Recognizing Relating Edges in Graphs without Cycles of Length 6

Vadim E. Levit
Department of Mathematics
Ariel University, Ariel, Israel
levitv@ariel.ac.il
David Tankus
Department of Software Engineering
Sami Shamoon College of Engineering, Ashdod, Israel
davidt@sce.ac.il

Abstract

A graph G is well-covered if all maximal independent sets are of the same cardinality. Let $w: V(G) \longrightarrow \mathbb{R}$ be a weight function. Then G is w-well-covered if all maximal independent sets are of the same weight. An edge $x y \in E(G)$ is relating if there exists an independent set S such that both $S \cup\{x\}$ and $S \cup\{y\}$ are maximal independent sets in the graph. If $x y$ is relating then $w(x)=w(y)$ for every weight function w such that G is w-well-covered. Relating edges play an important role in investigating w-well-covered graphs.

The decision problem whether an edge in a graph is relating is NP-complete 4. We prove that the problem remains NP-complete when the input is restricted to graphs without cycles of length 6 . This is an unexpected result because recognizing relating edges is known to be polynomially solvable for graphs without cycles of lengths 4 and 6 [20], graphs without cycles of lengths 5 and 6 [22], and graphs without cycles of lengths 6 and 730

A graph G belongs to the class $\mathbf{W}_{\mathbf{2}}$ if every two pairwise disjoint independent sets in G are included in two pairwise disjoint maximum independent sets [29]. It is known that if G belongs to the class \mathbf{W}_{2} then it is well-covered. A vertex $v \in V(G)$ is shedding if for every independent set $S \subseteq V(G) \backslash N[v]$ there exists $u \in N(v)$ such that $S \cup\{u\}$ is independent [34. Shedding vertices play an important role in studying the class $\mathbf{W}_{\mathbf{2}}$. Recognizing shedding vertices is co-NP-complete, even when the input is restricted to triangle-free graphs 24 . We prove that the problem is co-NP-complete for graphs without cycles of length 6 .

1 Introduction

1.1 Definitions and Notation

Throughout this paper G is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set $V(G)$ and edge set $E(G)$. Cycles of k vertices are denoted by C_{k}. When we say that G does not contain C_{k} for some $k \geq 3$, we mean that G does not admit subgraphs isomorphic to C_{k}. It is important to mention that these subgraphs are not necessarily induced. Let $\mathcal{G}\left(\widehat{C_{i_{1}}}, . ., \widehat{C_{i_{k}}}\right)$ denote the family of all graphs which do not contain $C_{i_{1}}, \ldots, C_{i_{k}}$.

Let $S \subseteq V(G)$ be a non-empty set of vertices, and let $i \in \mathbb{N}$. Then

$$
N_{i}(S)=\left\{v \in V(G) \mid \min _{s \in S} d(v, s)=i\right\}, N_{i}[S]=\left\{v \in V(G) \mid \min _{s \in S} d(v, s) \leq i\right\}
$$

where $d(x, y)$ is the minimal number of edges required to construct a path between x and y, or infinite if such a path does not exist. If $i \neq j$ then $N_{i}(S) \cap N_{j}(S)=\varnothing$. We abbreviate $N_{1}(S)$ and $N_{1}[S]$ to $N(S)$ and $N[S]$, respectively. If $S=\{v\}$ for some $v \in V(G)$, then $N_{i}(\{v\})$, $N_{i}[\{v\}], N(\{v\})$, and $N[\{v\}]$, are abbreviated to $N_{i}(v), N_{i}[v], N(v)$, and $N[v]$, respectively.

Let $T \subseteq V(G)$. Then S dominates T if $T \subseteq N[S]$. If $N[S]=V(G)$ then S dominates the whole graph. The induced subgraph of G with vertex set $S \subseteq V(G)$ is $G[S]$, and denote $G \backslash S=G[V(G) \backslash S]$.

1.2 Relating Edges

A set of vertices $S \subseteq V(G)$ is independent if for every $x, y \in S, x$ and y are not adjacent. Obviously, an empty set is independent. An independent set is called maximal if it is not contained in another independent set. An independent set is maximum if the graph does not contain an independent set with a higher cardinality. A graph is called well-covered if every maximal independent set is maximum. The problem of finding a maximum cardinality independent set in an input graph is NP-hard. However, if the input is restricted to wellcovered graphs, then a maximum cardinality independent set can be found polynomially using the greedy algorithm.

Let $w: V(G) \longrightarrow \mathbb{R}$ be a weight function defined on the vertices of G. For every set $S \subseteq V(G)$, define $w(S)=\Sigma_{s \in S} w(s)$. Then G is w-well-covered if all maximal independent sets of G are of the same weight. The set of weight functions w for which G is w-well-covered is a vector space [5]. That vector space is denoted $W C W(G)$ 4].

The recognition of well-covered graphs is known to be co-NP-complete. This was proved independently in [7] and [27]. The problem remains co-NP-complete even when the input is restricted to $K_{1,4}$-free graphs [6], or to circulant graphs [3]. However, the problem is polynomially solvable for $K_{1,3}$-free graphs [31, 32], for graphs with girth at least 5 [11], for graphs that contain neither 4- nor 5-cycles [12], for graphs with a bounded maximal degree [5], and for chordal graphs [26].

Obviously, a graph G is well-covered if and only if $w \equiv 1$ belongs to the vector space $W C W(G)$. Hence, for every family graphs, if recognizing well-covered graphs is co-NPcomplete, then finding $W C W(G)$ is co-NP-hard. On the other hand, if for a specific family of graphs finding $W C W(G)$ can be completed polynomially then also recognizing well-covered graphs is a polynomial task. Polynomial algorithms which find $W C W(G)$ are known for clawfree graphs [21] and for graphs without cycles of lengths 4,5 and 6 [22].

An edge $x y \in E(G)$ is relating if there exists an independent set S such that both $S \cup\{x\}$ and $S \cup\{y\}$ are maximal independent sets in the graph. If $x y$ is relating then $w(x)=w(y)$ for every weight function w such that G is w-well-covered. Relating edges play an important role in investigating w-well-covered graphs.

Problem 1.1 RE

Input: A graph G, and an edge $e \in E(G)$.
Question: Is e relating?
A witness that $x y$ is a relating edge is an independent set S such that both $S \cup\{x\}$ and $S \cup\{y\}$ are maximal independent sets in the graph. The decision problem whether an edge in an input graph is relating is NP-complete [4, and it remains NP-complete even when the input is restricted to graphs without cycles of lengths 4 and 5 [20] or to bipartite graphs [23]. However, recognizing relating edges can be done in polynomial time if the input is restricted to graphs without cycles of lengths 4 and $6[20]$, to graphs without cycles of lengths 5 and 6 [22], and to graphs without cycles of lengths 6 and 7 [30].

1.3 Shedding Vertices

A vertex $v \in V(G)$ is shedding if for every independent set $S \subseteq V(G) \backslash N[v]$ there exists $u \in N(v)$ such that $S \cup\{u\}$ is independent. Equivalently, v is shedding if there does not exist an independent set in $V(G) \backslash N[v]$ which dominates $N(v)$ [34. It is easy to see that v is shedding if and only if there does not exist an independent set in $N_{2}(v)$ which dominates $N(v)$. Shedding vertices are also called extendable 11.

Problem 1.2 SHED

Input: A graph G, and a vertex $v \in V(G)$.
Question: Is v shedding?
If v is not shedding, a witness for being not shedding is a an independent set $S \subseteq N_{2}(v)$ which dominates $N(v)$. It is proved in [24] that recognizing shedding vertices is co-NPcomplete, even when the input is restricted to triangle-free graphs, but polynomial solvable for claw-free graphs, for graphs without cycles of length 5 , and for graphs without cycles of lengths 4 and 6 . Theorem 1.3 shows the connection between the RE problem and the SHED problem.

Theorem 1.3 (24] Let G be a graph without cycles of lengths 4, 5 and 6, and $x y \in E(G)$. Suppose $N(x) \cap N(y)=\varnothing, d(x) \geq 2$ and $d(y) \geq 2$. The following assertions are equivalent.

1. None of x and y is a shedding vertex.
2. $x y$ is a relating edge.

A graph G belongs to the class $\mathbf{W}_{\mathbf{2}}$ if every two disjoint independent sets in G are included in two disjoint maximum independent sets [29]. All graphs in the class $\mathbf{W}_{\mathbf{2}}$ are well-covered. Recognizing $\mathbf{W}_{\mathbf{2}}$ graphs is co-NP-complete 10 . Shedding vertices play an important role in studying the class \mathbf{W}_{2} due to Theorem 1.4 .

Theorem 1.4 [18] For every well-covered graph G having no isolated vertices, the following assertions are equivalent:

1. G is in the class $\mathbf{W}_{\mathbf{2}}$.
2. All vertices of G are shedding.

1.4 SAT

Let $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of $0-1$ variables. We define the set of literals $L_{\mathcal{X}}$ over \mathcal{X} by $L_{\mathcal{X}}=\left\{x_{i}, \overline{x_{i}}: i=1, \ldots, n\right\}$, where $\bar{x}=1-x$ is the negation of x. A truth assignment to \mathcal{X} is a mapping $t: \mathcal{X} \longrightarrow\{0,1\}$ that assigns a value $t\left(x_{i}\right) \in\{0,1\}$ to each variable $x_{i} \in \mathcal{X}$. We extend t to $L_{\mathcal{X}}$ by putting $t\left(\overline{x_{i}}\right)=1-t\left(x_{i}\right)$. A literal $l \in L_{\mathcal{X}}$ is true under t if $t(l)=1$. A clause over \mathcal{X} is a conjunction of some literals of $L_{\mathcal{X}}$, such that for every variable $x \in \mathcal{X}$, the clause contains at most one literal out of x and its negation. Let $\mathcal{C}=\left\{c_{1}, \ldots, c_{m}\right\}$ be a set of clauses over \mathcal{X}. A truth assignment t to \mathcal{X} satisfies a clause $c_{j} \in \mathcal{C}$ if c_{j} contains at least one true literal under t. The number of times that a variable appears in \mathcal{C} is the number of clauses that include the variable or its negation.

Problem 1.5 SAT

Input: A set of variables $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$, and a set of clauses $\mathcal{C}=\left\{c_{1}, \ldots, c_{m}\right\}$ over \mathcal{X}. Question: Is there a truth assignment to \mathcal{X} which satisfies all clauses of \mathcal{C} ?

The SAT problem is well-known to be NP-complete [13]. The number of times that a variable appears in an instance of SAT is the number of clauses which contain the variable or its negation. The SAT problem was learned thoroughly in recent years. The complexity statuses of many restricted cases of the problem were found.

Horn SAT is a restricted case of the SAT problem where every clause contains at most one unnegeted literal. This problem is known to be polynomial solvable [17]. MONOTONE SAT is the SAT problem in the restricted case that every clause contains either negated literals or unnegated literals, but not both. MONOTONE SAT is NP-complete [15.

Let $k \geq 2$. The k-SAT problem is a restricted case of the SAT problem where each clause contains exactly k different literals. For every $k \geq 3$, the k-SAT problem is well-known to be NP-complete [13, while the 2-SAT problem is polynomial solvable [9]. In the MAX 2-SAT problem the input is a set of clauses of size 2 and a positive integer, k. It should be decided whether there exists a truth assignment which satisfies at least k clauses. This problem was proved to be NP-complete [14]. Moreover, even if every variable appears 3 times, the MAX 2-SAT problem is NP-complete [16].

MONOTONE 3-SAT is NP-complete when each variable appears exactly 2 times negated and 2 times unnegated [8]. On the other hand, 3-SAT is always satisfiable, and therefore polynomial, when each variable appears at most 3 times 33. However, allowing clauses of size 2 and 3 , with each variable appearing 3 times, is NP-complete [25].

The 1-in-3 SAT is another restricted case of the SAT problem, denoted X3SAT. In X3SAT every clause contains 3 literals. It should be decided whether there exists a truth assignment which satisfies exactly one literal in every clause. X3SAT is NP-complete even when all its variables occuring unnegated 28.

1.5 Main Results

In Section 2 a new restricted version of the SAT problem, called 23SAT, is defined. It is proved that 23SAT is NP-complete.

In Section 3 we prove that the SHED problem is co-NP-complete when its input is restricted to graphs without cycles of length 6 . The proof is based on a polynomial reduction from the complement of the 23SAT problem.

In Section 4 it is proved that the RE problem is NP-complete for graphs without cycles of length 6 . The proof is based on a polynomial reduction from the complement of the SHED problem.

2 23SAT

Let $I=(\mathcal{X}, \mathcal{C})$ be an instance of SAT. A major literal is a literal in $L_{\mathcal{X}}$ that belongs to at least two clauses of \mathcal{C}, while a minor literal belongs to only one clause. The following problem is a restricted case of the SAT problem.

Problem 2.1 23SAT

Input: A set of variables $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$, and a set of clauses $\mathcal{C}=\left\{c_{1}, \ldots, c_{m}\right\}$ over \mathcal{X} such that every clause contains 2 or 3 literals, and every clause contains at most 1 major literal. Question: Is there a truth assignment to \mathcal{X} which satisfies all clauses of \mathcal{C} ?

Theorem 2.2 23SAT is $N P$-complete.
Proof. Clearly, the problem is NP. We prove NP-completeness by a polynomial reduction from SAT. Let $I_{1}=\left(\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}, \mathcal{C}=\left\{c_{1}, \ldots, c_{m}\right\}\right)$ be an instance of SAT. For every $1 \leq j \leq m$, denote $c_{j}=\left\{l_{j, 1}, \ldots, l_{j, k(j)}\right\}, k(j) \geq 2$, and define

$$
f\left(c_{j}\right)=\left\{\left\{l_{j, 1}, y_{j, 1}\right\},\left\{\overline{y_{j, 1}}, l_{j, 2}, y_{j, 2}\right\},\left\{\overline{y_{j, 2}}, l_{j, 3}, y_{j, 3}\right\}, \ldots,\left\{\overline{y_{j, k(j)-1}}, l_{j, k(j)}\right\}\right\}
$$

where $y_{j, 1}, \ldots, y_{j, k(j)-1}$ are new variables. Clearly, $y_{j, 1}, \overline{y_{j, 1}}, \ldots, y_{j, k(j)-1}, \overline{y_{j, k(j)-1}}$ are minor literals. Let

$$
\mathcal{X}^{\prime}=\mathcal{X} \cup\left\{y_{j, r}: 1 \leq j \leq m, 1 \leq r \leq k(j)-1\right\}, \quad \mathcal{C}^{\prime}=\bigcup_{1 \leq j \leq m} f\left(c_{j}\right)
$$

Then $I_{2}=\left(\mathcal{X}^{\prime}, \mathcal{C}^{\prime}\right)$ is an instance of 23SAT, since the size of every clause is 2 or 3 , and every clause contains at most one major literal. It remains to prove that I_{1} and I_{2} are qeuivalent.

If I_{1} is positive then there exists a truth assignment $t_{1}: \mathcal{X} \longrightarrow\{0,1\}$ which satisfies \mathcal{C}. For every $1 \leq j \leq m$ the fact that t_{1} satisfies c_{j} implies that there exists $1 \leq r(j) \leq k(j)-1$ such that $t_{2}\left(l_{j, r(j)}\right)=1$. Let $t_{2}: \mathcal{X}^{\prime} \longrightarrow\{0,1\}$ be the following extraction of t_{1}. Define $t_{2}\left(y_{j, r^{\prime}}\right)=1$ for every $1 \leq r^{\prime}<r(j)$ and $t_{2}\left(y_{j, r^{\prime}}\right)=0$ for every $r(j) \leq r^{\prime} \leq k(j)-1$. Clearly, t_{2} satisfies all clauses of $f\left(c_{j}\right)$ for every $1 \leq j \leq m$. Consequently, I_{2} is positive.

Conversely, if I_{2} is positive then there exists a truth assignment $t_{2}: \mathcal{X}^{\prime} \longrightarrow\{0,1\}$ which satisfies \mathcal{C}^{\prime}. Hence, t_{2} satisfies $f\left(c_{j}\right)$ for every $1 \leq j \leq m$. However, $f\left(c_{j}\right)$ contains $k(j)$ clauses, and $k(j)-1$ variables form $\mathcal{X}^{\prime} \backslash \mathcal{X}$. Therefore, there exists $1 \leq r(j) \leq k(j)-1$ such that $t_{2}\left(l_{j, r(j)}\right)=1$. Define $t_{1}: \mathcal{X} \longrightarrow\{0,1\}$ by $t_{1}\left(x_{i}\right)=t_{2}\left(x_{i}\right)$ for every $1 \leq i \leq n$. Then t_{1} satisfies c_{j} because $t_{1}\left(l_{j, r(j)}\right)=1$ for every $1 \leq j \leq m$. Consequently, t_{1} satisfies \mathcal{C}, and I_{1} is positive.

Let $I=(\mathcal{X}, \mathcal{C})$ be an instance of 23SAT. A bad pair in I is a set of 2 clauses $\left\{c_{1}, c_{2}\right\} \subseteq \mathcal{C}$ such that there exist 2 literals, l_{1} and l_{2}, for which $\left\{l_{1}, l_{2}\right\} \subseteq c_{1}$ and $\left\{\overline{l_{1}}, \overline{l_{2}}\right\} \subseteq c_{2}$.

Theorem 2.3 There exists a polynomial algorithm which receives as its input an instance of 23SAT, and finds an equivalent instance of 23SAT without bad pairs.

Proof. The following algorithm receives as its input an instance I_{1} of 23SAT with bad pairs. The algorithm finds an equivalent instance, I_{2}, of 23 SAT such that the number of bad pairs in I_{2} is smaller than the number of bad pairs in I_{1}. By invoking the algorithm repeatedly, one can find an instance of 23SAT which is equivalent to the original one, and does not contain bad pairs.

Denote $I_{1}=(\mathcal{X}, \mathcal{C})$. There exist clauses $c_{1}, c_{2} \in \mathcal{C}$, and literals, l_{1} and l_{2}, such that $\left\{l_{1}, l_{2}\right\} \subseteq c_{1}$ and $\left\{\overline{l_{1}}, \overline{l_{2}}\right\} \subseteq c_{2}$. By definition of 23SAT, every clause contains at most one major literal. Assume without loss of generality that l_{1} is a minor literal. At least one of $\overline{l_{2}}$ and $\overline{l_{1}}$ is a minor literal.

If $\overline{l_{2}}$ is a minor literal then construct a truth assignment t for I_{1} by assigning $t\left(l_{1}\right)=$ $t\left(\overline{l_{2}}\right)=0$. This assigment satisfies both c_{1} and c_{2}. Moreover, if I_{1} contains other clauses with $\overline{l_{1}}$ and l_{2}, these clauses are satisfied, too. Let I_{2} be the instance of 23SAT obtained from I_{1} by omitting all clauses which contain $\overline{l_{1}}$ or l_{2}.

We show that I_{1} and I_{2} are equivalent. If there exists a truth assignment t_{2} that satisfies I_{2}, then assign $t(x)=t_{2}(x)$ for every variable x of I_{2}. Clearly, t satisfies I_{1}. On the other hand, since every clause of I_{2} belongs also to I_{1}, if there does not exist a truth assigment that satisfies I_{2}, then there does not exist a truth assignment which satisfies I_{1}. Therefore, I_{1} and I_{2} are equivalent, and the number of bad pairs in I_{2} is smaller than the number of bad pairs in I_{1}.

Suppose $\overline{l_{1}}$ is a minor literal. Assigning $l_{1}=\overline{l_{2}}$ satisfies both c_{1} and c_{2}, and does not affect the other clauses of I_{1}. Hence, let I_{2} be the instance of 23SAT obtained from I_{1} by omitting c_{1} and c_{2}. Clearly, I_{2} is equivalent to I_{1}, and the number of bad pairs in I_{2} is smaller than the number of bad pairs in I_{1}.

3 Shedding Vertices

Let $I=\left(\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}, \mathcal{C}=\left\{c_{1}, \ldots, c_{m}\right\}\right)$ be an instance of SAT. Define G_{I} to be the following graph.

$$
\begin{gathered}
V\left(G_{I}\right)=\{v\} \cup\left\{w_{j}: 1 \leq j \leq m\right\} \cup\left\{u_{i}, u_{i}^{\prime}: 1 \leq i \leq n\right\} \\
E\left(G_{I}\right)=\left\{v w_{j}: 1 \leq j \leq m\right\} \cup\left\{w_{j} u_{i}: x_{i} \in c_{j}\right\} \cup\left\{w_{j} u_{i}^{\prime}: \overline{x_{i}} \in c_{j}\right\} \cup\left\{u_{i} u_{i}^{\prime}: 1 \leq i \leq n\right\}
\end{gathered}
$$

Note that the subgraph induced by $N_{2}(v)$ is a matching, i.e. a disjoint union of copies of K_{2}. Every maximal independent set of $N_{2}(v)$ contains exactly one of u_{i} and u_{i}^{\prime}, for every $1 \leq i \leq n$.

Lemma 3.1 An instance I of SAT is satisfiable if and only if there exists in G_{I} an independent set $S \subseteq N_{2}(v)$ which dominates $N(v)$.

Proof. Suppose that there exists an independent set S of $N_{2}(v)$ which dominates $N(v)$. Define a truth assignment $t: \mathcal{X} \longrightarrow\{0,1\}$ as follows. For every $1 \leq i \leq n, t\left(x_{i}\right)=1$ if and only if $u_{i} \in S$. Otherwise, $t\left(x_{i}\right)=0$. The fact that S dominates all vertices of $N(v)$ implies that all clauses of \mathcal{C} are satisfied by t.

On the other hand, assume that there exists a truth assignment $t: \mathcal{X} \longrightarrow\{0,1\}$ which satisfies \mathcal{C}. Define $S=\left\{u_{i}: t\left(x_{i}\right)=1\right\} \cup\left\{u_{i}^{\prime}: t\left(x_{i}\right)=0\right\}$. Clearly, $S \subseteq N_{2}(v)$. The fact that for every $1 \leq i \leq n$ the set S contains exactly one of u_{i} and u_{i}^{\prime} implies that S is independent. The fact that t satisfies all clauses of \mathcal{C} implies that S dominates all vertices of $N(v)$.

Lemma 3.2 Let $I=(\mathcal{X}, \mathcal{C})$ be an instance of 23SAT without bad pairs. Then $G_{I} \in \mathcal{G}\left(\widehat{C}_{6}\right)$.
Proof. Assume on the contrary that v belongs to a cycle of length 6 . Then there exist vertices w_{1}, w_{2}, w_{3} in $N(v)$ and z_{1}, z_{2} in $N_{2}(v)$ such that $\left(v, w_{1}, z_{1}, w_{2}, z_{2}, w_{3}\right)$ is a cycle of length 6 . Let l_{1} and l_{2} be the literals which represent z_{1} and z_{2}, respectively. Let c_{1}, c_{2} and c_{3} be the clauses which represent w_{1}, w_{2} and w_{3}, respectively. Then l_{1} is a major literal since it belongs to both c_{1} and c_{2}. Similarly, l_{2} is a major literal, since it belongs to both c_{2} and c_{3}. Hence c_{2} contains two major literals, which is a contradiction. Therefore, v is not a part of a cycle of length 6 .

Assume on the contrary that $G_{I} \backslash\{v\}$ contains a cycle C of length 6 . Since $N(v)$ is independent, $|C \cap N(v)| \leq 3$. The fact that every connected component of $N_{2}(v)$ is K_{2} implies that $|C \cap N(v)| \geq 2$.

If $|C \cap N(v)|=3$ and $\left|C \cap N_{2}(v)\right|=3$ then the vertices in $C \cap N_{2}(v)$ represent major literals, and the vertices of $C \cap N(v)$ represent clauses that each of them contains at least 2 major literals, which is a contradiction. Consequently, $|C \cap N(v)|=2$ and $\left|C \cap N_{2}(v)\right|=4$. That means that either $C=\left(u_{1}, u_{1}^{\prime}, w_{1}, u_{2}, u_{2}^{\prime}, w_{2}\right)$ or $C=\left(u_{1}, u_{1}^{\prime}, w_{1}, u_{2}^{\prime}, u_{2}, w_{2}\right)$ for u_{1}, u_{1}^{\prime}, u_{2}, u_{2}^{\prime} in $N_{2}(v)$ and w_{1}, w_{2} in $N(v)$. Therefore, there exist clauses c_{1} and c_{2} and literals l_{1} and l_{2} such that $\left\{l_{1}, l_{2}\right\} \subseteq c_{1}$ and $\left\{\overline{l_{1}}, \overline{l_{2}}\right\} \subseteq c_{2}$. Hence, I contains a bad pair, which is a contradiction. $G_{I} \in \mathcal{G}\left(\widehat{C}_{6}\right)$.

Theorem 3.3 Recognizing shedding vertices is co-NP-complete, even for graphs without cycles of length 6 .

Proof. It should be proved that the complement problem is NP-complete. An instance of the problem is $I=(G, v)$, where G is a graph without cycles of length 6 , and $v \in V(G)$. The instance is positive if and only if there exists an independent set in $N_{2}(v)$ which dominates $N(v)$.

The problem is obviously NP. We prove NP-completeness by a polynomial reduction from 23SAT. Let I_{1} be an instance of 23SAT. By Theorem 2.3, it is possible to find in polynomial time an equivalent instance I_{2} of 23SAT without bad pairs. Let $I_{3}=\left(G_{I_{2}}, v\right)$ be an instance of the complement of the SHED problem. By Lemma 3.2, $G_{I_{2}} \in \mathcal{G}\left(\widehat{C}_{6}\right)$. By Lemma 3.1, I_{2} is satisfiable if and only if there exists an independent set in $N_{2}(v)$ which dominates $N(v)$.

4 Relating Edges

Theorem 4.1 is the main result of this section.
Theorem 4.1 Recognizing relating edges is NP-complete for graphs without cycles of length 6.

Proof. Clearly, the problem is NP. We prove NP-completeness by a polynomial reduction from the complement of the SHED problem for graphs without cycles of length 6 . Let $I_{1}=$
(G, x) be an instance of the comlement of SHED such that $G \in \mathcal{G}\left(\widehat{C}_{6}\right)$. Then I_{1} is positive if and only if there exists an independent set in $N_{2}(x)$ which dominates $N(x)$. Define a new graph G^{\prime} as follows. $V\left(G^{\prime}\right)=V(G) \cup\{y\}$, when y is a new vertex, and $E\left(G^{\prime}\right)=E(G) \cup\{x y\}$. The fact that $G \in \mathcal{G}\left(\widehat{C}_{6}\right)$ implies $G^{\prime} \in \mathcal{G}\left(\widehat{C}_{6}\right)$. Let $I_{2}=\left(G^{\prime}, x y\right)$ be an instance of the RE problem. It remains to prove that I_{1} and I_{2} are equivalent.

Suppose I_{1} is positive. The graph G contains an independent set $S \subseteq N_{2}(x)$ which dominates $N(x)$. Let S^{*} be a maximal independent set of $G \backslash\{x\}$ which contains S. In the graph G^{\prime} the sets $S^{*} \cup\{x\}$ and $S^{*} \cup\{y\}$ are maximal independent sets. Therefore, S^{*} is a witness that $x y$ is relating, and I_{2} is positive.

Conversely, if I_{2} is positive then there exists an independent set $S \subseteq V\left(G^{\prime}\right)$ such that $S \cup\{x\}$ and $S \cup\{y\}$ are maximal independent sets of G^{\prime}. Obviously, $S \cap N_{2}(x)$ is an independent set of $N_{2}(x)$ which dominates $N(x)$, and I_{1} is positive.

5 Conclusions

We proved that the RE problem is NP-complete for graphs without cycles of length 6. This result is suprising and unexpected since the RE problem is polynomially solvable for graphs without cycles of lengths 6 and 4 [20], for graphs without cycles of lengths 6 and 5 [22], and for graphs without cycles of lengths 6 and 7 [30]. Each of the algorithms presented in the three above-mentioned papers works as follows. It finds an independent set S_{x} in $N_{2}(x) \cap N_{3}(y)$ which dominates $N(x) \cap N_{2}(y)$. Then it finds similarly an independent set S_{y} in $N_{2}(y) \cap N_{3}(x)$ which dominates $N(y) \cap N_{2}(x)$. Since the graph does not contain cycles of length 6 , there are no edges between S_{x} and S_{y}. Hence, if both S_{x} and S_{y} exist then $S=S_{x} \cup S_{y}$ is an independent set which is a witness that $x y$ is relating, and the algorithm terminates announcing that the edge is relating. On the other hand, if at least one of S_{x} and S_{y} does not exist then the instance of the problem is negative. First, we conjectured that an algorithm for graphs without cycles of length 6 would work according to the same principle, and thus generalize the last three results. However, we found out that the existence of such an algorithm would imply that $\mathbf{P}=\mathbf{N P}$.

Theorem 1.3 shows a connection between the RE and SHED problems. In each of these problems it should be decided whether there exists an independent set in a subset of $V(G)$ which dominates another subset of $V(G)$. Hence, for many families of graphs either RE is NP-complete and SHED is co-NP-complete, or both problems are polynomially solvable. That holds also for graphs without cycles of length 6 , the family of graphs which is studied in this paper. However, some families are exceptional. For example, concerning graphs without cycles of lengths 4 and 5, RE is NP-complete [20], but SHED is a polynomially solvable [24].

References

[1] A. Ahadi, A. Dehghan, (2/2/3)-SAT problem and its applications in dominating set problems, Discrete Mathematics \& Theoretical Computer Science 21 (2019) \#9.
[2] E. Boros, V. Gurvich, M. Milanič, On CIS circulants, Discrete Mathematics 318 (2014) 78-95.
[3] J. I. Brown, R. Hoshino, Well-covered circulant graphs, Discrete Mathematics 311 (2011) 244-251.
[4] J. I. Brown, R. J. Nowakowski, I. E. Zverovich, The structure of well-covered graphs with no cycles of length 4, Discrete Mathematics 307 (2007) 2235-2245.
[5] Y. Caro, N. Ellingham, G. F. Ramey, Local structure when all maximal independent sets have equal weight, SIAM Journal on Discrete Mathematics 11 (1998) 644-654.
[6] Y. Caro, A. Sebő, M. Tarsi, Recognizing greedy structures, Journal of Algorithms 20 (1996) 137-156.
[7] V. Chvatal, P. J. Slater, A note on well-covered graphs, Quo vadis, Graph Theory Ann Discr Math 55, North Holland, Amsterdam, 1993, 179-182.
[8] J. Döcker, Monotone 3-Sat-(2, 2) is NP-complete, (2019) arXiv:1912.08032
[9] S. Even, A. Itai, A. Shamir, On the complexity of timetable and multicommodity flow problems, SIAM Journal on Computing 5 (1976) 691-703.
[10] C. Feghali, M. Marin, Three remarks on $\mathbf{W}_{\mathbf{2}}$ graphs, Theoretical Computer Science, 990 (2024) 114403 https://doi.org/10.1016/j.tcs.2024.114403.
[11] A. Finbow, B. Hartnell, R. Nowakowski, A characterization of well-covered graphs of girth 5 or greater, Journal of Combinatorial Theory Ser. B. 57 (1993) 44-68.
[12] A. Finbow, B. Hartnell, R. Nowakowski A characterization of well-covered graphs that contain neither 4- nor 5-cycles, Journal of Graph Theory 18 (1994) 713-721.
[13] M. R. Garey, D. S. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness, W. H. Freeman \& Co. New York, NY, USA, 1990.
[14] M. R. Garey, D. S. Johnson, L. Stockmeyer, Some simplified NP-complete graph problems, Theoretical Computer Science 1 (1976) 237-267.
[15] E. M. Gold, Complexity of automaton identification from given data, Information and Control 37 (1978) 302-320.
[16] M. Halaby, On the computational complexity of MaxSAT, Electronic Colloquium on Computational Complexity (2016) \#34.
[17] A. Horn, On sentences which are true of direct unions of algebras, Journal of Symbolic Logic, 16 (1951) 14-21.
[18] V. E. Levit, E. Mandrescu, $\mathbf{W}_{\mathbf{2}}$-graphs and shedding vertices, Electronic Notes in Discrete Mathematics 61 (2017) 797-803.
[19] V. E. Levit, D. Tankus Weighted well-covered graphs without $C_{4}, C_{5}, C_{6}, C_{7}$, Discrete Applied Mathematics 159 (2011) 354-359.
[20] V. E. Levit, D. Tankus, On relating edges in graphs without cycles of length 4, Journal of Discrete Algorithms 26 (2014) 28-33.
[21] V. E. Levit, D. Tankus, Weighted well-covered claw-free graphs, Discrete Mathematics 338 (2015) 99-106.
[22] V. E. Levit, D. Tankus, Well-covered graphs without cycles of lengths 4, 5 and 6, Discrete Applied Mathematics 186 (2015) 158-167.
[23] V. E. Levit, D. Tankus, Complexity results for generating subgraphs, Algorithmica 80 (2018) 2384-2399.
[24] V. E. Levit, D. Tankus, Recognizing W_{2} graphs, Graphs and Combinatorics (2024) accepted.
[25] C. H. Papadimitriou, Combinatorial Complexity, Pearson, 1993.
[26] E. Prisner, J. Topp and P. D. Vestergaard, Well-covered simplicial, chordal and circular arc graphs, Journal of Graph Theory 21 (1996) 113-119.
[27] R. S. Sankaranarayana, L. K. Stewart, Complexity results for well-covered graphs, Networks 22 (1992) 247-262.
[28] T. J. Schaefer, The complexity of satisfiability problems, Proc. 10th Ann. ACM Symp. on Theory of Computing (1978) 216-226.
[29] J. W. Staples, On some subclasses of well-covered graphs, Ph.D. Thesis, 1975, Vanderbilt University.
[30] D. Tankus, Recognizing generating subgraphs in graphs without cycles of lengths 6 and 7, Discrete Applied Mathematics 283 (2020) 189-198.
[31] D. Tankus, M. Tarsi, Well-covered claw-free graphs, Journal of Combinatorial Theory Ser. B. 66 (1996) 293-302.
[32] D. Tankus, M. Tarsi, The structure of well-covered graphs and the complexity of their recognition problems, Journal of Combinatorial Theory Ser. B. 69 (1997) 230-233.
[33] C. A. Tovey, A simplified NP-complete satisfiability problem, Discrete Applied Mathematics 8 (1984) 85-89.
[34] R. Woodroofe, Vertex decomposable graphs and obstructions to shellability, Proceedings of the American Mathematical Society 137 (2009), 3235-3246.

