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Connectedness percolation phenomena in the two-dimensional (2D) packing of binary mixtures of disks with
different diameters were studied numerically. The packings were produced using random sequential adsorption
(RSA) model with simultaneous deposition of disks. The ratio of the particle diameters was varied within the
range 𝐷 = 1–10, and the selection probability of the small disks was varied within the range 0–1. A core-shell
structure of the particles was assumed for the analysis of connectivity. The packing coverages in a jamming
state for different components, connectivities through small, large and both types of disks, the behavior of
electrical conductivity were analyzed. The observed complex effects were explained accounting for the formation
of conductive “bridges” from small disks in pores between large disks.
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1. Introduction

Nanoporous and nanostructured materials and films have many useful modern applications in dif-
ferent adsorption, catalytic, electro-magnetic, microelectronics, colloid lithography, storage, optical, and
biomedical devices [1–5]. The model of random sequential adsorption (RSA) is widely used to mimic
properties of such materials. The basic variant of RSA assumes a random and irreversible adding of
non-overlapping particles to a system (they do not overlap with any other previously deposited particles),
and very strong binding of the particles at the deposition place without any detachment and diffusion
effects. Various variants of RSA models were extensively discussed in different reviews [6–10].

For RSA deposition on two-dimensional (2D) substrate, the so-called “jamming limit” corresponds
to the saturation coverage of the surface 𝜑. For a simple one-component model without any interactions
between particles and post deposition diffusion processes, the value 𝜑 mainly depends on the shape of
deposited particles. Particularly, for identical disks 𝜑 = 0.5471 [8, 11–17]. This value of 𝜑 is much
smaller than those observed for a random loose packing (𝜑𝑅𝐿𝑃 ≈ 0.66–0.67), random close packing
(𝜑𝑅𝐶𝑃 ≈ 0.82–0.83), and maximum value of coverage for the disks arranged in a triangular lattice
(𝜑𝑚𝑎𝑥 = π/2

√
3 ≈ 0.907) [18].

The geometrical properties of the 2D RSA configurations of identical disks were analyzed in de-
tail [14]. The ‘direct’ and ‘indirect’ neighbors, and ‘stable’ and ‘unstable’ holes associated with them
were identified. The parabolic shape of the hole size distribution was revealed with the hole diameter
ℎ restricted within 0.1537 < ℎ/𝑑 < 1, where 𝑑 is a disk diameter, and 1/sin(π/3) − 1 ≈ 0.1537 is
an Apollonian ratio. Later on, the 2D RSA configurations of equal-sized disks were compacted up to
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𝜑 ≈ 0.772 and their geometrical properties were also analyzed [15]. These random packings were in rela-
tively stable configurations. 2D RSA problems were also investigated for other shapes, e.g., for deposition
of ellipses [8, 19–24], rectangles [8, 21, 22, 25, 26], unoriented squares [27], discorectangles [8, 21–
23, 25, 28], needles and fibers [20, 21, 29–32], squares [13, 27], regular polygons [33], and many other
complex shapes [23, 34–38].

For deposition of disks with different sizes, the most popular are simultaneous and multi-step RSA
models. In simultaneous models, the disks are selected for trial deposition onto the substrates with some
predefined probability, and in the multi-step models the substrates is covered by the disks with different
sizes sequentially, e.g., preliminary by smaller disks and then larger ones up to the complete jamming
state.

The simultaneous RSA deposition models for disks with different sizes were discussed in many
works [19, 39–41]. The theory of RSA deposition for a binary mixture of hard disks of greatly differing
diameters was developed [19]. The jamming limits for the larger disks 𝜑𝐷 at different diameter ratios
𝐷/𝑑 (= 5, 10,∞) were estimated. The 2D RSA deposition of polydisperse disk mixtures with a continuous
distribution of sizes was also theoretically studied [42]. The simultaneous RSA deposition model for disks
with two sizes or distribution of sizes onto a 2D planar substrate were investigated using a computer
simulation approach [40]. For the binary mixture, the size ratio 𝐷/𝑑 was within the range 1.125 < 𝐷/𝑑 <

8 and the fraction of small disks 𝑝 selected for a trial deposition (selection probability) was within the
range 0.016 < 𝑝 < 0.875. Quite different deposition kinetics for large and small disks was observed. In
saturation state, the total surface coverage 𝜑𝑇 and coverage for large disks 𝜑𝐷 decreased with increasing
the fraction of small disks 𝑝, whereas the coverage for small disks 𝜑𝑑 increased with increasing 𝑝. In
the limit 𝑝 → 0 and 𝐷/𝑑 → ∞, the total and small-disks coverages were estimated to be 𝜑𝑇 = 0.7945
and 𝜑𝑑 = 0.2478, respectively. These simulation data were in satisfactory agreement with theoretical
results obtained in the limit of 𝐷/𝑑 → ∞ [19]. The data on surface coverages 𝜑𝑑 (𝐷) and 𝜑𝐷 (𝐷) at
different selection probabilities 𝑝 revealed rather intriguing facts. Particularly, at 𝑝 = 0.5 and 𝑝 = 0.875,
significant minima in the behavior of 𝜑𝐷 (𝑝) were observed at 𝐷 ≈ 1.5. The reasons for such a behavior
were not discussed.

The simultaneous RSA deposition model for binary disk mixtures has been also recently discussed
in detail [41]. The studies were performed for size ratios within 𝐷/𝑑 = 1.11–10 and for different relative
deposition rate constants. In the systems studied, the total surface coverage 𝜑𝑇 was always greater than
0.547, and for a given value 𝐷/𝑑, the maximum of 𝜑𝑇 was observed at some optimum value of the
relative rate constant.

The simultaneous RSA deposition model for polydisperse mixture of disks on decorated substrates
was also studied [43]. The polydispersity was simulated using a truncated Gaussian-size distribution, and
adsorption was allowed within the (equal) square cell patterns. Different distinct regions (interacting and
non-interacting cell-cell adsorption, and single-particle-per-cell and multi-particle-per-cell adsorption)
were identified in dependence on cell-cell separation and cell size. The 2D RSA deposition of binary
mixtures of variously shaped oriented Lamé super-disks was recently discussed [44]. The best values of
saturation coverages were observed for the chosen objects with the similar shapes.

The 2D RSA deposition processes on heterogeneous, partially pre-covered or pre-patterned surfaces
(multi-step RSA models) were also studied in many works [45–56]. The deposition of disks on different
2D fractal surfaces (Vicsek fractal, Serpinski triangle and squares fractals) was also discussed [57, 58].

In multi-step RSA models, the initial adsorption of small disks at first step significantly affected the
deposition of large disks and diminished their adsorption rates at the second step [45, 46] (for a more
detailed analysis and review of these works, see [9, 10, 59, 60]).

Note, that rather interesting data were obtained for 2D random packing of binary hard discs using
gravity protocol [61–63]. The discs were selected with probability 𝑝, dropped vertically using the
rolling down procedure, and adsorption was completed when the disc reaches a local potential energy
minimum. The structural phase diagram was represented as the total packing coverage 𝜑𝑇 versus the 𝐷/𝑑
dependence [61]. The functions 𝜑𝑇 (𝐷/𝑑) passed the minimum at some value of 𝐷/𝑑 that was dependent
on the value of 𝑝. The dependencies of the total packing coverage 𝜑𝑇 versus the area fraction of smaller
discs 𝑛 = 𝜑𝑑/𝜑𝑇 at 𝑛 ≈ 0.35 showed maximum 𝜑𝑇 ≈ 0.854 for 𝐷 = 10 and minimum 𝜑𝑇 ≈ 0.804 for
𝐷 = 1.11 [62, 63]. Self-organization in binary mixtures of disks was recently studied using 2D Monte
Carlo simulation of dead-end diafiltration process [64]. Stratification of the disks in vertical direction
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was observed and incomplete separation of mixture was explained by the formation of an impenetrable
barrier from larger particles at the deposit bottom.

The connectivity and percolation properties of heterogeneous systems composed of different species
are very important for understanding of electrical conductivity, flow and transport properties of such
materials [65]. In previous studies, the connectivity problems were mainly discussed for 2D deposits of
fully penetrable discs [66–69]. Particularly, the surface coverage at the percolation threshold for identical
discs was estimated to be 𝜑𝑝 = 0.676(3) [70, 71]. For binary dispersions of disks the higher percolation
thresholds were observed than for monodisperse disks [72, 73].

Moreover for systems with distribution of disk sizes, the surface coverage at percolation threshold
showed a non-trivial dependence on the distribution [74]. For a given value of the disk diameter ratio
(𝐷/𝑑 = 1/7 − 12.5), the maximum of surface coverage at the percolation threshold 𝜑𝑝 was observed
at the intermediate fraction of small disks 𝑝 [66, 75, 76]. Particularly, at 𝐷/𝑑 = 10 and 𝑝 = 0.99, the
estimated value 𝜑𝑝 ≈ 0.75981 was much higher compared with the surface coverage for a monodisperse
system (𝜑𝑝 ≈ 0.676339 at 𝑝 = 1).

The morphology and continuous percolation in porous films simulated by using the RSA deposition
of disks on 2D substrate was also recently discussed [77]. The 2D percolation and cluster structure of
the compact random packing of binary disks were studied [78]. The packings with different diameter
ratio 𝐷/𝑑 = 1–5 and relative compositions were generated using the repeated relaxation and expansion
procedures to obtain the overlap-free packings. This allowed to generate of relatively compact structures
with direct contacts between particles. The disk size ratio 𝐷/𝑑 significantly affected the percolation value
for the area fraction 𝜑𝑑 of small disks, and the increase in 𝐷/𝑑 leads to a decrease in 𝜑𝑑 .

In the pure RSA packing, there are practically no direct contacts, and the hopping transport is only
possible for the particles covered by tunneling shells. This corresponds to the so-called connectedness
percolation of non-overlapping particles with a core(hard)–shell(soft) structure [28, 79]. At the percolation
point, the complete electrical path through the systems is formed. For RSA deposits of identical disks with
no direct contacts, it was mentioned that the increase of the disk radius by 20% results in the formation
of the percolating cluster of overlapping particles [14]. More recently, the connectivity analysis for RSA
deposits formed by identical discorectangles with a core-shell structure was performed [28, 80, 81].
For identical disks in a jamming state, the estimated relative reduced thickness of the shell was 𝛿/𝑑 ≈
0.0843 ± 0.001. However, as far as we know, the percolation connectivity of 2D RSA configurations for
a competitive model in the mixture of impenetrable disks had never been discussed before.

d=1

Core

Shell

D=4

D

Figure 1. (Colour online) An illustration of the RSA packing of binary mixture in jamming state on a 2D
substrate. The total size of the system was 128 × 128 and only a part with the size of 16 × 16 is shown.
Intersections of the disk cores are forbidden. The soft (penetrable) shell with thickness 𝛿𝐷 is shown only
for large disks (colored) belonging to the percolation cluster. The data are presented for the diameter of
large disk 𝐷 = 4 and selection probability 𝑝 = 0.5.

13201-3



N. I. Lebovka, M. R. Petryk, N. V. Vygornitskii

This work discusses the percolation connectivity in 2D RSA deposits obtained for binary disk mixtures
with the application of a simultaneous RSA deposition model. The structure of this work is as follows.
Section II presents the computational technical details and the main definitions. Section III presents the
main results, and the final section IV summarizes our conclusions.

2. Computational model

The 2D deposits were formed using the algorithm of the RSA model similar to that described
previously [40, 41]. The binary mixtures of disks with diameters 𝑑 and 𝐷 (𝑑 ⩽ 𝐷) were deposited
randomly and sequentially. At each deposition attempt, the small disc was selected with the probability
𝑝 (hereinafter referred to as the selection probability) and the large disc was selected with the probability
1 − 𝑝. The overlapping with previously deposited disks was forbidden. In this work, the lengths of all
objects are presented in units of the smaller disk diameter 𝑑. To reduce the finite effects, the periodic
boundary conditions along the 𝑥 and 𝑦 directions were used.
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Figure 2. (Colour online) Example of time dependencies of the surface coverages 𝜑 and deposition
probabilities 𝑓 for small and large discs. The data presented for a particular case with the diameter of
large disk 𝐷 = 4, selection probability 𝑝 = 0.5, and system size 𝐿 = 128. Here, 𝜑𝑑 , 𝜑𝐷 are the jamming
coverages for small and large disks in the limit 𝑡 → ∞. Inset shows finite-size scaling dependencies of the
normalized values of jamming concentrations 𝜑∗

𝑑
= 𝜑𝑑/𝜑𝑑 (𝐿 → ∞), 𝜑∗

𝐷
= 𝜑𝐷/𝜑𝐷 (𝐿 → ∞) within

the range 𝐿 = 64–512.

Figure 1 presents an example of the 2D RSA packing of binary mixture in a jamming state obtained
for the diameter of large disk 𝐷 = 4 and the selection probability 𝑝 = 0.5. The small part of the system
with the size of 16 × 16 is presented. The percolation connectivity of the system in the jamming state
was analyzed using the core–shell model as described earlier [28]. The connectivity of discs was tested
checking the overlapping of circular outer soft shells around the hard disks.

The minimum (critical) value of shell thickness required for the formation of spanning clusters along
the 𝑥 or 𝑦 direction, was evaluated using the lists of near-neighbor disks and the Hoshen–Kopelman
algorithm [82, 83]. Analysis was performed for determination of the thickness of shells for individual
connectivity through small (𝛿𝑑) or large (𝛿𝐷) disks and simultaneous connectivity through small and
large disks (𝛿𝑇 ). In the analysis of individual connectivity, the shells cover small (𝛿𝑑) or large (𝛿𝐷)
disks. For example, the connectivity through large disks is shown in figure 1. The conductive shells with
thickness 𝛿𝐷 cover only large disks (colored) belonging to the percolation cluster. In the analysis of
simultaneous connectivity through small and large disks, the shells of the same thickness 𝛿𝑇 cover both
small and large disks.

The electrical conductivity 𝜎 of deposits was evaluated using a supporting square mesh of size 𝑚×𝑚

(𝑚 = 2048). The mesh cells located at the core, shell, or pore parts were associated with extremely high
(𝜎𝑐 = 1012), intermediate (𝜎𝑠 = 106) and low (𝜎𝑝 = 1) electrical conductivities. In the absence of direct
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contacts between cores and for large contrasts between electrical conductivities, the main contribution
to the electrical conductivity is expected to be from the overlapping of shells. For the calculation of
electrical conductivity, the Frank–Lobb algorithm based on the𝑌 −Δ transformation was used [84]. More
details can be found elsewhere [80].

The time duration of the deposition process was calculated as 𝑡 = 𝑁/𝐿2, where 𝑁 is the number of
deposition attempts, and 𝐿 is the linear size of the system in 𝑥 and 𝑦 directions [85, 86]. The surface
coverages were evaluated as

𝜑𝑑 = 𝑛𝑑π𝑑
2/4𝐿2,

𝜑𝐷 = 𝑛𝐷π𝐷2/4𝐿2,

where 𝑛𝑑 and 𝑛𝐷 are the numbers of the deposited small and large disks, respectively.
The deposition probabilities for small and large discs ( 𝑓𝑑 and 𝑓𝐷 , respectively) were evaluated

accounting for the fraction of the successful disk deposition attempts. For particular species, these values
were calculated as the ratios of successful disc deposition attempts to the total disc deposition attempts.

Figure 2 shows typical time dependencies of the surface coverages 𝜑 and deposition probabilities 𝑓

for small and large discs. The data are presented for a particular case with 𝐷 = 4 and 𝑝 = 0.5. The surface
coverages 𝜑 for both disks increases with time and approaches their jamming values 𝜑𝑑 , 𝜑𝐷 in the limit
𝑡 → ∞. The deposition probabilities 𝑓𝑑 , 𝑓𝐷 decrease with 𝑡 and gradually approach zero in the limit
𝑡 → ∞. In many cases, the deposition of large discs was rapidly blocked by the smaller discs. Typically at
a relatively large time, the RSA deposition of small disks in the holes between large disks was observed.

In order to evaluate the finite size scaling effects, preliminary tests were performed for the systems
with different values of 𝐿 = 128–1024. The inset to figure 2 shows an example of the scaling behavior of
jamming concentrations normalized values 𝜑∗

𝑑
= 𝜑𝑑/𝜑𝑑 (𝐿 → ∞), 𝜑∗

𝐷
= 𝜑𝐷/𝜑𝐷 (𝐿 → ∞) within the

range 𝐿 = 64–512. Particularly, for 𝐿 = 128, the deviations of 𝜑∗
𝑑

and 𝜑∗
𝐷

from unity were smaller than
1%.

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

D

 D

p

D

 d

0.3
0.5

0.7

0.9

0.1

p

0.7
0.5
0.3
0.1

0.9

a)

b)

Figure 3. (Colour online) Jamming coverages 𝜑𝐷 (large disks) (a) and 𝜑𝑑 (small disks) (b) versus diameter
of large disk 𝐷 at different values of selection probability 𝑝.

The computer experiments were repeated using from 10 to 1000 independent runs. The error bars in
the figures correspond to the standard deviations of the means at a significance level of 0.05. When not
shown explicitly, they are of the order of the marker size.

3. Results and discussion

Figure 3 presents the behavior of jamming coverages for large 𝜑𝐷 (a) and small 𝜑𝑑 (b) disks at different
values of selection probability 𝑝. For large disks, the minima in 𝜑𝐷 (𝐷) dependencies were observed at
some intermediate value of 𝐷 (𝐷 ≈ 1.5–2.5) whereas for small disks, the 𝜑𝑑 values continuously grew
with 𝐷 increasing. With 𝑝 increasing, the opposite behavior in jamming concentrations for large and
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small disks was observed, in particular, 𝜑𝐷 decreased and 𝜑𝑑 increased. This behavior clearly reflects
the increase in blocking of the surface by small disks as 𝑝 increases.

p=0.5

 D

D
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0.22
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D0.224

D=1.5

D0.5471/2 

Figure 4. (Colour online) Example of large particle jamming coverage 𝜑𝐷 versus diameter of large disk
𝐷 for the selection probability 𝑝 = 0.5.
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Figure 5. (Colour online) Jamming coverages 𝜑𝐷 (large disks) (a) and 𝜑𝑑 (small disks) (b) versus the
selection probability 𝑝 at different diameter of large disks 𝐷. The dashed lines at 0.5471 corresponds to
the jamming coverage of the identical disks [6].

Figure 4 presents more clear visualization of such a minimum extreme in 𝜑𝐷 (𝐷) behavior for a
particular case 𝑝 = 0.5. For 𝐷 = 1, we have 𝜑𝐷 ≈ 0.274, that is, about half of the value jamming
coverage for identical disks 𝜑 ≈ 0.547 [6]. The minimum of 𝜑𝐷 ≈ 0.224 was observed at 𝐷 ≈ 1.5.

Similar observations were reported earlier [40], although explanations of such striking effects are
still absent. This evidently reflected the relationships between the surface coverages and deposition
probabilities 𝑓 of different disks. At 𝑝 = 0.5, a strong competition in the deposition between disks of
different size exists. For disks with approximately the same size (𝐷 < 1.5), the initial decrease in 𝜑𝐷

was accompanied by a more intensive increase in 𝜑𝑑 . It is interesting to note that the minimum extreme
behavior was also observed for a quite different problem related with the regular compact packing of
binary mixture of disks for a small difference between the sizes of disks (at 𝐷 ≈ 1.5685𝑑) [87].

For large 𝐷, our simulation data correlate well with the theoretical estimates obtained for 𝐷 ≫ 1 [19].
Particularly, at 𝑝 = 0.5 and 𝐷 = 10, we have 𝜑𝐷 = 0.280±0.004, whereas the theory predicted 𝜑𝐷 ≈ 0.29
for the same values of 𝑝 and 𝐷.

Figure 5 presents the jamming coverages 𝜑𝐷 (large disks) (a) and 𝜑𝑑 (small disks) (b) versus the
selection probability 𝑝 at a different diameter of large disks 𝐷. The limiting values at 𝑝 = 0 (large disks,
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Figure 6. (Colour online) The total jamming coverage 𝜑𝑇 (= 𝜑𝐷 + 𝜑𝑑) versus the selection probability 𝑝

at different diameter of large disks 𝐷. The dashed lines at 0.5471 corresponds to the jamming coverage
of the identical disks [6] and at 𝜑𝑇 = 0.7945 corresponds to the maximum possible value in the limit
𝐷 → ∞, 𝑝 → 0 [40].

figure 5a) and at 𝑝 = 1 (small disks, figure 5b) correspond to the adsorption of identical disk with the
jamming coverages 0.547. For large disks, the values of 𝜑𝐷 continuously decreased with increasing of 𝑝,
and approximately linear 𝜑𝐷 (𝑝) dependencies were observed (figure 5a). At 𝐷 = 1, i.e., for disks with
identical diameters, the predictable linear increase of 𝜑𝑑 with increasing of 𝑝 was observed. However,
at 𝐷 > 1, the initial jumps in 𝜑𝑑 (𝑝) at a very small 𝑝 were always observed. These jumps show that
the formation of jamming configurations for large disks with 𝜑𝐷 ≈ 0.5471 was followed by the packing
of small disks in the holes between large disks. For example, at 𝐷 > 10, the jump up to 𝜑𝑑 ≈ 0.246
was followed by practically linear increase of 𝜑𝑑 ≈ 0.246 with 𝑝 (𝜑𝑑 ≈ 0.246 + 0.301𝑝). The observed
behavior was in good correspondence with the previously reported data [40].

D1.518d0.136 T0.073

a) b) c)

Figure 7. (Colour online) Examples of percolation clusters (colored) for connectivities through the
small (a), large (b) and all (c) (small+large) disks in the system. The patterns are presented for the system
size 128 × 128, selection probability 𝑝 = 0.5, and diameter of large disks 𝐷 = 4. The presented values
(𝛿𝑑), (𝛿𝐷), and (𝛿𝑇 ) represent the mean values of the shell thicknesses around the small, large, and both
small and large disks, correspondingly.

Figure 6 presents the total jamming coverage 𝜑𝑇 (= 𝜑𝐷 + 𝜑𝑑) versus the selection probability 𝑝

at different diameter of large disks 𝐷. In all cases, a continuous decrease of 𝜑𝑇 with 𝑝 was observed.
Moreover, at fixed 𝑝, the values of 𝜑𝑇 increased with an increase of 𝐷. The inset to figure 6 presents
an example of such a behavior 𝜑𝑇 (𝐷) in the limiting case 𝑝 → 0. Here, the value 𝜑𝑇 varies between
0.5471 (the jamming coverage of the identical disks [6]) and 𝜑𝑇 = 0.7945 (the maximum possible
jamming coverage in the limit 𝐷 → ∞) [40]. Therefore, for simultaneous 2D RSA deposition of binary
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mixtures, even at very small values of 𝑝, the total coverage contains a significant input from small disks.
Particularly, in the limit 𝐷 → ∞, the input of small disks is relatively large 𝜑𝑑 ≈ 0.2474. This input
reflects the RSA packing of small disks in the pores between extremely large disks.

Figure 7 presents examples of connectivity analysis for models with shells around small (a, 𝛿𝑑),
around large (b, 𝛿𝐷) and around both small and large (c, 𝛿𝑇 ) disks. In these models, the electrically
conductive small (figure 7a), large (figure 7b), and both small and large (figure 7c) disks were covered
by electrically conductive shells.
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Figure 8. (Colour online) Shell thickness around small 𝛿𝑑 , around large 𝛿𝐷 and around both small and
large 𝛿𝑇 disks versus the diameter of large disks 𝐷 at a fixed selection probability 𝑝 = 0.5.
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Figure 9. (Colour online) Shell thickness around both small and large 𝛿𝑇 disks versus the selection prob-
ability 𝑝 at different values of large disk diameter 𝐷. The inset shows examples of 𝛿𝑇 (𝐷) dependencies
at different values of 𝑝.

Examples of 𝛿𝑑 (𝐷), 𝛿𝐷 (𝐷) and 𝛿𝑇 (𝐷) dependencies at a fixed selection probability 𝑝 = 0.5 are
presented in figure 8. For one component 2D RSA packing of disks, the thickness of the percolation
shell was recently estimated to be 𝛿 = 0.084 ± 0.001 [28]. For binary mixtures, the shell thickness for
connectivity through both disks 𝛿𝑇 slowly decreased with increasing of 𝐷 and reached 𝛿𝐷 ≈ 0.077 at
𝐷 = 10. The shell thicknesses for the individual connectivity through small 𝛿𝑑 and large 𝛿𝐷 coincide
at 𝐷 = 1 (𝛿𝑑 = 𝛿𝐷 = 0.367 ± 0.001). With increasing of 𝐷 the opposite behaviors of 𝛿𝑑 and 𝛿𝐷 were
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observed. The values of 𝛿𝑑 decreased and the value of 𝛿𝐷 increased with increasing of 𝐷 and reached
the levels of 𝛿𝑑 ≈ 0.111 and 𝛿𝐷 ≈ 3.504 at 𝐷 = 10.

Figure 9 presents the shell thickness around the both small and large 𝛿𝑇 disks versus the selection
probability 𝑝 at different values of a large disk diameter 𝐷. In these mixtures, the value of 𝛿𝑇 was
noticeably smaller than the shell thickness for a one component system 𝛿 = 0.084±0.001 [28] and values
of 𝛿𝑑 and 𝛿𝐷 . Moreover, the values 𝛿𝑇 increased with increasing of 𝑝. The inset shows examples of
𝛿𝑇 (𝐷) dependencies at different 𝑝. The values 𝛿𝑇 decreased with increasing of 𝐷 and significant changes
in 𝛿𝑇 were only observed at relatively small values of 𝐷 (𝐷 < 3).
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Figure 10. (Colour online) Electrical conductivity 𝜎 versus the large disk diameter 𝐷 for different values
of the shell thickness for small disks 𝛿𝑑 . The example of dependencies for a fixed value of the selection
probability 𝑝 = 0.5 is presented. It was assumed that the non-conductive large disks without shells have
small electrical conductivity (the same as for pores, 𝜎 = 1), and the small disks are electrically conductive
(𝜎𝑐 = 1012 for cores and 𝜎𝑠 = 106 for shells).

Note that at 𝐷 > 2, the values of 𝛿𝑇 (𝐷) were relatively small at rather small values of 𝑝 (e.g.,
𝑝 = 0.01 in the inset to figure 9). This can be explained by the effective deposition of small disks in pores
between large disks and by the formation of some kind of “bridges” effectively connecting the large disks.
Note, that such electrical conductivity behavior was observed in segregated multi-component composite
materials [88]. In such systems, the small particles form conductive “bridges” on the surface of large
particles and this resulted in the improved electrical conductivity.

In order to demonstrate the impact of such effects, we evaluated the electrical conductivity of 2D
RSA deposits with conductive small disks with shells and isolating large disks without shells. Figure 10
shows the electrical conductivity 𝜎 versus the large disk diameter 𝐷. Note that at 𝐷 > 2 the surface
coverage by smaller conductive disks was approximately the same, 𝜑𝑑 ≈ 0.38 (figure 3b). However, the
electrical conductivity of the whole system was greatly affected by the both 𝛿𝑑 and 𝐷 values.

4. Conclusions

The percolation connectivity in jammed systems obtained using competitive 2D RSA deposition for
a two-component mixture of hard disks has been studied. The main parameters of the model are the ratio
of particle diameters 𝐷 and selection probability 𝑝. The simulations were performed at 𝐷 = 1–10 and
𝑝 = 0–1. The detailed investigations of packing coverages in a jamming state for small 𝜑𝑑 and large 𝜑𝐷

particles were performed. The behaviors of the shell thicknesses required for the individual connectivity
through the small 𝛿𝑑 , large 𝛿𝐷 disks and through all the disks in the system 𝛿𝑇 were analyzed. Particularly,
at 𝐷 > 2, the values of 𝛿𝑇 (𝐷) were relatively small at rather small values of 𝑝 (e.g., 𝑝 = 0.01 in the inset
to figure 9). These effects were explained by the effective deposition of small disks in the pores between
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large disks and by the formation of some kind of electrical “bridges” effectively connecting the large
disks. The natural extension of this work would be to explore the binary mixtures with varying shapes
and/or sizes of the depositing particles. Further analysis of such a behavior will be the subject of the
forthcoming papers.
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Перколяцiйна зв’язнiсть в конкурентнiй моделi випадкової
послiдовної адсорбцiї бiнарних упаковок дискiв

М. I. Лебовка 1, М. Р. Петрик2, М. В. Вигорницький1
1 Лабораторiя фiзичної хiмiї дисперсних мiнералiв Iнституту бiоколоїдної хiмiї iменi Ф. Д. Овчаренка НАН
України, Київ 03142, Україна

2 Тернопiльский нацiональний технiчний унiверситет iменi Iвана Пулюя, вул. Руська, 56, Тернопiль 46001,
Україна

Методом комп’ютерного моделювання дослiджено перколяцiйну зв’язнiсть двовимiрних (2D) упаковок бi-
нарних сумiшей дискiв рiзного розмiру. Упаковки були побудованi з використанням моделi випадкової
послiдовної адсорбцiї (RSA) з одночасним осадженням дискiв двох розмiрiв. Диски меншого розмiру оби-
ралися для осадження з ймовiрнiстю 𝑝, а диски бiльшого розмiру з ймовiрнiстю 1 − 𝑝. Спiввiдношення
дiаметрiв дискiв змiнювалося в дiапазонi 𝐷 = 1–10, а ймовiрнiсть 𝑝 = 0–1. Вважалося, що зв’язнiсть
дискiв в упаковцi забезпечується шляхом перекриття м’яких оболонок навколо дискiв (структура тверде
ядро–м’яка оболонка). Проаналiзовано поведiнку коефiцiєнта покриття поверхнi дисками в станi джам-
мiнгу, зв’язностi упаковок по малих, великих та обох типах дискiв, а також поведiнку електропровiдностi
плiвок для сумiшi малих провiдних i великих непровiдних дискiв. Перколяцiйна поведiнка електропровiд-
ностi упаковки пояснена утворенням провiдних “мiсткiв” з малих дискiв у порах мiж великими дисками.

Ключовi слова: упаковка дискiв, заклинення, адсорбцiя, конкуренцiя, перколяцiя
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