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QUANTITATIVE STEINITZ THEOREM AND POLARITY

GRIGORY IVANOV

Abstract. The classical Steinitz theorem asserts that if the origin lies within the interior of
the convex hull of a set S ⊂ R

d, then there are at most 2d points in S whose convex hull contains
the origin within its interior. Bárány, Katchalski, and Pach established a quantitative version
of Steinitz’s theorem, showing that for a convex polytope Q in R

d containing the standard
Euclidean unit ball Bd, there exist at most 2d vertices of Q whose convex hull Q′ satisfies
rBd ⊂ Q′ with r ≥ d−2d. Recently, Márton Naszódi and the author derived a polynomial
bound on r.

This paper aims to establish a bound on r based on the number of vertices of Q. In other
words, we demonstrate an effective method to remove several points from the original set Q

without significantly altering the bound on r. Specifically, if the number of vertices of Q scales
linearly with the dimension, i.e., cd, then one can select 2d vertices such that r ≥ 1

5cd
. The

proof relies on a polarity trick, which may be of independent interest: we demonstrate the
existence of a point p in the interior of a convex polytope P ⊂ R

d such that the vertices of the
polar polytope (P − p)◦ sum up to zero.

1. Introduction

The goal of this paper is to establish a quantitative version of the following classical result
of E. Steinitz [Ste13].

Proposition 1.1 (Steinitz theorem). Let the origin belong to the interior of the convex hull of
a set S ⊂ R

d. Then there are at most 2d points of S whose convex hull contains the origin in
the interior.

The first quantitative version of this result was obtained in [BKP82], where the authors
showed that for a convex polytope Q in R

d containing the standard Euclidean unit ball Bd,
there exist at most 2d vertices of Q whose convex hull Q′ satisfies r(d)Bd ⊂ Q′ with r(d) ≥ d−2d.

With the exception of the planar case d = 2 [KMY92, Bra97, BH94], no significant im-
provement on r(d) has been obtained (see also [DLLHRS17]). Márton Naszódi and the author
derived the first polynomial bound r(d) ≥ 1

6d2
in [IN24], and extended this result to a spherical

version [IN23].
The main result of the paper is as follows.

Theorem 1.2. Let Q be a set of m points of Rd such that its convex hull convQ contains the
Euclidean unit ball Bd. Then there is Q′ ⊂ Q of size at most 2d satisfying convQ′ ⊃ rBd, where
r = 1

2(m+d)+1
.

Starting with the breakthrough [BSS14], which led to new results in the area of quantitative
combinatorial convexity (see [DLLHRS17], [Nas16], [Bra16], [Bra18], [Bra17], [FVGM22]), one
approach to the problems was to initially identify more than 2d points (facets, subsets) with
desired properties, typically linear in the dimension, and then select the best 2d among them.
It is worth noting that in some cases, eliminating additional objects poses challenges [DFN21].
The next corollary, which trivially follows from the main result, facilitates this process in the
case of the Quantitative Steinitz theorem.
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Corollary 1.3. Let Q be a set of cd, c > 1, points of R
d such that its convex hull convQ

contains the ball λBd. Then there are at most 2d points of Q whose convex hull Q′ satisfies

λ

5cd
Bd ⊂ Q′.

As another elementary corollary of the main result, we will get a slightly worse polynomial
bound in the Quantitative Steinitz theorem than the quadratic one obtained in [IN24].

Corollary 1.4. Let Q be a convex polytope in R
d containing the Euclidean unit ball Bd. Then

there are at most 2d vertices of Q whose convex hull Q′ satisfies

d−
5

2

7
Bd ⊂ Q′.

The key observation we will use to prove Theorem 1.2 is the following “polarity trick.”
We recall that the polar of a set S ⊂ R

d is defined by

S◦ =
{

x ∈ R
d : 〈x, s〉 ≤ 1 for all s ∈ S

}

.

Theorem 1.5. Let P ⊂ R
d be a polytope with non-empty interior. Then there is a point c in

its interior such that the sum of vertices of (P − c)◦ is equal to zero.

In fact, we will show that for any positive weights, there is a point c from the interior of P
such that the sum of vertices of (P − c)◦ with those weights is zero. We will show that the
corresponding point c is a maximizer of a certain functional. Thus, our proof mimics the proof
of the existence of the Santaló point (see [Gru07, MW98, Leh09, IW21]), which is a point s

inside a convex set K ⊂ R
d with non-empty interior such that the centroid of (K − s)◦ is the

origin.
The author would like to know the answer to the following conjecture related to Theorem 1.2

Conjecture 1.6. Let Q be a set of 2d + 1 points of Rd such that convQ ⊃ Bd. Then there is
Q′ ⊂ Q of size at most 2d satisfying convQ′ ⊃ cBd for some universal constant c.

The rest of the paper is organized as follows: In the next Section, we will explain the ideas
behind the proof of the Quantitative Steinitz theorem obtained in [IN24] that can be traced
back to [IN22] and [AHAK22]; we will try to show why Theorem 1.5 comes naturally as a
development of those ideas. In Section 3, we will prove a more general version of Theorem 1.5.
Finally, in Section 4 we derive Theorem 1.2 and its corollary.

2. Useful lemmas

We begin by elucidating the proof ideas of the Quantitative Steinitz theorem as outlined in
[IN24]. The central strategy revolves around the careful application of polarity, employed twice
in succession.

We started with a “Steinitz-type picture”, wherein we considered a set Q ⊂ R
d whose convex

hull contains the unit ball Bd. Subsequently, we transitioned to an equivalent “Helly-type
picture” by examining the polar set Q◦ of Q. This transformation allows us to reformulate the
original problem into an equivalent Helly-type statement, justifying the name. Now comes a
trick: we chose a point c “deep” inQ◦ and considered (Q◦ − c)◦. So to say, this maneuver returns
us to a “Steinitz-type picture” albeit a modified one, as we have altered our original set. In
essence, by manipulating the center of polarity, we achieve a more structurally organized convex
polytope. We dub the resultant configuration following the second polarity transformation as
“Atlantis.” For a new set within “Atlantis”, we derived the desired polynomial bound utilizing
a result from [AHAK22]. Finally, we demonstrated that reverting to the original “Steinitz-type
picture” does not significantly degrade our bound.

The crux of the proof lies in selecting the appropriate center c of polarity during the second
step. Notably, Theorem 1.5 offers a methodology for choosing an alternative point, which holds
intrinsic interest in itself.
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Now, we are going to formalize a few statements.
For a natural number n, [n] denotes the set {1, . . . , n}; Bd denotes the standard Euclidean

unit ball in R
d; 〈p, x〉 denotes the inner product of p and x. We use (a)+ to denote max{a, 0}.

We start with an open problem. In relation to volumetric Helly-type results, the author
is interested in the following conjecture: Macbeath [Mac52, Lemma 7.1] showed that for a
compact convex set K ⊂ R

d with non-empty interior, the function f(x) = voldK ∩ (−K + 2x)
attains its maximum in a unique point of the interior of K (here vold denotes the d-dimensional
volume on R

d, as usual). Let us call this point the Macbeath point of K.

Conjecture 2.1. The Macbeath point p of a compact convex set K ⊂ R
d with non-empty

interior satisfies the inclusion
K − p ⊂ −d(K − p).

We formulate now the above-mentioned result from [AHAK22].

Lemma 2.2. Let L be a bounded subset of R
d linearly spanning the whole space, let S =

conv{0, v1, . . . , vd} be the maximal volume simplex among all simplices with d vertices from L

and one vertex at the origin. We use P to denote the Minkowski sum of segments [−vi, vi],
i ∈ [d]. Then the following inclusions hold:

(1) L ⊂ P.

(2) P ⊂ −2dS + (v1 + · · ·+ vd).

Sketch of the proof. Clearly, the volume of S is strictly positive. The simplex S can be repre-
sented as

(1) S =

{

x ∈ R
d : x = α1v1 + . . .+ αdvd for αi ≥ 0 and

d
∑

i=1

αi ≤ 1

}

.

It is easy to see that P is a paralletope that can be represented as

(2) P = {x ∈ R
d : x = β1v1 + . . .+ βdvd for βi ∈ [−1, 1]}.

Since S is chosen maximally, equation (2) shows that for any vertex v of L, v ∈ P . By convexity,

L ⊂ P.

Let S ′ = −2dS + (v1 + . . .+ vd). By (1),

S ′ =

{

x ∈ R
d : x = γ1v1 + . . .+ γdvd for γi ≤ 1 and

d
∑

i=1

γi ≥ −d

}

,

which, together with (2), yields P ⊆ S ′, completing the proof. �

Now we want to show that the whole way from “Steinitz-type picture” to “Atlantis” and
back does not cost much in terms of the bound on the radius.

Let P be a polytope in R
d with a non-empty interior. It is well known that for any point c of

the interior of P, there is a one-to-one correspondence between the facets of P and the vertices
(P − c)◦. For two points c1 and c2 of the interior of P, we will say that a vertex of (P − c1)

◦

and a vertex of (P − c2)
◦ are polar corresponding if they correspond to the same facet of P.

Lemma 2.3 (Vertex correspondence). Let P ⊂ R
d be a polytope containing the origin and a

point c in its interior. Denote Q = P ◦ and L = (P − c)◦. Then v is a vertex of Q if and
only if v

1−〈c,v〉 is a vertex of L. Moreover, the vertex v of Q and the vertex v
1−〈c,v〉 are polar

corresponding.

Proof. A point v is a vertex of Q if and only if the half-space Hv = {x ∈ R
d : 〈x, v〉 ≤ 1}

supports P by a facet. The latter is true if and only if Hv − c supports P − c in a facet. On
the other hand, since c is in the interior of P, 〈c, v〉 < 1, and thus,

Hv − c = {x ∈ R
d : 〈x, v〉 ≤ 1} − c = {y ∈ R

d : 〈y, v〉 ≤ 1− 〈c, v〉} =
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{y ∈ R
d :

〈

y,
v

1− 〈c, v〉

〉

≤ 1}.

Consequently, v
1−〈c,v〉 is a vertex of L if and only if v is a vertex of Q. �

Lemma 2.4 (Atlantis: There and back again). Let P ⊂ Bd ⊂ R
d be a polytope containing

the origin and a point c in its interior. Denote K1 = P ◦ and K2 = (P − c)◦. If some vertices
w1, . . . , wk of K2 satisfy the inclusion conv{w1, . . . , wk} ⊃ λBd for some positive λ, then their
polar corresponding vertices v1, . . . , vk of K1 satisfy conv{v1, . . . , vk} ⊃ λ

1+λ
Bd.

Proof. By Lemma 2.3, the vertices v1, . . . , vk of K1 polar corresponding to w1, . . . , wk satisfy
w1 =

v1
1−〈v1,c〉 , . . . , wk =

vk
1−〈vk,c〉 . Next, (conv{w1, . . . , wk})

◦ ⊂ 1
λ
Bd and

(conv{w1, . . . , wk})
◦ =

⋂

i∈[k]

{

y ∈ R
d : 〈y, wi〉 ≤ 1

}

=
⋂

i∈[k]

{

y ∈ R
d :

〈y, vi〉

1− 〈vi, c〉
≤ 1

}

=

⋂

i∈[k]

{

y ∈ R
d : 〈y, vi〉 ≤ 1− 〈vi, c〉

}

=
⋂

i∈[k]

{

y ∈ R
d : 〈y + c, vi〉 ≤ 1

}

=

⋂

i∈[k]

({

x ∈ R
d : 〈x, vi〉 ≤ 1

}

− c
)

= −c+
⋂

i∈[k]

{

x ∈ R
d : 〈x, vi〉 ≤ 1

}

.

By the assumption of the lemma, c ∈ P ⊂ Bd. Hence,
⋂

i∈[k]

{

x ∈ R
d : 〈x, vi〉 ≤ 1

}

⊂
(

1
λ
+ 1
)

Bd.

Consequently, conv{v1, . . . , vk} =

(

⋂

i∈[k]

{

x ∈ R
d : 〈x, vi〉 ≤ 1

}

)◦

⊃ λ
1+λ

Bd. The lemma is

proven. �

We note that Lemma 2.4 allows to go both ways from “Steinitz-type” picture to “Atlantis”
and back. For example, if K2 ⊃ Bd, then K1 ⊃

1
2
Bd.

3. Polarity trick

In this section, we prove the following result, which implies Theorem 1.5.

Theorem 3.1. Let P ⊂ R
d be a polytope with non-empty interior with facets F1, . . . , Fn. For

any positive weights α1, . . . , αn, there is a point c in the interior of P such that
∑

i∈[n]
αiwi = 0,

where wi is the vertex of (P − c)◦ corresponding to the facet Fi of P.

The key observation is the following:

Lemma 3.2. Let P ⊂ R
d be a polytope containing the origin in its interior defined by the linear

inequalites {x ∈ R
d : 〈x, v〉 ≤ 1 for all v ∈ Q}, for some finite Q ⊂ R

d. Denote

F (x) =
∏

v∈Q
(1− 〈x, v〉)βv

+ ,

where all βv > 0 for all v ∈ Q. Then F attains its maximum at a unique point c of the interior
of P satisfying the identity

∑

v∈Q

βvv

1− 〈c, v〉
= 0.
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Proof. Clearly, the function F vanishes outside of the interior of P. The function F is smooth,
and the identity F (x) =

∏

v∈Q
(1− 〈x, v〉)βv holds for any x in the interior of P. By compactness,

F attains its maximum at a point c of the interior of P. The function lnF is strictly convex on
its support, which implies the uniqueness of c.

Fix a unit vector u. For any positive β and b 6= 0,

d(at+ b)β

dt

∣

∣

∣

∣

t=0

= βa
(at+ b)β

(at + b)

∣

∣

∣

∣

t=0

.

Thus,

−
dF (c+ tu)

dt

∣

∣

∣

∣

t=0

= −

(

∏

v∈Q
(1− 〈c, v〉 − t 〈u, v〉)βv

)′∣
∣

∣

∣

∣

t=0

=

∑

v∈Q
βv 〈u, v〉

∏

v∈Q
(1− 〈c, v〉 − t 〈u, v〉)βv

1− 〈c, v〉 − t 〈u, v〉

∣

∣

∣

∣

∣

∣

∣

t=0

=
∑

v∈Q
βv 〈u, v〉

F (c)

1− 〈c, v〉
= F (c)

〈

u,
∑

v∈Q

βvv

1− 〈c, v〉

〉

Since F (c) > 0 and u was chosen arbitrary, we conclude that
∑

v∈Q

βvv

1− 〈c, v〉
= 0,

completing the proof of the lemma. �

Proof of Theorem 3.1 . Returning to our theorem, we shift P in such a way that it contains
the origin in its interior. Denote Q = P ◦ and let vi is the vertex of Q corresponding to the
facet Fi. Applying Lemma 3.2 for F (x) =

∏

i∈[m]

(1− 〈x, vi〉)
αi

+ , we get

∑

i∈[m]

αivi

1− 〈c, vi〉
= 0.

By Lemma 2.3, the sum is equal to
∑

i∈[m]

αiwi, wi is the vertex of (P − c)◦ corresponding to the

facet Fi of P. The proof of Theorem 3.1 is complete. �

4. Proof of the main result and its corollary

The following consequence of the Carathéodory lemma comes in handy. The proof can be
found in [Bár21, Theorem 2.3].

Lemma 4.1. Assume a point p belongs to the convex hull of a set Q ⊂ R
d. Then there are

v1, . . . , vd (some of them might coincide) of Q satisfying p ∈ conv{0, v1, . . . , vd}.

Proof of Theorem 1.2. Set P = Q◦. By Theorem 1.5, there is a point c in the interior of P such
that the vertices of (P − c)◦ sum up to zero. Denote L = (P − c)◦.

Using Lemma 2.4 with K2 = Q and K1 = L, one sees that B
d

2
⊂ L.

Consider S = conv{0, w1, . . . , wd} the maximal volume simplex among all simplices with
d vertices from L and one vertex at the origin. Then the sum of all other vertices of L is

equal to −(w1 + · · ·+wd). And thus the centroid p of all others is equal to − (w1+···+wd)
m−d

. Thus,
by Lemma 4.1, there are vertices wd+1, . . . , w2d such that p belongs to conv{wd+1, . . . , w2d, 0}.
Thus, the convex hull of {w1, . . . , w2d} contains the simplex conv{0, w1, . . . , wd}.

By Lemma 2.2,

Bd

2
⊂ L ⊂ −2dconv{0, w1, . . . , wd}+ (w1 + · · ·+ wd) ⊂ −2dconv{w1, . . . , w2d} − p(m− d) ⊂

−2dconv{w1, . . . , w2d} − (m− d)conv{w1, . . . , w2d} = −(m+ d)conv{w1, . . . , w2d}.
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Thus, B
d

2(m+d)
⊂ conv{w1, . . . , w2d}, and by Lemma 2.4 with K2 = L and K1 = Q,, one sees that

the corresponding vertices v1, . . . , v2d of Q satisfy B
d

2(m+d)+1
⊂ conv{v1, . . . , v2d}. �

Proof of Corollary 1.4. The first step is to reduce the number of points to a quadratic in d. It

is easy to find 2d2 points of Q such that their convex hall contains B
d

√
d
. Take arbitrary standard

cross-polytope inscribed in the unit ball Bd, say the convex hull of vectors of the standard
basis {e1, . . . , ed} of Rd and their opposites {−e1, . . . ,−ed}. By Lemma 4.1, for each point p ∈
{±e1, . . . , ed}, there are d points, say v1, . . . , vd, of Q with the property p ∈ conv{0, v1, . . . , vd}.
The convex hull of the union of such d-tuples of points for all p ∈ {±e1, . . . ,±ed}, contains the

cross-polytope and hence contains the ball B
d

√
d
.

Now, it suffices to apply Theorem 1.2 to go from 2d2 points to 2d points whose convex hull

contains the ball 1
2(2d2+d)+1

· B
d

√
d
⊃ d

−

5

2

7
Bd. �
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EDIFÍCIO CARDEAL LEME, SALA 862, 22451-900 GÁVEA, RIO DE JANEIRO, BRAZIL
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