
ar
X

iv
:2

40
3.

14
82

4v
1 

 [
m

at
h.

C
O

] 
 2

1 
M

ar
 2

02
4 Recognizing Relating Edges in Graphs without Cycles of

Length 6

Vadim E. Levit

Department of Mathematics

Ariel University, Ariel, Israel

levitv@ariel.ac.il

.

David Tankus

Department of Software Engineering

Sami Shamoon College of Engineering, Ashdod, Israel

davidt@sce.ac.il

Abstract

A graph G is well-covered if all maximal independent sets are of the same cardinality.
Let w : V (G) −→ R be a weight function. Then G is w-well-covered if all maximal
independent sets are of the same weight. An edge xy ∈ E(G) is relating if there exists
an independent set S such that both S ∪ {x} and S ∪ {y} are maximal independent sets
in the graph. If xy is relating then w(x) = w(y) for every weight function w such that G
is w-well-covered. Relating edges play an important role in investigating w-well-covered
graphs.

The decision problem whether an edge in a graph is relating is NP-complete [4]. We
prove that the problem remains NP-complete when the input is restricted to graphs
without cycles of length 6. This is an unexpected result because recognizing relating
edges is known to be polynomially solvable for graphs without cycles of lengths 4 and 6
[20], graphs without cycles of lengths 5 and 6 [22], and graphs without cycles of lengths
6 and 7 [30].

A graph G belongs to the class W2 if every two pairwise disjoint independent sets
in G are included in two pairwise disjoint maximum independent sets [29]. It is known
that if G belongs to the class W2 then it is well-covered. A vertex v ∈ V (G) is shedding
if for every independent set S ⊆ V (G) \ N [v] there exists u ∈ N(v) such that S ∪ {u}
is independent [34]. Shedding vertices play an important role in studying the class W2.
Recognizing shedding vertices is co-NP-complete, even when the input is restricted to
triangle-free graphs [24]. We prove that the problem is co-NP-complete for graphs
without cycles of length 6.
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1 Introduction

1.1 Definitions and Notation

Throughout this paper G is a simple (i.e., a finite, undirected, loopless and without multiple
edges) graph with vertex set V (G) and edge set E(G). Cycles of k vertices are denoted by
Ck. When we say that G does not contain Ck for some k ≥ 3, we mean that G does not
admit subgraphs isomorphic to Ck. It is important to mention that these subgraphs are not
necessarily induced. Let G(Ĉi1 , .., Ĉik) denote the family of all graphs which do not contain
Ci1 ,...,Cik .

Let S ⊆ V (G) be a non-empty set of vertices, and let i ∈ N. Then

Ni(S) = {v ∈ V (G)| mins∈S d(v, s) = i}, Ni[S] = {v ∈ V (G)| mins∈S d(v, s) ≤ i}

where d(x, y) is the minimal number of edges required to construct a path between x and y, or
infinite if such a path does not exist. If i 6= j then Ni(S)∩Nj(S) = ∅. We abbreviate N1(S)
and N1[S] to N(S) and N [S], respectively. If S = {v} for some v ∈ V (G), then Ni({v}),
Ni[{v}], N({v}), and N [{v}], are abbreviated to Ni(v), Ni[v], N(v), and N [v], respectively.

Let T ⊆ V (G). Then S dominates T if T ⊆ N [S]. If N [S] = V (G) then S dominates
the whole graph. The induced subgraph of G with vertex set S ⊆ V (G) is G[S], and denote
G \ S = G[V (G) \ S].

1.2 Relating Edges

A set of vertices S ⊆ V (G) is independent if for every x, y ∈ S, x and y are not adjacent.
Obviously, an empty set is independent. An independent set is called maximal if it is not
contained in another independent set. An independent set is maximum if the graph does
not contain an independent set with a higher cardinality. A graph is called well-covered if
every maximal independent set is maximum. The problem of finding a maximum cardinality
independent set in an input graph is NP-hard. However, if the input is restricted to well-
covered graphs, then a maximum cardinality independent set can be found polynomially using
the greedy algorithm.

Let w : V (G) −→ R be a weight function defined on the vertices of G. For every set
S ⊆ V (G), define w(S) = Σs∈Sw(s). Then G is w-well-covered if all maximal independent
sets of G are of the same weight. The set of weight functions w for which G is w-well-covered
is a vector space [5]. That vector space is denoted WCW (G) [4].

The recognition of well-covered graphs is known to be co-NP-complete. This was proved
independently in [7] and [27]. The problem remains co-NP-complete even when the input
is restricted to K1,4-free graphs [6], or to circulant graphs [3]. However, the problem is
polynomially solvable for K1,3-free graphs [31, 32], for graphs with girth at least 5 [11], for
graphs that contain neither 4- nor 5-cycles [12], for graphs with a bounded maximal degree
[5], and for chordal graphs [26].

Obviously, a graph G is well-covered if and only if w ≡ 1 belongs to the vector space
WCW (G). Hence, for every family graphs, if recognizing well-covered graphs is co-NP-
complete, then finding WCW (G) is co-NP-hard. On the other hand, if for a specific family
of graphs finding WCW (G) can be completed polynomially then also recognizing well-covered
graphs is a polynomial task. Polynomial algorithms which find WCW (G) are known for claw-
free graphs [21] and for graphs without cycles of lengths 4, 5 and 6 [22].
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An edge xy ∈ E(G) is relating if there exists an independent set S such that both S ∪{x}
and S ∪ {y} are maximal independent sets in the graph. If xy is relating then w(x) = w(y)
for every weight function w such that G is w-well-covered. Relating edges play an important
role in investigating w-well-covered graphs.

Problem 1.1 RE

Input: A graph G, and an edge e ∈ E(G).
Question: Is e relating?

A witness that xy is a relating edge is an independent set S such that both S ∪ {x} and
S ∪ {y} are maximal independent sets in the graph. The decision problem whether an edge
in an input graph is relating is NP-complete [4], and it remains NP-complete even when the
input is restricted to graphs without cycles of lengths 4 and 5 [20] or to bipartite graphs [23].
However, recognizing relating edges can be done in polynomial time if the input is restricted
to graphs without cycles of lengths 4 and 6 [20], to graphs without cycles of lengths 5 and 6
[22], and to graphs without cycles of lengths 6 and 7 [30].

1.3 Shedding Vertices

A vertex v ∈ V (G) is shedding if for every independent set S ⊆ V (G) \ N [v] there exists
u ∈ N(v) such that S ∪ {u} is independent. Equivalently, v is shedding if there does not
exist an independent set in V (G) \N [v] which dominates N(v) [34]. It is easy to see that v
is shedding if and only if there does not exist an independent set in N2(v) which dominates
N(v). Shedding vertices are also called extendable [11].

Problem 1.2 SHED

Input: A graph G, and a vertex v ∈ V (G).
Question: Is v shedding?

If v is not shedding, a witness for being not shedding is a an independent set S ⊆ N2(v)
which dominates N(v). It is proved in [24] that recognizing shedding vertices is co-NP-

complete, even when the input is restricted to triangle-free graphs, but polynomial solvable
for claw-free graphs, for graphs without cycles of length 5, and for graphs without cycles of
lengths 4 and 6. Theorem 1.3 shows the connection between the RE problem and the SHED
problem.

Theorem 1.3 [24] Let G be a graph without cycles of lengths 4, 5 and 6, and xy ∈ E(G).
Suppose N(x) ∩N(y) = ∅, d(x) ≥ 2 and d(y) ≥ 2. The following assertions are equivalent.

1. None of x and y is a shedding vertex.

2. xy is a relating edge.

A graph G belongs to the class W2 if every two disjoint independent sets in G are included
in two disjoint maximum independent sets [29]. All graphs in the class W2 are well-covered.
Recognizing W2 graphs is co-NP-complete [10]. Shedding vertices play an important role in
studying the class W2 due to Theorem 1.4.

Theorem 1.4 [18] For every well-covered graph G having no isolated vertices, the following
assertions are equivalent:
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1. G is in the class W2.

2. All vertices of G are shedding.

1.4 SAT

Let X = {x1, ..., xn} be a set of 0-1 variables. We define the set of literals LX over X by
LX = {xi, xi : i = 1, ..., n}, where x = 1 − x is the negation of x. A truth assignment to X
is a mapping t : X −→ {0, 1} that assigns a value t(xi) ∈ {0, 1} to each variable xi ∈ X . We
extend t to LX by putting t(xi) = 1 − t(xi). A literal l ∈ LX is true under t if t(l) = 1. A
clause over X is a conjunction of some literals of LX , such that for every variable x ∈ X , the
clause contains at most one literal out of x and its negation. Let C = {c1, ..., cm} be a set
of clauses over X . A truth assignment t to X satisfies a clause cj ∈ C if cj contains at least
one true literal under t. The number of times that a variable appears in C is the number of
clauses that include the variable or its negation.

Problem 1.5 SAT

Input: A set of variables X = {x1, ..., xn}, and a set of clauses C = {c1, ..., cm} over X .
Question: Is there a truth assignment to X which satisfies all clauses of C?

The SAT problem is well-known to be NP-complete [13]. The number of times that a variable
appears in an instance of SAT is the number of clauses which contain the variable or its
negation. The SAT problem was learned thoroughly in recent years. The complexity statuses
of many restricted cases of the problem were found.

Horn SAT is a restricted case of the SAT problem where every clause contains at most one
unnegeted literal. This problem is known to be polynomial solvable [17]. MONOTONE SAT
is the SAT problem in the restricted case that every clause contains either negated literals or
unnegated literals, but not both. MONOTONE SAT is NP-complete [15].

Let k ≥ 2. The k-SAT problem is a restricted case of the SAT problem where each clause
contains exactly k different literals. For every k ≥ 3, the k-SAT problem is well-known to be
NP-complete [13], while the 2-SAT problem is polynomial solvable [9]. In the MAX 2-SAT
problem the input is a set of clauses of size 2 and a positive integer, k. It should be decided
whether there exists a truth assignment which satisfies at least k clauses. This problem was
proved to be NP-complete [14]. Moreover, even if every variable appears 3 times, the MAX
2-SAT problem is NP-complete [16].

MONOTONE 3-SAT is NP-complete when each variable appears exactly 2 times negated
and 2 times unnegated [8]. On the other hand, 3-SAT is always satisfiable, and therefore
polynomial, when each variable appears at most 3 times [33]. However, allowing clauses of
size 2 and 3, with each variable appearing 3 times, is NP-complete [25].

The 1-in-3 SAT is another restricted case of the SAT problem, denoted X3SAT. In X3SAT
every clause contains 3 literals. It should be decided whether there exists a truth assignment
which satisfies exactly one literal in every clause. X3SAT is NP-complete even when all its
variables occuring unnegated [28].

1.5 Main Results

In Section 2 a new restricted version of the SAT problem, called 23SAT, is defined. It is
proved that 23SAT is NP-complete.
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In Section 3 we prove that the SHED problem is co-NP-complete when its input is re-
stricted to graphs without cycles of length 6. The proof is based on a polynomial reduction
from the complement of the 23SAT problem.

In Section 4 it is proved that the RE problem is NP-complete for graphs without cycles
of length 6. The proof is based on a polynomial reduction from the complement of the SHED
problem.

2 23SAT

Let I = (X , C) be an instance of SAT. A major literal is a literal in LX that belongs to at
least two clauses of C, while a minor literal belongs to only one clause. The following problem
is a restricted case of the SAT problem.

Problem 2.1 23SAT

Input: A set of variables X = {x1, ..., xn}, and a set of clauses C = {c1, ..., cm} over X such
that every clause contains 2 or 3 literals, and every clause contains at most 1 major literal.
Question: Is there a truth assignment to X which satisfies all clauses of C?

Theorem 2.2 23SAT is NP-complete.

Proof. Clearly, the problem is NP. We prove NP-completeness by a polynomial reduction
from SAT. Let I1 = (X = {x1, ..., xn}, C = {c1, ..., cm}) be an instance of SAT. For every
1 ≤ j ≤ m, denote cj = {lj,1, . . . , lj,k(j)}, k(j) ≥ 2, and define

f(cj) = {{lj,1, yj,1}, {yj,1, lj,2, yj,2}, {yj,2, lj,3, yj,3}, . . . , {yj,k(j)−1, lj,k(j)}}

where yj,1, . . . , yj,k(j)−1 are new variables. Clearly, yj,1, yj,1, . . . , yj,k(j)−1, yj,k(j)−1 are minor
literals. Let

X ′ = X ∪ {yj,r : 1 ≤ j ≤ m, 1 ≤ r ≤ k(j)− 1}, C′ =
⋃

1≤j≤m

f(cj)

Then I2 = (X ′, C′) is an instance of 23SAT, since the size of every clause is 2 or 3, and every
clause contains at most one major literal. It remains to prove that I1 and I2 are qeuivalent.

If I1 is positive then there exists a truth assignment t1 : X −→ {0, 1} which satisfies C.
For every 1 ≤ j ≤ m the fact that t1 satisfies cj implies that there exists 1 ≤ r(j) ≤ k(j)− 1
such that t2(lj,r(j)) = 1. Let t2 : X ′ −→ {0, 1} be the following extraction of t1. Define
t2(yj,r′) = 1 for every 1 ≤ r′ < r(j) and t2(yj,r′) = 0 for every r(j) ≤ r′ ≤ k(j) − 1. Clearly,
t2 satisfies all clauses of f(cj) for every 1 ≤ j ≤ m. Consequently, I2 is positive.

Conversely, if I2 is positive then there exists a truth assignment t2 : X ′ −→ {0, 1} which
satisfies C′. Hence, t2 satisfies f(cj) for every 1 ≤ j ≤ m. However, f(cj) contains k(j)
clauses, and k(j)− 1 variables form X ′ \ X . Therefore, there exists 1 ≤ r(j) ≤ k(j)− 1 such
that t2(lj,r(j)) = 1. Define t1 : X −→ {0, 1} by t1(xi) = t2(xi) for every 1 ≤ i ≤ n. Then t1
satisfies cj because t1(lj,r(j)) = 1 for every 1 ≤ j ≤ m. Consequently, t1 satisfies C, and I1 is
positive.

Let I = (X , C) be an instance of 23SAT. A bad pair in I is a set of 2 clauses {c1, c2} ⊆ C
such that there exist 2 literals, l1 and l2, for which {l1, l2} ⊆ c1 and {l1, l2} ⊆ c2.
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Theorem 2.3 There exists a polynomial algorithm which receives as its input an instance of
23SAT, and finds an equivalent instance of 23SAT without bad pairs.

Proof. The following algorithm receives as its input an instance I1 of 23SAT with bad pairs.
The algorithm finds an equivalent instance, I2, of 23SAT such that the number of bad pairs
in I2 is smaller than the number of bad pairs in I1. By invoking the algorithm repeatedly, one
can find an instance of 23SAT which is equivalent to the original one, and does not contain
bad pairs.

Denote I1 = (X , C). There exist clauses c1, c2 ∈ C, and literals, l1 and l2, such that
{l1, l2} ⊆ c1 and {l1, l2} ⊆ c2. By definition of 23SAT, every clause contains at most one
major literal. Assume without loss of generality that l1 is a minor literal. At least one of l2
and l1 is a minor literal.

If l2 is a minor literal then construct a truth assignment t for I1 by assigning t(l1) =
t(l2) = 0. This assigment satisfies both c1 and c2. Moreover, if I1 contains other clauses with
l1 and l2, these clauses are satisfied, too. Let I2 be the instance of 23SAT obtained from I1
by omitting all clauses which contain l1 or l2.

We show that I1 and I2 are equivalent. If there exists a truth assignment t2 that satisfies
I2, then assign t(x) = t2(x) for every variable x of I2. Clearly, t satisfies I1. On the other
hand, since every clause of I2 belongs also to I1, if there does not exist a truth assigment that
satisfies I2, then there does not exist a truth assignment which satisfies I1. Therefore, I1 and
I2 are equivalent, and the number of bad pairs in I2 is smaller than the number of bad pairs
in I1.

Suppose l1 is a minor literal. Assigning l1 = l2 satisfies both c1 and c2, and does not affect
the other clauses of I1. Hence, let I2 be the instance of 23SAT obtained from I1 by omitting
c1 and c2. Clearly, I2 is equivalent to I1, and the number of bad pairs in I2 is smaller than
the number of bad pairs in I1.

3 Shedding Vertices

Let I = (X = {x1, ..., xn}, C = {c1, ..., cm}) be an instance of SAT. Define GI to be the
following graph.

V (GI) = {v} ∪ {wj : 1 ≤ j ≤ m} ∪ {ui, u
′
i : 1 ≤ i ≤ n}

E(GI) = {vwj : 1 ≤ j ≤ m} ∪ {wjui : xi ∈ cj} ∪ {wju
′
i : xi ∈ cj} ∪ {uiu

′
i : 1 ≤ i ≤ n}

Note that the subgraph induced by N2(v) is a matching, i.e. a disjoint union of copies of
K2. Every maximal independent set of N2(v) contains exactly one of ui and u′

i, for every
1 ≤ i ≤ n.

Lemma 3.1 An instance I of SAT is satisfiable if and only if there exists in GI an indepen-
dent set S ⊆ N2(v) which dominates N(v).

Proof. Suppose that there exists an independent set S of N2(v) which dominates N(v).
Define a truth assignment t : X −→ {0, 1} as follows. For every 1 ≤ i ≤ n, t(xi) = 1 if and
only if ui ∈ S. Otherwise, t(xi) = 0. The fact that S dominates all vertices of N(v) implies
that all clauses of C are satisfied by t.

6



On the other hand, assume that there exists a truth assignment t : X −→ {0, 1} which
satisfies C. Define S = {ui : t(xi) = 1} ∪ {u′

i : t(xi) = 0}. Clearly, S ⊆ N2(v). The fact that
for every 1 ≤ i ≤ n the set S contains exactly one of ui and u′

i implies that S is independent.
The fact that t satisfies all clauses of C implies that S dominates all vertices of N(v).

Lemma 3.2 Let I = (X , C) be an instance of 23SAT without bad pairs. Then GI ∈ G(Ĉ6).

Proof. Assume on the contrary that v belongs to a cycle of length 6. Then there exist
vertices w1, w2, w3 in N(v) and z1, z2 in N2(v) such that (v, w1, z1, w2, z2, w3) is a cycle of
length 6. Let l1 and l2 be the literals which represent z1 and z2, respectively. Let c1, c2 and
c3 be the clauses which represent w1, w2 and w3, respectively. Then l1 is a major literal since
it belongs to both c1 and c2. Similarly, l2 is a major literal, since it belongs to both c2 and
c3. Hence c2 contains two major literals, which is a contradiction. Therefore, v is not a part
of a cycle of length 6.

Assume on the contrary that GI \ {v} contains a cycle C of length 6. Since N(v) is
independent, |C ∩ N(v)| ≤ 3. The fact that every connected component of N2(v) is K2

implies that |C ∩N(v)| ≥ 2.
If |C ∩ N(v)| = 3 and |C ∩ N2(v)| = 3 then the vertices in C ∩ N2(v) represent major

literals, and the vertices of C ∩N(v) represent clauses that each of them contains at least 2
major literals, which is a contradiction. Consequently, |C ∩N(v)| = 2 and |C ∩N2(v)| = 4.
That means that either C = (u1, u

′
1, w1, u2, u

′
2, w2) or C = (u1, u

′
1, w1, u

′
2, u2, w2) for u1, u

′
1,

u2, u
′
2 in N2(v) and w1, w2 in N(v). Therefore, there exist clauses c1 and c2 and literals

l1 and l2 such that {l1, l2} ⊆ c1 and {l1, l2} ⊆ c2. Hence, I contains a bad pair, which is a

contradiction. GI ∈ G(Ĉ6).

Theorem 3.3 Recognizing shedding vertices is co-NP-complete, even for graphs without cy-
cles of length 6.

Proof. It should be proved that the complement problem is NP-complete. An instance of
the problem is I = (G, v), where G is a graph without cycles of length 6, and v ∈ V (G). The
instance is positive if and only if there exists an independent set in N2(v) which dominates
N(v).

The problem is obviously NP. We proveNP-completeness by a polynomial reduction from
23SAT. Let I1 be an instance of 23SAT. By Theorem 2.3, it is possible to find in polynomial
time an equivalent instance I2 of 23SAT without bad pairs. Let I3 = (GI2 , v) be an instance

of the complement of the SHED problem. By Lemma 3.2, GI2 ∈ G(Ĉ6). By Lemma 3.1, I2 is
satisfiable if and only if there exists an independent set in N2(v) which dominates N(v).

4 Relating Edges

Theorem 4.1 is the main result of this section.

Theorem 4.1 Recognizing relating edges is NP-complete for graphs without cycles of length
6.

Proof. Clearly, the problem is NP. We prove NP-completeness by a polynomial reduction
from the complement of the SHED problem for graphs without cycles of length 6. Let I1 =

7



(G, x) be an instance of the comlement of SHED such that G ∈ G(Ĉ6). Then I1 is positive
if and only if there exists an independent set in N2(x) which dominates N(x). Define a new
graph G′ as follows. V (G′) = V (G)∪{y}, when y is a new vertex, and E(G′) = E(G)∪{xy}.

The fact that G ∈ G(Ĉ6) implies G′ ∈ G(Ĉ6). Let I2 = (G′, xy) be an instance of the RE
problem. It remains to prove that I1 and I2 are equivalent.

Suppose I1 is positive. The graph G contains an independent set S ⊆ N2(x) which
dominates N(x). Let S∗ be a maximal independent set of G \ {x} which contains S. In the
graph G′ the sets S∗ ∪ {x} and S∗ ∪ {y} are maximal independent sets. Therefore, S∗ is a
witness that xy is relating, and I2 is positive.

Conversely, if I2 is positive then there exists an independent set S ⊆ V (G′) such that
S∪{x} and S∪{y} are maximal independent sets ofG′. Obviously, S∩N2(x) is an independent
set of N2(x) which dominates N(x), and I1 is positive.

5 Conclusions

We proved that the RE problem is NP-complete for graphs without cycles of length 6. This
result is suprising and unexpected since the RE problem is polynomially solvable for graphs
without cycles of lengths 6 and 4 [20], for graphs without cycles of lengths 6 and 5 [22],
and for graphs without cycles of lengths 6 and 7 [30]. Each of the algorithms presented
in the three above-mentioned papers works as follows. It finds an independent set Sx in
N2(x) ∩N3(y) which dominates N(x) ∩N2(y). Then it finds similarly an independent set Sy

in N2(y) ∩ N3(x) which dominates N(y) ∩ N2(x). Since the graph does not contain cycles
of length 6, there are no edges between Sx and Sy. Hence, if both Sx and Sy exist then
S = Sx ∪ Sy is an independent set which is a witness that xy is relating, and the algorithm
terminates announcing that the edge is relating. On the other hand, if at least one of Sx and
Sy does not exist then the instance of the problem is negative. First, we conjectured that an
algorithm for graphs without cycles of length 6 would work according to the same principle,
and thus generalize the last three results. However, we found out that the existence of such
an algorithm would imply that P=NP.

Theorem 1.3 shows a connection between the RE and SHED problems. In each of these
problems it should be decided whether there exists an independent set in a subset of V (G)
which dominates another subset of V (G). Hence, for many families of graphs either RE is
NP-complete and SHED is co-NP-complete, or both problems are polynomially solvable.
That holds also for graphs without cycles of length 6, the family of graphs which is studied in
this paper. However, some families are exceptional. For example, concerning graphs without
cycles of lengths 4 and 5, RE is NP-complete [20], but SHED is a polynomially solvable [24].
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