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Characterizing non-equilibrium dynamics in quantum many-body systems is a challenging frontier of physics.
In this work, we systematically construct solvable non-integrable quantum circuits that exhibit exact Markovian
subsystem dynamics. This feature thus enables accurately calculating local observables for arbitrary evolution
time. Utilizing the influence matrix method, we show that the effect of the time-evolved global system on a finite
subsystem can be analytically described by sequential, time-local quantum channels acting on the subsystem
boundary. The realization of exact Markovian property is facilitated by a solvable condition on the underlying
two-site gates in the quantum circuit. We further present several concrete examples with varying local Hilbert
space dimensions to demonstrate our approach.

In isolated quantum many-body systems driven out of equi-
librium, thermalization typically occurs, where local observ-
ables relax to their thermal-averaged expectation values after a
finite time. Heuristically, the global system serves as a thermal
bath for the local subsystem [1–5]. On the other hand, vari-
ous counterexamples of thermalization have been extensively
studied, including integrable models [6], many-body localiza-
tion [7, 8], and quantum many-body scars [9–11]. However,
for both scenarios (following or violating thermalization), it
poses a formidable challenge to accurately quantify the in-
fluence of the time-evolved macroscopic many-body system
on its own subsystem, due to the exponentially large Hilbert
space dimension in the thermodynamic limit (TL) and the
quantum memory effects brought by the non-Markovianity.

Recently, progress has been made in quantum circuits,
where the unitary evolution is discretized to sequences of lo-
cal unitary gates. In particular, Refs. [12–17] have developed
an efficient tensor-network approach to trace out the system,
and encode the influence on the subsystem into the fixed point
of the spatial transfer matrix, which is also known as the in-
fluence matrix [16, 17]. However, the intrinsic complexity of
many-body dynamics typically leads to complicated influence
matrices as the evolution time grows, restricting rigorous nu-
merical and analytical treatment within this approach [18].

In this paper, we introduce a novel approach to systemati-
cally constructing 1+1 D non-integrable quantum circuits ex-
hibiting exact Markovian subsystem dynamics. We introduce
a solvable condition for the underlying unitary gates allowing
for efficient contractions of quantum-circuit tensor networks
for arbitrary evolution time. We show that the time-evolved
system can be traced out to a closed-form influence matrix
in the Matrix Product State (MPS) representation, thus en-
abling numerical calculations of subsystem dynamics in an
exact fashion. Remarkably, we interpret the influence ma-
trix as time-local quantum channels acting on the subsystem
boundary, implying the role of the system as a Markovian
bath. Hence, our work discovers new principles leading to
subsystem Markovian property, and provides a promising test-
ground to explore rich phenomena in quantum many-body dy-
namics through analytical tools.

The setup.— In this paper, we consider quantum circuits on
a 1D lattice, where each site is labeled by an integer x. We as-

sociate a q-dimensional Hilbert space Hq for each site, with a
basis: {|a⟩ , a = 0, 1, · · · , q−1}. The system is prepared in an
initial state |Ψin⟩ and undergoes discrete time evolution. For
each time step, the global unitary operator is U = UoddUeven,
where Uodd(even) = ⊗x∈odd(even)Ux,x+1. Ux,x+1 are two-site
gates acting locally on x and x+ 1. As indicated by the form
of U, the local gates are arranged in a brickwork architecture.

For the sake of convenience in depiction, we fold the for-
ward and backward branches of time evolution [see Fig. 1(a)].
By folding, each tensor is superimposed on its complex con-
jugate. The folded two-site unitary gate acting on the doubled
space is defined as the following four-leg tensor:

= U cd
ab

(
U c′d′
a′b′

)∗

b, b′

c, c′ d, d′

a, a′
, (1)

where a, b, c, d (a′, b′, c′, d′) denote the basis states in the for-
ward (backward) branch.

We focus on a certain class of initial states on the composite
system L-R, where L (R) for the left (right), as shown in Fig.
1(b). For later convenience, we set the location of the leftmost
site on R as the origin point x = 0. The global unitary oper-
ator admits a decomposition as U = UR̄UR, where UR acts
solely on R, and UR̄ acts on L and the boundary across the two
regions. Meanwhile, we assume that the overall initial state
can be decomposed as |Ψin⟩ =

∑χ
j=1 |Ψ

j
L⟩⊗ |Ψj

R⟩. Here, We
consider generic |Ψj

R⟩ on the right, while |Ψj
L⟩ can be writ-

ten as a one-site shift-invariant MPS of bond dimension χ in
terms of the three-leg tensor A(a)

jk , where j = 0, 1, · · · , χ− 1.
The matrices {A(a)} act on the auxiliary Hilbert space Hχ

spanned by the basis {|j)}χ−1
j=0 . Graphically, we can represent

the folded tensor A as

a, a′

j, j′ k, k′ = A
(a)
jk A

(a′)
j′k′

∗

, (2)

such that the folded quantum state on the left region has the
form

...
j, j′|Ψj

L⟩⟨Ψj′

L | = .
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FIG. 1. Main results of this paper. Total time steps T = 2. (a) Tensor-network representation of a 1+1 D quantum circuit in the folded picture.
The initial state |Ψin⟩ is evolved by applying four layers of two-site gates [purple squares, defined in Eq. (1)] in a brickwork architecture.
(b) Illustration of the (left) influence matrix (IM). The system is initialized to a composite MPS over two regions: the left is a one-site shift
invariant MPS [with local tensors in red, defined in Eq. (2)], and the right is a generic state. Thick lines correspond to the auxiliary Hilbert
space. After attaching hollow dots on top outer legs in the left region, the tensor network in the light blue shaded region defines the influence
matrix acting on the time slice (blue dotted line). (c) The exact influence matrix represented by MPS. (d) Open quantum system representation
of the subsystem dynamics. Markovian property manifests when considering the joint dynamics of the ancilla in the auxiliary Hilbert space,
and the subsystem. Two-site quantum channels are shown in red circles [defined in Eq. (5)].

We further assume that the MPS is injective and in the left-
canonical form [19–21]:

∑q−1
a=0 A

(a)†A(a) = Iχ, such that
the left boundary condition becomes unimportant in the TL.
Finally, we introduce the identity operators in the physical
Hilbert space Hq and the auxiliary Hilbert space Hχ, repre-
sented by the hollow and solid dot respectively:

a, a′
= δa,a′ ,

j, j′
= δj,j′ .

(3)

Exact influence matrix.— We would like to explore the in-
fluence of an infinitely large system on its own subsystem.
To this end, in our setup we take the region L be semi-
infinite. Next, we trace out the region L after T time steps
of evolution, and thus obtain the reduced density matrix on R:
ρR(T ) = TrL[UT |Ψin⟩ ⟨Ψin|U†T ]. In Fig. 1(b), the partial
trace operation after time evolution is carried out by attaching
the identity operators to the outer legs in L. Consequently, the
evolution of the subsystem on R can be expressed in terms of
the internal dynamics UR, together with the action of a time
non-local operator accounting for the temporal correlations in
the left bath. As shown in Fig. 1(b), this operator lies on the
multi-time Hilbert space, which is obtained by tensoring those
local Hilbert spaces carried by the legs cut by the time slice.
This operator is also referred to as the influence matrix (IM)
[16].

We vectorize the IM to a quantum state in the doubled
multi-time Hilbert space. Despite the class of dual unitary
circuits and their generalizations which generate product-state
IM [16, 22–28], examples of analytically tractable IM are lim-
ited to some exactly solvable models [29–31]. On the other
hand, in generic quantum circuits, the long-time IM usually

becomes complicated, characterized by the bipartite entangle-
ment entropy growing linearly with respect to the evolution
time [16–18].

Here, we find a solvable condition of the IM for arbitrarily
long time. The condition is an algebraic relation only involv-
ing the local unitary gate and the local MPS:

= =

. (4)

Conceptually, this condition allows the tensor A to propagate
freely in the quantum circuit along the diagonal direction. In-
deed, the solvable condition can be viewed as a refined ver-
sion of zipper conditions [32]. Previously, the zipper condi-
tion served as an ansatz to solve MPS influence matrices in
integrable models [29, 31]. In contrast to those isolated ex-
amples, here we use the solvable condition as a criterion to
construct generic non-integrable quantum circuits with exact
influence matrices [33].

In Fig. 1(c), we directly present the exact form of IM un-
der the solvable condition, while detailed derivations are put
in [34]. An intuitive and heuristic picture is that, by tracing
out the left region, the initial MPS is rotated by π/2 and lies
along the time slice, showing a novel manifestation of space-
time duality. The IM is represented by a one-time-step shift-
invariant MPS of bond dimension χ2 with appropriate bound-
ary conditions. The replicated element in the MPS is the fol-
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lowing four-leg tensor:

=

. (5)

This local tensor can be represented explicitly in terms of A
[34], and replicates T times in the IM. At the lower boundary
t = 0, the auxiliary leg is connected to the initial state in the
region R; at the upper boundary t = T , the auxiliary Hilbert
space is traced out.

Exact Markovian subsystem dynamics.— Next, we show
that the exact IM gives rise to an emergent Markovian dy-
namics of the subsystem. In our constructions, as implied by
the MPS representation, the IM is correlated in the time direc-
tion (when χ > 1), and thus the Markovian property seems to
be lacking in prior. Nevertheless, Markovian property man-
ifests when we consider the joint dynamics of an ancilla and
the subsystem. The ancilla lives in the auxiliary Hilbert space
Hχ. At t = 0, we prepare the joint system in the pure state
|Ψ̃R⟩ =

∑χ−1
j=0 |j)⊗ |Ψj

R⟩, which gives the same subsystem
reduced density matrix when tracing out the ancilla. Here

⊗

denotes tensor products between the auxiliary and physical
Hilbert space. As illustrated in Fig. 1(d), for each time step,
the joint system is evolved by a layer of local gates, followed
by a two-site quantum channel M acting on the ancilla and
the leftmost site:

ρ̃R(t+ 1) = M[URρ̃R(t)U†
R], (6)

where ρ̃R is the joint system density matrix. The dynamics
of ρ̃R is explicitly Markovian [35], where the state at the the
(t + 1)th time step only depends on the state at t. The quan-
tum channel M is given by the four-leg tensor defined in Eq.
(5), which can be written in the standard Kraus form [34, 36]:
M(ρ̃R) =

∑
µ Kµρ̃RK

†
µ, where the Kraus operators Kµ are

Kµ = Ka,a′ =

q−1∑

b=0

A(b)A(a)
⊗

(|b⟩ ⟨a′|)x=0. (7)

Here a, a′ run over 0 to q − 1. Provided the Kraus-operator
representation, the quantum channel M is proved to be com-
pletely positive and trace-preserving (CPTP), which definitely
justifies the Markovanity of joint dynamics [37]. The reduced
density matrix on R can be obtained by tracing out the ancilla
for each time step: ρR(t) = TrHχ [ρ̃R(t)].

A few remarks are in order. First, we can prepare the left
initial state in a Matrix Product Density Operator (MPDO),
instead of a pure state in a MPS form. All the analysis works
as well, except that the expressions of Kraus operators Eq. (7)
should be slightly modified [34]. In this sense, we can unify
dual-unitary circuits into our framework by choosing the iden-
tity operator as the χ = 1 local tensor in the left initial MPDO,
and thus the solvable condition becomes dual-unitarity. Sec-
ond, the left initial states can be extended to a certain class of

two-site shift-invariant MPS, while keeping the solvability of
the influence matrix [34]. Third, due to the chiral structure in
the solvable condition, it only allows efficient contractions of
tensor networks from left to right, but not vice versa. How-
ever, by imposing an additional condition as follows:

==

, (8)

contractions from the right are allowed as well. Quantum cir-
cuits equipped with two solvable conditions of opposite chi-
rality lead to analytical expressions of more quantities, e.g.
Rényi entropies dynamics [38]. In [34], we show that in this
case the nth entanglement velocity v

(n)
E – asymptotic growing

rate of the nth Rényi entropy (n > 1) between two semi-
infinite regions – is given by the leading eigenvalue λn of a
certain quantum channel determined by A, i.e.,

v
(n)
E ≡ lim

t→∞
ln(Tr[ρnR(t)])

t
= 2 ln(λn). (9)

Finally, we elaborate on the structure of the solvable condi-
tion Eq. (4), in preparation for discussing concrete examples.
We begin with the simplest case of χ = 1 corresponding to the
product state. We take the left initial state as ⊗x<0 |0⟩x for in-
stance. The solvable condition Eq. (4) reads Trl[U(|0⟩ ⟨0| ⊗
ρ)U†] = Tr[ρ] |0⟩ ⟨0|, which holds for any one-site den-
sity matrix ρ. Trl denotes tracing over the left site. When
χ > 1, the condition becomes Trl[U(|Ajk⟩ ⟨Aj′k′ |⊗ρ)U†] =
Tr[ρ] |Ajk⟩ ⟨Aj′k′ |, for all combinations of j, j′, k, k′. Here
the one-site MPS is defined as |Ajk⟩ =

∑q−1
a=0 A

(a)
jk |a⟩. This

suggests that, given the tensor A, the set of solutions of U un-
der the solvable condition essentially depends on the Hilbert
subspace HA spanned by {|Ajk⟩}χj,k=1. More precisely, the
solutions, up to one-site unitaries, should rely on the subspace
dimension q̃ = dim(HA). This is due to the isomorphism be-
tween different Hilbert subspaces with the same dimension.
Notice that though distinct tensors A may yield the same HA

(as will be shown later) and thus the same solutions, the re-
sulting boundary quantum channels M are still different. In
the following, we will label the solutions of gates by q and q̃.

Example I.—In this and the next part, we will show that the
solvable condition indeed leads to a wide range solutions of
quantum circuits rather than being restricted. First, we present
the solutions of q = 2, q̃ = 1. For the reason demonstrated
above, we can take a specific left initial state ⊗x<0 |0⟩x. In the
context of MPS, the tensors are given by A(0) = 1, A(1) = 0,
and thus HA = |0⟩ ⟨0|. We provide an exhaustive parameteri-
zation for the solutions [34]:

U = eiϕ(u⊗ e−iϵσ3

)V [J ](e−iησ3 ⊗ v), (10)

where u, v ∈ SU(2), and

V [J ] = exp [−i(
π

4
σ1 ⊗ σ1 +

π

4
σ2 ⊗ σ2 + Jσ3 ⊗ σ3)].
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Here σα, α = 1, 2, 3 are standard Pauli matrices. This class
of solutions coincides with those two-qubit circuits featuring
in chiral solitons, which are dual-unitary [39].

Compared to those previously known solvable initial states
for dual-unitary circuits [22], our findings suggest a new ini-
tial state (⊗x<0 |0⟩x) allowing for a new exact influence ma-
trix in the product-state form. The corresponding one-site
quantum channel can be obtained by substituting the form of
A into Eq. (7): M[ρR] = (|0⟩ ⟨0|)x=0 ⊗ Trx=0[ρR]. Hence,
the left bath acts as the boundary resetting towards |0⟩.

In addition, we point out that for the solutions Eq. (10), we
can independently choose the one-site initial state as |0⟩ or |1⟩
while holding the solvability of the influence matrix.

Example II.— Next, we present a (non-exhaustive) param-
eterization for solutions with q = 4, q̃ = 2, where HA is
spanned by |0⟩ and |1⟩:

U = eiϕW2SW1(I ⊗ v). (11)

Here v ∈ SU(4), S is the SWAP gate, W1,2 are one-site con-
trolled gates:

W1,2 =

3∑

a=0

f
(a)
1,2 ⊗ |a⟩ ⟨a| , (12)

where f
(a)
1 =

(
I2 0
0 g(a)

)
, g(a) ∈ SU(2), and f

(a)
2 ∈ SU(4)

for all a. The parameterization can be generalized to higher q
and q̃ with slight modifications: v ∈ SU(q), f (a)

1 = Iq̃ ⊕ g(a)

where g(a) ∈ SU(q − q̃), and f
(a)
2 ∈ SU(q). Generally, these

solutions form an overlapping but different set with dual-
unitary circuits. An exception is when q − q̃ = 0 or 1, where
f
(a)
1 = Iq,W1 = Iq2 and thus Eq. (11) is reduced to a sub-

class of dual-unitary gates [40, 41].
As an illustrative example, we report numerical re-

sults about the finite-size subsystem entanglement dynamics
evolved by Eq. (11). For the left initial state, we choose
the following χ = 2 MPS which spans HA with q̃ = 2:

A(0) =

(
cos(θ) sin(θ)

0 0

)
, A(1) =

(
0 0

− sin(θ) cos(θ)

)
,

and A(2,3) are zero matrices. Here θ ∈ (0, π
4 ], which cor-

responds to the left initial state interpolating between the
Greenberger-Horne-Zeilinger state and the cluster state [42,
43] of basis states |0⟩ and |1⟩. As for the right region, we take
the initial state as the simple product state |Ψj

R⟩ = ⊗x≥0 |2⟩x,
j = 0, 1, and thus the initial entanglement between regions L
and R is zero. The right subsystem consists of four sites as
shown faithfully in the left panel of Fig. 2. We construct the
two-site gate U by randomly generating unitaries v, g(a) and
f
(a)
2 .

Employing the influence matrix method, we can numeri-
cally keep track of the full time evolution of the joint system.
The joint dynamics is generated by the Floquet operator Eq.
(6), which is constituted by the unitary UR along with the
boundary quantum channel M given by Eq.(7). We compute
the von Neumann entanglement entropy between two regions

0 2 4 6 8 10
t

0.0

1.0

2.0

4 ln(2)

S
en

t

θ = π/4

θ = π/6

θ = π/8

θ = π/12

FIG. 2. Entanglement dynamics. Left panel: Illustration of the joint
system, where the right region consists of four sites. Right panel:
Growth of subsystem von Neumann entropies for different left initial
MPS, which are characterized by the value of θ. The right initial
state and two-site gates are kept the same. The horizontal dotted line
marked the maximal entropy 4 ln(2) approached by θ = π/4.

as Sent(t) = −Tr[ρR(t) ln(ρR(t))]. We emphasize that the
scenario here is basically different from that described by Eq.
(9), where the size of R is infinitely large. Results for various
values of θ are depicted in the right panel of Fig. 2. Following
a similar rate of linear growth in the early stage of evolution,
the entropies approach the θ-dependent steady values after fi-
nite time steps. Among the steady values, the maximal en-
tropy 4 ln(2) is achieved by the case θ = π/4, corresponding
to the cluster state as the initial MPS. Notably, this maximal
saturated entropy is still smaller than the maximum entropy al-
lowed by the Hilbert space dimension of the right subsystem
ln(qLR) = 4 ln(4), which suggests violating the thermaliza-
tion towards an infinite-temperature state. This observation
hints at the existence of hidden conservation quantities, which
demands further research.

Conclusions.— In summary, we have established a system-
atic approach towards constructions of non-integrable quan-
tum circuits exhibiting exact Markovian subsystem dynamics.
We introduced new principles beyond dual-unitary circuits al-
lowing for closed-form influence matrices, which are formu-
lated into the solvable condition on local unitary gates. Uti-
lizing the tensor-network method, we demonstrated that the
system acts as a time-local boundary quantum channel on the
subsystem, thus inducing exact Markovian dynamics. Our
constructions have unveiled a novel space-time duality be-
tween initial state MPS of the system and boundary quantum
channels acting on the reduced subsystem.

Our work opens up many avenues for future research, such
as the introduction of measurements [44] and dissipation [45],
generalizations to different architectures [41, 46] and higher
spatial dimensions [24, 47, 48]. The exact influence matrices
also provide valuable analytical tools for studying rich phe-
nomena in quantum many-body dynamics, including quantum
chaos [49] and deep thermalization [44, 50, 51].

Furthermore, our findings on the exact subsystem Marko-
vian property could provide fresh insights into the funda-
mental understanding of the Markovian approximation. Typi-
cally, in isolated quantum many-body systems, tracing out the
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rest of degrees of freedom usually yields non-Markovian sub-
system dynamics [52]. A valid Markovian description usu-
ally resorts to weak system-bath coupling and the separation
of timescales [53, 54]. In contrast, in our construction the
Markovian property emerges non-perturbatively as a conse-
quence of the solvable condition, which only involves proper-
ties of local gates and initial states. Understanding deep rela-
tions between these solvable quantum circuits and the Marko-
vian approximation remains an intriguing area for further ex-
ploration.

Acknowledgment.— We thank Tianci Zhou for helpful dis-
cussions. This work was supported by the National Natural
Science Foundation of China (Grants No. 12125405), and Na-
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[15] M. Frı́as-Pérez and M. C. Bañuls, “Light cone tensor network
and time evolution,” Phys. Rev. B 106, 115117 (2022).

[16] A. Lerose, M. Sonner, and D. A. Abanin, “Influence matrix

approach to many-body floquet dynamics,” Phys. Rev. X 11,
021040 (2021).

[17] M. Sonner, A. Lerose, and D. A. Abanin, “Influence functional
of many-body systems: Temporal entanglement and matrix-
product state representation,” Ann. Phys. 435, 168677 (2021),
special issue on Philip W. Anderson.

[18] A. Foligno, T. Zhou, and B. Bertini, “Temporal entanglement
in chaotic quantum circuits,” Phys. Rev. X 13, 041008 (2023).

[19] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac,
“Matrix product state representations,” Quantum Info. Comput.
7, 401–430 (2007).

[20] G. Vidal, “Efficient classical simulation of slightly entangled
quantum computations,” Phys. Rev. Lett. 91, 147902 (2003).

[21] S. R. White and A. E. Feiguin, “Real-time evolution using
the density matrix renormalization group,” Phys. Rev. Lett. 93,
076401 (2004).

[22] B. Bertini, P. Kos, and T. c. v. Prosen, “Exact correlation func-
tions for dual-unitary lattice models in 1+1 dimensions,” Phys.
Rev. Lett. 123, 210601 (2019).

[23] L. Piroli, B. Bertini, J. I. Cirac, and T. c. v. Prosen, “Exact
dynamics in dual-unitary quantum circuits,” Phys. Rev. B 101,
094304 (2020).

[24] C. Jonay, V. Khemani, and M. Ippoliti, “Triunitary quantum
circuits,” Phys. Rev. Res. 3, 043046 (2021).

[25] X.-H. Yu, Z. Wang, and P. Kos, “Hierarchical generalization
of dual unitarity,” Quantum (2023), 10.22331/q-2024-02-20-
1260.

[26] B. Bertini, C. D. Fazio, J. P. Garrahan, and K. Klobas, “Ex-
act quench dynamics of the floquet quantum east model at the
deterministic point,” arXiv:2310.06128 (2023).

[27] C. Liu and W. W. Ho, “Solvable entanglement dynam-
ics in quantum circuits with generalized dual unitarity,”
arXiv:2312.12239 (2023).

[28] A. Foligno, P. Kos, and B. Bertini, “Quantum in-
formation spreading in generalised dual-unitary circuits,”
arXiv:2312.02940 (2023).

[29] K. Klobas, B. Bertini, and L. Piroli, “Exact thermalization
dynamics in the “rule 54” quantum cellular automaton,” Phys.
Rev. Lett. 126, 160602 (2021).

[30] A. Lerose, M. Sonner, and D. A. Abanin, “Scaling of temporal
entanglement in proximity to integrability,” Phys. Rev. B 104,
035137 (2021).

[31] G. Giudice, G. Giudici, M. Sonner, J. Thoenniss, A. Lerose,
D. A. Abanin, and L. Piroli, “Temporal entanglement, quasi-
particles, and the role of interactions,” Phys. Rev. Lett. 128,
220401 (2022).

[32] J. Haegeman and F. Verstraete, “Diagonalizing transfer matrices
and matrix product operators: A medley of exact and computa-
tional methods,” Annu. Rev. Condens 8, 355 (2017).

[33] We would like to draw a loose analogy between the relationship
of zipper conditions and our solvable condition, with that of the
Bethe ansatz and Yang-Baxter equations. The Bethe ansatz was
initially proposed to solve the energies and eigenstates of the
1D Heisenberg spin chain, while Yang-Baxter equations cap-
ture the crucial point (factorizable scattering amplitudes) and
the solutions give rise to a wide class of Bethe-ansatz solvable
models. In a similar vein, zipper conditions were used to solve
specific models, while our solvable condition provides a sys-
tematic approach to constructing solvable quantum circuits.

[34] See the Supplementary Materials at [URL will be inserted by
publisher] for diagrammatic derivations of the exact influence
matrix, solvabel two-site shift-invariant initial MPS, derivations
of the Kraus representation for the boundary quantum channel
(with MPS and MPDO initial states), analytically calculating



6

Rényi entropies dynamics for infinitely large subsystems, and
more details on the examples of q = 2, q̃ = 1 and 2.

[35] This step can be traced back to the Pseudo-mode approach, by
incorporating random variables or collective coordinates into
the non-Markovian system to create the time-local joint dynam-
ics [55–59]. This approach has been generalized to various sce-
narios of open quantum systems [60–65].

[36] M. A. Nielsen and I. L. Chuang, Quantum computation and
quantum information (Cambridge university press, 2010).

[37] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, “Collo-
quium: Non-markovian dynamics in open quantum systems,”
Rev. Mod. Phys. 88, 021002 (2016).

[38] B. Bertini, K. Klobas, V. Alba, G. Lagnese, and P. Calabrese,
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I. EXACT INFLUENCE MATRIX FROM THE SOLVABLE CONDITION

In this section, we derive the exact influence matrix in the Matrix Product State (MPS) representation from the solvable
condition. We present the proof from two directions: First, we perform straightforward contractions on the 1+1D tensor network
to obtain the influence matrix on the time slice (Sec. I A); Second, we show that the obtained influence matrix is indeed the fixed
point of the spatial transfer matrix (Sec. I B). All the calculations are shown in diagrammatic representations.

A. Contractions of the tensor network

We summarize the procedure of contractions in Fig. S1. We begin with the tensor network representing the traced time-
evolved state in the region L, as depicted in Fig. S1(a) [see also Fig. 1(b) in the main text]. In the first step, we apply the
following two local rules: the unitarity of local gates

=
, (S1)

and the left-canonical condition of the MPS

=
. (S2)

The two local rules allow efficient contractions of the tensor network within the lightcone. More specifically, all the tensors in
the space-time region 2t− x > 2T are reduced to the identities lying along the edge of the lightcone 2t− x = 2T , as shown in
Fig. S1(b). Notice that this step is independent of the solvable condition, and thus is universal for brickwork quantum circuits.

Next, we employ the solvable condition to achieve further simplifications:

= =

. (S3)

For instance, we can apply this condition on the tensor located at the lower-left corner in Fig. S1(b) (circled by the grey dotted
line), which gives

=

. (S4)

We perform such contractions along the edge of the lightcone 2t − x = 2T to shift the identities to the next edge, as shown in
Fig. S1 (c). By repeating this “lightcone decimation” procedure for T times, we arrive at the closed-form influence matrix with
outer legs across the time slice, the same as Fig. 1(c) in the main text.

The contractions imply a novel manifestation of space-time duality between the initial state MPS and the influence matrix:
The local MPS located at an even site x in the initial state exactly corresponds to the local MPS in the influence matrix at
t = −x/2.
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FIG. S1. Contractions of the tensor network. Total time steps T = 2. The red shaded region in (a) is a layer of spatial transfer matrix. From
(a) to (b), we use two local rules Eq. (S1) and Eq. (S2) to contract all the tensors within the lightcone. From (b) to (c), we proceed contractions
using the solvable condition Eq. (S3).

B. Fixed point condition

In quantum circuits respecting shift invariance in the space direction, the influence matrix of a global system can be identified
as the fixed point of the spatial transfer matrix [1–4]. In our brickwork architecture which is two-site shift invariant, the spatial
transfer matrix [visualized in red shaded region in Fig. S1(a)] involves two layers. To verify the fixed point condition, we
contract the spatial transfer matrix with the obtained influence matrix from the right hand side, which yields

= ==

(S5)

In the first two equalities, we only exploit the solvable condition Eq. (S3), while the last equality is based on the left-canonical
form [Eq. (S2)]. We have proved that the MPS influence matrix is the fixed point of the spatial transfer matrix.

C. Two-site shift-invariant initial MPS

Here we discuss a class of two-site shift-invariant initial MPS which also leads to exact influence matrices under the solvable
condition Eq. (S3). We consider the following left initial state in the alternating MPS form:

...
j, j′, (S6)

where the new tensor in blue is defined as

a, a′

j, j′ k, k′ = B
(a)
jk B

(a′)
j′k′

∗
.

(S7)

In such an initial state, the even (odd) site is associated with the tensor A(B) (remind that we have set the leftmost site of the
right region to x = 0). In this case, the matrices A(a) and B(b) are not necessarily square matrices; they can be χ × χ′ and
χ′ × χ, respectively. We still require that the MPS is injective and in the left-canonical form, which reads

q−1∑

a,b=0

(A(a)B(b))
†
A(a)B(b) = Iχ. (S8)
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Notice that the solvable condition Eq. (S3) we imposed is irrelevant of the tensor B. Following the same approach presented
in Fig. S1, one can show that tracing out the left region results in the following influence matrix (an example for t = 2):

(S9)

II. BOUNDARY QUANTUM CHANNEL

A. Kraus-operator representation

In this subection, we derive the concrete expressions of the time-local boundary quantum channel defined by

=

. (S10)

The action of quantum channel can be directly read out from the diagram following the down-to-up direction:

M(ρ̃R) =

q−1∑

b,b′=0

A(b)(

q−1∑

a=0

A(a)Trx=0[ρ̃R]A
(a)†)A(b′)† ⊗(|b⟩ ⟨b′|)x=0. (S11)

We shall bring this expression into the standard Kraus representation. To this end, we rewrite the trace operation over the Hilbert
space at x = 0 as Trx=0[ρ̃R] =

∑q−1
a′=0 ⟨a′| ρ̃R |a′⟩. Plugging this decomposition into Eq. (S11) leads to

M(ρ̃R) =

q−1∑

a,a′,b,b′=0

[A(b)A(a)
⊗

(|b⟩ ⟨a′|)x=0]ρ̃R[A
(a)†A(b′)† ⊗(|a′⟩ ⟨b′|)x=0]. (S12)

The summation is over a, a′, b, b′. However, notice that the index b and b′ appear in different sides of ρ̃R independently. There-
fore, we can recast the operators on the single side of ρ̃R into the Kraus operator by summing over b:

Ka,a′ =

q−1∑

b=0

A(b)A(a)
⊗

(|b⟩ ⟨a′|)x=0. (S13)

Consequently, Eq. (S11) becomes M(ρ̃R) =
∑q−1

a,a′=0 Ka,a′ ρ̃RK
†
a,a′ . We can check the trace-preserving property of Kraus

operators as follows:

q−1∑

a,a′=0

K†
a,a′Ka,a′ =

q−1∑

a,a′,b,b′=0

A(a)†A(b)†A(b′)A(a)
⊗

|a′⟩ ⟨b| b′⟩ ⟨a′|

=(

q−1∑

a,b,b′=0

δb,b′A
(a)†A(b)†A(b′)A(a))

⊗
(

q−1∑

a′=0

|a′⟩ ⟨a′|)

=

q−1∑

a=0

A(a)†(
q−1∑

b=0

A(b)†A(b))A(a)
⊗

Iq

=

q−1∑

a=0

A(a)†A(a)
⊗

Iq = Iχ
⊗

Iq. (S14)
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Here the equation
∑q−1

a=0 A
(a)†A(a) = Iχ comes from the left-canonical condition.

Similarly, for the case of two-site shift invariant initial MPS described in Sec. I C, the Kraus operators are given by

Ka,a′ =

q−1∑

b=0

A(b)B(a)
⊗

(|b⟩ ⟨a′|)x=0. (S15)

B. Mixed initial states

Here, we generalize the quantum channel expression to the mixed initial states admitting Matrix Product Density Operator
(MPDO) representation. We further impose the locally purified condition, that is, the MPDO can be purified to a MPS with a
local purifying auxiliary system [5, 6]. MPDO with the locally purified condition is also termed as the Locally Purified Density
Operator (LPDO). In this case, the three-leg local tensor A reads

a, a′

j, j′ k, k′= A(a,a′)
jk,j′k′ =

∑D−1
γ=0 A

(a,γ)
jk A

(a′,γ)
j′k′

∗
, (S16)

where γ is the auxiliary index corresponding to the local purification space of dimension D. In this context, the left-canonical
condition is formulated as

D−1∑

γ=0

q−1∑

a=0

A(a,γ)†A(a,γ) = Iχ. (S17)

For the D = 1 case, the LPDO is reduced to the pure-state MPS studied in the main text.
The LPDO corresponds to the quantum channel

M(ρ̃R) =
D−1∑

γ′=0

q−1∑

b,b′=0

A(b,γ′)(
D−1∑

γ=0

q−1∑

a=0

A(a,γ)Trx=0[ρ̃R]A
(a,γ)†)A(b′,γ′)† ⊗(|b⟩ ⟨b′|)x=0. (S18)

Following the similar analysis, we can extract the Kraus operators from the quantum channel expression:

K(aγ,a′γ′) =

q−1∑

b=0

A(b,γ′)A(a,γ)
⊗

(|b⟩ ⟨a′|)x=0. (S19)

III. RÉNYI ENTROPIES DYNAMICS

Here, we preform tensor-network contractions to obtain analytical expressions for the time-evolved Rényi entropies S(n)
R (t) =

ln(Tr[ρnR(t))]/(1−n). We work in the space-time regime where size(L) and size(R) are larger than 2t, such that the most efficient
contractions of tensor networks from both sides are allowed. This regime corresponds to the early-stage growth of entanglement.
Due to the presence of the strict light cone in brickwork architectures, we can extend size(L) and size(R) to infinite, without
altering the results. As demonstrated in the main text, we impose both solvable conditions with opposite chirality, quoted as
below:

= =

, .
(S20)

Meanwhile, we choose the initial state as the homogeneous, one-site shift invariant MPS with local tensor A. To dispense with the
influence of boundary conditions, we further assume that the MPS is in the left- and right-canonical form:

∑q−1
a=0 A

(a)†A(a) =
∑q−1

a=0 A
(a)A(a)† = Iχ.

In Sec. III A, we introduce basic notions of the multi-folded representation, which are needed to present Tr[ρnR(t))] graphically.
Subsequently, we apply the solvable conditions to contract the tensor network in Sec. III B, and establish the correspondence
between the nth Rényi entropy at the time step t and the repeated 2t-time action of a certain quantum channel, which is not
trace-preserving. Thus, this correspondence provides an operational approach to accurately calculating the initial growing rate
of the entanglement.
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A. Multi-folded representations

In the main text, we have adopted the folded representation to represent the time-evolved state by a single patch of tensor
network, i.e. Fig. 1(a) in the main text. Here, in order to represent the nth power of the state, we introduce the n-folded
representation for unitary gates and MPS as follows:

= (U ⊗ U∗)⊗n
, = (A⊗A∗)⊗n

. (S21)

Consequently, we can represent the n−replica of a time-evolved pure state as below, t = 2 for example:

(|Ψ(t)⟩⟨Ψ(t)|)⊗n =

(S22)

Then we trace out the degrees of freedom in L to obtain ρR(t)
⊗n. In the n−folded representation, the tracing operation

manifests as a certain contraction on each site: δa1,a′
1
· · · δan,a′

n
, where am and a′m correspond to the forward and backward

branches on a single-site Hilbert space in the mth replica, respectively. We still use the hollow dot to represent such a contraction
operator. The n-replica reduced density matrix is represented as:

ρR(t)
⊗n =

L R

(S23)

The next step is to inserting a certain permutation operator Pn and trace out R: Tr[ρnR(t)] = Tr[PnρR(t)
⊗n] [7]. Notably, this

operation is equivalent to conducting the following contraction on each site: δa′
1,a2

δa′
2,a3

· · · δa′
n−1,an

δa′
n,a1

. We use the hollow
diamond to represent this contraction:

a1, a′1, · · · , an, a′n
= δa′

1,a2
· · · δa′

n,a1
.

(S24)

Therefore, we have:

Tr [ρnR(t)] =

(S25)
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B. Quantum-channel correspondence

In this subsection, we show that the tensor network in Eq. (S25) can be efficiently contracted utilizing the two solvable
conditions. The crucial point is to establish the contraction rules in the n-folded representation. First, notice that the unitarity
condition of local gates leads to the two following rules:

= =
, . (S26)

The two rules work since both contractions couple between U and U∗. The unitarity together with left- and right-canonical
property of the MPS allow contractions of the tensor network within the lightcone:

Tr [ρnR(t)] =

(S27)

Second and most importantly, notice that the solvable conditions can be represented in the n-folded picture extremely similarly
with that in the folded picture as presented by Eq. (S20):

= =
, .

(S28)

Consequently, we obtain a highly simplified graphical representation:

Tr [ρnR(t)] = =

. (S29)

We demonstrate the resulting one-dimensional tensor network as the consecutive action of a transfer matrix T, with appropriate
initial and finial states. Here T acts on 2n-replica Hilbert space, defined as

T = , (S30)

and thus

Tr [ρnR(t)] = ⟨•|T2t| ⟩, (S31)

here |•⟩ and | ⟩ correspond to the vectorizations of two contraction operators in the folded auxiliary Hilbert space. We further
mention that T naturally realizes a completely positive quantum channel when mapped to be a superoperator in the n-replica
Hilbert space, while the tracing-preserving property is not guaranteed. Indeed, in the large time limit (but still smaller than
the size of two regions), Eq. (S31) is dominated by the largest eigenvalue λn (in the modulus) of this quantum channel, given
by ∼ λ2t

n . Therefore, the nth entanglement velocity characterizing the asymptotic growth of the nth Rényi entropy is exactly
determined by λn as follows:

v
(n)
E ≡ lim

t→∞
ln(Tr[ρnR(t)])

t
= 2 ln(λn). (S32)

Thus, this result adds a new example to exactly solvable Rényi entropy dynamics.
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IV. q = 2 SOLUTIONS FOR THE SOLVABLE CONDITION

In this section we focus on solving the two-qubit gates fulfilling the solvable condition. The solutions for both q̃ = 1 and
q̃ = 2 are covered by the dual-unitary gates [8]. For q̃ = 1, we show that the solutions feature in chiral solitons [9], given by
Eq. (9) in the main text (Sec. IV B). On the other hand, the q̃ = 2 solutions are SWAP gates dressed by single-site unitaries (Sec.
IV C).

A. Preliminary: two-qubit gates

To begin with, notice that every two-qubit unitary gate can be parameterized as [10–12]:

U = eiϕ(u+ ⊗ u−)V [J1, J2, J3](v− ⊗ v+), (S33)

where u±, v± ∈ SU(2), and

V [J1, J2, J3] = exp [−i(J1σ
1 ⊗ σ1 + J2σ

2 ⊗ σ2 + J3σ
3 ⊗ σ3)]. (S34)

Since increasing any Jα by π
2 is equivalent to applying a tensor product of two single-site unitaries which can be absorbed into

u±, v±, we can restrict the range of Jα within [0, π
2 ). The matrix V [J1, J2, J3] can also be written on the Pauli basis [9]:

V [J1, J2, J3] =

3∑

α=0

Vα(J1, J2, J3)σ
α ⊗ σα, (S35)

where the identity has been included in the Pauli matrices as σ0 = I2. Here Vα(J1, J2, J3) are some complex-valued coefficients:

V0(J1, J2, J3) = cos(J1) cos(J2) cos(J3)− i sin(J1) sin(J2) sin(J3),

V1(J1, J2, J3) = cos(J1) sin(J2) sin(J3)− i sin(J1) cos(J2) cos(J3),

V2(J1, J2, J3) = sin(J1) cos(J2) sin(J3)− i cos(J1) sin(J2) cos(J3),

V3(J1, J2, J3) = sin(J1) sin(J2) cos(J3)− i cos(J1) cos(J2) sin(J3). (S36)

We adopt this parameterization and identify the constraints on all the parameters (u±, v± and J1,2,3) under the solvable condition.

B. q = 2, q̃ = 1

Here we choose the one-site state to be |0⟩, that is, HA = |0⟩ ⟨0|. The solvable condition reads Trl[U(|0⟩ ⟨0| ⊗ ρ)U†] =
Tr[ρ] |0⟩ ⟨0| for any ρ, where the subscript l denotes the left site. In terms of Eq. (S33), the solvable condition can be rewritten
as

Trl{V [J1, J2, J3][(v− |0⟩ ⟨0| v†−)⊗ (v+ρv
†
+)]V

†[J1, J2, J3]} = Tr[ρ]u†
− |0⟩ ⟨0|u−. (S37)

We consider a necessary condition for this equation by taking ρ = I2. To perform the trace operation, a trick is to rewrite the
matrix V [J1, J2, J3] as

V [J1, J2, J3] = V [J ′
1, J

′
2, J

′
3]V [

π

4
,
π

4
,
π

4
], (S38)

where V [π4 ,
π
4 ,

π
4 ] is the SWAP gate exchaning the states of two qubits, J ′

α = Jα − π
4 , −π

4 ≤ J ′
α < π

4 . From now on, we will
abbreviate the coefficients Vα(J

′
1, J

′
2, J

′
3) to V ′

α. Now, Eq. (S37) becomes

Trl{V [J ′
1, J

′
2, J

′
3][I2 ⊗ (v− |0⟩ ⟨0| v†−)]V †[J ′

1, J
′
2, J

′
3]} = 2u†

− |0⟩ ⟨0|u−. (S39)

We can calculate this equation by expanding the expression in the curly brackets on the Pauli basis of the left site, followed by
the trace operation. It leaves

3∑

α=0

|V ′
α|2(σαv− |0⟩ ⟨0| v†−σα) = u†

− |0⟩ ⟨0|u−. (S40)
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The left hand side is the summation of four rank-1 projectors with positive semi-definite coefficients, while on the right hand side
there is one rank-1 projector. The equality holds only when the projector u†

− |0⟩ ⟨0|u− is exactly the same as those projectors
σαv− |0⟩ ⟨0| v†−σα with non-zero coefficients |V ′

α|2.
We now show that it is impossible that three or all of V ′

α are non-zero. Consider the case that V ′
α and V ′

β are non-zero, and thus
σαv− |0⟩ and σβv− |0⟩ are the same as u†

− |0⟩ up to a phase factor, α ̸= β. We can directly deduce that v− |0⟩ is an eigenstate
of σασβ . If there is another non-zero coefficient V ′

γ , v− |0⟩ should be an eigenstate of σβσγ , which is impossible because
[σασβ , σβσγ ] ̸= 0. Therefore, the three coefficients V ′

α,β,γ can not simultaneously be non-zero. Meanwhile, due to range of
parameters −π

4 ≤ J ′
α < π

4 , V ′
0 can never be zero. Hence, we only need to consider the following two classes:

(1) V ′
0 and one of V ′

α̸=0 are non-zero;
(2) Only V ′

0 is non-zero.
We start from the first class and take α = 3 for instance. It follows that v− |0⟩ and u†

− |0⟩ are eigenstates of σ3 with the
same eigenvalue. We can therefore parameterize the single-site special unitaries as: (I) v− = e−iησ3

, u− = e−iϵσ3

, or (II)
v− = iσ1e−iησ3

, u− = ie−iϵσ3

σ1. As for the coefficients, we have

|V ′
0 |2 + |V ′

3 |2 = 1, V ′
1 = V ′

2 = 0, (S41)

of which the only solution is J ′
1 = J ′

2 = 0. It can be checked that this solution combined with (I) fulfill the original solvable
condition Eq. (S37). This results in the set of unitary gates parameterized as Eq. (9) in the main text:

U = eiϕ(u+ ⊗ e−iϵσ3

)V [0, 0, J ′
3]V [

π

4
,
π

4
,
π

4
](e−iησ3 ⊗ v+)

= eiϕ(u+ ⊗ e−iϵσ3

)V [
π

4
,
π

4
, J3](e

−iησ3 ⊗ v+). (S42)

On the other hand, the single-site unitaries (II) can be included into Eq. (S42) through the following transformation:

U = eiϕ[u+ ⊗ (ie−iϵσ3

σ1)]V [
π

4
,
π

4
, J3][(iσ

1e−iησ3

)⊗ v+]

= eiϕ[(iu+σ
1)⊗ e−iϵσ3

]V [
π

4
,
π

4
, J3][e

−iησ3 ⊗ (iσ1v+)]. (S43)

Other cases in the first class (α = 1 or 2) can be analyzed following a similar approach. It turns out that all the solutions are
covered by Eq. (S42).

Next, we consider the second class, where V ′
1 = V ′

2 = V ′
3 = 0. This condition leads to J ′

α = 0, and v−u− = eiα. The
solutions read

U = eiϕ(u+ ⊗ u−)V [
π

4
,
π

4
,
π

4
](v− ⊗ v+) = ei(ϕ+α)(u+ ⊗ I2)V [

π

4
,
π

4
,
π

4
](I2 ⊗ v+), (S44)

which, again, are covered by Eq. (S42).
To conclude, we have exhausted the two-qubit gates fulfilling the solvable condition for q̃ = 1. We obtain the solutions

Eq. (S42) by rigorously classifying and discussing the consequences of a necessary condition Eq. (S39), while the solutions
can be verified to fulfill the sufficient condition. We point out that all the gates given by Eq. (S39) are dual-unitary gates [8].
Remarkably, the solutions coincide with those two-qubit circuits characterized by chiral solitons [9], defined by the soliton
condition: U†(σ3 ⊗ I)U = I ⊗ σ3.

C. q = 2, q̃ = 2

In this subsection we consider q̃ = 2 where HA = Hq=2. Notice that solutions for q̃ = 2 must form a subset of solutions for
q̃ = 1. This observation provides us a convenient approach to parameterize the q̃ = 2 solutions, by applying the corresponding
solvable condition on the q̃ = 1 solution to constrain the parameters J ′

3, ϵ and η. It follows that

Trl{V [0, 0, J ′
3][(v+ρrv

†
+)⊗ (e−iησ3

ρle
iησ3

)]V †[0, 0, J ′
3]} = Tr[ρr]eiϵσ

3

ρle
−iϵσ3

, (S45)

which holds for arbitrary ρl,r. We take ρr = I2, and expanding the matrix V on the Pauli basis, which gives:

cos2(J ′
3)(e

−i(η+ϵ)σ3

ρle
i(η+ϵ)σ3

) + sin2(J ′
3)(σ

3e−i(η+ϵ)σ3

ρle
i(η+ϵ)σ3

σ3) = ρl. (S46)
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The left hand side could be viewed as a quantum channel with two Kraus operators: K0 = cos(J ′
3)e

−i(η+ϵ)σ3

,K1 =

sin(J ′
3)σ

3e−i(η+ϵ)σ3

. In this context, Eq. (S46) states that the quantum channel should be an identity operation, which
requires that J ′

3 = 0, η + ϵ = 0. The corresponding gates are

U = eiϕ(u⊗ I2)S, (S47)

where S = V [π4 ,
π
4 ,

π
4 ] is the SWAP gate. It can be checked that all the gates in the form of Eq. (S47) fulfill the q̃ = 2 solvable

condition.
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