, facilitates this process in the case of the Quantitative Steinitz theorem.

[^0]Corollary 1.3. Let Q be a set of $c d, c>1$, points of \mathbb{R}^{d} such that its convex hull conv Q contains the ball $\lambda \mathbf{B}^{d}$. Then there are at most $2 d$ points of Q whose convex hull Q^{\prime} satisfies

$$
\frac{\lambda}{5 c d} \mathbf{B}^{d} \subset Q^{\prime}
$$

As another elementary corollary of the main result, we will get a slightly worse polynomial bound in the Quantitative Steinitz theorem than the quadratic one obtained in [IN24].
Corollary 1.4. Let Q be a convex polytope in \mathbb{R}^{d} containing the Euclidean unit ball \mathbf{B}^{d}. Then there are at most $2 d$ vertices of Q whose convex hull Q^{\prime} satisfies

$$
\frac{d^{-\frac{5}{2}}}{7} \mathbf{B}^{d} \subset Q^{\prime}
$$

The key observation we will use to prove Theorem 1.2 is the following "polarity trick." We recall that the polar of a set $S \subset \mathbb{R}^{d}$ is defined by

$$
S^{\circ}=\left\{x \in \mathbb{R}^{d}:\langle x, s\rangle \leq 1 \quad \text { for all } \quad s \in S\right\} .
$$

Theorem 1.5. Let $P \subset \mathbb{R}^{d}$ be a polytope with non-empty interior. Then there is a point c in its interior such that the sum of vertices of $(P-c)^{\circ}$ is equal to zero.

In fact, we will show that for any positive weights, there is a point c from the interior of P such that the sum of vertices of $(P-c)^{\circ}$ with those weights is zero. We will show that the corresponding point c is a maximizer of a certain functional. Thus, our proof mimics the proof of the existence of the Santaló point (see [Gru07, MW98, Leh09, IW21]), which is a point s inside a convex set $K \subset \mathbb{R}^{d}$ with non-empty interior such that the centroid of $(K-s)^{\circ}$ is the origin.

The author would like to know the answer to the following conjecture related to Theorem 1.2
Conjecture 1.6. Let Q be a set of $2 d+1$ points of \mathbb{R}^{d} such that $\operatorname{conv} Q \supset \mathbf{B}^{d}$. Then there is $Q^{\prime} \subset Q$ of size at most $2 d$ satisfying conv $Q^{\prime} \supset c \mathbf{B}^{d}$ for some universal constant c.

The rest of the paper is organized as follows: In the next Section, we will explain the ideas behind the proof of the Quantitative Steinitz theorem obtained in [IN24] that can be traced back to [IN22] and [AHAK22]; we will try to show why Theorem 1.5 comes naturally as a development of those ideas. In Section 3, we will prove a more general version of Theorem 1.5. Finally, in Section 4 we derive Theorem 1.2 and its corollary.

2. Useful lemmas

We begin by elucidating the proof ideas of the Quantitative Steinitz theorem as outlined in [IN24]. The central strategy revolves around the careful application of polarity, employed twice in succession.

We started with a "Steinitz-type picture", wherein we considered a set $Q \subset \mathbb{R}^{d}$ whose convex hull contains the unit ball \mathbf{B}^{d}. Subsequently, we transitioned to an equivalent "Helly-type picture" by examining the polar set Q° of Q. This transformation allows us to reformulate the original problem into an equivalent Helly-type statement, justifying the name. Now comes a trick: we chose a point c "deep" in Q° and considered $\left(Q^{\circ}-c\right)^{\circ}$. So to say, this maneuver returns us to a "Steinitz-type picture" albeit a modified one, as we have altered our original set. In essence, by manipulating the center of polarity, we achieve a more structurally organized convex polytope. We dub the resultant configuration following the second polarity transformation as "Atlantis." For a new set within "Atlantis", we derived the desired polynomial bound utilizing a result from [AHAK22]. Finally, we demonstrated that reverting to the original "Steinitz-type picture" does not significantly degrade our bound.

The crux of the proof lies in selecting the appropriate center c of polarity during the second step. Notably, Theorem 1.5 offers a methodology for choosing an alternative point, which holds intrinsic interest in itself.

Now, we are going to formalize a few statements.
For a natural number $n,[n]$ denotes the set $\{1, \ldots, n\} ; \mathbf{B}^{d}$ denotes the standard Euclidean unit ball in $\mathbb{R}^{d} ;\langle p, x\rangle$ denotes the inner product of p and x. We use $(a)_{+}$to denote max $\{a, 0\}$.

We start with an open problem. In relation to volumetric Helly-type results, the author is interested in the following conjecture: Macbeath [Mac52, Lemma 7.1] showed that for a compact convex set $K \subset \mathbb{R}^{d}$ with non-empty interior, the function $f(x)=\operatorname{vol}_{d} K \cap(-K+2 x)$ attains its maximum in a unique point of the interior of K (here vol $_{d}$ denotes the d-dimensional volume on \mathbb{R}^{d}, as usual). Let us call this point the Macbeath point of K.

Conjecture 2.1. The Macbeath point p of a compact convex set $K \subset \mathbb{R}^{d}$ with non-empty interior satisfies the inclusion

$$
K-p \subset-d(K-p)
$$

We formulate now the above-mentioned result from [AHAK22].
Lemma 2.2. Let L be a bounded subset of \mathbb{R}^{d} linearly spanning the whole space, let $S=$ $\operatorname{conv}\left\{0, v_{1}, \ldots, v_{d}\right\}$ be the maximal volume simplex among all simplices with d vertices from L and one vertex at the origin. We use P to denote the Minkowski sum of segments $\left[-v_{i}, v_{i}\right]$, $i \in[d]$. Then the following inclusions hold:
(1) $L \subset P$.
(2) $P \subset-2 d S+\left(v_{1}+\cdots+v_{d}\right)$.

Sketch of the proof. Clearly, the volume of S is strictly positive. The simplex S can be represented as

$$
\begin{equation*}
S=\left\{x \in \mathbb{R}^{d}: x=\alpha_{1} v_{1}+\ldots+\alpha_{d} v_{d} \quad \text { for } \quad \alpha_{i} \geq 0 \text { and } \sum_{i=1}^{d} \alpha_{i} \leq 1\right\} \tag{1}
\end{equation*}
$$

It is easy to see that P is a paralletope that can be represented as

$$
\begin{equation*}
P=\left\{x \in \mathbb{R}^{d}: x=\beta_{1} v_{1}+\ldots+\beta_{d} v_{d} \quad \text { for } \beta_{i} \in[-1,1]\right\} . \tag{2}
\end{equation*}
$$

Since S is chosen maximally, equation (2) shows that for any vertex v of $L, v \in P$. By convexity,

$$
L \subset P
$$

Let $S^{\prime}=-2 d S+\left(v_{1}+\ldots+v_{d}\right)$. By (1),

$$
S^{\prime}=\left\{x \in \mathbb{R}^{d}: x=\gamma_{1} v_{1}+\ldots+\gamma_{d} v_{d} \quad \text { for } \gamma_{i} \leq 1 \text { and } \sum_{i=1}^{d} \gamma_{i} \geq-d\right\}
$$

which, together with (2), yields $P \subseteq S^{\prime}$, completing the proof.
Now we want to show that the whole way from "Steinitz-type picture" to "Atlantis" and back does not cost much in terms of the bound on the radius.

Let P be a polytope in \mathbb{R}^{d} with a non-empty interior. It is well known that for any point c of the interior of P, there is a one-to-one correspondence between the facets of P and the vertices $(P-c)^{\circ}$. For two points c_{1} and c_{2} of the interior of P, we will say that a vertex of $\left(P-c_{1}\right)^{\circ}$ and a vertex of $\left(P-c_{2}\right)^{\circ}$ are polar corresponding if they correspond to the same facet of P.
Lemma 2.3 (Vertex correspondence). Let $P \subset \mathbb{R}^{d}$ be a polytope containing the origin and a point c in its interior. Denote $Q=P^{\circ}$ and $L=(P-c)^{\circ}$. Then v is a vertex of Q if and only if $\frac{v}{1-\langle c, v\rangle}$ is a vertex of L. Moreover, the vertex v of Q and the vertex $\frac{v}{1-\langle c, v\rangle}$ are polar corresponding.
Proof. A point v is a vertex of Q if and only if the half-space $H_{v}=\left\{x \in \mathbb{R}^{d}:\langle x, v\rangle \leq 1\right\}$ supports P by a facet. The latter is true if and only if $H_{v}-c$ supports $P-c$ in a facet. On the other hand, since c is in the interior of $P,\langle c, v\rangle<1$, and thus,

$$
H_{v}-c=\left\{x \in \mathbb{R}^{d}:\langle x, v\rangle \leq 1\right\}-c=\left\{y \in \mathbb{R}^{d}:\langle y, v\rangle \leq 1-\langle c, v\rangle\right\}=
$$

$$
\left\{y \in \mathbb{R}^{d}:\left\langle y, \frac{v}{1-\langle c, v\rangle}\right\rangle \leq 1\right\}
$$

Consequently, $\frac{v}{1-\langle c, v\rangle}$ is a vertex of L if and only if v is a vertex of Q.
Lemma 2.4 (Atlantis: There and back again). Let $P \subset \mathbf{B}^{d} \subset \mathbb{R}^{d}$ be a polytope containing the origin and a point c in its interior. Denote $K_{1}=P^{\circ}$ and $K_{2}=(P-c)^{\circ}$. If some vertices w_{1}, \ldots, w_{k} of K_{2} satisfy the inclusion conv $\left\{w_{1}, \ldots, w_{k}\right\} \supset \lambda \mathbf{B}^{d}$ for some positive λ, then their polar corresponding vertices v_{1}, \ldots, v_{k} of K_{1} satisfy $\operatorname{conv}\left\{v_{1}, \ldots, v_{k}\right\} \supset \frac{\lambda}{1+\lambda} \mathbf{B}^{d}$.
Proof. By Lemma 2.3, the vertices v_{1}, \ldots, v_{k} of K_{1} polar corresponding to w_{1}, \ldots, w_{k} satisfy $w_{1}=\frac{v_{1}}{1-\left\langle v_{1}, c\right\rangle}, \ldots, w_{k}=\frac{v_{k}}{1-\left\langle v_{k}, c\right\rangle}$. Next, $\left(\operatorname{conv}\left\{w_{1}, \ldots, w_{k}\right\}\right)^{\circ} \subset \frac{1}{\lambda} \mathbf{B}^{d}$ and

$$
\begin{gathered}
\left(\operatorname{conv}\left\{w_{1}, \ldots, w_{k}\right\}\right)^{\circ}=\bigcap_{i \in[k]}\left\{y \in \mathbb{R}^{d}:\left\langle y, w_{i}\right\rangle \leq 1\right\}=\bigcap_{i \in[k]}\left\{y \in \mathbb{R}^{d}: \frac{\left\langle y, v_{i}\right\rangle}{1-\left\langle v_{i}, c\right\rangle} \leq 1\right\}= \\
\bigcap_{i \in[k]}\left\{y \in \mathbb{R}^{d}:\left\langle y, v_{i}\right\rangle \leq 1-\left\langle v_{i}, c\right\rangle\right\}=\bigcap_{i \in[k]}\left\{y \in \mathbb{R}^{d}:\left\langle y+c, v_{i}\right\rangle \leq 1\right\}= \\
\bigcap_{i \in[k]}\left(\left\{x \in \mathbb{R}^{d}:\left\langle x, v_{i}\right\rangle \leq 1\right\}-c\right)=-c+\bigcap_{i \in[k]}\left\{x \in \mathbb{R}^{d}:\left\langle x, v_{i}\right\rangle \leq 1\right\} .
\end{gathered}
$$

By the assumption of the lemma, $c \in P \subset \mathbf{B}^{d}$. Hence, $\bigcap_{i \in[k]}\left\{x \in \mathbb{R}^{d}:\left\langle x, v_{i}\right\rangle \leq 1\right\} \subset\left(\frac{1}{\lambda}+1\right) \mathbf{B}^{d}$. Consequently, $\operatorname{conv}\left\{v_{1}, \ldots, v_{k}\right\}=\left(\bigcap_{i \in[k]}\left\{x \in \mathbb{R}^{d}:\left\langle x, v_{i}\right\rangle \leq 1\right\}\right)^{\circ} \supset \frac{\lambda}{1+\lambda} \mathbf{B}^{d}$. The lemma is proven.

We note that Lemma 2.4 allows to go both ways from "Steinitz-type" picture to "Atlantis" and back. For example, if $K_{2} \supset \mathbf{B}^{d}$, then $K_{1} \supset \frac{1}{2} \mathbf{B}^{d}$.

3. Polarity trick

In this section, we prove the following result, which implies Theorem 1.5.
Theorem 3.1. Let $P \subset \mathbb{R}^{d}$ be a polytope with non-empty interior with facets F_{1}, \ldots, F_{n}. For any positive weights $\alpha_{1}, \ldots, \alpha_{n}$, there is a point c in the interior of P such that

$$
\sum_{i \in[n]} \alpha_{i} w_{i}=0,
$$

where w_{i} is the vertex of $(P-c)^{\circ}$ corresponding to the facet F_{i} of P.
The key observation is the following:
Lemma 3.2. Let $P \subset \mathbb{R}^{d}$ be a polytope containing the origin in its interior defined by the linear inequalites $\left\{x \in \mathbb{R}^{d}:\langle x, v\rangle \leq 1\right.$ for all $\left.v \in Q\right\}$, for some finite $Q \subset \mathbb{R}^{d}$. Denote

$$
F(x)=\prod_{v \in Q}(1-\langle x, v\rangle)_{+}^{\beta_{v}}
$$

where all $\beta_{v}>0$ for all $v \in Q$. Then F attains its maximum at a unique point c of the interior of P satisfying the identity

$$
\sum_{v \in Q} \frac{\beta_{v} v}{1-\langle c, v\rangle}=0 .
$$

Proof. Clearly, the function F vanishes outside of the interior of P. The function F is smooth, and the identity $F(x)=\prod_{v \in Q}(1-\langle x, v\rangle)^{\beta_{v}}$ holds for any x in the interior of P. By compactness, F attains its maximum at a point c of the interior of P. The function $\ln F$ is strictly convex on its support, which implies the uniqueness of c.

Fix a unit vector u. For any positive β and $b \neq 0$,

$$
\left.\frac{\mathrm{d}(a t+b)^{\beta}}{\mathrm{d} t}\right|_{t=0}=\left.\beta a \frac{(a t+b)^{\beta}}{(a t+b)}\right|_{t=0}
$$

Thus,

$$
\begin{gathered}
-\left.\frac{\mathrm{d} F(c+t u)}{\mathrm{d} t}\right|_{t=0}=-\left.\left(\prod_{v \in Q}(1-\langle c, v\rangle-t\langle u, v\rangle)^{\beta_{v}}\right)^{\prime}\right|_{t=0}= \\
\left.\sum_{v \in Q} \beta_{v}\langle u, v\rangle \frac{\prod_{v \in Q}(1-\langle c, v\rangle-t\langle u, v\rangle)^{\beta_{v}}}{1-\langle c, v\rangle-t\langle u, v\rangle}\right|_{t=0}=\sum_{v \in Q} \beta_{v}\langle u, v\rangle \frac{F(c)}{1-\langle c, v\rangle}=F(c)\left\langle u, \sum_{v \in Q} \frac{\beta_{v} v}{1-\langle c, v\rangle}\right\rangle
\end{gathered}
$$

Since $F(c)>0$ and u was chosen arbitrary, we conclude that

$$
\sum_{v \in Q} \frac{\beta_{v} v}{1-\langle c, v\rangle}=0
$$

completing the proof of the lemma.
Proof of Theorem 3.1. Returning to our theorem, we shift P in such a way that it contains the origin in its interior. Denote $Q=P^{\circ}$ and let v_{i} is the vertex of Q corresponding to the facet F_{i}. Applying Lemma 3.2 for $F(x)=\prod_{i \in[m]}\left(1-\left\langle x, v_{i}\right\rangle\right)_{+}^{\alpha_{i}}$, we get

$$
\sum_{i \in[m]} \frac{\alpha_{i} v_{i}}{1-\left\langle c, v_{i}\right\rangle}=0
$$

By Lemma 2.3, the sum is equal to $\sum_{i \in[m]} \alpha_{i} w_{i}, w_{i}$ is the vertex of $(P-c)^{\circ}$ corresponding to the facet F_{i} of P. The proof of Theorem 3.1 is complete.

4. Proof of the main result and its corollary

The following consequence of the Carathéodory lemma comes in handy. The proof can be found in [Bár21, Theorem 2.3].
Lemma 4.1. Assume a point p belongs to the convex hull of a set $Q \subset \mathbb{R}^{d}$. Then there are v_{1}, \ldots, v_{d} (some of them might coincide) of Q satisfying $p \in \operatorname{conv}\left\{0, v_{1}, \ldots, v_{d}\right\}$.
Proof of Theorem 1.2. Set $P=Q^{\circ}$. By Theorem 1.5, there is a point c in the interior of P such that the vertices of $(P-c)^{\circ}$ sum up to zero. Denote $L=(P-c)^{\circ}$.

Using Lemma 2.4 with $K_{2}=Q$ and $K_{1}=L$, one sees that $\frac{\mathbf{B}^{d}}{2} \subset L$.
Consider $S=\operatorname{conv}\left\{0, w_{1}, \ldots, w_{d}\right\}$ the maximal volume simplex among all simplices with d vertices from L and one vertex at the origin. Then the sum of all other vertices of L is equal to $-\left(w_{1}+\cdots+w_{d}\right)$. And thus the centroid p of all others is equal to $-\frac{\left(w_{1}+\cdots+w_{d}\right)}{m-d}$. Thus, by Lemma 4.1, there are vertices $w_{d+1}, \ldots, w_{2 d}$ such that p belongs to conv $\left\{w_{d+1}, \ldots, w_{2 d}, 0\right\}$. Thus, the convex hull of $\left\{w_{1}, \ldots, w_{2 d}\right\}$ contains the simplex $\operatorname{conv}\left\{0, w_{1}, \ldots, w_{d}\right\}$.

By Lemma 2.2,

$$
\begin{aligned}
& \frac{\mathbf{B}^{d}}{2} \subset L \subset-2 d \operatorname{conv}\left\{0, w_{1}, \ldots, w_{d}\right\}+\left(w_{1}+\cdots+w_{d}\right) \subset-2 d \operatorname{conv}\left\{w_{1}, \ldots, w_{2 d}\right\}-p(m-d) \subset \\
&-2 d \operatorname{conv}\left\{w_{1}, \ldots, w_{2 d}\right\}-(m-d) \operatorname{conv}\left\{w_{1}, \ldots, w_{2 d}\right\}=-(m+d) \operatorname{conv}\left\{w_{1}, \ldots, w_{2 d}\right\}
\end{aligned}
$$

Thus, $\frac{\mathbf{B}^{d}}{2(m+d)} \subset \operatorname{conv}\left\{w_{1}, \ldots, w_{2 d}\right\}$, and by Lemma 2.4 with $K_{2}=L$ and $K_{1}=Q$,, one sees that the corresponding vertices $v_{1}, \ldots, v_{2 d}$ of Q satisfy $\frac{\mathbf{B}^{d}}{2(m+d)+1} \subset \operatorname{conv}\left\{v_{1}, \ldots, v_{2 d}\right\}$.
Proof of Corollary 1.4. The first step is to reduce the number of points to a quadratic in d. It is easy to find $2 d^{2}$ points of Q such that their convex hall contains $\frac{\mathbf{B}^{d}}{\sqrt{d}}$. Take arbitrary standard cross-polytope inscribed in the unit ball \mathbf{B}^{d}, say the convex hull of vectors of the standard basis $\left\{e_{1}, \ldots, e_{d}\right\}$ of \mathbb{R}^{d} and their opposites $\left\{-e_{1}, \ldots,-e_{d}\right\}$. By Lemma 4.1, for each point $p \in$ $\left\{ \pm e_{1}, \ldots, e_{d}\right\}$, there are d points, say v_{1}, \ldots, v_{d}, of Q with the property $p \in \operatorname{conv}\left\{0, v_{1}, \ldots, v_{d}\right\}$. The convex hull of the union of such d-tuples of points for all $p \in\left\{ \pm e_{1}, \ldots, \pm e_{d}\right\}$, contains the cross-polytope and hence contains the ball $\frac{\mathrm{B}^{d}}{\sqrt{d}}$.

Now, it suffices to apply Theorem 1.2 to go from $2 d^{2}$ points to $2 d$ points whose convex hull contains the ball $\frac{1}{2\left(2 d^{2}+d\right)+1} \cdot \frac{\mathrm{~B}^{d}}{\sqrt{d}} \supset \frac{d^{-\frac{5}{2}}}{7} \mathbf{B}^{d}$.

Acknowledgments

The author extends gratitude to Márton Naszódi for insightful discussions and comprehensive help. Special thanks are also due to János Pach, who facilitated our collaborative efforts with Márton.

References

[AHAK22] Víctor Hugo Almendra-Hernández, Gergely Ambrus, and Matthew Kendall. Quantitative Hellytype theorems via sparse approximation. Discrete $8 \mathcal{C}$ Computational Geometry, pages 1-8, 2022.
[Bár21] Imre Bárány. Combinatorial convexity, volume 77. American Mathematical Soc., 2021.
[BH94] Imre Barany and Aladár Heppes. On the exact constant in the quantitative Steinitz theorem in the plane. Discrete $\S \mathcal{C}$ Computational Geometry, 12(4):387-398, 1994.
[BKP82] Imre Bárány, Meir Katchalski, and Janos Pach. Quantitative Helly-type theorems. Proceedings of the American Mathematical Society, 86(1):109-114, 1982.
[Bra97] Peter Brass. On the quantitative Steinitz theorem in the plane. Discrete ξ^{8} Computational Geometry, 17(1):111-117, 1997.
[Bra16] Silouanos Brazitikos. Quantitative Helly-type theorem for the diameter of convex sets. Discrete (3) Computational Geometry, 57(2):494-505, November 2016.
[Bra17] Silouanos Brazitikos. Brascamp-Lieb inequality and quantitative versions of Helly's theorem. Mathematika, 63(1):272-291, 2017.
[Bra18] Silouanos Brazitikos. Polynomial estimates towards a sharp Helly-type theorem for the diameter of convex sets. Bulletin of the Hellenic mathematical society, 62:19-25, 2018.
[BSS14] Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers. SIAM Rev., 56(2):315-334, 2014.
[DFN21] Gábor Damásdi, Viktória Földvári, and Márton Naszódi. Colorful helly-type theorems for the volume of intersections of convex bodies. Journal of Combinatorial Theory, Series A, 178:105361, 2021.
[DLLHRS17] Jesús A. De Loera, Reuben N. La Haye, David Rolnick, and Pablo Soberón. Quantitative combinatorial geometry for continuous parameters. Discrete \& Computational Geometry, 57(2):318-334, 2017.
[FVGM22] Tomás Fernandez Vidal, Daniel Galicer, and Mariano Merzbacher. Continuous quantitative Hellytype results. Proceedings of the American Mathematical Society, 150(5):2181-2193, 2022.
[Gru07] Peter M. Gruber. Convex and Discrete Geometry. Springer Berlin Heidelberg, 2007.
[IN22] Grigory Ivanov and Márton Naszódi. A quantitative Helly-type theorem: containment in a homothet. SIAM Journal on Discrete Mathematics, 36(2):951-957, 2022.
[IN23] Grigory Ivanov and Márton Naszódi. Quantitative Steinitz theorem: A spherical version. arXiv preprint arXiv:2306.01663, 2023.
[IN24] Grigory Ivanov and Márton Naszódi. Quantitative Steinitz theorem: A polynomial bound. Bulletin of the London Mathematical Society, 56(2):796-802, 2024.
[IW21] Grigory Ivanov and Elisabeth M Werner. Geometric representation of classes of concave functions and duality. arXiv preprint arXiv:2112.13881, 2021.
[KMY92] David Kirkpatrick, Bhubaneswar Mishra, and Chee-Keng Yap. Quantitative Steinitz's theorems with applications to multifingered grasping. Discrete \& Computational Geometry, 7(3):295-318, 1992.
[Leh09] Joseph Lehec. Partitions and functional Santaló inequalities. Archiv der Mathematik, 92(1):89-94, 2009.
[Mac52] Alexander M. Macbeath. A theorem on non-homogeneous lattices. Annals of Mathematics, pages 269-293, 1952.
[MW98] Mathieu Meyer and Elisabeth Werner. The Santaló-regions of a convex body. Transactions of the American Mathematical Society, 350(11):4569-4591, 1998.
[Nas16] Márton Naszódi. Proof of a conjecture of Bárány, Katchalski and Pach. Discrete \& Computational Geometry, 55(1):243-248, 2016.
[Ste13] Ernst Steinitz. Bedingt konvergente Reihen und konvexe Systeme. J. Reine Angew. Math., 143:128-176, 1913.

GRIGORY IVANOV: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
DEPARTAMENTO DE MATEMÁTICA, RUA MARQUÊS DE SÃO VICENTE, 225
EDIFÍCIO CARDEAL LEME, SALA 862, 22451-900 GÁVEA, RIO DE JANEIRO, BRAZIL
Email address: GRIMIVANOV@GMAIL.COM

[^0]: 2020 Mathematics Subject Classification. 52A27 (primary), 52A35.
 Key words and phrases. sparse approximation, coarse approximation, Carathéodory lemma.
 The author is supported by Projeto Paz and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) - 23038.015548/2016-06.

