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Abstract

Affine Diffusion dynamics are frequently used for Valuation Adjustments (xVA) calculations
due to their analytic tractability. However, these models cannot capture the market-implied
skew and smile, which are relevant when computing xVA metrics. Hence, additional degrees of
freedom are required to capture these market features. In this paper, we address this through
an SDE with state-dependent coefficients. The SDE is consistent with the convex combination
of a finite number of different AD dynamics. We combine Hull-White one-factor models where
one model parameter is varied. We use the Randomized AD (RAnD) technique to parameterize
the combination of dynamics. We refer to our SDE with state-dependent coefficients and the
RAnD parametrization of the original models as the rHW model. The rHW model allows
for efficient semi-analytic calibration to European swaptions through the analytic tractability
of the Hull-White dynamics. We use a regression-based Monte-Carlo simulation to calculate
exposures. In this setting, we demonstrate the significant effect of skew and smile on exposures
and xVAs of linear and early-exercise interest rate derivatives.

Keywords: Valuation Adjustments, Affine Diffusion, Volatility Smile and Skew, RAnD
method, Interest Rate derivatives

1. Introduction

It is common practice to generate interest rate (IR) scenarios for Valuation Adjustment
(xVA) calculations using one-factor short-rate models that belong to the Affine Diffusion (AD)
class, motivated by the analytic tractability of these dynamics. The most commonly used
example is the Hull-White one-factor (HW) model with a time-dependent volatility parame-
ter [13]. The model generates implied volatility skew, but the model skew cannot be controlled
to fit the market-observed skew. Furthermore, the model does not generate volatility smile.
In this paper, we address the critical need for a model to incorporate skew and smile in xVA
calculations for IR derivatives. Furthermore, we demonstrate the significant impact of smile
and skew on exposures and xVAs of IR derivatives, offering insights for practitioners that aim
to align their xVA models with market conditions.

Skew and smile have a significant effect on xVA calculations, both in terms of mispricing
xVAs, as well as for risk-management purposes. The most obvious case is when the derivatives
in a portfolio are smile-dependent. From a consistency perspective, if the valuation model of
a derivative includes smile, then, ideally, so does the xVA valuation model. See [13, Section
19.1.3] for further discussion. Having consistent valuation models for the trading book and
xVAs is relevant from a hedging perspective to have more consistent xVA hedges with the
trading book hedges. Including skew and smile in the xVA model implies a consistent smile
sensitivity for both valuations. In addition, the skew and smile are also relevant for linear
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derivatives, especially for legacy trades that may have a different rate than the current at-the-
money (ATM) rate and, therefore, not primarily driven by ATM volatilities.

The relevance of skew and smile for xVA computations has been demonstrated in litera-
ture for equity and FX derivatives [7, 11, 29] and for Margin Valuation Adjustments of IR
derivatives [16]. The most pronounced effects were observed for Potential Future Exposure
(PFE) as this is a tail metric of the future exposure distribution, and skew and smile affect the
tails of the state variable’s distribution. In addition, the effect increased when considering, for
example, early-exercise derivatives or other exotic derivatives.

It is challenging to find a suitable IR model for xVA calculations that captures skew and
smile while at the same time allowing for efficient and accurate calibration and pricing, which
are the two main requirements when choosing underlying dynamics for xVA purposes. Some
authors proposed to use Cheyette-type dynamics. The one-factor Cheyette model fits in the
Heath-Jarrow-Morton framework. Adding a Displaced Diffusion to the Cheyette model allows
skew to be generated. Stochastic volatility can be added to this (e.g., through a CIR process for
variance) to introduce curvature (smile). For example, Andreasen used a four-factor Cheyette
model with local and stochastic volatility [1]. Hoencamp et al. used a two-factor Cheyette
short-rate model, including a stochastic volatility component [16]. Due to the Cheyette sepa-
rable form of instantaneous forward rate volatilities, this model is still Markovian with analytic
bond prices. Even though the Cheyette model can be calibrated to the ATM strips of European
swaptions and their volatility slopes, however, only the smile curvature of one strip can be in-
cluded [13, Section 16.3.2]. Hence, not all the market information on smiles is incorporated in
the model, but only a general slope of the smile. Andreasen states that as a consequence, the
curvature of all the smiles have to be roughly equivalent to have a sensible model [1]. However,
this is not necessarily the case in market data. Furthermore, the calibration of the model to
European swaptions requires (multiple) approximations of the swap rate before Fourier trans-
form techniques can be used for the option pricing [1, 16]. Due to the inability of the model
to capture multiple market smiles, and due to the required swap rate approximations for Eu-
ropean swaption pricing, the Cheyette dynamics do not meet all the requirements for xVA
calculations.

Therefore, we propose an alternative modelling approach, leveraging the analytic tractabil-
ity of AD models [9] while capturing the skew and smile observed from the model implied
volatilities. Additional degrees of freedom are required to achieve this. Using the Fokker-
Planck equation, we derive an SDE with state-dependent coefficients consistent with the convex
combination of a finite number of AD dynamics. We use the Randomized AD (RAnD) class of
models [14, 15] to reduce the dimensionality of extra model parameters to avoid overfitting. For
European option valuation, where the option value only depends on the terminal distribution,
the option values are the weighted sum of the underlying option values. This result is di-
rectly applicable during model calibration. Generic derivative pricing and exposure simulation
are done in a Monte-Carlo framework with regression methods. After introducing a general
framework, we introduce the randomized Hull-White (rHW) model based on the underlying
HW dynamics, which belong to the class of AD models. In this setting, we demonstrate the
significant impact of skew and smile on (potential future) exposures and xVA metrics of linear
and early-exercise IR derivatives. The simple and elegant rHW dynamics retain the desirable
properties of AD models while introducing the flexibility to model smile and skew, satisfying
the requirements of efficient and accurate calibration and pricing.

2. Randomized Affine Diffusion

The class of Affine Diffusion (AD) dynamics contains the SDEs where linearity conditions
on the drift, diffusion and IR components are satisfied, i.e., the affinity conditions. Under
these conditions, the characteristic function (ChF) has a semi-closed exponential form [9],
where the coefficients satisfy a set of complex-valued Ricatti ordinary differential equations.
Using Fourier inversion techniques, the ChF can be used for efficient (occasionally analytical)
derivative pricing, allowing for efficient calibration. However, due to the linearity constraints,
these models are unsuitable for exotic option pricing. See [25, Section 7.3] for an extensive
discussion on this class of models. The Zero Coupon Bond (ZCB) is the ChF evaluated at 0.
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Therefore, these models allow for an analytic expression for the ZCB in an exponential form.
The analytic tractability motivates the frequent use of these models for xVA purposes.

The starting point of this work is the convex combination of N ∈ N different AD short-rate
models rn(t), n ∈ {1, . . . , N}. For each process rn(t), one model parameter is chosen and takes
different values for each n. We derive the SDE for short rate r(t) with state-dependent drift or
diffusion, consistent with this convex combination of short-rate models. The dynamics of these
processes under a generic measure M are driven by the same source of randomness WM(t):

dr(t) = µM
r (t, r(t))dt+ ηr(t, r(t))dW

M(t), (2.1)

drn(t) = µM
rn(t, rn(t))dt+ ηrn(t, rn(t))dW

M(t), (2.2)

with initial condition r(0) = rn(0) = fM (0, 0) where the latter is the market instantaneous
forward rate, which is defined in terms of the ZCBs implied by the market yield curve, i.e.,

fM (0, t) = −∂ logPM(0,t)
∂t . Here, we did not yet assume any particular form of the rn(t) dynam-

ics, such that all results that follow are generic.
The definition of these N +1 different short rates raises the question of how the measures,

bank accounts and ZCBs are defined. The short rate r(t) defines bank account Br(t) = e
∫ t
0
r(s)ds

which is the numeraire corresponding to the measure Qr. Furthermore, the ZCB is the price
of a unit payoff at terminal time T under Qr, i.e.,

Pr(t, T ) = EQr
t

[
e−

∫ T
t

r(s)ds
]
. (2.3)

Analogously, the N individual processes rn(t) for n ∈ {1, . . . , N} respectively define their own
bank accounts Brn(t) which are the numeraires corresponding to the measures Qrn . The ZCB
is defined similarly as in Equation (2.3), where r is replaced by rn. Additionally, due to affinity,
the ZCB depends solely on the short rate at time t, i.e., Prn(t, T ) = Prn(t, T ; rn(t)).

Combining N processes increases the number of model parameters significantly compared
to using a single dynamics to model an underlying. Naively using these N model parameters
will lead to overfitting and difficulties during the model calibration. However, we use the
Randomized Affine Diffusion (RAnD) class of models [14, 15], where quadrature points of
a distribution driven a few parameters are used to generate the N parameters for the AD
processes. Hence, there is significant extra flexibility while keeping a limited amount of degrees
of freedom in the model, which is particularly relevant during the calibration. The original
RAnD approach [14] focused on equities, with randomized parameters for the Black-Scholes and
Bates dynamics, to achieve consistent option pricing on the S&P500 and VIX. The approach
was extended to Heath-Jarrow-Morton short-rate dynamics, focusing on the HW model [15].

Going forward, the process r(t) is referred to as the RAnD model. In this section, we
derive the dynamics for r(t) using the Fokker-Planck equation to ensure that the marginal
distribution of r(t) is consistent over time with the convex combination of marginal distribu-
tions of underlying short rates rn(t). We prove that the pricing of plain vanilla derivatives
under the RAnD model can be done using the weighted sum of prices under the finite number
of AD dynamics. To reduce the number of additional parameters in the RAnD model, we
parameterize the model using the quadrature points of an exogenously specified distribution
as in [14, 15]. Finally, we put our methodology in perspective by comparing our approach with
mixture models and the uncertainty volatility model.

2.1. Density equation

A convex combination of symmetric distributions yields heavy-tailed distributions. Hence,
combining distributions allows for a more flexible range of distributions. We use this to reflect
market smile and skew in our model. These convex combinations are often defined in terms
of the marginal distribution of the underlying dynamics. Hence, the starting assumption is
that under measure M, at all points in time, the marginal distribution of r(t) is consistent
with the convex combination of marginal distributions of underlying short rates rn(t), see
Definition 2.1. All the results in this section will be given for a generic measure M, since
the results are required at later stages for various specific measures such as the risk-neutral
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measure M = Qr with numeraire Br(t), as well as the T -forward measure M = QT
r with

numeraire Pr(t, T ).

Definition 2.1 (RAnD PDF). Let r(t) and rn(t) under measure M be defined as in Equa-
tions (2.1) and (2.2), respectively. Let fMr(t) and f

M
rn(t)

denote respectively the PDFs of processes

r and rn at time t, under measure M. The RAnD marginal distribution fMr(t) is defined as

fMr(t)(y) :=

N∑
n=1

ωnf
M
rn(t)

(y), (2.4)

where non-negative weights ωn ≥ 0 satisfy
∑N

n=1 ωn = 1.

This density equation defines the model for r(t). In Appendix A, we prove that the density
equation (2.4) is measure invariant. Therefore, the choice of measure M in Equation (2.4) is not
restrictive, i.e., the convex combination holds consistently through time and for all measures.
Two straightforward consequences of Definition 2.1 for the RAnD CDF and RAnD moments
are presented in Corollary 2.1 and 2.2, respectively.

Corollary 2.1 (RAnD CDF). Let the RAnD density be defined as in Definition 2.1, and let
FM
rn(t)

(y) denote the CDF of rn(t), then the RAnD CDF FM
r(t) is given by:

FM
r(t)(y) =

N∑
n=1

ωnF
M
rn(t)

(y). (2.5)

Proof. The results follows from Equation (2.4) by changing the integration and summation.

Corollary 2.2 (RAnD moments). Let the RAnD density be defined as in Definition 2.1, then
the RAnD m’th central moment for s < t is given by

EM
s [rm(t)] =

N∑
n=1

ωnEM
s [rmn (t)] . (2.6)

Hence, when all moments of rn(t) are known analytically, the same holds for the r(t) moments.

Proof. The results follows from Equation (2.4) by changing the integration and summation.

2.2. Density evolution

For problems where the initial distribution is known, we can use the Fokker-Planck (FP)
equation to obtain a PDE that describes the future evolution of the PDF in time. This
PDE is also known as the Kolmogorov forward PDE. We re-iterate this well-known result in
Proposition 2.1.

Proposition 2.1 (Fokker-Planck equation). In general, for a process X(t) that is governed by
the following SDE

dX(t) = µ(t,X(t))dt+ η(t,X(t))dW (t),

the FP equation for the density fX(t)(y) of X(t) is

∂

∂t
fX(t)(y) = − ∂

∂y

[
µ(t, y)fX(t)(y)

]
+

1

2

∂2

∂y2
[
η2(t, y)fX(t)(y)

]
, (2.7)

where the initial condition is given by the Dirac delta function fX(t0)(y) = δ(y = X(t0)).

2.3. RAnD dynamics

The goal is to find µr(t, r(t)) and ηr(t, r(t)) in Equation (2.1), such that Equation (2.4)
holds when the dynamics rn(t) are given as in Equation (2.2). The result in Proposition 2.2
specifies the required drift and diffusion terms such that the marginal law of process r(t) follows
the same evolution as the convex combination of PDFs.
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Proposition 2.2 (RAnD dynamics). Let the marginal distribution of process r(t) be defined
as in Definition 2.1. Let the dynamics of rn(t) be given as in Equation (2.2), assuming that

the diffusion is non-explosive, i.e., (ηrn(t, y))
2 ≤ Cn

(
1 + y2

)
∀n ∀t. Then, the dynamics of

r(t) are given as in Equation (2.1) with the following drift and diffusion, again assuming the

non-explosion condition (ηr(t, y))
2 ≤ C

(
1 + y2

)
∀t:

µM
r (t, y) =

N∑
n=1

µM
rn(t, y)Λ

M
n (t, y), (2.8)

ηr(t, y) =

√√√√ N∑
n=1

(ηrn(t, y))
2
ΛM
n (t, y), (2.9)

ΛM
n (t, y) :=

ωnf
M
rn(t)

(y)∑N
i=1 ωifMri(t)(y)

. (2.10)

The above holds for all measures M. As fMri(0)(y) will typically not be defined due to zero

variance at initial time, we set fMri(0)(y) = 1 ∀i, such that ΛM
n (0, y) = ωn.

Proof. The proof is similar as the proof of Proposition 2.1 in [15], which employs the Fokker-
Planck equation to ensure that the marginal distribution of r(t) is consistent over time with
the weighted sum of marginal distributions of the processes rn(t). First, write down the FP
equation from Proposition 2.1 for both r(t) and rn(t):

∂

∂t
fMr(t)(y) = − ∂

∂y

[
µM
r (t, y)f

M
r(t)(y)

]
+

1

2

∂2

∂y2

[
(ηr(t, y))

2
fMr(t)(y)

]
, (2.11)

∂

∂t
fMrn(t)(y) = − ∂

∂y

[
µM
rn(t, y)f

M
rn(t)

(y)
]
+

1

2

∂2

∂y2

[
(ηrn(t, y))

2
fMrn(t)(y)

]
. (2.12)

Substitution of Equation (2.4) into Equation (2.11) yields:

∂

∂t

(
N∑

n=1

ωnf
M
rn(t)

(y)

)
= − ∂

∂y

[
µM
r (t, y)

N∑
n=1

ωnf
M
rn(t)

(y)

]
+

1

2

∂2

∂y2

[
(ηr(t, y))

2
N∑

n=1

ωnf
M
rn(t)

(y)

]
.

(2.13)

Due to linearity of the derivative operator we can write:

∂

∂t

(
N∑

n=1

ωnf
M
rn(t)

(y)

)
=

N∑
n=1

ωn
∂

∂t
fMrn(t)(y),

where in the latter we can plug in the result from Equation (2.12), which results in (using
linearity of the derivative operator)

∂

∂t

(
N∑

n=1

ωnf
M
rn(t)

(y)

)
=

N∑
n=1

ωn

(
− ∂

∂y

[
µM
rn(t, y)f

M
rn(t)

(y)
]
+

1

2

∂2

∂y2

[
(ηrn(t, y))

2
fMrn(t)(y)

])

= − ∂

∂y

[
N∑

n=1

ωnµ
M
rn(t, y)f

M
rn(t)

(y)

]
+

1

2

∂2

∂y2

[
N∑

n=1

ωn (ηrn(t, y))
2
fMrn(t)(y)

]
.

(2.14)
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Next, equate the results from (2.13) and (2.14), matching the terms and integrating yields

µM
r (t, y)

N∑
n=1

ωnf
M
rn(t)

(y) =

N∑
n=1

ωnµ
M
rn(t, y)f

M
rn(t)

(y),

(ηr(t, y))
2

N∑
n=1

ωnf
M
rn(t)

(y) =

N∑
n=1

ωn (ηrn(t, y))
2
fMrn(t)(y),

where from [15, Section 2.3] it is clear that the relevant integration constants are all zero in
order to satisfy uniform convergence requirements.

Proposition 2.2 implies that the drift/diffusion of r(t) is the weighted average of the
drifts/diffusions of underlying processes rn(t), where the weights are functions of the marginal
distributions of rn(t). Depending on the particular form of the rn(t) dynamics, the drift and/or
diffusion of r(t) can be state-dependent. The latter case is known as a local volatility model.

By construction, the density equation (2.4) holds for all points in time. Using the Fokker-
Planck equation, we have derived the SDE such that the RAnD density has the same evolution
as the sum of weighted densities for all points in time. Hence, the RAnD SDE captures the
evolution of the convex combination of AD dynamics.

2.4. Pricing equation

When considering convex combinations of densities for underlyings that are observable
quantities, e.g., equities, ‘simple’ derivative prices are the weighted sum of the derivative prices
under the underlying models [3], where the density equation (2.4) is imposed under the T -
forward measure. The result stated in Theorem 2.1 extends the aforementioned result to the
case of IR derivatives, where the SDE does not correspond to an observable quantity.

Theorem 2.1 (Pricing formula under the RAnD model). Let Vrn(t;T ) denote the time t value
of a derivative under the AD dynamics rn(t) with payoff H(T ; rn(T )) at time T . Assume that
the payoff at time T can be written as an explicit function of the state variable at time T , i.e.,
rn(T ). Let the RAnD model r(t) be defined as per Definition 2.1. Then, due to affinity of the
rn(t) dynamics, the derivative price under r(t), i.e., Vr(t;T ), can be expressed as the convex
combination of Vrn(t;T ):

Vr(t;T ) =

N∑
n=1

ωnVrn(t;T ). (2.15)

Proof. Start from martingale pricing under each of the individual underlying affine models
rn(t), and move from the risk-neutral measure Qrn to the T -forward measure QT

rn , i.e.,

Vrn(t;T ) = EQrn
t

[
Brn(t)

Brn(T )
Vrn(T ;T )

]
= Prn(t, T )E

QT
rn

t [H(T ; rn(T ))] . (2.16)

Here, Vrn(t;T ) denotes the time t value of the derivative with payoff H(T ; rn(T )) at time T .
The convex combination of Equation (2.16) yields

N∑
n=1

ωnVrn(t;T ) =

N∑
n=1

ωnPrn(t, T )E
QT

rn
t [H(T ; rn(T ))]

= Pr(t, T )

N∑
n=1

ωnE
QT

rn
t

[
Prn(t, T )

Pr(t, T )
H(T ; rn(T ))

]

= Pr(t, T )

N∑
n=1

ωnE
QT

r
t [H(T ; rn(T ))] ,

6



moving from QT
rn to the QT

r measure using the following Radon-Nikodym derivative ∀n:

λ
QT

rn

QT
r
(T ) =

dQT
rn

dQT
r

∣∣∣∣
F(T )

=
Pr(t, T )

Pr(T, T )

Prn(T, T )

Prn(t, T )
=

Pr(t, T )

Prn(t, T )
.

Apply Equation (2.4) with M = QT
r and change the order of summation and integration:

N∑
n=1

ωnE
QT

r
t [H(T ; rn(T ))] =

N∑
n=1

ωn

∫
R
H(T ;x)f

QT
r

rn(T )(x)dx =

∫
R
H(T ;x)

N∑
n=1

ωnf
QT

r

rn(T )(x)dx

=

∫
R
H(T ;x)f

QT
r

r(T )(x)dx = EQT
r

t [H(T ; r(T ))] .

Now, the payoff only depends on r(T ) rather than the whole trajectory of r, i.e., Vr(T ;T ) =
H(T ; r(T )). Hence, the affinity of rn(t) ∀n can be used to rewrite the RAnD payoff in a
convenient form. Standard martingale pricing yields:

Pr(t, T )E
QT

r
t [H(T ; r(T ))] = Pr(t, T )E

QT
r

t [Vr(T ;T )] = Vr(t;T ).

Combining all the results above yields the required result.

In Theorem 2.1, Vrn(t;T ) are arbitrage-free prices. However, while calibrating the RAnD
model to market prices, the model prices Vrn(0;T ) will not be consistent with the market prices
V mkt(0;T ). Only arbitrage-free price Vr(0;T ) will be consistent with the market prices.

Theorem 2.1 also illustrates why the normalization of weights is imposed, i.e.,
∑N

n=1 ωn = 1.
For the RAnD model to fit the initial market yield curve PM(0;T ), this property is required,
i.e., applying Equation (2.15) to the derivative Pr(0;T ) yields:

Pr(0;T ) =

N∑
n=1

ωnPrn(0;T ) = PM(0;T )

N∑
n=1

ωn = PM(0;T ). (2.17)

Due to the affinity, the ZCB under the AD dynamics depends solely on the state variable
at the start date, i.e., Prn(t, T ) = Prn(t, T ; rn(t)). Hence, Theorem 2.1 holds for all linear IR
derivatives and their European options. As such, the RAnD model can be calibrated (semi)
analytically to European option prices, depending on the pricing under the AD dynamics.
When calibrating to a term structure, due to the measure invariance of the density equation,
each calibration instrument with a different expiry Ti can be valued using Equation (2.15).

Due to the analytic tractability of the underlying AD dynamics rn, the valuation of Vrn is
typically fast in the case of linear or European derivatives. Hence, Theorem 2.1 gives a powerful
result where this efficient pricing under the underlying dynamics extends to the pricing under
the RAnD dynamics. However, this valuation formula cannot be naively used to price any
derivative. The assumptions in Theorem 2.1 restrict to derivatives where the payoff can be
expressed explicitly as a function of the state variable at payoff time. Hence, for path-dependent
derivatives, alternative valuation methods are required.

The elegance of this modelling setup is demonstrated in Theorem 2.1. If we would have

started from the martingale pricing equation Vr(t;T ) = EQr
t

[
Br(t)
Br(T )Vr(T ;T )

]
, there would be

no certainty that the payoff only depends on r(T ) rather than the whole trajectory of r, not
even for European-type payoffs. So, by construction, due to the affinity of the underlying
dynamics, we obtain the explicit form with dependence only on r(T ). In a way, we have
correctly ‘guessed’ the suitable form of the solution when the payoff is not path-dependent.

2.5. RAnD parametrization

The RAnD model can be constructed starting from AD dynamics. First, pick one of the
model parameters from the drift µM

rn(t, rn(t)) or the diffusion ηrn(t, rn(t)) in Equation (2.2).
Then, use a different parameter value θn for each process, and continue to use the notation
rn(t) := rn(t; θn) for these processes. The marginal distributions of these processes are then
scaled by weights ωn as per Equation (2.4), resulting in a set of N ∈ N parameter pairs
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{ωn, θn}Nn=1. The setup can be interpreted as one of the AD model parameters following a dis-
crete distribution, i.e., the parameter is randomized. See [3] for an example of the combination
of lognormal distributions.

To avoid over-parametrization, we choose parameter pairs {ωn, θn}Nn=1 to be given by the
quadrature rule based on the first N moments of an exogenously specified continuous distri-
bution [14]. The only requirement of the exogenous stochasticity is that the moments of the
continuous distribution exist and are finite. Hence, the parameter pairs can still be viewed as a
discrete distribution, which is specifically generated by a continuous distribution. For example,
the continuous distribution could be a normal or uniform distribution, i.e., U([â, b̂]) or N (â, b̂2),
such that one additional degree of freedom is introduced in the RAnD model w.r.t. the original
AD dynamics. The significant additional flexibility by merely adding one parameter is a key
advantage of the model.

There is no approximation error like the quadrature error that needs to be considered
since the quadrature is only used to reduce the dimensionality of the model parameters. In
other words, we do not view the discrete distribution {ωn, θn}Nn=1 as the approximation of
a continuous distribution of model parameter ϑ, where convergence in N would need to be
considered as in [14]. The latter would lead to an approximate pricing formula compared to

the equality in Theorem 2.1, e.g., for ϑ ∼ N (â, b̂2) with CDF Fϑ(x), where the approximation
is driven by the quadrature error:

Vr(t;ϑ)(t;T ) =

∫
[a,b]

Vr(t;θ)(t;T )dFϑ(θ) ≈
N∑

n=1

ωnVr(t;θn)(t;T ). (2.18)

At each quadrature point {ωn, θn} one has an AD model. The parameter randomization re-
laxes the affinity constraints, as it is an external layer over the class of AD models. The RAnD
model can be calibrated using the pricing equation from Theorem 2.1. Recall that the param-
eters â and b̂ drive the distribution N (â, b̂2) from which the quadrature points {ωn, θn}Nn=1

are generated. During the calibration, â and b̂ are altered to generate new quadrature points,
after which the pricing equation (2.15) is used to match the market implied price of the cal-
ibration instrument(s). To allow for efficient calibration, the distribution of the randomized
variable needs to have moments which can be computed in closed form. The two main exam-
ples of uniform and normal distributions satisfy this requirement, and even allow to tabulate
the quadrature points for a standard case and rescale them according to the parameters â and
b̂. For further information on how these quadrature points are computed, see [14].

2.6. Mixture models and the uncertain volatility model

The convex combination of distributions is also known as a mixture model. In the early
2000s, several works appeared using (lognormal) mixtures to capture volatility smiles present
in equity markets [3, 4, 6]. While mixture models offer ample flexibility, there was criticism
that some were stretching this flexibility beyond the reasonable. For example, see the feedback
by Piterbarg [26]. Mixture models are safe for European option valuation as their option value
does not depend on the volatility path but only on the average volatility between now and
expiry, i.e., the terminal distribution. Hence, when valuing a non-path-dependent derivative,
its value is the weighted sum of the derivative values in the various scenarios. However, mixture
models cannot be used to price contracts that depend on the dynamics of the underlying market
variables. The issue is that multiple dynamics can be consistent with the same mixture, leading
to different prices. For mixture models to work for all derivatives, one must fully specify the
evolution of all model state variables through time and not use the valuation formula where
prices are weighted over the different scenarios. Brigo and Mercurio [3] did this by deriving a
local volatility model consistent with the assumption of a (lognormal) mixture. This approach
resulted in dynamics consistent with the chosen parametric form of the risk-neutral density used
for calibration. This local volatility model is fully self-consistent. Path-dependent and early-
exercise products can be valued using Monte-Carlo simulation of the local volatility dynamics.

We also follow this route in this paper: the convex combination of processes and the corre-
sponding valuation equation for plain vanilla options is only used for calibration purposes. For
pricing derivatives and simulating exposures, we use the SDE with state-dependent coefficients.
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When setting up a RAnD model with various values for the volatility parameter in the
diffusion term, the dynamics in Proposition 2.2 are local-volatility dynamics. This model is
not the same as the ‘uncertain volatility (UV) model’, which is a type of stochastic volatility
model [2]. For the latter, it is known that for each model there exists a local-volatility version
with the same marginals. Hence, the European options prices at t = 0 are consistent.

In the UV model, the volatility parameter follows a discrete distribution with probabilities
and parameter values similar to the RAnD parameter weights and values. The randomness in
the volatility is independent of the Brownian shocks, and uncertainty is resolved at time ϵ > 0.
When conditioning on time u > ϵ, the volatility uncertainty is resolved, and it is known which
parameter value is realized. Hence, the transition density between u and t > u reduces to the
known density used in the RAnD model with a parameter realization. As a result, the UV
transition density is a convex combination of transition densities. So, both the marginals and
transition densities are now known. The mixture model is the local-volatility version of the
UV model, and only the marginals are specified for this model.

The UV model seems to be Piterbarg’s interpretation of mixture models [26], who states
“A mixture model only specifies what is going to happen at a fixed time in the future, and
not what happens in between now and then... Therefore, a mixture model is inherently under-
specified. There exist multiple dynamics that lead to the same mixture at a given future time.”
In other words, the mixture model only specifies the marginals but not the transition densities.
Hence, the model cannot be used to price path-dependent derivatives, whereas to European
options only depend on the marginal distributions.

In summary, when setting up the local-volatility model consistent with a particular convex
combination of dynamics, the model should not be interpreted as a UV model. The two models
only have the same marginals. This line of reasoning extends to any parameter uncertainty.

3. The Randomized Hull-White model

For the application of computing exposures for Valuation Adjustments, we extend the
general results from Section 2 and derive the SDE consistent with the convex combination
of several Hull-White one-factor (HW) models where one parameter is varied, i.e., either the
mean-reversion or the model volatility parameter. The RAnD technique is used to parameterize
the combination of dynamics, resulting in the final model. Going forward, we refer to this as
the randomized Hull-White (rHW) model.

In [15], the RAnD method was extended to Heath-Jarrow-Morton short-rate dynamics,
focussing on the HW model. In a single-period setting, the model was calibrated to the
swaption implied market smile and skew. When randomizing the mean-reversion parameter,
a richer spectrum of implied volatility shapes can be generated than for the model volatility
parameter [15]. A randomized mean-reversion leads to the desired degree of curvature in
implied volatilities, though at the same time, the implied volatility level is affected. The model
volatility can then be used to adjust the implied volatility level to achieve a perfect ATM fit.
Both the uniform and normal randomizing distributions yield good results.

We prove that the various realizations of the HW model at the quadrature points allow one
to value non-path-dependent derivatives under the rHW model as the weighted sum of deriva-
tive prices under the underlying dynamics. Hence, the rHW model allows for an efficient and
accurate calibration where we profit from the analytic tractability of the underlying dynamics.
The model is calibrated not only to ATM co-terminal European swaptions but additionally to
the information encoded in the market implied volatility surface, including skew and smile. We
extend the single-period calibration of the model from [15] by calibrating to data for multiple
expiry-tenor pairs, which is required for xVA modelling. For exposure simulation in a Monte-
Carlo setting, regression methods can be used to obtain the simulated Zero Coupon Bonds
(ZCBs) along the future market scenarios, which in turn can be used to value the derivatives
along these scenarios.

3.1. The HW dynamics

We use the Gaussian one-factor formulation [5] of the HW dynamics:

r(t) = x(t) + b(t), dx(t) = −axx(t)dt+ σxdW
Qr (t).
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Here, ax is the mean-reversion parameter, and σx is the model volatility; b(t) is deterministic
and used to fit the model to the market yield curve.

The HW model is often used for xVA calculations due to its favourable properties: it falls
within the AD class, allowing for analytic tractability; the short rate is normally distributed;
calibration to swaptions can be done efficiently with a semi-analytic swaption pricing formula.
See Appendix B for these well-known results.

For the time-homogeneous case, there are only two parameters to fit the whole market
volatility surface, which is an impossible task. Therefore, a time-dependent piece-wise con-
stant volatility parameter is often used to calibrate the model to a strip of ATM co-terminal
swaptions 1. The mean-reversion and volatility parameters have similar effects on the Black
implied volatilities [25]. Therefore, due to the limited impact of the mean-reversion parameter,
it is typically taken constant in practice and re-calibrated on an infrequent basis (e.g., weekly
or monthly). On the other hand, in practice, the volatility parameter is re-calibrated daily.

The forward rate under the HW model follows a shifted-lognormal distribution, such that
the forward rate is displaced. Hence, there is model skew by construction, but it does not
necessarily match the market skew. Alas, the model skew cannot be controlled, which is one
of the model drawbacks. In addition, the model does not generate a volatility smile. Thus, it
is only possible to calibrate the model to a limited part of the market volatility surface.

For ease of display, all results are presented for the case of constant model volatility σx.
However, in the xVA context, we require a time-dependent model volatility σx(t). The results
for this case can be found in Appendix B.1.

3.2. The rHW dynamics

The approach outlined in Section 2.5 can be used to derive the rHW dynamics: choose one of
the model parameters to vary in the convex combination, which we refer to as randomization.
Due to the aforementioned effects on the shapes of implied volatility curves, we randomize
mean reversion ax according to a discrete distribution, represented by N parameter pairs
{ωn, θn}Nn=1. We work under the unique risk-neutral measure M = Qr, i.e., the model is
defined through the PDF from Definition 2.1 under measure Qr. The result is N HW models
rn(t) with mean-reversion parameter θn, all driven by the same diffusion σxW

Qr (t):

rn(t) = xn(t) + bn(t), dxn(t) = −θnxn(t)dt+ σxdW
Qr (t). (3.1)

The following integrated from for rn(t) can be derived using an integrating factor and Ito’s
lemma, i.e., for s < t:

rn(t) = xn(s)e
−θn(t−s) + bn(t) + σx

∫ t

s

e−θn(t−u)dWQr (u). (3.2)

Clearly, rn(t) ∼ N
(
EQr
s [rn(t)] ,Vars (rn(t))

)
conditional on Fs, s.t.

fQr

rn(t)
(y) = fQr

N (µ̄,σ̄2)(y), (3.3)

µ̄ := EQr
s [rn(t)] = xn(s)e

−θn(t−s) + bn(t), σ̄
2 := Vars (rn(t)) =

σ2
x

2θn

(
1− e−2θn(t−s)

)
.

The deterministic function bn(t) in Equation (3.1) is obtained by fitting the model to the
market yield curve, which is done in the derivation of the ZCB, see Appendix B.2.

The dynamics from Equation (3.1) do not yet fit in the required form of Equation (2.2).
The dynamics in Proposition 3.1 have the desired form.

1Co-terminal swaptions are swaptions where the sum of the expiry (of the option) and the maturity (of the
underlying swap) are a constant number. In a matrix of implied swaption volatilities for a given strike, this
amounts to selecting the counter diagonal.
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Proposition 3.1 (HW dynamics in RAnD form). The HW dynamics for rn(t) from Equa-
tion (3.1) can be written in the form of Equation (2.2) with drift and diffusion:

µQr
rn (t, rn(t)) =

d fM(0, t)

d t
+ θnf

M(0, t)− θnrn(t) + Var0 (rn(t)) , (3.4)

ηrn(t, rn(t)) = σx. (3.5)

The drift from Equation (3.4) is state dependent, whereas the diffusion in Equation (3.5) is of
the same form as the diffusion of rn from Equation (3.1).

Proof. The SDE corresponding to the process in Equation (3.1) is

drn(t) =

[
d bn(t)

d t
+ θnbn(t)− θnrn(t)

]
dt+ σxdW

Qr (t). (3.6)

Matching the terms with those in Equation (2.2) yields

µQr
rn (t, rn(t)) =

d bn(t)

d t
+ θnbn(t)− θnrn(t), ηrn(t, rn(t)) = σx.

Using bn(t) from Equation (B.3) and the Leibniz integration rule we write:

d bn(t)

d t
=

d fM(0, t)

d t
+ xn(0)θne

−θnt + σ2
xBn(0, t)e

−θnt, Bn(s, t) :=
1

θn

(
1− e−θn(t−s)

)
.

The final form of the drift is obtained by combining this result with bn(t) from Equation (B.3)
and simplifying the terms.

With the HW dynamics from Proposition 3.1, it is possible to extend the generic result in
Proposition 2.2 to obtain the rHW dynamics. This result is given in Corollary 3.1.

Corollary 3.1 (rHW dynamics). Let the marginal distribution of short rate r(t) be as in
Definition 2.1. Let the dynamics of rn(t) HW dynamics from Equation (3.1), and with density
from Equation (3.3). Then, the rHW dynamics of r(t) are given as in Equation (2.1), with

µQr
r (t, y) =

N∑
n=1

[
d fM(0, t)

d t
+ θnf

M(0, t)− θny + Var0 (rn(t))
]
ΛQr
n (t, y), (3.7)

ηr(t, y) = σx, (3.8)

with weighting function ΛQr
n (t, y) from Equation (2.10). Hence, the diffusions of r(t) and rn(t)

are equivalent, whereas the drift of r(t) is state dependent in a non-linear way.

Proof. The result is a direct consequence of Propositions 2.2 and 3.1.

Remark (Numerical stability of ΛQr
n (t, y)). The term ΛQr

n (t, y) from Equation (2.10) can in
some occasions be numerically instable due to overflows. From the normality of rn(t), see
Equation (3.3), it is possible to write

ωnf
Qr

rn(t)
(y) = ωn

1√
Vars (rn(t))

√
2π

exp

{
−
(
y − EQr

s [rn(t)]
)2

2Vars (rn(t))

}
=: eγ

Qr
n (t,y).

Apply this to ΛQr
n (t, y) from Equation (2.10):

ΛQr
n (t, y) =

ωnf
Qr

rn(t)
(y)∑N

i=1 ωif
Qr

ri(t)
(y)

=
eγ

Qr
n (t,y)∑N

i=1 e
γQr
i (t,y)

=
∂

∂γQr
n (t, y)

(
ln

N∑
i=1

eγ
Qr
i (t,y)

)
,

which can be recognized as the softmax function, which is the gradient of the log-sum-exp
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function. The following manipulation can be done to guarantee numerical stability of ΛQr
n (t, y):

ΛQr
n (t, y) =

Ceγ
Qr
n (t,y)

C
∑N

i=1 e
γQr
i (t,y)

=
eγ

Qr
n (t,y)+ln(C)∑N

i=1 e
γQr
i (t,y)+ln(C)

,

where choosing ln(C) := −maxi γ
Qr

i (t, y) avoids overflows in the computation.

3.3. Swaption pricing for model calibration

An efficient pricing function is required to calibrate the rHW model to swaptions. For the
underlying dynamics, swaptions can be priced semi-analytically. See Appendix B.4 for more
details. Combining this with the pricing equation from Theorem 2.1 leads to Corollary 3.2,
which yields semi-analytic swaption pricing under the rHW model, such that this beneficial
property of the underlying dynamics is preserved.

Corollary 3.2 (rHW swaption pricing formula). Assume the set-up of Theorem 2.1. Consider
a swaption with expiry date TM ≤ T0, where T0 is the first swap reset date. The swap is a
unit notional swap starting at T0, maturing at Tm with intermediate payment dates T1 < T2 <
. . . < Tm−1 < Tm, with strike K, and δ = −1 for a payer swap, δ = 1 for a receiver swap.

The value of a swaption under the rHW model r(t) can be computed as:

V Swaption
r (t;TM , T1, . . . , Tm,K, δ) =

N∑
n=1

ωnV
Swaption
rn (t;TM , T1, . . . , Tm,K, δ), (3.9)

where V Swaption
rn (·) is given in Proposition B.3.

Proof. This result is a direct consequence of Theorem 2.1 and Proposition B.3.

This pricing result is only used at t = 0 for calibrating the model to European options
(see Section 3.4). The result from Theorem 2.1 is restricted to derivatives with payoffs that
can be written as a function of the state variable at the payoff date. As such, path-dependent
derivatives, e.g., early-exercise products, require alternative valuation methods. Therefore, we
consider a generic simulation-based framework to value any derivative and exposures of those
derivatives, see Sections 3.5 and 3.6.

3.4. Model calibration

The model must now be calibrated to market data. As instruments, we use swaptions, which
contain information about the correlation between different points on the discount curve [27].
The market implied swaption volatility surfaces are three dimensional, as volatilities are quoted
in the market for N exp different expiries, N ten different tenors, and N strike different strikes.
We denote the sets of expiries, tenors and strikes used for calibration as Texp, Tten and K,
respectively. The model implied volatilities are shifted Black volatilities, see the remark below
for more details.

Remark (Market implied volatilties). The swaptions quoted in the market are typically quoted
as (shifted) Black volatilities, which are (shifted) Black-Scholes volatilities with zero interest
rate. The value of a unit notional swap can be written in terms of the swap rate S(t) and
annuity A(t), see Appendix B.4 for more details:

V Swap(t;T1, . . . , Tm,K, δ) = δA(t) [K − S(t)] ,

S(t) :=
P (t, T0)− P (t, Tm)

A(t)
, A(t) :=

m∑
k=1

αkP (t, Tk), αk := Tk − Tk−1.

For the corresponding swaption, we change to the measure associated with annuity A(t):

V Swaption(t;TM , T1, . . . , Tm,K, δ) = Et

[
e−

∫ TM
t r(s)ds (δA(TM ) [K − S(TM )])

+
]

= A(t)EA
t

[
(δ [K − S(t)])

+
]
.
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When assuming that the swap rate S(TM ) is log-normally distributed, the swaption can be
priced using the Black 76 formula. However, with interest rates possibly being negative, we
shift the distribution to avoid this issue. Therefore, we assume that the swap rate S(TM ) is
shifted lognormal under the annuity measure, i.e.,

dS(t) = σ (S(t) + γ) dW (t).

The volatilities associated with this shifted lognormal model are called shifted Black volatilities:

V Swaption(t;TM , T1, . . . , Tm,K, δ) = A(t)EA
t

[
(δ [K − S(TM )])

+
]

= A(t) · BlackScholes(t, T, S(t) + γ,K + γ, 0, σ,−δ),

where

BlackScholes(t, T, S,K, r, σ, ω) = ω
[
SΦ(ωd1)−Ke−r(T−t)Φ(ωd2)

]
,

d1 :=
ln
(
S
K

)
+
(
r + 1

2σ
2
)
(T − t)

σ
√
T − t

, d2 := d1 − σ
√
T − t, ω :=

{
1, call,
−1, put.

The result from Corollary 3.2 gives semi-analytic swaption pricing, which allows for an effi-
cient calibration phase. When calibrating a model for xVA, multiple expiry-tenor combinations
need to be included to end up with a useful model to compute exposure profiles. The ability
of the rHW model to be calibrated to market smile and skew is demonstrated in [15], where
the model is calibrated to the swaption implied volatilities for a single expiry-tenor pair. Here,
we extend this to a multiple expiry-tenor calibration through a HW model with piece-wise
constant model volatility.

First, recall the calibration of HW dynamics. Due to the high dimensionality of the market
data (N exp ×N ten ×N strike), this model cannot be calibrated perfectly to the whole volatility
surface. Hence, particular strips of the volatility surface need to be emphasized. Using the
co-terminal strip (also known as the counter diagonal) is a common choice in an xVA context,
as co-terminal swaptions match the amount of counterparty credit risk as seen in the exposure
profiles used for xVA [27]. This strip is specified by the combination of expiries and tenors that
sum to the same swaption maturity T cot. The mean-reversion parameter can be used to get a
global fit to the ATM instruments for all expiry-tenor combinations of the volatility surface.
For more details on the HW calibration, see Appendix B.5.

3.4.1. Moneyness, smile and skew

Moneyness, smile and skew are crucial when calibrating a model to market implied volatil-
ities. Hence, we summarize them one by one.

Moneyness. Moneyness indicates the relative position of the current strike K or price w.r.t.
the at-the-money (ATM) strike KATM. For strikes below the ATM strike, i.e., K < KATM,
puts are out of the money (OTM) and calls are in the money (ITM). For strikes above the
ATM strike, i.e., K > KATM, puts are ITM and calls are OTM. See Figure 1 for a visualization.

Figure 1: European option at t = 0 on a stock S that follows a GBM dynamics, with
S(0) = 100, r = 0.03, σ = 0.25, and T = 3.
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Smile. Volatility smile occurs when a higher probability is attributed to extreme events, rep-
resented by fatter tails of the market-implied distribution than implied by a lognormal dis-
tribution. For a fixed option maturity, implied volatilities are lowest at the ATM strike and
rise when the underlying is further ITM/OTM. A higher demand for these options away from
the ATM point means the market assigns a higher probability to extreme events. This higher
probability results in higher prices, such that the implied volatilities are also higher. The mar-
ket smiles are typically less pronounced as the option maturity increases. Asymmetry of the
smile tends to increase during periods of market turbulence.

Since OTM options are typically more liquid than ITM options, the former are often used
for model calibration. The OTM options imply an implicit weighting when using the option
value in the calibration objective function, as OTM options are cheapest, see Figure 1.

Skew. Volatility skew is present when implied volatility goes down as the strike increases. This
phenomenon is caused by market participants’ willingness to ‘overpay’ for lower strike options.
In other words, investors have market concerns and buy puts to compensate for perceived risks.
Market implied volatility is the market’s forecast of a likely movement in underlying. In this
case, more volatility is assigned to the downside than the upside, which is a possible indicator
that downside protection is more valuable than upside speculation (for the stock market).

In terms of the implied distribution tails, the left tail is heavier than the lognormal dis-
tribution, and the right tail is less heavy. Skew results from a negative correlation between
the underlying and its volatility. As the underlying moves down (up), the volatility tends to
move up (down), making even greater (smaller) declines (increases) possible. This mechanism
explains the heavy left and thin right implied distribution tail.

3.4.2. Market data

The flexibility of the rHW model allows more market data to be included in the calibration
than for the HW model. However, calibrating to the whole market surface is still not possible.
Once more, we need to consider what parts of the volatility surface are vital for calibration
and where to put the emphasis.

Whereas the HW model can only calibrate to a single strike, the rHW model can capture
the market skew and smile. Hence, it is crucial to understand what information is captured in
the wings of the volatility surface. The left wing, i.e., K < KATM, gives information about how
valuable downward protection is. The right wing, i.e., K > KATM, provides information about
the market perception of the upward potential. Preferably, all this information is captured
through calibration. The natural extension of the HW calibration is to use the full range of
strikes for each co-terminal expiry-tenor pair rather than a single point.

3.4.3. Calibration procedure

For the rHW model calibration, we use a normal distribution N (â, b̂2) to generate the
quadrature points, which have proven successful in calibrating the 1y market swaption smile
for multiple tenors [15]. In this case, the rHW model has one additional degree of freedom
compared to the HW model. We obtain N different models rn(t) with mean reversion θn and
corresponding weights ωn.

We calibrate the rHWmodel to co-terminal swaptions, using all strikes for each expiry-tenor
combination rather than just the ATM point. The swaptions are valued using the result from
Corollary 3.2. The calibration steps are summarized in Algorithm 1. During the calibration,
we only consider OTM swaptions for a natural ‘weighting’ in the target function in terms of the
option values. LetKATM denote the ATM strike, which is the swap rate such that the payer and
receiver swap both have zero value. Then a call (put) swaption is a receiver (payer) swaption,
which is an option to enter a swap where the floating (fixed) leg is paid. This swaption is ITM
when K > KATM (K < KATM) and OTM when K < KATM (K > KATM). For the HW model,
the swaption pricing with Jamshidian’s decomposition, see Proposition B.3, is done using ZCB
calls (puts). The Black-Scholes implied volatility is then computed with a Black-Scholes put
(call) option.

During the calibration, one must be cautious with negative mean-reversion (θn following
from the quadrature points). These negative values are bad for extrapolation, as model-implied
volatilities will no longer decay with swaption expiry and length but can increase [28]. Clearly,
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Algorithm 1: rHW calibration algorithm

Input: Market implied volatility surface, co-terminal maturity T cot, number of quadrature points N
Output: Calibrated parameters â, b̂ and σx(t)

1 Initialize parameters â and b̂

2 Choose the set of calibration instruments, and define calibration objective function E(â, b̂, σx)
3 Set calibration tolerance ε
4 Initialize the volatility pillar dates

5 while E(â, b̂, σx) > ε do

6 Numerical optimization step to update â and b̂

7 Compute the Gauss-quadrature weights {ωn, θn}Nn=1 corresponding to N (â, b̂2), see [15]
8 Initialize N HW processes rn with mean reversion θn as per Equation (3.1)
9 Bootstrap calibration of piece-wise constant model volatility σx to get a good ATM fit to the

co-terminal swaption strip, see Algorithm 2 in Appendix B.5 but then with valuation from
Corollary 3.2 to compute the model value

10 foreach calibration instrument V mkt
i,j,k do

11 for n ∈ {1, 2, . . . , N} do
12 Compute V mdl

rn;i,j,k for rn as in Proposition B.3

13 end for

14 Compute V mdl
r;i,j,k using the valuation from Corollary 3.2 using V mdl

rn;i,j,k

15 Convert V mdl
r;i,j,k to model implied volatility σimp,mdl

i,j,k (using Black’s formula)

16 end foreach

17 Compute error metric E(â, b̂, σx) to assess the model fit to the market data

18 end while

as exposures also have a decaying pattern, this decay is desired for xVA calculations. Hence,
one must be cautious when using negative mean-reversion values for the rn(t) dynamics.

3.5. Simulating the rHW dynamics

The short-rate rn(t) from Equation (3.2) can be simulated in an exact manner, such that
large time steps can be made from time s to t. Ideally, there is a similar result for the rHW
dynamics from Corollary 3.1. Hence, we integrate to obtain an expression for r(t) conditional
on r(s) for s < t, i.e.,

r(t) = r(s) +

∫ t

s

µQr
r (u, r(u))du+ σx

∫ t

s

dWQr (u),∫ t

s

µQr
r (u, r(u))du = fM(0, t)− fM(0, s)

+

∫ t

s

N∑
n=1

[
θnf

M(0, u)− θnr(u) + Var0 (xn(u))
]
Λn(u, r(u))du.

Due to the state-dependent nature of the integrated drift, it is impossible to make large time
steps in an analytic fashion.

Therefore, we use the Euler-Maruyama discretization scheme for the Monte-Carlo simula-
tion, i.e., for ti < ti+1

r(ti+1) = r(ti) + µQr
r (ti, r(ti))∆t+ ηr(t, r(ti))

√
∆tZ, r(0) = fM(0, 0), (3.10)

where ∆t = ti+1 − ti, Z ∼ N (0, 1) and with drift and diffusion from Corollary 3.1. Here, for
the drift and diffusion terms, r(u) is frozen at the initial value at ti. Hence, many small time
steps are needed to avoid a sizable discretization error and, hence, to get a proper numerical
approximation to the SDE from Equation (2.1).

Alternatively to the Euler-Maruyama scheme, one could attempt to use the predictor-
corrector method [21, 17], which is commonly used for efficient simulation of the Libor Market
Model through a two-step drift approximation. Finally, one could use machine learning tech-
niques to ‘learn’ the large time steps offline and then reproduce them online, e.g., using the
7-league scheme [23]. For the current work, we stick to the Euler-Maruyama scheme.
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Remark (Consistency of calibration and simulation). The dynamics used for Vrn(t;T ) in the
result from Theorem 2.1 are based on the dynamics from Equation (2.2) with M = Qrn . On
the other hand, for simulation purposes, we use M = Qr in the drift of Equation (2.1) for

dr(t) as per Proposition 2.2. The use of different measures raises the question of how µ
Qrn
rn

and µQr
rn are related. Since the former is used for calibration and the latter for simulation,

consistency between the two is essential. Due to the uniqueness of the risk-neutral measure,

dWQrn (t) = dWQr (t), such that µ
Qrn
rn = µQr

rn . Hence, the calibration and simulation are
consistent.

3.6. Generic derivative pricing

To price derivatives and exposures under the rHW dynamics, we use a Monte-Carlo frame-
work using the simulation scheme from Section 3.5. We simulate MV paths of the dynamics as
per Equation (3.10). Then, the goal is to value along all these simulated trajectories, for which
(future) ZCB values are required to compute the (future) cash flows. Let Pr(t, T ;x) denote
the ZCB conditional on reaching r(t) = x, i.e.,

Pr(t, T ;x) = E
[
e−

∫ T
t

r(s)ds
∣∣∣ r(t) = x

]
. (3.11)

For the HW model we can compute Prn(t, T ;x) analytically conditional on reaching future
state rn(t) = x, t ≥ 0. However, for the rHW model, this is not the case, and Pr(t, T ;x)
needs to be obtained in a different way. As can be seen from Equation (3.11), the ZCB is
a conditional expectation, which could be naively approximated using a nested Monte-Carlo
simulation. To avoid this nested simulation, we propose to do a separate and independent
Monte-Carlo simulation with MP paths to obtain a functional approximation of Pr(t, T ;x)
based on the cross-sectional information of r(t) at t > 0 through a least-squares regression.
These regression-based methods lend themselves naturally for xVA calculations, also known
as American Monte Carlo [13]. For example, an n-th order polynomial can be used to regress
Pr(t, T ;x) on r(t) = x, i.e., find β⊤ = [β0, . . . , βn] such that

Pr(t, T ;x) ≈ β0 + β1 · x+ β2 · x2 + · · ·+ βn · xn =: β⊤ · ψ(x),

where along the path, we can approximate the integral inside the expectation in Equation (3.11)
numerically using trapezoidal integration. Given the calibrated ZCB approximations, the pric-
ing of derivatives in a Monte-Carlo framework is as fast as for the HW case where Prn(t, T ;x)
can be obtained analytically conditional on reaching rn(t) = x, as the evaluation of the regres-
sion polynomial is cheap.

For a low number of paths MP , the path-wise approximation of the ZCB as input for the
regression will likely result in a substantial numerical error. In this case, we do not cover the

full spectrum of r(t) and consequently only a handful of e−
∫ T
t

r(s)ds|r(t) = x, such that the
approximation error in

Pr(t, T ;x) ≈ e−
∫ T
t

r(s)ds
∣∣∣ r(t) = x (3.12)

is significant due to high variance. To deal with this, one can use a nested simulation with a low
number of nested pathsMnested ∈ [10, 30] as a variance reduction technique [22]. Alternatively,
use a large number of paths MP to cover a larger spectrum of simulated r(t), which we use as
a regression basis. We choose to do the latter.

This generic valuation framework can be used to price derivatives in a Monte-Carlo setting,
but also extends naturally to compute exposure profiles of derivatives:

1. Identify all the dates Tk for which ZCBs Pr(t, Tk) are required to value the derivative(s)
in question in a Monte-Carlo setting.

2. Identify all important dates 0 = t0 < t1 < . . . < tn = T at which ZCBs are required to
value the derivative or exposure profile.
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3. Run a Monte-Carlo simulation with a large number of paths MP . Include at least all the
aforementioned important dates where at each important date ti and each date Tk > ti a
least-squares regression is done to obtain a polynomial approximation of Pr(ti, Tk;x).

2

4. Run a new, independent Monte-Carlo simulation with MV paths, including at least all
the aforementioned important dates. At each date ti for which ZCBs are required for
derivative valuation, use the regression from the previous step.

4. Numerical results

We demonstrate the ability of the rHWmodel introduced in Section 3 to capture the market-
implied smile and skew and show the effect on exposures and xVAs of swaps and Bermudan
swaptions. Remarkably, whereas in other asset classes the main impact of smile and skew was
on tail exposures, we demonstrate that the effect on average exposures and xVA metrics of all
IR derivatives considered in this paper are significant. Furthermore, we will see that the smile
impact will be more substantial when considering Bermudan swaptions compared to the linear
IR swap derivative.

As market data, we use market implied volatility surfaces as of 02/12/2022 and the corre-
sponding market yield curve, see Figure 2. The surfaces show smile on the short end, which
transforms into skew over time. The smile and skew are most significant for the USD data.
Therefore, we only present the USD results in this section. For EUR results, see Appendix D.
The conclusions that are drawn in this section extend to those results.

(a) EUR surface. (b) USD surface.

Figure 2: Swaption implied volatility surfaces with a 10Y tenor. As both surfaces are
constructed using a different shift (EUR uses a shift of 3, USD a shift of 1), the surfaces
are not directly comparable, especially in terms of level. The strike is given as a factor
times the at-the-money (ATM) strike KATM, e.g., 1.2 means a strike of 1.2 ·KATM. This
ATM strike is different for every tenor-expiry combination.

In the results that follow, N = 5 quadrature points are used. This number has shown to
be appropriate when calibrating to market-implied swaption smiles for multiple tenors [15].
Mind that different values for N represent different models, not a worse/better approximation,
i.e., we are not affected by the convergence to the continuous case as in Equation (2.18). The
lower the value of N , the faster the calibration is. Furthermore, the simulation speed will also
be slightly affected as the computational time of the state-dependent drift increases in N , see
Corollary 3.1. The choice of N = 5 is sufficiently large to have enough flexibility in the model
while remaining sufficiently low for a suitable computational speed.

2If this amount of dates becomes too large, one can pick a subset of the relevant dates, and interpolate over
these spines as done for a regular yield curve that is calibrated to the market at t = t0.
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In Section 4.1, the rHW model is calibrated to the strip of co-terminal swaptions. Given
this calibrated model, we simulate example paths in Section 4.2 and compare the resulting
trajectories and distributions with the HW model. In Section 4.3, we demonstrate that pricing
derivatives with a regression-based ZCB expression is appropriate by showing this for the
HW case and comparing it to the analytic benchmark available for this model. Finally, in
Section 4.4, we assess the effect of smile and skew on exposure profiles and xVAs of IR swaps
and Bermudan swaptions using the rHW model.

4.1. Calibration

We calibrate the rHW model to co-terminal swaptions with T cot = 30y, using all strikes for
each expiry-tenor combination, through the calibration approach described in Section 3.4. For
comparison, we calibrate the HW model to the ATM point of the same co-terminal swaptions.
The HW parameters ax and σx have opposite effects on the model-implied swaption volatility,
i.e., for larger values of ax, the implied volatility is lower, whereas the implied volatility is
higher for larger values of σx. The calibrated model parameters are presented in Figure 3.
The rHW mean reversions θn at the quadrature points {ωn, θn}Nn=1 are significantly larger
than that of the HW model, and therefore the same holds for the model volatilities. The high
model volatility values can be explained in a similar way as the opposite effects of the HW
mean-reversion and model-volatility parameters on implied volatilities: high mean-reversion
values are used in the distribution, so the scaling of the diffusion part needs to be increased to
generate sufficient randomness with the model (achieved by increasing the model volatility).

(a) Quadrature points for rHW. (b) Model volatilities.

Figure 3: Calibration of the USD market data from Figure 2 for N = 5 and quadrature
points {ωn, θn}Nn=1 for N (â, b̂2) with â = 0.181711 and b̂ = 0.064055. The calibrated
HW mean-reversion is ax = 0.030228.

From the implied swaption volatilities in Figure 4, it can be seen that the rHW model
is sufficiently flexible to be calibrated well to the smile and skew of the set of co-terminal
swaptions. Clearly, the rHW model outperforms the HW model, which only has a good fit at
KATM, and the model skew cannot be controlled.

For the non-co-terminal expiry-tenor combinations, the rHW ATM model volatilities are
further away from the market volatilities than for the HW model, see Figure 5. The good
fit for these points with the HW model results from the mean-reversion calibration, which
takes into account all the ATM quotes for the entire volatility cube and minimizes the Mean
Squared Error for all these points. If a good ATM fit is required for all expiry-tenor pairs of
the volatility surface, the error metric in the calibration procedure from Section 3.4 can be
updated accordingly by taking into account these extra points. However, since our numerical
results focus on the co-terminal strip, the calibration procedure from Section 3.4 is suitable.

In the results presented so far, we have chosen to calibrate to all co-terminal smiles simul-
taneously. As a result, the model fit to the first co-terminal smile is not perfect, see Figure 4a.
However, the rHWmodel is sufficiently flexible to allow for a perfect fit when merely calibrating
to this smile. See Figure 6 for an example.

Mind that this affects the fit for the other co-terminal strips, as well as the fit for other
instruments of the volatility surface, as in Figure 5. Hence, it is a tradeoff, and one must select
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(a) 1Y expiry, 29Y tenor. (b) 5Y expiry, 25Y tenor.

(c) 10Y expiry, 20Y tenor. (d) 25Y expiry, 5Y tenor.

Figure 4: Market and model swaption implied volatilities for the calibrated parameters
from Figure 3.

(a) HW model. (b) rHW model.

Figure 5: Implied volatility calibration error for all ATM points.

Figure 6: USD calibration to the initial market smile.
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which market data is most relevant for a particular application. For xVA purposes, a proper
fit to all co-terminal smiles is desired.

In conclusion, whereas the HW model can only be fitted to the ATM point of all co-terminal
smiles and the model skew cannot be controlled; the rHW skew and smile can be controlled to
fit the market-observed implied volatilities for all strikes of the co-terminal strips. However,
one needs to be aware of the quality of the fit for non-co-terminal ATM points.

4.2. Simulation

Given the calibrated dynamics as presented in Section 4.1, and using the simulation as
described in Section 3.5, we present example rHW paths and compare them with the paths of
the underlying models. Since all dynamics are driven by the same source of randomness, see
Section 2, the same random samples must be used for all simulated paths.

Figure 7a shows that a typical r(t) path is similar to the r2(t) path. Recall that the
quadrature points are given in Figure 3a, where r2(t) has the largest weight of all underlying
processes. Hence, it makes sense that the r(t) paths are similar to this r2(t) path. However,
if we consider a r(t) path that ends at a high value, see Figure 7b for an example, the r(t)
trajectory looks much more like that of r0(t), which has a very low mean-reversion parameter,
such that the short-rate path is quite extreme. So, in general, the r(t) paths look a lot like the
highly mean-reverting paths of r2(t). However, in some extreme cases, we diverge from this,
such that the tails of the r(t) distribution should be fatter than that of r2(t).

(a) Example path. (b) Example path ending high.

Figure 7: Comparing the paths of rHW r(t) with all HW processes rn(t).

Looking at the rHW PDF and CDF at t = 25 in Figure 8a and comparing them with the
HW process r2(t), the right tail of r(t) is significantly fatter than the normal distribution of
r2(t). This observation is in line with the fat tails implied by the market smile and skew.

(a) CDF and PDF. (b) Right tail of the PDF.

Figure 8: Comparing the rHW PDF and CDF at t = 25 with the HW process r2(t).

Remark (Parameter intuition). The parameters â and b̂ do not have a clear financial mean-
ing, which is not a problem, as these parameters are merely a modelling aspect to introduce
additional degrees of freedom to calibrate to the market smile and skew. In other words, a clear
financial meaning of these parameters is not required as long as there is a fit to the market.
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4.3. ZCB regression
We demonstrate that pricing derivatives with a regression-based ZCB expression, as in-

troduced in Section 3.6, is appropriate. For the HW model, we have several (semi-)analytic
results which can serve as a benchmark. First of all, the HW model allows for an analytic
ZCB expression, see Proposition B.1. Based on this result, we derive a semi-analytic swaption
pricing formula in Proposition B.3 using Jamshidian’s decomposition. Alternatively, we use a
Monte-Carlo simulation with MV paths to approximate the swaption value, where we can use
either the analytic ZCB expression or a regression-based ZCB that has been calibrated using
an independent simulation with MP paths. At the same time, we can construct an instance
of the rHW model with N = 1, θ1 = ax and ω1 = 1, such that the rHW model collapses to
the HW model. We can then use a Monte-Carlo swaption valuation, with regression-based
ZCBs. The only difference between the two models is that the HW model allows for exact
simulation, whereas the rHW model requires an Euler-Maruyama discretization that results in
an additional error, see Section 3.5.

As an example, consider a swaption with expiry TM = 5, on an ATM payer swap with
N = 10k, start T0 = TM = 5, maturity Tm = 10. For both the ZCB regression simulation
and the outer Monte-Carlo simulation, we use various numbers of paths MV = MP and
25 simulation dates per year. We use a 2nd order polynomial for the regression, where the
regression variable is the short rate. The results are presented in Figure 9a. We conclude that
the ZCB regression performs well.

To assess the impact of the Euler-Maruyama discretization error w.r.t. the exact simula-
tion, in Figure 9b, we present the difference in swaption value between the HW model with
regression-based ZCB and the rHW model that collapses to the HW model. This is done
for MV = MP = 104 paths with various number of simulation dates per year. We observe
convergence in the number of dates per year.

(a) Effect of number of MC paths MV . (b) Effect of number of simulation dates.

Figure 9: Assessing the ZCB regression effect and the Euler discretization error.

4.4. Exposures and xVAs
We use the industry standard Monte-Carlo simulation framework to compute exposures

and xVA metrics [13]. In particular, we build upon the pricing algorithm outlined in Sec-
tion 3.6. When examining exposures and xVAs, we assume that all the relevant ZCB functions
at relevant future dates have been obtained through a least-squares regression based on an
independent Monte-Carlo simulation.

All xVA metrics are considered from the perspective of institution I, and all the trades are
done with counterparty C. Consider the CVA definition under the assumption of no Wrong-
Way Risk, which is the weighted sum of Expected Positive Exposures (EPE) at monitoring
dates t0 < . . . < tn:

CVA(t) ≈ (1− RR)

n∑
i=1

EPE(t, ti) [PDC(ti)− PDC(ti−1)] ,

EPE(t, ti) := Et

[
e−

∫ ti
t r(v)dv (V (ti))

+
]
≈ 1

MV

MV∑
j=1

e−
∫ ti
t rj(v)dv (V (ti; rj(ti)))

+
, (4.1)
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where in the latter step, we denote the Monte-Carlo approximation of the exposure using MV

paths. 3 CVA is computed with recovery rate RR = 0 and counterparty C’s default probability
PDC(t) with constant hazard rate ξC = 0.02. DVA is computed similarly but with ENE rather
than EPE, i.e., the max-operator in Equation (4.1) is replaced by the min-operator, and using
the institution’s default probability PDI(t) with constant hazard rate ξI = 0.01. 4:

DVA(t) ≈ (1− RR)

n∑
i=1

ENE(t, ti) [PDI(ti)− PDI(ti−1)] .

Finally, BCVA is computed with a survival adjustment, such that exposures are only considered
if the other party did not yet go into default:

BCVA(t) ≈ (1− RR)

n∑
i=1

EPE(t, ti) [PDC(ti)− PDC(ti−1)] [1− PDI(ti−1)]

+ (1− RR)

n∑
i=1

ENE(t, ti) [PDI(ti)− PDI(ti−1)] [1− PDC(ti−1)] .

In addition, we consider a tail metric, Potential Future Exposure (PFE), which is the
α-quantile of the positive exposure (V (ti))

+
, i.e., at time t this metric is defined as

PFE(t, ti;α) := inf
{
x ∈ R :

α

100
≤ F(V (ti))

+(x)
}
, (4.2)

where F(V (ti))
+(x) is the CDF of the positive exposure at time ti. Analogously, the Potential

Future Loss (PFL) is the α-quantile of the negative exposure (V (ti))
−
.

The key to computing (potential future) exposures is to obtain derivative values at moni-
toring dates ti for all j Monte-Carlo scenarios, i.e., V (ti; rj(ti)), where rj(ti) denotes the j-th
simulated short-rate r at time ti. It is crucial to have an efficient valuation of ZCBs for all
relevant dates Tk > ti, i.e., Pr(ti, Tk;x) conditional on reaching state x. For the HW model,
this expression is analytic, see Appendix B.2, whereas for the rHW model, we use the polyno-
mial approximation obtained from regression. Hence, we have an efficient way to evaluate the
future ZCBs for both models.

See Section 4.4.1 for IR swap exposures and the assessment of skew and smile effects on
these exposure profiles and the effects on the corresponding xVA metrics. In Section 4.4.2, we
look at Bermudan swaption exposures and xVAs to assess the impact of smile and skew on
these metrics when the derivative does not depend on the underlying ZCBs in a linear way.

4.4.1. Swaps

To examine the smile and skew effects on the (potential future) exposure profiles of IR
swaps, we consider swaps under a single curve setup starting at T0, maturing at Tm with
intermediate payment dates T1 < T2 < . . . < Tm−1 < Tm, with strike K. 5 The examples are
limited to co-terminal exposures, i.e., Tm = 30y, to properly compare the exposures under both
models. This choice is motivated by the calibration to co-terminal swaptions. From Figure 5
it is clear that for the quotes that were not used for calibration, e.g., short expiries and tenors,
the two models can imply significantly different volatilities, with a similar effect on exposures.

Puetter and Renzitti state that the moneyness 6 of IR swaps influences how much the xVA
values depend on the calibration [27]. Since ITM swaps are largely driven by the centers of
the simulated swap rate distributions, it is expected that the tail effects that follow from the
market smile and skew are the smallest in this case. On the other hand, OTM swaps are much

3For exposures, we only include future payments w.r.t. the monitoring dates (not the payments at the
monitoring dates themselves, they are assumed to have taken place already).

4This hazard rate implies that the creditworthiness of institution I is higher than that of counterparty C.
5See Definition B.1 for the swap pricing V Swap.
6Moneyness refers to the relation of the strike and the current swap rate. If the two are equivalent, the swap

value is zero and is said to be at-the-money (ATM). Furthermore, the swap is in-the-money (ITM) if the swap
value is positive, and out-of-the-money (OTM) if the swap value is negative.
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more sensitive to the tails of the swap rate distributions. Despite the large relative smile impact
on xVA numbers in the OTM case, the absolute impact is small. The authors report that these
observations are “largely in line with the Totem’s xVA consensus pricing results, where the
CVA submissions for ITM swaps consistently exhibit less variation than those for ATM and
OTM swaps.” Despite the useful insights on xVA metrics, the impact on tail exposures such
as PFE is not addressed in this paper.

The examples presented here are for a receiver swap, starting at T0 = 0, ending at Tm = 30,
with payments every two years usingMP = 104 paths and 200 dates per year, with a regression
polynomial of degree 3, where the short rate is used as the regression variable. For the exposure
simulation, MV = 104 paths and 20 monitoring dates per year are used (with 200 simulation
dates per year for the Euler discretized simulation).

The simulated swap rate at t = 20 is presented in Figure 10. The rHW model including
smile has a significantly fatter right tail compared to the HW model and is a result of the
volatility smile. The translation of this fat tail to average and tail exposures of a swap will
depend on the strike and type of the swap.

Figure 10: Swap rate distribution at t = 20.

See Figure 11 for ATM receiver swap exposures. The corresponding CVA and DVA numbers
for various strikes are reported in Table 1. In this example, the EPE is significantly affected by
the smile, whereas the ENE of the two models is comparable. These effects directly translate
to the reported xVA metrics, where the CVA and BCVA are significantly impacted, with up to
a 15% decrease in BCVA when smile is included in the model. In addition, the tail exposures
in Figure 11 are affected by the smile, in the sense that the HW model underestimates the
tails, with the largest impact on PFL in this example. From the xVA metrics in Table 1, we
conclude that the smile in the rHW model has a significant effect in all cases. The results are
in line with the aforementioned observations from Puetter and Renzitti [27], in the sense that
the impact is relatively the smallest and absolutely the largest in the ITM case and relatively
the largest and absolutely the smallest in the OTM case.

Model K Moneyness CVA(t0) DVA(t0) BCVA(t0)
HW KATM ATM 419.098 -104.201 289.612
rHW 375.367 -104.459 249.831
HW 1.5 ·KATM ITM 967.818 -23.569 862.803
rHW 924.550 -27.847 820.243
HW 0.5 ·KATM OTM 122.268 -319.868 -165.661
rHW 92.005 -323.449 -196.049

Table 1: xVA metrics for the receiver swap example, for various strikes.

The smile effects on the tail exposures are in line with previous observations in the literature
on the relevance of skew and smile for xVA computations for FX and equity derivatives [7, 11,
29]. However, in those works, there were no clear conclusions on a significant smile and skew
impact on average exposures and xVA metrics of linear derivatives of all moneyness types.
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(a) EPE(t, ti) (b) ENE(t, ti)

(c) PFE(t, ti; 99) (d) PFL(t, ti; 1)

Figure 11: Comparing exposures for an ATM receiver swap (K = KATM).

The significant effect of smile and skew on the xVA metrics is particularly relevant from
a practical perspective. Consider an uncollateralized receiver swap between a bank and a
client hedging IR risk on a floating-rate loan. See [30] for further background on this use case.
Typically, these swaps are entered at par, i.e., K = KATM. From Table 1 it is clear that when
including smile, the CVA is significantly lower, which allows the bank to offer the client a
better rate. Alternatively, consider the case where the swap was entered in the past, and the
trade is now OTM due to market movements, e.g., K = 0.5 · KATM. The results in Table 1
tell that there is net DVA for this trade (BCVA is negative). If the client wants to unwind
the swap, the bank needs to charge the client to compensate for the loss made from the DVA
benefit that will disappear. When including smile in the model, the client needs to be charged
more than the amount computed with the HW model. Furthermore, next to the mispricing
effect, there will also be an impact on xVA sensitivities used for hedging. Ignoring smile in the
xVA model will cause under- or over-hedging.

The most computationally expensive part of xVA calculations is the valuation of derivatives
at future monitoring dates for all Monte-Carlo scenarios, as this has to be done for each
derivative separately. For linear derivatives such as IR swaps, the future derivative value only
depends on the future ZCBs such that the corresponding exposures can be easily obtained.
The exposure calculations for the HW model take 2.03 seconds 7, whereas the rHW exposure
calculations take 1.90 seconds. Both implementations are not fully optimized in terms of
computational speed, but we can conclude that the runtimes of both models are approximately
as fast as one another.

Remark (Forward smile). Extra caution is required for forward-smile sensitive exposures or
derivatives. Since both models are not calibrated to the forward smile evolution as would be
done for a stochastic volatility model, the model-implied forward smile from the two models is
likely to be different. In other words, one is ‘left at the mercy’ of the smile evolution that the
model of choice implies. However, the smile-aware rHW model is still preferred over the HW
model, as for the former, the marginal information that the market smiles encode is included
during the model calibration.

7All the reported runtimes are averages over 20 runs.
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For example, the exposure for a forward-starting swap starting at T0 > 0 is a forward-
starting option, such that smile evolution is relevant when computing this exposure. Since
a typical portfolio of IR swaps will not be similar to a forward-starting swap but to a spot-
starting swap, the aforementioned results for the swap starting at T0 = 0 are most relevant
from a practical perspective.

Results for the EUR market data can be found in Appendix D.2.1. The conclusions drawn
here extend to this other market data set. Due to the smaller implied volatility smile in this
example, the smile effects are smaller but non-negligible.

4.4.2. Bermudan swaption

In this experiment, we demonstrate that in addition to the effects of volatility smile and
skew on PFE as observed for IR swaps, there is a significant impact on the EPE and CVA of
Bermudan swaptions.

A receiver (payer) Bermudan swaption V BS is an early-exercise contract where at a prede-
termined set of exercise dates TE = {TE,1, . . . , TE,n} the option holder has the right to enter
into a receiver (payer) swap. We consider a fixed maturity Bermudan swaption, i.e., the swap
that is entered into upon exercise starts straight after the exercise date and always at the same
pre-specified maturity date. As a consequence, the lifetime of the swap is decreasing as time
progresses. Furthermore, we assume that the exercise dates TE coincide with the swap reset
dates. So, the option holder can enter the underlying swap at the first reset date up and till the
last reset date of the swap. We value the Bermudan swaption in a Least Squares Monte Carlo
(LSMC) setting using the Longstaff-Schwartz method [24]. This approach is a Monte-Carlo
based algorithm where the exercise rule at each exercise date is approximated iteratively using
a least-squares regression. For further background, see Appendix C.1.

The computation of Bermudan swaption exposures requires additional considerations. We
assume that all exercise dates (TE = {TE,1, . . . , TE,n}) are also monitoring dates (t0 < t1 <
. . . < tn). We consider the case where there are monitoring dates between exercise dates
to examine the exposure profile between consecutive exercise dates. The results are limited
to cash-settled Bermudan swaptions, such that the exposure of the Bermudan swaption after
exercise is zero. 8 The key to computing exposures is to obtain future market values V BS(ti)
at all monitoring dates ti for all Monte-Carlo scenarios. We compute the path-wise V BS(ti)
using the collocation-based approximation technique from Deelstra et al. [8], using Lagrangian
interpolation to approximate the future market value over the entire domain. For further
background, see Appendix C.2. Finally, we assume that the exercise strategy of the Bermudan
swaption is not affected by the possibility of default.

We compare exposures for a receiver Bermudan swaption. The underlying swap starts at
T0 = 0, ends at Tm = 30, has payments every two years and early-exercise dates at every swap
payment date until the swap maturity. The Monte-Carlo setup for the ZCB regression and
exposure simulation is the same as in Section 4.4.1. For the regression phase of the Bermudan
swaption, we use a polynomial of degree 2. Finally, for computing the exposures with the
collocation method using 5 nodes, we use MV = 5 · 103 paths and 20 dates per year.

Exposures of a receiver Bermudan swaption on an ATM swap are presented in Figure 12. For
both models, the effect of the early-exercise is clearly visible in the EPE profile in Figure 12a,
where at every exercise date, the exposure drops significantly. The corresponding CVA numbers
for all cases are reported in Table 2. The results show a significant effect of the volatility smile
and skew on the EPE, PFE, and CVA. For the latter, the effect is between 48% and 67%, and
is thereby significantly larger than for the IR swap from Section 4.4.1. Hence, the smile effects
from the rHW model are more pronounced for this more exotic derivative. This conclusion is
in line with the increasing smile effect for more exotic FX derivatives in [29].

The results for EUR Bermudan swaptions are presented in Appendix D.2.2, where again
the smile effects are of a similar nature, but of a lower magnitude.

8For physical settlement, the Bermudan swaption exposure after the exercise is given by the swap exposure.
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(a) EPE(t, ti) (b) PFE(t, ti; 99)

Figure 12: Comparing exposures for a receiver Bermudan swaption on an ATM swap
(K = KATM).

Model K Moneyness CVA(t0)
HW KATM ATM 159.156
rHW 258.035
HW 0.5 ·KATM OTM 106.292
rHW 157.305
HW 1.5 ·KATM ITM 190.855
rHW 320.358

Table 2: CVA metrics for a receiver Bermudan swaption on a swap, for various strikes.

5. Conclusion

We have proposed a novel way to capture market implied smile and skew for xVA cal-
culations of IR derivatives. This approach extends the current market practice of HW-type
dynamics merely calibrated to the ATM point of market implied co-terminal swaptions. The
inclusion of smile and skew in xVA calculations are relevant both in terms of mispricing, as
well as risk management of xVAs.

We have demonstrated that the rHW model is sufficiently flexible to be calibrated to the
market-implied co-terminal swaption smiles efficiently, preserving the semi-analytic calibration
of the underlying models. Furthermore, the rHW model allows for fast pricing of derivatives in
a generic Monte-Carlo framework, which is typically used for exposure calculations. The future
rHW ZCBs that are required to compute future market values are retrieved using an indepen-
dent regression-based Monte-Carlo simulation, such that evaluating a ZCB in an exposure
framework boils down to evaluating a polynomial with pre-computed coefficients. Evaluating
the rHW ZCBs is of similar computational cost evaluating the analytic ZCB expression for the
HW model.

Using the rHW model calibrated to market data, it can be shown that there is a significant
effect of smile and skew on exposures and xVA metrics of IR derivatives. For IR swaps, we
have shown that in line with previous observations in the literature on exposures for FX and
equity derivatives [7, 11, 29], the tails of the exposure distributions are affected by the smile.
Remarkably, we have also found that the average exposures and corresponding xVA metrics are
also significantly affected for all moneyness types, which has profound practical implications for
xVA pricing and risk management. For early-exercise derivatives such as Bermudan swaptions,
the same effects as for IR swaps are present, but with a larger magnitude of the smile impact.

These results motivate to investigate the extension of the rHW model to a multi-currency
setting, which will undoubtedly come with additional challenges due to the high-dimensional
nature of the underlying system of model dynamics.
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Appendix A. Density measure change and invariance

Proposition A.1 (Density measure change). Let (Ω,F ,M) be a probability space where Ω is
the set of outcomes (sample space), F is the filtration (events) and M is the probability measure.
Consider real-valued random variable X which is a measurable function X : Ω → R. An M-
density of X is a function fM : Ω → [0,∞), which can be recognized as the Radon-Nikodym
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derivative w.r.t. the Lebesgue measure µ, i.e.,

fM(y) =
dM(y)

dµ(y)
=

dM(y)

d y
,

where the latter follows from the restriction to the real line. Assume that measures M and
N are both absolutely continuous w.r.t. µ, denoted as M ≪ µ and N ≪ µ. This assumption
is not restrictive, as for continuous random variables this simply means that the densities are
well defined. Assume that additionally M is absolutely continuous w.r.t. N, i.e., M ≪ N ≪ µ.
Then, µ-a.e.,

fM(y) =
dM(y)

dN(y)
fN(y), (A.1)

where dM(y)
dN(y) is the Radon-Nikodym derivative to change between measures M and N.

Proof. Under the assumption of M ≪ N ≪ µ, the result follows from the iterative application
of the Radon-Nikodym derivative, i.e., the product rule for Radon-Nikodym derivatives:

fM(y) =
dM(y)

dµ(y)
=

dM(y)

dN(y)
dN(y)
dµ(y)

=
dM(y)

dN(y)
fN(y). (A.2)

Corollary A.1 (Density measure invariance). Let the density equation (2.4) be given under
measure M. If M ≪ N, then the density equation is measure invariant, i.e., when the density
equation holds under measure M, it also holds for N.

Proof. This result follows directly from applying Proposition A.1 to both sides of Equa-
tion (2.4), and the linearity of the Radon-Nikodym derivative.

Appendix B. The Hull-White model

Appendix B.1. Dynamics with time-dependent volatility

For ease of display, the results in Section 3 are presented for the case of constant model volatility
σx. However, in the xVA context we require a time-dependent model volatility σx(t). Here we
present the formulae from Section 3 for σx(t) rather than σx.
The majority of the formulae in Section 3.2 stay the same, but Equation (3.2) changes into

rn(t) = xn(s)e
−θn(t−s) + bn(t) +

∫ t

s

σx(u)e
−θn(t−u)dWM(u). (B.1)

The variance of this process, see Equation (3.3), becomes:

Vars (rn(t)) =
∫ t

s

σ2
x(u)e

−2θn(t−u)du.

Furthermore, the following expressions change in Proposition B.1:

Vn(s, t) :=

∫ t

s

σ2
x(u)B

2
n(u, t)du,

bn(T ) = fM(0, T )− xn(0)e
−θnT +

∫ T

0

σ2
x(u)Bn(u, T )e

−θn(T−u)du. (B.2)

Appendix B.2. Zero-Coupon Bond

The deterministic function bn(t) in Equation (3.1) is obtained by fitting the model to the
market yield curve, which is done in the derivation of the Zero-Coupon Bond (ZCB) under the
HW dynamics, see Proposition B.1.

28



Proposition B.1 (HW ZCB). Let rn(t) be the HW dynamics from Equation (3.1). The ZCB
under these dynamics is given by

Prn(t, T ) = e
1
2Vn(t,T )−

∫ T
t

bn(u)du−xn(t)Bn(t,T ),

Vn(s, t) := σ2
x

∫ t

s

B2
n(u, t)du, Bn(s, t) :=

1

θn

(
1− e−θn(t−s)

)
,

bn(T ) = fM(0, T )− xn(0)e
−θnT +

1

2
σ2
xB

2
n(0, T ). (B.3)

For t = 0 and xn(0) = 0 we have Prn(0, T ) = PM(0, T ) ∀T .

Proof. Integrating the dynamics from Equation (3.2) yields an expression for
∫ t

s
rn(u)du:∫ t

s

rn(u)du = xn(s)Bn(s, t) +

∫ t

s

bn(u)du+ σx

∫ t

s

Bn(u, t)dW
M(u), (B.4)

which follows a normal distribution with mean and variance

EQrn
s

[∫ t

s

rn(u)du

]
= xn(s)Bn(s, t) +

∫ t

s

bn(u)du,

Vn(s, t) := Vars
(∫ t

s

rn(u)du

)
= σ2

x

∫ t

s

B2
n(u, t)du.

Using the definition of the ZCB we write 9

Prn(t, T ) = eE
Qrn
t [−

∫ T
t

rn(u)du]+ 1
2Vart(−

∫ T
t

rn(u)du) = e
1
2Vn(t,T )−

∫ T
t

bn(u)du−xn(t)Bn(t,T ). (B.5)

In this equation, bn(t) is the only unknown. Writing down the term structure of the model
can be done using Equation (B.5) and the Leibniz integration rule 10:

frn(t, T ) =
−∂ (lnPrn(t, T ))

∂T
= −1

2

∂Vn(t, T )

∂T
+ xn(t)

∂Bn(t, T )

∂T
+ bn(T ). (B.6)

We want the model’s initial term structure frn(0, T ) to fit the initial term structure from the
market fM(0, T ). As a consequence:

bn(T ) = fM(0, T ) +
1

2

∂Vn(0, T )

∂T
− xn(0)

∂Bn(0, T )

∂T
= fM(0, T )− xn(0)e

−θnT +
1

2
σ2
xB

2
n(0, T ).

This concludes the proof.

Appendix B.3. Zero-Coupon Bond Option pricing

Using the ZCB expression from Proposition B.1, we look at the pricing of a Zero-Coupon Bond
Option (ZCBO), see Proposition B.2.

Proposition B.2 (HW ZCBO pricing). Let rn(t) be the HW dynamics from Equation (3.1).
A ZCBO is an option expiring at T on a ZCB Prn(T, S) with maturity S > T , with strike K,
and option type ω = 1 for a call and ω = −1 for a put. The value of a unit notional ZCBO
under the rn(t) dynamics is given by:

V ZCBO
rn (t;T, S,K, ω) = ω [Prn(t, S)Φ(ωd1)−KPrn(t, T )Φ(ωd2)] , (B.7)

d1 :=
ln
(

Prn (t,S)
K·Prn (t,T )

)
Σrn(t, T, S)

+
1

2
Σrn(t, T, S), d2 := d1 − Σrn(t, T, S),

Σ2
rn(t, T, S) := Vart (lnPrn(T, S)) .

9Using the property of exponential normals: if z ∼ N
(
µz , σ2

z

)
then E [ez ] = eµz+

1
2
σ2
z .

10For a constant, d
d x

(∫ x
a f(x, t)dt

)
= f(x, x) +

∫ x
a

∂
∂x

f(x, t)dt.
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Proof. The ZCBO payoff is given by HZCBO(T ; rn(T )) := (ω [Prn(T, S)−K])
+
, such that the

value is given by

V ZCBO
rn (t;T, S,K, ω) = Prn(t, T )E

QT
rn

t

[
HZCBO(T ; rn(T ))

]
. (B.8)

The ZCB Prn(T, S) is stated in Proposition B.1. We move to the corresponding T -forward
measure QT

rn , so we write down the following Radon-Nikodym derivative:

dQT
rn

dQrn

∣∣∣∣
F(T )

=
Brn(0)

Brn(T )

Prn(T, T )

Prn(0, T )
= exp

{
−1

2
σ2
x

∫ T

0

B2
n(u, T )du− σx

∫ T

0

Bn(u, T )dW
Qrn (u)

}
.

Girsanov then gives the QT
rn -Brownian motion: dWQT

rn (t) = dWQrn (t) + σxBn(t, T )dt. The
HW dynamics from Equation (2.2) for M = QT

rn are then given by

drn(t) = µ
QT

rn
rn (t, rn(t))dt+ ηrn(t, rn(t))dW

QT
rn (t),

µ
QT

rn
rn (t, rn(t)) = µ

Qrn
rn (t, rn(t))− σ2

xBn(t, T ), (B.9)

where the diffusion is as in Proposition 3.1. Using the change of measure, we write the inte-
grated HW dynamics (3.2) under the T -forward measure QT

rn :

rn(t) = xn(s)e
−θn(t−s) + bn(t)−MT

n (s, t) + σx

∫ t

s

e−θn(t−u)dWQT
rn (u), (B.10)

MT
n (s, t) := σ2

x

∫ t

s

e−θn(t−u)Bn(u, T )du. (B.11)

Under QT
rn , rn(t) still follows a normal distribution, but with an adjusted mean EQT

rn
s [rn(t)] =

EQrn
s [rn(t)] − MT

n (s, t). Hence, under QT
rn , conditional on Ft, lnPrn(T, S) is normally dis-

tributed with mean and variance

EQT
rn

t [lnPrn(T, S)] =
1

2
Vn(T, S)−

∫ S

T

bn(u)du−Bn(T, S)
[
xn(t)e

−θn(T−t) −MT
n (t, T )

]
= EQrn

t [lnPrn(T, S)] +Bn(T, S)M
T
n (t, T ), (B.12)

Σ2
rn(t, T, S) := Vart (lnPrn(T, S)) = B2

n(T, S)Vart (rn(T )) . (B.13)

As a consequence, the ZCBO pricing from Equation (B.8) under the HW model reduces to a
Black-type formula.

Appendix B.4. Swaption pricing

Using the ZCBO pricing equation from Proposition B.2, we can now shift the attention to
pricing swaptions in a similar setup. First, in Definition B.1, we introduce the valuation of a
swap, after which in Proposition B.3 the swaption pricing is discussed.

Definition B.1 (Swap). Let the value of a unit notional swap under a single curve setup
starting at T0, maturing at Tm with intermediate payment dates T1 < T2 < . . . < Tm−1 < Tm,
with strike K be given by:

V Swap(t;T1, . . . , Tm,K, δ) = δ

(
−P (t, T0) + P (t, Tm) +K

m∑
k=1

αkP (t, Tk)

)
, (B.14)

αk := Tk − Tk−1, δ :=

{
−1, payer swap,
1, receiver swap.

Proposition B.3 (HW swaption pricing). Let rn(t) be the HW dynamics from Equation (3.1)
under Qrn . Consider a swaption on a swap as per Definition B.1, with swaption expiry date
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TM ≤ T0, where T0 is the first swap reset date. The value of the swaption under the rn(t)
dynamics and under the measure QT

rn is given by:

V Swaption
rn (t;TM , T1, . . . , Tm,K, δ) =

m∑
k=1

wkV
ZCBO
rn (t;TM , Tk, K̃k, δ), (B.15)

wk :=

 −1, k = 0,
Kαk, k = 1, . . . ,m− 1,
1 +Kαk, k = m,

K̃k :=

{
1, k = 0,
Prn(TM , Tk; r

∗
n(TM )), k ∈ {1, . . . ,m}.

Here, r∗n(TM ) is obtained numerically by solving
∑m

k=0 wkPrn(TM , Tk; r
∗
n(TM )) = 0. Further-

more, ZCB option V ZCBO
rn (t;T, S,K, δ) under the HW model and the QT

rn measure is given in
Proposition B.2.

Proof. The swaption payoff HSwaption(TM ; rn(TM )) reads

HSwaption(TM ; rn(TM )) :=
(
V Swap
rn (TM ;T1, . . . , Tm,K, δ)

)+
=

(
δ

[
−Prn(TM , T0; rn(TM )) + Prn(TM , Tm; rn(TM )) +K ·

m∑
k=1

αkPrn(TM , Tk; rn(TM ))

])+

,

(B.16)

where we explicitly denote the dependence of the ZCB on rn(TM ). We define r∗n(TM ) such
that the following holds:

HSwaption(TM ; rn(TM )) = 0,

⇔ − Prn(TM , T0; r
∗
n(TM )) + Prn(TM , Tm; r∗n(TM )) +K ·

m∑
k=1

αkPrn(TM , Tk; r
∗
n(TM )) = 0,

⇔
m∑

k=0

wkPrn(TM , Tk; r
∗
n(TM )) = 0. (B.17)

Here, r∗n(TM ) is obtained numerically such that the above holds. Since Prn(TM , Tk; y) from
Proposition B.1 is monotonically decreasing in y, the swaption only pays out if rn(TM ) >
r∗n(TM ). Using the monotonicity and the result from Equation (B.17) allows us to rewrite the
swaption payoff from Equation (B.16):

HSwaption(TM ; rn(TM )) = δ
(
Prn(TM , Tm; rn(TM ))− K̃m

)
1{rn(TM )>r∗n(TM )}

+

(
K ·

m∑
k=1

αkδ
[
Prn(TM , Tk; rn(TM ))− K̃k

])
1{rn(TM )>r∗n(TM )}

=

m∑
k=1

wk

(
δ
[
Prn(TM , Tk; rn(TM ))− K̃k

])+
. (B.18)

Rewriting the swaption payoff in this particular form is known as Jamshidian’s decomposi-
tion [18]. Using the payoff from Equation (B.18) we write the decompose the swaption payoff
into a sum of ZCB put options.

V Swaption
rn (t;TM , T1, . . . , Tm,K, δ) = Prn(t, TM )EQTM

rm
t

[
HSwaption(TM ; rn(TM ))

]
= Prn(t, TM )

m∑
k=1

wkE
QTM

rm
t

[(
δ
[
Prn(TM , Tk)− K̃k

])+]

=

m∑
k=1

wkV
ZCBO
rn (t, TM , Tk, K̃k, δ), (B.19)

where ZCB option V ZCBO
rn (·) is given in Proposition B.2.
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Appendix B.5. Model calibration

As market data for the HW volatility calibration we use a strip of ATM co-terminal swaptions
with maturity T cot. We assume that the model volatility σx(t) is piece-wise constant on the
intervals between the co-terminal expiries with value σx,c, i.e.,

σx(t) :=


σx,1 for t ∈

(
0, T exp,cot

1

]
,

σx,2 for t ∈
(
T exp,cot
1 , T exp,cot

2

]
,

...

σx,Ncot for t ∈
(
T exp,cot
Ncot−1, T

exp,cot
Ncot

]
.

(B.20)

Furthermore, we use flat extrapolation in volatility on both ends.
The calibration of the piece-wise constant model volatility is typically done for a given, con-
stant, mean-reversion parameter. To match the market quotes, we use a bootstrapping ap-
proach with local and sequential optimization, where the volatility is calibrated period by
period. The calibration procedure is summarized in Algorithm 2.

Algorithm 2: HW volatility calibration algorithm

Input: Market implied volatility surface, co-terminal maturity T cot, HW mean reversion θn
Output: Calibrated σx(t)

1 Initialize the HW process rn with mean reversion θn as per Equation (3.1)
2 Initialize the volatility pillar dates
3 Set calibration tolerance ε
4 for c ∈ {1, 2, . . . , Ncot} do

5 Select expiry T exp,cot
c , tenor T ten,cot

c and corresponding ATM strike Kc

6 Retrieve market implied volatility σimp,mkt
c and convert to price V mkt

c

7 Create an objective function E, e.g., E(σx,c) :=
∣∣V mkt

c − V mdl
rn;c(σx,c)

∣∣
8 Use σx,c−1 as initial guess for σx,c

9 Keep σx,1, . . . , σx,c−1 fixed, we calibrate σx,c with the current calibration instrument
10 while E(σx,c) > ε do
11 Newton-Raphson step to update σx,c

12 Compute error metric E(σx,c) to assess the model fit to the market data

13 end while

14 end for

The mean-reversion parameter can then be used to get a good overall fit to the ATM slice of
the market volatility surface [27]. We fit the mean reversion such that all ATM swaption points
for all expiries and all tenors (also the non-co-terminal ones) are fit best in a Mean Squared
Error (MSE) sense. A numerical solver such as Brent’s algorithm can be used to obtain the fit.
Inside each iteration of this optimization, the model volatilities are bootstrapped as described
in Algorithm 2. Alternatively, one could try to calibrate the mean-reversion parameter by
minimizing the MSE for only the ATM swaptions points that fall approximately under the
counter diagonal [28].

Appendix C. Bermudan swaptions

Appendix C.1. Option pricing

The value of a Bermudan swaption, i.e., V BS, can be seen as an optimal stopping problem,
where the holder of the option is looking for the optimal exercising strategy. At exercise, the
option holder has the right to enter into the underlying swap V Swap. The payoff of the option

is given by H(t; r(t)) =
(
V Swap(t; r(t))

)+
. The value of the option is given by the risk-neutral

expectation of the discounted payoff of entering a swap at the optimal stopping time τ in a
predetermined set of exercise dates TE = {TE,1, . . . , TE,n}:

V BS(t0) = sup
τ∈TE

Et0

[
e
−

∫ τ
t0

r(s)ds (
V Swap(τ ; r(τ))

)+]
.

At the last exercise date, the Bermudan swaption collapses to a European swaption.
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In practice, the option pricing problem is typically solved using a dynamic problem formulation.
We tackle the option pricing problem using the Least Squares Monte Carlo (LSMC) technique
with a forward phase and a backward phase. In particular we use the Longstaff-Schwartz
method [24], where only the ITM paths at TE,i are used to calibrate the regression, and the
regression is not used to value the product itself but only to approximate the exercise rule.
In this way, the regression functions only need to provide an accurate approximation of the
continuation values near the exercise boundary rather than on the whole domain. To avoid
perfect foresight bias, which happens when the exercise criteria are computed with the same
Monte-Carlo paths as the exercise values, we improve the LSM algorithm by running another,
independent simulation to value the early-exercise product, using the exercise rule from the
initial simulation.
Let V BS(t;x) denote the time t value of the option given r(t) = x, assuming no previous
exercise. The Bermudan swaption valuation algorithm as introduced in Section 4.4.2 can be
summarized as follows:

1. Forward phase: simulate MV short-rate paths, i.e., rj(t) for t ∈ [t0, TE,n] for all j paths.

2. Backward phase: at final exercise date TE,n, the value is given by the option payoff (as
the continuation value is zero), i.e.,

V BS(TE,n;x) = H(TE,n;x) =
(
V Swap(TE,n;x)

)+
. (C.1)

This directly gives the exercise rule at TE,n. Iteratively for all previous exercise dates
TE,i < TE,n:

(a) Assume that the option value at the next exercise date V BS(TE,i+1;x) is available.

(b) The option value is given by the maximum of exercising or continuing:

V BS(TE,i;x) = max (H(TE,i;x), c(TE,i;x)) = max
((
V Swap(TE,i;x)

)+
, c(TE,i;x)

)
,

where c(TE,i;x) is the continuation value, which is the discounted option value from
the next exercise date, i.e.,

c(TE,i;x) = E
[
e
−

∫ TE,i+1
TE,i

r(s)ds
V BS(TE,i+1; r(TE,i+1))

∣∣∣∣ r(TE,i) = x

]
.

This conditional expectation is a random variable itself. A brute-force approach
would be to use nested Monte Carlo to approximate this continuation value. How-
ever, we decide to use LSM where we approximate the continuation value c(TE,i;x)
as the regression of option value V BS(TE,i+1; r(TE,i+1)) on the current state x. Then
we value the option by a backward iteration (recursion).

(c) Identify all ITM paths by computing H(TE,i; rj(TE,i)) =
(
V Swap(TE,i; rj(TE,i))

)+
∀j paths.

(d) We approximate the continuation value through a linear combination of basis func-
tions ψk(x):

c(TE,i;x) =
∑
l

βilψl(x) = β⊤
i ψ(x),

where we use a least-squares regression over all ITM paths k to estimate the coeffi-
cients βil of this approximation, yielding estimates β̂il. For all ITM paths k, compute

e
−

∫ TE,i+1
TE,i

rk(s)ds
V̂ BS(TE,i+1; rk(TE,i+1)) and regress on rk(TE,i). These estimated

coefficients now define the continuation value approximation ĉ(TE,i;x) = β̂⊤
i ψ(x).

(e) For all ITM paths k, we approximate the exercise rule at TE,i using the payoff
H(TE,i; rk(TE,i)) and the approximate continuation value ĉ(TE,i; rk(TE,i)). For the
paths where we do not exercise, we plug in the path-wise discounted value from the
next time point, i.e., continuation is the base-line scenario. So for all paths j, ĉ(·)
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is used to approximate the exercise decision only, and not also the cash-flows in the
valuation:

V BS(TE,i;x) ≈

{
H(TE,i;x), H(TE,i;x) > ĉ(TE,i;x),

e
−

∫ TE,i+1
TE,i

r(s)ds
V BS(TE,i+1; rj(TE,i+1)), H(TE,i;x) ≤ ĉ(TE,i;x)

This then also gives the exercise boundary x∗, which is the regression variable value
(e.g., short rate or swap rate) for which the first exercise is done, i.e., the first value
for which the immediate payoff was bigger than the regressed continuation value.

(f) Once the first exercise date TE,1 has been reached, the approximate Bermudan
swaption value at t0 is given by the discounted Monte Carlo average over all paths

V BS(t0) ≈
1

M

M∑
j=1

e−
∫ TE,1
t0

rj(s)dsV BS(TE,1; rj(TE,1)).

Appendix C.2. Exposures

The key to computing exposures is to obtain future market values V (ti) at all monitoring
dates ti for all Monte-Carlo scenarios. A naive approach for Bermudan swaptions would be to
re-use the original LSMC method starting at rj(ti) for generating future market scenarios to
obtain the future market value V (ti; rj(ti)) at monitoring dates before the option is exercised
on path j. From a computational perspective, this method is too expensive to be used in
practice. Therefore, we use a modified version of the aforementioned Bermudan swaption
pricing algorithm to obtain exposures.
For each monitoring date ti, we compute the path-wise future market value V (ti; rj(ti)) ∀j
using the collocation-based approximation technique from Deelstra et al. [8], using Lagrangian
interpolation to get an approximation over the entire domain. The idea is to construct an
accurate approximation based on only a few valuations of the expensive nested LSMC algorithm
at points based on the moments of the underlying distribution, where Corollary 2.2 is used to
obtain the moments of the rHW model. This approximation can then be evaluated swiftly for
all monitoring dates and for all paths to obtain an approximate future market value.
The exposure EPE(t, ti) of a Bermudan swaption is approximated using a regression:

1. First pass: estimating regression functions at all early-exercise dates TE = {TE,1, . . . , TE,n}.

(a) Forward phase: generate MV Monte Carlo paths for LSMC regression as usual for
early-exercise products.

(b) Backward phase: for all early-exercise products, perform the regression approxima-
tion at each early-exercise date TE,i. This yields the approximate continuation value
ĉ(TE,i;x) ∀TE,i. In this step it is fine to only use the ITM paths to approximate
the exercise boundary.

2. Second pass: estimating exposures.

(a) Generate an independent set of MV Monte Carlo paths (this deals with foresight
bias) for pricing the exposures.

(b) Using the regression from the first pass (ĉ(TE,i;x) ∀TE,i), determine the path-wise
early-exercise decision τj for each path j.

(c) For each monitoring date ti, we compute the path-wise future market value V (ti; rj(ti))
∀j using the collocation-based approximation technique from Deelstra et al. [8], us-
ing Lagrangian interpolation to get an approximation over the entire domain. The
idea is to construct an accurate approximation based on only a few valuations of
the expensive nested LSMC algorithm. This approximation can then be evaluated
swiftly for all monitoring dates and for all paths to obtain an approximate future
market value V̂ (ti; rj(ti)).

i. Compute collocation points xk based on the moments of the distribution of the
underlying short-rate. Typically, 5 collocation points are sufficient.
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ii. For all these collocation points, run a fully nested LSMC simulation to obtain
values V (ti;xk), re-using the calibrated exercise rule from the first pass.

iii. Use 1D Lagrangian interpolation over the collocation points to obtain V̂ (ti; rj(ti))
∀j.

(d) Approximate the exposure from Equation (4.1) by replacing (V (ti))
+
by the regres-

sion approximation
(
V̂ (ti)

)+
.

Remark (Moments for collocation points). The collocation points at monitoring date ti are
based on moments of the underlying short-rate r(ti).
When using the HW model as underlying, rn(t) ∼ N (E0 [rn(t)] ,Var0 (rn(t))). In this case the
raw (non-central) moments E0 [r

m(t)] are known and easy to compute:

• For Z ∼ N (0, 1) we have the following raw (non-central) moments:

E [Zm] =

{
(m− 1)!!, m even,
0, m odd.

• For X ∼ N
(
µ, σ2

)
the following central moments:

E [(X − µ)m] = E [(σZ)m] = σmE [Zm] .

Using the binomial theorem we can easily obtain an expression for the raw (non-central)
moments E [Xm].

For the rHW model, i.e., r(t) is constructed as per Definition 2.1, then we use the result from
Corollary 2.2 to compute the desired moments.

Alternative methods to compute exposures of early-exercise products are an updated version
of the LSMC algorithm for exposures [10]; the Stochastic Grid Bundling Method (SGBM)
method [20], which uses a different way in which the regression approximation of the con-
tinuation value is obtained; Glau et al. [12] use an iterative polynomial interpolation over
Chebyshev nodes, where a different algorithm is proposed such that the nested simulation is
avoided altogether; finally, Joshi and Kwon [19] propose to only approximate the sign of the
future exposure through a regression, such that the regression only needs to be accurate close
to the exposure sign change, similarly to the Longstaff-Schwartz approach for pricing.

Appendix D. Additional results for EUR

Here, we present additional results for the EUR market data from Figure 2a.

Appendix D.1. Calibration

From the calibration results presented in Figure D.13 it can be seen that compared to the USD
calibration results from Figure 3, the rHW quadrature points are substantially closer to the
calibrated HW mean-reversion parameter ax Furthermore, the HW and rHW model volatilities
are not far apart.
In Figure D.14 we see that there is less volatility smile compared to USD case, and in the EUR
case there is only volatility smile for the short expiries, and the smile effect swiftly fades when
the expiry increases. All in all, there is mainly skew in this market data set. As a result, the
HW implied volatilities are significantly closer to the market implied volatilities than in the
USD case.
Figure D.15 shows that the HW and rHW models have comparable error profiles, also for
the non-coterminal ATM points. This is a consequence of the limited amount of smile in the
market, that results in quadrature points {ωn, θn}Nn=1 where the θn are close to the HW mean-
reversion ax, as well as the comparable model volatilities in Figure D.13b. As a result, we also
expect that this will translate into a smaller difference between HW and rHW exposures and
xVAs than in the USD case.
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(a) Quadrature points for rHW. (b) Model volatilities.

Figure D.13: Calibration of the EUR market data from Figure 2 for N = 5 and quadra-
ture points for N (â, b̂2) with â = 0.031220 and b̂ = 0.031681. The calibrated HW
mean-reversion is ax = 0.019659.

(a) 1Y expiry, 29Y tenor. (b) 5Y expiry, 25Y tenor.

(c) 10Y expiry, 20Y tenor. (d) 25Y expiry, 5Y tenor.

Figure D.14: Market and model swaption implied volatilities for the calibrated param-
eters from Figure D.13.

Appendix D.2. Exposures and xVAs

Appendix D.2.1. Swaps

As expected, the exposures presented in Figure D.16 show that the effects are the same as in
the USD case, albeit with a less significant impact.
The same can be said for the xVA metrics in Table D.3: there is less impact of the smile on
the metrics, where in the EUR case we see a maximum of 3% impact on the metrics (ignoring
the OTM BCVA case due to low magnitude). Even if the smile effect are less pronounced than
in the USD example, it is still non-negligible.

Appendix D.2.2. Bermudan swaption

For the Bermudan swaption we draw similar conclusions as before, where the USD conclusions
extend to the EUR case, but the smile impact is smaller. For example, for the ATM case
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(a) HW model. (b) rHW model.

Figure D.15: Implied volatility calibration error for all ATM points of the EUR volatility
surface.

(a) EPE(t, ti) (b) ENE(t, ti)

(c) PFE(t, ti; 99) (d) PFL(t, ti; 1)

Figure D.16: Comparing exposures for an ATM receiver swap (K = KATM).

Model K Moneyness CVA(t0) DVA(t0) BCVA(t0)
HW KATM ATM 537.883 -183.441 330.007
rHW 530.321 -183.049 323.514
HW 1.5 ·KATM ITM 879.959 -94.056 718.750
rHW 867.425 -91.322 709.683
HW 0.5 ·KATM OTM 298.740 -327.966 -10.502
rHW 302.685 -333.410 -11.358

Table D.3: xVA metrics for the EUR receiver swap example, for various strikes.

presented in Figure D.17 there is a 12% impact on CVA, whereas in the USD case this was a
62% impact. Again, even though the smile effect is smaller, it is still non-negligible.
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(a) EPE(t, ti) (b) PFE(t, ti; 97.5)

Figure D.17: Comparing HW and rHW (potential future) exposures for a receiver
Bermudan swaption on an ATM swap (K = KATM). HW CVA(t0) = 230.486 and
rHW CVA(t0) = 259.783.
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