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We perform a comprehensive analysis of a collective decision-making model inspired by honeybee
behavior. This model integrates individual exploration for option discovery and social interactions
for information sharing, while also considering option qualities. Our assessment of the decision
process outcome employs standard consensus metrics and investigates its correlation with conver-
gence time, revealing common trade-offs between speed and accuracy. Furthermore, we investigate
fluctuations arising from finite-size effects. In scenarios with strong interdependence, we identify
an absorbing phase transition and scrutinize its key features, including critical fluctuations in finite
spatial systems. We find that fluctuations play a significant role in the collective decision-making
process, particularly when options have similar qualities. Our findings are especially relevant for
finite adaptive systems, as they provide insights into navigating decision-making scenarios with
similar options more effectively. Finally, we show that this model also fulfills Weber’s Law of per-
ception, aligning with previous analyses of collective-decision problems in their adherence to different
psychophysical laws.

I. INTRODUCTION

Collective decision making is an emergent, self-
organized phenomenon by which a group of agents, each
with its own decision mechanisms at the individual level,
reaches an agreement on a certain task or topic [1–4].
From humans taking part in elections, social mammal
herds, flocking fish, foraging insect colonies or robot
swarms, collective decision making is an ubiquitous pro-
cess across all scales of biological and artificial complex-
ity [1, 2, 5–7]. Thus, addressing this question requires
interdisciplinary approaches integrating fields such as so-
ciology, behavioral ecology, biology, physics, computer
science and communication studies, among many oth-
ers [1, 8]. Through empirical observations, field experi-
ments, laboratory studies, and computational modeling,
researchers strive to unravel the intricate dynamics of
collective decision making and its significance.

Many efforts have been devoted in the modeling of
opinion dynamics in order to understand how a collective
makes a decision among a set of options. Initial attempts
devised models that encompassed simple imitation rules
controlling the build up of an agreement between equiv-
alent options, such as the voter model [9, 10] or the ma-
jority rule model [11]. This models, though, have been
regarded as too unrealistic in their basic formulation, and
many more complex models have been proposed in order
to capture a richer spectrum of social behaviors, such as
partisanship, heterogeneity, personalized information or
non linear interactions [12–17].

In the realm of animal behavior, the existence of a re-
markable diversity of animal signals has enthralled not
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only researchers studying collective motion and consen-
sus formation but also non-experts, as these signals em-
body some of the most captivating facets of the natural
world. Evolving to facilitate and enrich communication,
these signals are conspicuous and compelling, even to
casual observers. Animal signals prompt a myriad of sci-
entific inquiries probing their functions, the information
they convey, their production mechanisms, and the evo-
lutionary processes driving them. These questions en-
capsulate the essence of comprehending animal commu-
nication and its significance in collective decision-making
within the natural world.

In recent years, the collective behavior exhibited by
social insects has become a focal point of interest within
the scientific community. They conceive a paradigmatic
example of systems formed by rather simple units ex-
hibiting this kind of collective emergent phenomena. In
particular, the nest-site selection process in honeybee
swarms, widely studied by biologists and ecologists [18–
20], has laid the ground for a great number of collective
decision making models inspired in this fascinating pro-
cess [21–25], and for further exploration of these dynam-
ics in robot swarms [26–29].

In a bee-like house-hunting process, agents can adopt a
wider spectrum of behaviors beyond the usual imitation
rules. Initially, they must discover available options ei-
ther through individual exploration or by communicating
with peers using different signaling mechanisms. Addi-
tionally, they have the ability to abandon options and
become uncommitted or neutral. Lastly, they may cross-
inhibit other peers with different opinions. Importantly,
in honeybee-inspired models, agents are able to estimate
the qualities of options, which significantly impacts their
subsequent signaling behavior [30]. Specifically, the bet-
ter they estimate the quality to be, the longer they will
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advertise this option to their peers. This mechanism al-
lows a positive feedback loop to regulate the group’s opin-
ion formation, discarding the worst option in favor of the
more suitable ones. Ultimately, a collective agreement is
reached through a combination of individual exploration
of the environment to identify possible options, estima-
tion of their quality, and information exchange among
members of the group.

List, Estholtz and Seeley presented an agent-based
model (in the following, the LES model) of the decision
making process performed by honeybee swarms [21], fur-
ther developed analytically later by T. Galla [31], which
focuses on these three features mentioned above. The
LES model is a simple model that introduces option qual-
ities into the decision process. By balancing individual
option exploration and social interactions, it effectively
captures decision-making dynamics. The main result
highlighted in the original investigation is that when indi-
viduals possess sufficiently accurate estimates of the qual-
ities and engage in a high degree of social interaction, the
swarm tends to converge towards collective agreement,
particularly when faced with various options of differing
quality values.

In this paper, we delve deeper into studying the for-
mation of consensus by inspecting the LES model. Our
investigation focuses on the interplay between social feed-
back and individual exploration, which the model bal-
ances through a single parameter known as the “interde-
pendence” parameter. The intensity of individual, inde-
pendent exploration serves a dual purpose. On one hand,
it is essential for the group to perceive all available op-
tions or to adapt in changing environments [28, 32]. On
the other hand, excessive individual exploration can in-
troduce noise that hampers the effectiveness of the afore-
mentioned positive feedback loop. Agents tend to over-
look the actual state of their peers and adopt opinions
based on the outcome of their own exploration. Con-
sequently, stronger social interaction is required to bal-
ance this effect. Recent work highlights the capability
of decentralized systems to effectively balance noise with
social interactions under various scenarios [33–35].

We approach the problem by considering the mean-
field model equations and complementing these results
with simulations in fully connected networks and regular
lattices in finite dimensions. These simulations help us
address finite size effects and convergence times. We con-
duct an exhaustive parametric exploration of the model,
which intriguingly has led us to establish a connection be-
tween a specific limit of this model and the well-known
contact process. Following recent developments in col-
lective decision-making models inspired by honeybee be-
havior, we demonstrate how this model may also adhere
to certain psychophysical laws that describe organisms’
perception when discriminating between various stimuli
or options [36].

The paper is organized as follows. In Section II, we
provide a brief review of the model formulation and its
analytical solution, highlighting results in specific limit-
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FIG. 1. Schematic representation of the transitions occurring
between the commitment states of the LES model. Agents
transition from being uncommitted (si = 0) to being com-
mitted to option α (si = α) with a probability denoted as pα,
where α ranges from 1 to k. If they fail to commit to any of
the k options, they remain uncommitted with a probability
p0. Once an agent is in a committed state, it can transition
back to the uncommitted state with a probability rα. Notice
that direct transitions between different committed states are
not permitted.

ing scenarios. Section III presents a thorough analysis of
the model and its significant findings. In Sections IIIA
and III B, we initiate our investigation by examining the
possibility of consensus formation and its characteristic
convergence time within a binary decision context. This
is followed by an exploration of the significance of finite
size effects in Section III C. In Section IIID, we investi-
gate the correlation between the equal-quality and equal-
discovery binary model and the contact process, along
with its characteristic non-equilibrium critical behavior.
Furthermore, in Section III E, we discuss the model’s
alignment with Weber’s Psychophysical Law of percep-
tion. We close this section by analyzing a multi-site ex-
tension of the model that encompasses more options than
the typical binary scenario (Section III F). Finally in Sec-
tion IV, we present our main conclusions.

II. MODELING FULLY-CONNECTED
SCOUT-BEE-LIKE SWARMS

List, Elsholtz, and Seeley introduced their honeybee-
inspired collective decision-making model in [21]. This
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model encapsulates the primary mechanisms through
which a swarm of honeybees achieves a collective deci-
sion. Honeybees possess the ability to independently dis-
cover potential nest site options and evaluate their qual-
ity. Subsequently, they communicate their findings to the
rest of the swarm. Concurrently, bees can interact with
their peers and opt to adopt an opinion already present
within the group.

The LES model comprises a swarm of N bees, denoted
by i = 1, ..., N , and k potential nest sites, denoted by
α = 1, ..., k. Each site is associated with an intrinsic
quality, qα ≥ 0, and an a priori self-discovery probability
πα ≥ 0, which are considered fixed model parameters
and do not change over time. Throughout the text, and
without loss of generality, we opt to label the sites in
ascending order of quality, such that q1 ≤ ... ≤ qk.

The decision process unfolds in discrete time steps. At
any given time step, a bee can either be uncommitted,
denoted by the state variable si(t) = 0, or committed to
a specific option α, indicated by si(t) = α, and signaling
its preference to its peers. Bees have the flexibility to
transition between the uncommitted state and any com-
mitted state, but cannot directly switch between differ-
ent committed states. The system’s evolution is governed
by a set of transition probabilities (pα,t+1, rα,t+1), repre-
sented by arrows in Fig. 1, determining commitment and
uncommitment events based on the system state at time
t for the subsequent time step t+ 1:

si(t) = 0
pα,t+1−−−−→ si(t+ 1) = α

si(t) = α
rα,t+1−−−−→ si(t+ 1) = 0, (1)

The commitment probabilities {pα,t} are determined
by the following expression:

pα,t+1 = (1− λ)πα + λfα,t. (2)

The first term of this equation represents the likelihood
that a scout bee independently discovers site α, while
the second term quantifies the probability that the bee
commits to state α by following the advice of its peers:
fα,t denotes the fraction of agents promoting site α at
time t. These terms are weighted by the interdepen-
dence parameter, λ. This parameter, ranging between 0
and 1, determines the extent to which bees depend on
each other to reach their commitment decision. Vanish-
ing interdependence (λ→ 0) signifies that bees will com-
mit to a site solely based on independent exploration.
Conversely, high interdependence (λ → 1) means that
bees will mostly consider their peers advertisement in or-
der to make a commitment decision. Probabilities must
be normalized, so Eq. (2) must satisfy

∑k
α=0 pα,t = 1.

It’s important to note that we include the uncommitted
state 0 in the normalization condition. Additionally, the

normalization condition implies that
∑k

α=0 fα = 1, and

consequently
∑k

α=1 πα ≤ 1.
The uncommitment transition probabilities rα,t are in-

herently linked to the qualities of the sites. In the origi-

nal LES model, transitions from committed to uncom-
mitted states occur deterministically after a predeter-
mined commitment time has elapsed. An agent commits
to an option and advertises it for a fixed duration. To
render the model’s equations mathematically tractable,
T. Galla [31] replaced this deterministic process by a
stochastic process defined by the following rates:

rα = q0

[
µ

K
+

1− µ

qα

]
, α = 1, ..., k. (3)

The parameter µ represents the extent to which bees in-
dependently assess the quality of a site. When µ = 0,
the duration of a dance relies solely on the quality of
the site, indicating that bees independently evaluate the
site’s quality. Conversely, when µ = 1, the site’s quality
becomes irrelevant, and bees predominantly advertise an
option for a generic period of time, typically related to
a new parameter K. This parameter K is uniform for
all sites, representing, for example, the maximum qual-
ity among all the options. The parameter q0 ensures that
0 < rα ≤ 1 and represents the characteristic time scale
of the problem. Here, we set q0 = 1, and primarily fo-
cus on the case where µ = 0. Consequently, the average
duration of the advertisement for site α is 1/rα, which
is proportional to qα. The stochastic representation of
these transitions still preserves the principal character-
istic of the deterministic duration in the original model:
the higher the quality of the state, the longer agents will
remain committed and advertise for it.
The stochastic problem can be analyzed using a mas-

ter equation, from which one can derive a set of nonlin-
ear differential equations describing the evolution of the
average fraction values ⟨fα,t⟩, henceforth referred to as
the average dancing frequencies, for each state α. By
following the mathematical details outlined in [31], and
assuming a fully connected, mean-field-like system, one
can arrive at the following equations:

⟨ḟα,t⟩ = ⟨f0,t⟩[(1− λ)πα + λ⟨fα,t⟩]− rα⟨fα,t⟩ (4)

where ⟨f0,t⟩ = 1−∑k
α=1⟨fα,t⟩. Equation (4) can be read-

ily integrated numerically, for example, using the Euler
scheme. Furthermore, an expression for the stationary
points, denoted as f∗α, can be obtained by solving a sys-
tem of k coupled equations, which is derived by setting
⟨ḟj,t⟩ = 0. By rearranging the resulting equations, one
can derive expressions for the stationary values of the
population of each site in terms of f∗0 :

f∗α =

[
rα
f∗0

− λ

]−1

(1− λ)πα α = 1, ..., k. (5)

As formulated, the model can be analyzed through agent-
based simulations or by numerically integrating Eq. (4).
However, equations can be derived to determine the
model’s stationary points, from which analytical expres-
sions can be obtained under certain specific limits. In
the following subsection, we provide an overview of these
analytical solutions.
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A. Stationary deterministic solutions

Since we can express f∗0 as f∗0 = 1−∑k
α=1 f

∗
α, we can

sum the k equations given by Eqs. (5) to derive a closed
equation for the stationary value f∗0 :

(1− f∗0 )

k∏

α=1

(rα − λf∗0 ) = (1− λ)f∗0

k∑

α=1

πα

k∏

β=1,
β ̸=α

(rβ − λf∗0 ).

(6)
Eq. (6) can be solved either numerically or rearranged

into a k + 1-th degree polynomial. In either approach,
we find k + 1 roots for f0, some of which may lead to
nonphysical solutions where f∗0 > 1. A linear stability
analysis is provided in Appendix A1. In the specific case
of k = 2, assuming q2 > q1 (or r2 < r1), a single physical
and stable solution f∗α ∀α is obtained. An example
of such a solution is depicted in Fig. 2A, with values
r2 = 1/10, r1 = 1/7, π1 = π2 = 0.1, λ = 0.6 and µ = 0.

1. Limit of fully independent bees

The limit case λ = 0 can be treated separately, as
it permits a simpler analytical solution of Eq. (5) (or,
equivalently, Eq. (6)), taking the form:

f∗0 =
1

1 +
∑k

β=1
πβ

rβ

. (7)

f∗α =
πα
rα

1

1 +
∑k

β=1
πβ

rβ

1 ≤ α ≤ k. (8)

2. Limit of fully interdependent bees

In the limit cases where πα = 0 for all α, or λ = 1,
where individual sourcing of information has no influ-
ence, simpler analytical solutions exist. It should be
noted that in dynamics originating from specific ini-
tial conditions, such as an all uncommitted population
(f0(t = 0) = 1), committed populations never have the
opportunity to grow in this limit. Beyond this particular
case, we can derive the stable analytical fixed point of
the model in this limit. The k + 1 fixed points solutions
of this limit take the form

f∗0 = 1, f∗1 = ... = f∗k = 0 (9)

and

f∗0 = rβ/λ, f∗α = (1− rβ/λ)δα,β ,

where δα,β is the Kronecker delta, and 1 ≤ α, β ≤ k.
In the case where λ = 1, the second family of solutions
further simplifies to f∗0 = rβ , f

∗
α = (1− rβ)δα,β , ∀β.

Although all these solutions are physically valid, only
two of them (one in the case λ = 1) are stable. Us-
ing linear stability analysis (LSA), we determine that
the stability threshold between these two solutions is de-
termined by the highest site quality, denoted as site k.
When λ < rk, the stable solution is the absorbing state
f∗0 = 1. Thus, in the absorbing state, the system remains
fully uncommitted. Conversely, when λ > rk, the stable
solution is the one with the best site taking the lead,
with f∗α = (1− rk

λ )δα,k, and the remaining proportion of
uncommitted population being f∗0 = rk

λ . In the special
case where we set λ = 1, the stability threshold vanishes
because λ = 1 ≥ rk, and the only stable solution remain-
ing is f∗0 = rk, f

∗
α = (1 − rk)δα,k. Details on the LSA

analysis are provided in Sec. A 2.
In Fig. 2B,D, we present a summary of the findings

for the binary problem with k = 2. When λ ≥ r2, only
the fixed point where the best option is imposed remains
stable, while the one where the inferior option is imposed
acts as a saddle node (stable on the simplex f2 = 0). As λ
decreases, these points gradually move upward (reducing
either f1 or f2) until they merge with the point f0 = 1 at
λ = rα. In the regime where λ < r2, the only remaining
stable fixed point is the absorbing state f∗0 = 1 fixed
point.

3. Limit of equal-quality sites

So far, our analysis has assumed that all sites differ
in quality, or at least one site’s quality is greater than
the others. However, when all qualities are equal, im-
plying rα = r for 1 ≤ α ≤ k, the only parameters that
can break the symmetry between the populations of the
different states are their discovery probabilities, πα. If,
on top of identical qualities, we also have identical dis-
covery probabilities, πα = π for 1 ≤ α ≤ k, the system
will end up in a deadlock between the k possible nest-site
options. In other words, f∗1 = . . . = f∗k , and therefore,
no consensus is reached. In this particular limit though,
the general solution for f∗0 reduces to a second-degree
polynomial, with the physical and stable solution being
f∗0 = (A−

√
A2 − 4λr)/(2λ), where A = kπ(1−λ)+λ+r.

In the specific case where we have equal-quality sites
and fully interdependent bees (πα = 0 for all α), we
find two solutions f∗0 = 1 and f∗0 = r/λ delimited by
the stability threshold value λ = r. In the former so-
lution, all the other frequencies vanish, i.e. f∗α = 0 for
1 ≤ α ≤ k, whereas in the latter the actual values of
f∗α remain undetermined (note that a null denominator
appears in Eq. (5)). According to LSA, any combination

that satisfies
∑k

α=1 fα = 1− r/λ is a potential solution.
Consequently, the stationary state reached after numer-
ical integration of Eq. (4) or in numerical simulations
of the model with those parameters is highly dependent
on the initial conditions and is susceptible to significant
finite-size effects (see Secs. III C and IIID).
In Figs. 2C and E, we summarize the results once more
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FIG. 2. Flow diagrams depicting the dynamics of collective decision-making in a binary decision scenario. Arrows indicate the
direction of the deterministic flow, while the color coding reflects the strength of the flow. Stable, saddle nodes, and unstable
fixed points are denoted by black, red, and white circles, respectively. A: General solution for π1 = π2 = 0.1, q1 = 7, q2 = 10,
λ = 0.6. Panels B, C, D, E illustrate solutions in the fully interdependent limit, πα = 0 ∀α. In panels B and D, qualities are
q1 = 7, q2 = 10, whereas in panels B and D, we have q1 = q2 = 10. Interdependence is λ = 0.6 in panels B and C, and λ = 0.05
in panels D and E. In both cases the absorbing transition appears at λ = r2, r2 = 0.1. F, G: Solutions in the limit of null
discovery for the good option, π2 = 0, while π1 = 0.25. Qualities are q1 = 7, q2 = 10, and λ = 0.6 (Panel F) or λ = 0.05 (Panel
G). The absorbing transition appears at λ = λ′ ≃ 0.43. The analysis assumes perfect independent quality assessment, µ = 0.

for the binary option case in the fully interdependent
limit. When λ > r, all points in the simplex f1 + f2 =
1− r/λ (depicted as a black line) are plausible solutions.
As λ decreases, these solutions move towards lower values
of f1 or f2 until they coalesce with the absorbing state
f∗0 = 1 when λ < r.

4. Null discovery probability of the best site

The null discovery probability of the best site, πk = 0,
defines a limit where the best option is never discovered
independently. This limit emphasizes the significance of

social influence in decision-making processes, particularly
when the inherent quality of options is not apparent to in-
dividuals through independent assessment. This specific
limit can also be examined analytically. Since πk = 0, the
differential equation for the best quality site simplifies to
a straightforward expression, yielding two stationary so-
lutions: f∗0 = rk/λ or f∗k = 0. With the first solution, one
can readily derive the remaining stationary frequencies:
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f∗0 =
rk
λ
, f∗α =

πα(1− λ)rk
λ(rα − rk)

α = 1, ..., k − 1,

f∗k = 1− rk
λ

[
1 + (1− λ)

k−1∑

α=1

πα
rα − rk

]
.

For the second stationary point f∗k = 0, one arrives at
a system of k−1 coupled equations for the other commit-
ted populations. While it is possible to derive analytical
expressions for f∗α (α ̸= k) and f∗0 for a small number of
sites, it is often more practical to use Eqs. (5) and (6),
or to resort to numerical integration of Eq. (4) to obtain
the complete solution.

In conclusion, the noteworthy aspect of this particular
limit is the transition from a stable state where there is
no population for the best option (f∗k = 0) to a state
where f∗k ̸= 0, as described by Eq. (10). The transition
occurs as λ increases, at the specific value

λ′ =
1 + ψ

r−1
k + ψ

where ψ =

k−1∑

α=1

πα
rα − rk

(10)

It should be noted that while conducting a linear stability
analysis on these solutions confirms the change in stabil-
ity of the solution with f∗k = 0 (stable when λ < λ′),
the solution provided by Eq. (10) is always stable. How-
ever, it becomes nonphysical when λ < λ′, as f∗k < 0.
The change in sign occurs precisely at the same value λ′.
When the qualities are equal, the regime where f∗k ̸= 0
disappears, effectively reducing the system to one with
only k− 1 options, which can be analyzed using the gen-
eral solution.

The two regimes are depicted in Figs. 2F and G, fo-
cusing on the specific case of k = 2. As λ approaches λ′

from above, f2 → 0 and the stable point approaches the
unstable solution (Fig. 2F). At λ = λ′, these two points

merge, and in the regime λ < λ′, the only stable solution
is where no population is committed to the best-quality
site.

III. RESULTS

Going beyond the mean-field approach, previous stud-
ies have delved into the stochastic dynamics of this
decision-making model through simulations conducted
on a regular lattice [31] and on random networks [29].
Additionally, experiments have been conducted using
mini-robots as a physical platform [29], albeit with a lim-
ited parameter set explored. In the following, we focus
on characterizing the model’s behavior using a mean-field
approach, conducting an exhaustive exploration across a
broad parameter range. To quantify the stationary re-
sults, we rely on analytical expressions. Simulations con-
ducted on fully connected systems or square lattices yield
average results that align perfectly with these analytical
solutions. However, to complement our analysis, we take
advantage of simulations to measure the time needed to
reach the stationary state and to address finite-size ef-
fects.
We will first concentrate on the specific case of a binary

decision problem, a topic extensively studied in various
general opinion dynamics models [10–12, 14, 17, 37–41].
This scenario has also been the focus of other honeybee-
inspired models [22–25]. The generalization to larger val-
ues of k is discussed later in Section III F.
As detailed in the model description section, we con-

sistently assume that site 2 holds the highest quality, de-
noted by q2 > q1. Additionally, we assume that bees in-
dependently assess the qualities of the sites, represented
by the model parameter µ = 0. This implies that the
abandonment rates of the dances depend solely on the
qualities of each site, defined as rα = q0/qα. Previous
research on this model has shown that, under these con-
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FIG. 4. A,B: Color-maps illustrating the consensus parameters Q2 and Q′
2, as defined in Eqs. (11) and (12) respectively with

x = 2, across the parameter space (π1,2, λ). The black lines represent the crossover points Q2 = 0 or Q′
2 = 0. C: Time to

reach the stationary state, tss, obtained from simulations with a swarm size of N = 5000 bees. The fully interdependent limit
(πα = 0 or λ = 1) is not included in the maps (see discussion in Sec.IIID). The site quality parameters are held constant at
(q1, q2) = (7, 10) across all three maps. D,E: Crossover lines λ∗(Q2, Q

′
2 = 0) as a function of π1,2. Each curve represents a

different value of q1, while q2 = 10 is held constant. F: Time to reach the stationary state, tss, obtained from simulations plotted
against the quality of the inferior option, q1, while maintaining q2 = 10, for three values of the interdependence. Parameters
π1 = π2 = 0.1 and N = 5000 are fixed. Simulations start from uncommitted initial conditions. The markers are color-coded
based on the consensus established at the stationary state. They are slightly jittered around the q1 axis to allow for better
visualization of the color code.

ditions, the swarm can identify the best site across a wide
range of interdependence values, λ [21, 31]. In this setup,
we investigate the interplay between group communica-
tion, represented by the model parameter λ, and indi-
vidual exploration success, captured by πα. We explore
scenarios where sites may vary in their likelihood of being
discovered, denoted by π1 ̸= π2 (asymmetric scenario), or
where they share the same discovery probability, denoted
by π1 = π2 (symmetric scenario).

A. Symmetric discovery scenario

We start by examining the case where the available
sites have an equal likelihood of being found, i.e., π1 =
π2 = π1,2, and they only differ in their quality, with

q1 < q2. We present our findings by exploring the state
space defined by (π1,2, λ) for various combinations of site
qualities, while keeping q2 = 10 constant and varying q1.

Figure 3A-C represents the particular values of the fre-
quencies f0, f1 and f2 for a particular choice of the qual-
ities, (q1, q2) = (7, 10). In these plots, we observe smooth
trends for all these quantities. As the interdependence in-
creases, the frequencies f0 and f1 decrease regardless of
the value of the discovery probabilities. This decline fa-
vors the proportion of bees committed to the best site, f2.
When bees rely more on the opinions of their peers, the
best quality option benefits from the positive feedback
generated by longer advertisement times. Conversely,
when independent discoveries increase, f1 increases at the
expense of f0 and f2. This shift occurs because as π1,2
values increase while keeping λ constant, more advertise-
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ments are motivated by independent discoveries rather
than by opinion sharing. Consequently, information is in-
troduced equivalently for both sites, and the best-quality
reinforcement effect of λ is hindered. In the limit where
the discovery probabilities are small, the good option is
easily imposed by interdependence-mediated discussion.
However, when π1,2 = 0, we observe a transition to the
absorbing regime, f∗0 = 1, at λ = r2 = 0.1.
With these results in mind, we can quantify the out-

come of the decision process by defining a consensus.
This involves setting a threshold condition on the val-
ues of the frequencies fα that is necessary to conclude
that the swarm has reached a decision. Such a consensus
will be defined with respect to the best option, as our
main focus is discerning whether the swarm is able to
retrieve the best available option.

The simplest approach is to define a threshold on the
value of the population committed to the best option.
For instance, one can require that at least half of the to-
tal population is committed to the best option in order
to consider the system to have made a successful deci-
sion. This threshold line is depicted as the contour line
f2 = 0.5 in Fig. 3C. We observe that a large portion of the
state space (π1,2, λ) lies above this threshold line. When
the interdependence is low, and thus the competition be-
tween options is stronger, the system may fail to achieve
such a consensus. Furthermore, when the discovery prob-
abilities decrease drastically, the system remains mostly
uncommitted, which is insufficient to reach a consensus.
Increasing the threshold value for f2, such as requiring
a two-thirds majority (f2 = 2/3), will shift the crossover
point towards higher values of interdependence.

While setting a threshold value on one of the popu-
lations provides a straightforward measure of consensus,
this method may fail to capture scenarios where the pop-
ulation committed to the best option is substantial, yet
faces significant competition from other sites. Addition-
ally, it might overlook situations where one site clearly
leads, but the committed population has not yet met
the prescribed threshold. To address these concerns, we
adopt the consensus definition proposed by LES in their
original paper [21]. This approach involves comparing
the two largest values of fα, offering a more comprehen-
sive assessment of the decision-making dynamics. In a
general manner, we can define a consensus measure as
follows:

Qx = f2 − xf1. (11)

where x indicates whether we require a simple majority
(x = 1), a two-thirds majority (x = 2) provided that
f0 = 0, or any other desired threshold between the two
best options. Figure 4A shows the value of Q2 in the
(π1,2, λ) space for the same choice of qualities as before.
The state space is divided between a region of consen-
sus for high λ and region without consensus for small λ,
separated by a consensus crossover line, Q2(λ

∗) = 0. We
observe a similar trend as with the f2-threshold consen-
sus definition: high values of π1,2 require high values of

the interdependence in order to retrieve the best option
among the noise, which is equivalently introduced for
both options. On decreasing the discovery probabilities,
the range of λ yielding consensus grows, due to the main
mechanism under the collective decision being the pos-
itive reinforcement on the best quality options through
interdependence.
Fig. 4D illustrates the consensus crossover lines for dif-

ferent choices of q1, while keeping q2 = 10 fixed. When
we increase the quality of the bad option, consequently
increasing its advertisement time, the system requires a
higher degree of interdependence to favor the higher qual-
ity option. This trend would reach a turning point when
q1 = q2. In this scenario, the system reaches a dead-
lock, where f1 = f2. Conversely, when q1 is reduced,
the crossover line shifts to lower values of λ∗, potentially
leading to a situation where interdependence is not nec-
essary to achieve consensus. For instance, the crossover
line for q1 = 5 lies along the x-axis, with λ∗ = 0 for all
π1,2. In this case, the difference in advertisement time
is sufficient to maintain a significant difference between
f2 and f1, facilitating consensus even in the absence of
interdependence. Furthermore, it’s notable that the con-
sensus crossover lines terminate abruptly at the point
(π1,2, λ) = (0.0, 0.1). As we demonstrated earlier, in the
fully interdependent limit (π1,2 = 0) the system stays
fully uncommitted until the threshold λ = r2 = 0.1.
Beyond this threshold, f2 begins to take positive values
while f1 remains zero, resulting in trivial consensus.
For π1,2 > 0, we can predict the value of q1 below which

consensus will always be achieved without the need for
interdependence. Using the model solution at λ = 0 and
the general definition of consensus, Qx = f2 − xf1, we
arrive at the following condition:

q1 <
q2
x

Consequently, if x = 2, consensus is readily achieved if
q1 < q2/2, while a simple majority consensus is always
guaranteed if q1 < q2. Reintroducing the independent
quality assessment parameter of the model, µ, modifies
the values of these thresholds. We provide a brief discus-
sion of this case in Appendix A3.
We would also like to acknowledge that the definition

of consensus in Eq. (11) may not be very appropriate to
describe the low discovery region of the parameter space
where π1,2 → 0. There, we observe that λ∗ decreases,
suggesting that a scarce environment with low π1,2 is the
most beneficial situation for the swarm, as it allows for
the widest range of λ yielding consensus. However, it’s
important to note that the range of uncommitted popu-
lation increases drastically in that region, and the system
can even transition to an absorbing state around λ = r2.
Therefore, this effect should be taken into account in the
quorum measure. In the original paper by LES [21], the
consensus definition is strengthened by requiring a min-
imum proportion of agents engaged in the decision pro-
cess. Here, we propose a slightly different definition to
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FIG. 5. Color-maps illustrating the stationary values of f0, f1 and f2 are presented in panels A, B, and C, respectively, for
the asymmetric discovery scenario in the parameter space (π2/π1, λ). The site site qualities are fixed at (q1, q2) = (7, 10), and
the discovery probability for site 1 is set to π1 = 0.25, while π2 is changed. Color gradients indicate the quantitative values of
fα according to the color bars, while continuous lines represent iso-population levels in the parametric space.

encompass this effect along with the site competition.

Q′
x = f2 −max(f0, xf1). (12)

Consequently, when there is not a sufficient population
committed to an option other than the winner, the com-
petition is solely against the undecided population. Un-
like when two options compete, where remaining unre-
solved is not considered a valid outcome of the decision
process, this definition only requires that the commit-
ted population exceeds the uncommitted to establish a
quorum. As shown in Fig. 4B (with x = 2), this defini-
tion automatically excludes the region of small π1,2 and
λ from consensus. This ensures that we do not conclude
there is consensus when a large proportion of the pop-
ulation remains uncommitted, while still capturing the
effect of site competition that occurs when the discovery
probabilities increase. Note that under this definition,
the condition that consensus is granted if q1 < q2/x no
longer holds (Fig. 4E), at least not for all π1,2. When
the subleading population is uncommitted, we find the
threshold value π2 > r2. Consequently, we observe a
modified crossover line from π1,2 = 0 up to π1,2 = r2.
Right at the fully interdependent limit (π1,2 = 0), the
condition that must be satisfied is λ > 2r2 = 0.2.

Up until now, we have focused on the swarm’s ability
to reach consensus across different combinations of model
parameters. However, it’s equally important to consider
the decision time, whether consensus is achieved or not,
to fully understand the effect of these parameters on the
decision process. Figure 4C shows the timesteps required
for the system to settle at the stationary state, obtained
from simulations, across the state space (π1,2, λ) (details
on how tss is obtained are provided in the Appendix A 4).
The trend observed is similar to that of consensus: in-

terdependence tends to increase the decision time across
all values of π1,2, while the discovery probabilities speed
up the process, reducing tss. This correlation between

the established consensus value and the time to reach
the stationary state suggests a speed-accuracy trade-off,
commonly observed in biological systems [42] an in mod-
els of collective decision making [27, 41]. Achieving the
best decision typically takes longer at higher values of λ,
while processes are quicker below the consensus crossover
line, where a less accurate consensus, such as a simple
majority, can be reached much faster. Similarly, increas-
ing the value of the discovery probabilities, and thus the
introduction of independent information, accelerates the
decision process at the cost of a lower value of Q′, which
can be even negative, depending on λ. Only at the lim-
its λ → 0 or λ → 1 π1,2 has practically no effect: in
the former, there’s no discussion mediated by interde-
pendence, resulting in a quickly established yet inaccu-
rate stationary state, while in the latter, social feedback
dominates the process, with little impact from individ-
ual exploration. It’s interesting to note the agreement
between the stationary times discussed here and the re-
laxation times obtained from the linear stability analysis
eigenvalues, as depicted in Fig. A1.

Finally, we must also acknowledge the influence of the
site qualities on the stationary time. Figure 4F illustrates
tss versus q1, with fixed q2 and discovery probabilities,
for three values of the interdependence parameter. Each
point is color-coded according to the actual value of the
achieved consensus at the stationary state. Primarily, we
observe that as q1 increases, the stationary time tends to
increase, especially for large λ. This trend persists until
the point where the system fails to reach consensus, at
which point tss starts to decrease. While this doesn’t
necessarily indicate a direct speed-accuracy trade-off (as
Q′ was already decreasing before tss started to do so),
it’s intriguing to note the correlation between tss and the
consensus value. The speed-accuracy trade-off reemerges
when examining fixed values of q1: increasing λ leads
to higher consensus values, but also to longer stationary
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FIG. 6. A: Color-map illustrating the stationary value of the consensus parameter Q2 (as defined from Eq. (11) with x = 2)
in the parametric space (π2/π1, λ). Site qualities are fixed at (q1, q2) = (7, 10), and the discovery probability for site 1 is set to
π1 = 0.25. The solid line indicates Q2 = 0, while the dashed line indicates a simple majority, Q1 = 0. B: Crossover lines λ∗

above which the consensus Q2 becomes positive as the self-discovery probability π2 is varied. Each curve represents a different
value of site-1 quality q1, while q2 = 10 and π1 = 0.25 are held constant. C: Crossover lines λ∗ above which Q2 becomes
positive as π2 is varied. In this panel, qualities are held constant, (q1, q2) = (7, 10), and we illustrate the effect of different
values of π1. D: Time to reach the stationary state tss in the state space (π2/π1, λ) obtained from simulations. Parameters
π1 = 0.25, (q1, q2) = (7, 10) and N = 5000 are fixed. E: Time to reach the stationary state, tss, obtained from simulations
plotted against the quality of the inferior option, q1, while maintaining q2 = 10, for three values of the interdependence.
Parameters (π1, π2) = (0.25, 0.05) and N = 5000 are fixed. Simulations start from uncommitted initial conditions. Color
markers indicate the consensus value attained at the stationary state. They are slightly jittered around the q1 axis to allow for
better visualization of the color code.

times. This trend holds for moderate values of q1; when
the problem difficulty is low (q1 << q2), λ has minimal
impact on tss.

B. Asymmetric discovery scenario

In the following section, we decouple the parameters
π1 and π2, allowing one site or the other to be discovered
more easily by the swarm. We still maintain q1 < q2.
Consequently, we anticipate that when π2 > π1, the
group will have no trouble reaching consensus, whereas
when π2 < π1, interdependence will become crucial for
the group to select the best possible option.

Continuing in a similar manner as the previous sec-

tion, we explore the state space for a particular choice
of site qualities. With three parameters – π1, π2 and λ
–, we maintain π1 fixed and present our results in the
state space (π2/π1, λ). Figure 5 illustrates the behav-
ior of f0, f1 and f2 for site qualities (q1, q2) = (7, 10)
and π1 = 0.25. Once more, we observe a decrease in
the proportion of the uncommitted population as either
the discovery probability (for site 2) or the interdepen-
dence increases. This decrease predominantly benefits
the population committed to option 2, as evidenced by
the behavior of f1 and f2. As expected, increasing π2
leads to a growth in f2 while diminishing the other pop-
ulations in the system. Similarly, raising the values of the
interdependence also results in an increase in the popu-
lation committed to the better option, accompanied by a
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decrease in f1. It is noteworthy that even if the discov-
ery probability of the better option is much smaller than
that of the other option, sufficiently large values of in-
terdependence enable the swarm to still select the better
option. In this regime, only when interdependence is low
does the worse option take the lead. In fact, for interde-
pendence below a certain value λ′, the population com-
mitted to the better option is exactly null (as indicated
by the dash-marker in Fig. 5). Similarly to the symmet-
ric scenario, where we observed an absorbing transition
at λ = r2 in the fully interdependent limit (πα = 0),
here, when π2 = 0, we observe a transition from f2 = 0
to f2 ̸= 0 at λ = λ′. This value of λ′ depends on both
the qualities and the discovery probability of option 1.

As before, we can quantify the outcome of the decision
process in terms of a consensus parameter. Requiring
f2 to reach a certain threshold value produces crossover
lines λ∗ that decrease with π2, as seen in the contour
lines on Fig. 5C. This trend holds up to point where con-
sensus is achieved without the need for interdependence,
depending on the required threshold value. Beyond this
point, the difference in advertising times is enough to
impose a majority on the better option, regardless of the
particular values of π1 and π2.
Introducing the consensus definition that accounts for

the difference in the two most populated sites produces
a very similar trend in the crossover lines. In Figure 6A,
the value of a two-thirds majority consensus in the vot-
ing population (Q2) across the state space is presented,
along with its crossover line (the solid line), as well as the
crossover line for a single majority consensus, Q1 (the
dashed line). High interdependence facilitates consen-
sus even in cases of drastic differences in the discovery
probabilities, whereas at smaller values of λ, a region
where consensus cannot be reached emerges. Below the
Q1 crossover line, the site with the lower quality is im-
posed, at least, by a simple majority.

Figure 6B illustrates the crossover line λ∗(π2;π1, x =
2) for different choices of the bad site quality, q1. The
region where consensus cannot be reached expands as q1
increases, pushing the parameters that yield consensus
to very high levels of interdependence or a much greater
probability to discover the good site. We can determine
the value of π2 from which consensus can be achieved
without the need for interdependence. Using the solution
at λ = 0 (Eqs. (7) and (8)), and the consensus definition,
this value is given by:

π2 ≥ x
π1q1
q2

.

As with the symmetric discovery scenario, introducing
non-null values of µ will alter the value of this threshold;
however, the behavior of the system remains unchanged.
Further details are provided in Appendix A 3.

The overall magnitude of the discovery probabilities
also influences the consensus crossover. Similar to the
observations in the symmetric discovery scenario, smaller
magnitudes of the individual πs necessitate smaller val-

ues of λ∗. This pattern persists in the asymmetric sce-
nario as well. Figure 6C illustrates this effect: even with
the same ratio π1/π2, if the actual values of π1 and π2
are smaller, the consensus crossover line occurs at lower
values of interdependence.
It’s worth noting that unlike the symmetric discovery

probability case studied previously, in this scenario and
for the specified parameters, there is not a significant
region where the uncommitted population grows notice-
ably, provided that one of the options has a sufficiently
large discovery probability. Hence, there’s no need to
introduce a modified consensus definition that empha-
sizes the presence of a large uncommitted group. This
feature only becomes relevant if, in the limit π2 → 0,
either π1 → 0 –which results in the previously discussed
scenario–, or q1 → 0, implying that option one is effec-
tively expendable.
Finally, we turn our attention to the time required

to reach the stationary state, as depicted in Fig. 6D.
Once again, we observe the time dilation effect of λ, cou-
pled with an increase in consensus, indicating a speed-
accuracy trade-off. However, in contrast, when π1 is held
constant, increasing π2 does not exhibit the same effect.
Increasing the discovery probability for the good option
simplifies the decision problem, achieving better consen-
sus in a shorter time. Interestingly, we notice that in
the limit π2 → 0, the stationary time increases abruptly
around the consensus crossover. This implies that achiev-
ing consensus for the best option in such an unfavorable
limit comes at the expense of a significantly prolonged de-
cision process. A similar effect is observed when inspect-
ing the characteristic relaxation times obtained from the
solutions’ LSA (see Fig. A1). There we observe that this
increase in the relaxation time is instead found around
the f2 transition at λ = λ′.
When examining the effect of the bad option quality,

we find a similar result to the symmetric discovery sce-
nario. The stationary time increases with increasing q1,
in parallel with an increase in the value of consensus.
However, when the system is unable to achieve consen-
sus, the stationary time begins to decrease.

C. Finite Size Effects

The deterministic solution analyzed in the previous
subsections aligns perfectly with the results obtained by
averaging the stationary state attained in mean-field sim-
ulations across all parameter space. However, stochas-
tic simulations enable us to observe significant finite-size
fluctuations. An example of such fluctuations for a spe-
cific choice of parameters is illustrated in Fig. 7A, where
we show the probability density functions (PDFs) of sta-
tionary values of the dancing frequencies f1 and f2 ob-
tained in stochastic simulations on fully connected sys-
tems of various sizes (N = 50, 250, 1000). The variance
of the PDFs scales as N−1 due to the central limit theo-
rem. As a result, when the system size is relatively small,
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there is a notable overlap between the PDFs representing
the optimal (site 2) and suboptimal (site 1) options. This
indicates that a finite stochastic system may temporar-
ily exhibit at least a simple consensus for the suboptimal
(bad quality) option (f1 > f2). However, as the total
population increases, the width of these distributions de-
creases, enhancing the robustness of the decision-making
process. T. Galla further characterized these finite-size
effects using the van Kampen expansion on the inverse
system size [31].

The interplay between independent exploration and so-
cial feedback also affects the magnitude of the fluctua-
tions. In the same state space representation as in the
previous sections, Fig. 7B illustrates the standard devi-
ation of f2 in the symmetric scenario. Excluding some
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extreme values near or at the fully interdependent lim-
its, the fluctuations are most pronounced at intermediate
levels of interdependence. Moreover, the region of high
fluctuations appears to shift towards greater λ on increas-
ing π1,2, akin to the consensus crossover lines discussed
earlier.
The main rationale behind this observation lies in the

intermediate region of the state space, where the compe-
tition between the two primary drivers of the system –
independence and interdependence– is most pronounced.
When high levels of interdependence drive the system,
the optimal site is easily favoured by the interplay of
longer advertisement and high social feedback. Con-
versely, when λ is low, the stationary state is primarily
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determined by independent discoveries, with minimal or
no influence from peer communication. However, in the
central region, neither mechanism is dominant enough to
outweigh the other, resulting in broader stationary dis-
tributions. Despite this broader distribution, consensus
may still be established on average.

In the lower-left corner of Fig. 7B, we observe a null
variance, followed by a sudden increase at higher values
of λ. This corresponds to the region where the system
ends up in a fully uncommitted state, occurring when
π1,2 = 0 and λ < r2 in an infinite system. Although
analytically the change in behavior is predicted to oc-
cur precisely at λ = r2, we note that due to finite-size
effects, this behavior extends slightly beyond this thresh-
old. At λ ≳ r2, fluctuations suddenly increase as most of
the simulation results converge around the predicted sta-
ble solution, f0 = r2/λ, while, due to finite-size effects,
some results still show the system stabilizing at the fully
uncommitted state. As the system size increases, the
transition becomes sharper around the threshold λ = r2.

Lastly, let’s consider the scenario where the site qual-
ities are equal (and their discovery probabilities are also
equal) in the fully interdependent limit (πα = 0). As
we’ve discussed in the analytical solution of the model,
detailed in Sec. II A 2, the system may undergo a phase
transition between a fully uncommitted absorbing state
and an active state with finite fractions of bees adver-
tising the available sites at λ = r. We further investi-
gate this non-equilibrium phase transition in the follow-
ing section. Here, we briefly emphasize the influence of
finite-size effects under this limit. While the system may
temporarily fluctuate around the stationary state pre-
dicted by the deterministic equations, finite-size effects
ultimately break this tendency, and the system converges
towards a consensus for only one of the options, while
the other option disappears. In Figs. 8, we illustrate this
phenomenon, by representing the temporal evolution of
f0, f1 and f2 for a binary decision problem starting from
two different initial conditions. Continuous lines repre-
sent the results obtained in stochastic simulations of a
finite system consisting of N = 1000 bees, while dashed
lines represent the integration of deterministic equations
Eqs. (4), representing the behavior of an infinite system.
We observe that fluctuations introduced by finite-size ef-
fects ultimately break the symmetry between the two
available options. This can occur even when one option
initially appears to be favored.

In real-world applications, whether in ecological sys-
tems or synthetic ones like robot swarms, these fluctua-
tions are always expected to be relevant because most of
these systems are finite. An important conclusion can be
drawn from these results. In ecological systems, the abil-
ity to regulate the dissemination of information is crucial
for efficient decision-making. For instance, when options
have comparable qualities, it may be beneficial for the
group to converge quickly towards a consensus to avoid
prolonged indecision. In such cases, certain members
within the group may play a pivotal role by transmit-

ting stop exploration signals to others [20]. These signals
would effectively reduce the parameter π to near zero, sig-
naling to other group members to cease exploration and
focus on promoting consensus for one of the options. This
adaptive behavior allows the group to navigate decision-
making scenarios with similar options more effectively,
potentially avoiding resource wastage. However, deter-
ministic modeling approaches, may struggle to capture
the dynamics of decision-making processes in real finite
systems in similar circumstances.

D. Absorbing phase transition and finite size
effects in the fully interdependent limit

The analytical analysis of the model in Section IIA 3
reveals that in the fully interdependent limit (πα = 0
for all α), the system undergoes a phase transition be-
tween two states: an absorbing uncommitted state and
a partially-active state. In this limit, the system relies
entirely on imitation. Thus, if the imitation parameter
λ exceeds a critical value λc, imitation alone is sufficient
to sustain a steady state with a finite committed popu-

lation of bees, denoted as ρ =
∑α=k

α=1 fα = 1−f0, at least
for the highest quality option. However, below λc, no
bees actively advertise any site, and the system remains
locked in a state where f0 = 1.
Moreover, when qualities are equal for all sites, this

problem can be exactly mapped to the well-known con-
tact process, which exhibits the same non-equilibrium
critical behavior. In this framework, the parameter
ρ = 1 − f0, representing the fraction of agents actively
promoting available sites, acts as the order parameter of
the transition. Therefore, we anticipate that sufficiently
close to the critical threshold λc,

ρ ∼ (λ− λc)
β (13)

with β a dimension-dependent critical exponent, which in
the mean field approximation is exactly equal to β = 1.
Indeed, we can rewrite our deterministic differential

equations (Eq. (4)) by setting πα = 0 and rα = r for all
α:

⟨ḟα⟩ = λ⟨f0⟩⟨fα⟩ − r⟨fα⟩ ∀α.

Summing over all sites, one gets the mean field rate equa-
tion for the density of active sites,

dρ

dt
= λ(1− ρ)ρ− rρ. (14)

Rescaling by r, to define λ̃ = λ/r and τ = rt, and rear-
ranging, we arrive at the well-known mean-field equation
for the contact process:

dρ

dτ
= (λ̃− 1)ρ− λ̃ρ2. (15)
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FIG. 9. Absorbing phase transition in the fully interdepen-
dent limit (πα = 0, ∀α) with equal qualities (qα = 10, ∀α) for
a fully-connected system. A: Order parameter ρ = 1− f0 vs.
λ̃ = λ/λc. B: Zoom around the phase transition happening

at λ̃c = 1.

This equation has two stationary points: ρ∗ = 0 and
ρ∗ = 1 − λ̃−1, with the mean-field critical point located
at λ̃c = 1. As detailed in Section IIA 3, the absorbing
state is stable if λ̃ < 1, while the active state is sta-
ble when λ̃ > 1. Fig. 9 shows ρ vs λ̃ for simulations of
the fully-connected model alongside the analytical deter-
ministic solution. As anticipated, the analytical solution
exhibits the transition at λ̃c = 1. However, due to finite
size effects, simulations show deviations from this result,
with larger threshold values than expected for an infinite
system, λ̃c(N) > λ̃c.

The self-discovery probabilities π play the role of an
external field, as with non-null π values, an inactive site
can spontaneously become active. Similar to the con-
tact process, the introduction of this external field dis-
rupts the absorbing state and consequently the transition
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FIG. 10. Phase transition in the fully interdependent limit
(πα = 0 , ∀α) with equal qualities (qα = 10, ∀α) for stochas-
tic simulations of a binary decision process on a regular square
lattice. A: Order parameter ρ = 1− f0 vs. λ̃ = λ/λc for dif-

ferent system sizes. The inset shows ρ as a function of λ̃− 1.
A power-law ρ ∼ (λ̃ − 1)β is displayed with β = 0.583 (blue
dashed-line) to show consistency with DP exponents. If fitted,
β ≃ 0.58 ± 0.02, where the error comes from the variability
when changing the fitting region and the uncertainty in the
determination of λc. B: Susceptibility χ = N

(〈
ρ2
〉
− ⟨ρ⟩2

)
vs. λ̃ = λ/λc for different system sizes. Insets: (Left) Ap-
proaching the critical point from above, the susceptibility
scales in a way compatible with (λ/λc−1)−0.3. (Right) Finite-
size scaling. At the critical threshold λc ≃ 0.1733, the sus-
ceptibility scales in agreement to ∼ N0.205. Scaling laws show
the expected DP critical exponents rather than fitting directly
the data.

itself, leading the system away from criticality. How-
ever, for sufficiently small values of π, the system still
obeys certain scaling laws, as discussed in [43]. We have
also confirmed that, for instance, the order parameter in
stationary conditions is compatible with the scaling law
ρ ∼ πβ/σ ∼ π1/2, with mean-field exponent values β = 1
and σ = 2.

The contact process falls within the directed percola-
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Symmetric discovery scenario with π1 = π2 = 0.1, B: Asymmetric discovery scenario with π1 = 0.15 > π2 = 0.05. Results
obtained from analysis of the deterministic equations. C: Simulations for finite system sizes at a fixed λ = 0.6 and π1,2 = 0.6.
The discernible quality difference decreases with the system size.

tion (DP) universality class. Therefore, beyond mean
field, the critical exponents of the uncommitted absorb-
ing phase transition should match those of directed per-
colation, which depend on the system spatial dimension.
For completeness, we also analyze the phase transition
on a regular 2-dimensional square lattice with nearest-
neighbors interactions. Further details about simulations
of the LES model in this geometry are provided in Ap-
pendix A 5. In Fig. 10A, we show the density of active
sites around the transition for simulations of different sys-
tem sizes N and q1 = q2 = 10 (or equivalently r = 0.1).

A finite-size scaling analysis enables us to identify the
critical interdependence parameter value λc ≃ 0.1733.
Beyond this threshold, we note a close correspondence
with an order parameter scaling behavior characterized
by the exponent β ≃ 0.583, as expected for DP in two
dimensions [43]. Furthermore, as in other phase tran-
sitions, one can define a susceptibility for the decision-

making problem in this limit as χ = N
(〈
ρ2
〉
− ⟨ρ⟩2

)
,

which exhibits a peak at the pseudo-critical threshold
λc(N). For directed percolation, it is expected to scale as
χ ∼ L(dν⊥−2β)/ν⊥ [44, 45], where for d = 2, β = 0.583 and
ν⊥ = 0.733. Therefore, χ ∼ L0.409 ∼ N0.205. The scal-
ing properties of this quantity in our simulations on the
square lattice are depicted in Fig. 10B. As expected, the
susceptibility peaks at λc(N) for different system sizes
N . At the critical threshold λc ≃ 0.1733, it scales in a
way compatible with χ ∼ N0.205, the expected scaling
behavior. Additionally, on approaching the critical point
from the active phase, the susceptibility diverges roughly
as χ ∼ (λ/λc − 1)−γ′

, with γ′ = dν⊥ − 2β = 0.3. The
measured exponent value is also compatible with a DP
exponent in d = 2 [45]. Therefore, our results consis-
tently indicate that in the fully interdependent limit, our
model reduces to a DP-like process, with a dimension-
dependent non-equilibrium critical phase transition un-

dergoing the building of consensus in the swarm.
Non-equilibrium phase transitions are commonly ob-

served in biological systems [46]. These transitions,
which occur far from thermodynamic equilibrium, play
a crucial role in shaping the collective behavior of living
organisms. Here, we find another example which might
be relevant for collective decision making processes.

E. Weber’s Law of perception

Psychophysics explores how organisms perceive exter-
nal stimuli, initially concentrating on human percep-
tion before broadening its scope to encompass other or-
ganisms across varying levels of biological complexity.
There’s a proposition that a swarm engaged in decision-
making tasks can be seen as a superorganism [30], ex-
hibiting cognitive traits akin to those found in vertebrate
brains based on neurons. Building on recent research into
honeybee-inspired decision-making models [36], we aim
to ascertain whether the LES model also reflects such
characteristics.
We particularly investigate Weber’s Law [47], which

posits that the smallest perceptible change between two
stimuli (known as the just noticeable difference) is pro-
portional to the intensity of the base stimulus. In our
context, the stimuli correspond to the qualities of the two
options under consideration in a binary decision prob-
lem, and the base stimulus intensity can be defined as
the mean quality of the options, denoted as q̄. According
to Weber’s Law, we anticipate observing a linear cor-
relation between the difference in quality and the base
stimulus strength (q̄), expressed as q2 − q1 = wq̄, where
w represents the Weber fraction.
To evaluate whether a swarm accurately discriminates

between two stimuli, achieving consensus is necessary.
We assess compliance with Weber’s Law by keeping the



16

quality of one option constant while varying the quality
of the other until positive consensus is reached. In our
experiment, we fixed the high-quality option while ad-
justing the inferior-quality option, but similar outcomes
were obtained when reversing this setup. Figures 11A
and B confirm the linear correlation between the differ-
ence in quality and the stimulus strength across different
combinations of interdependence and discovery probabil-
ities. This analysis was conducted using the original con-
sensus definition, Eq. (11), although similar results were
obtained with alternative definitions discussed earlier.

We tested the model agreement with Weber’s Law in
the two different discovery scenarios, symmetric (π1 = π2
Fig. 11A) and asymmetric (π1 > π2, Fig. 11B). While the
discovery probabilities influence the actual quality dif-
ferences discernible for a given level of interdependence,
they do not affect the linear relationship with the base
stimulus strength. A linear fit of the quality differences
to the base quality, q2 − q1 ∼ wq̄, results in R2 > 0.99
(we provide the fit parameters in Table I in the Supple-
mentary Material). All these results suggest a general
agreement with the Weber’s Law.

Following the analysis in [36], one can also relate the
magnitude of finite-size fluctuations within the decision
process with the random fluctuations typically observed
in a discrimination process. These fluctuations can in-
fluence an organism’s ability to accurately discriminate
between two stimuli [48, 49]. It is widely recognized that
collective decisions tend to improve when made by larger
groups [50, 51]. As discussed in Sec. III C, fluctuations
diminish as the system size increases. Consequently, we
anticipate that the system’s ability to discriminate be-
tween two similar stimuli will improve with the system
size, i.e. the just noticeable difference will decrease with
N . In agreement with [36], we observe this effect in our
model, as illustrated in Fig. 11C, which also exhibits a
comparable exponential trend.

In the study by Reina et al. [36], individual commit-
ment transitions (i.e., discovery) are linked to site qual-
ities, unlike in our model. Here, the quality-sensitivity
influences system dynamics solely in the uncommitment
and recruitment transitions. However, this difference
does not appear to impact the model’s adherence to We-
ber’s Law. Ihe independent discovery probabilities solely
affect the specific value of quality differences that can
be discerned. Figures 11 A and B also demonstrate that,
for a given stimulus strength, the hability to discriminate
decreases with λ. In other words, stronger social inter-
action enables the system to distinguish between more
similar options, but this comes at the expense of a slower
decision-making process, as previously noted in Figs. 4
and 6.

Contrary to our findings, Reina et al. in [36] observe
that the noticeable quality difference increases (while the
decision time decreases) with the signaling ratio, which
in their setup reflects the strength of social interactions
relative to individual transitions. This disparity under-
scores the main distinction between the two models: the

presence (or absence, in our case) of negative feedback
in social interactions, specifically cross-inhibition. Intro-
ducing this mechanism in the decision process leads to
quicker decisions, especially in situations involving simi-
larly or equally valued options [24], albeit at the expense
of reduced accuracy in the final outcome. These results
underscore not only the significance of social interactions
but also their nature, as the presence or absence of cross-
inhibition yields markedly different outcomes in scenarios
initially featuring very similar problems.

F. Multiple sites

Up to now, our attention has been directed towards a
binary decision problem, where selecting the best option
is imperative. Many collective decision making models
have been concerned in generalizing their dynamics to
multiple option scenarios [24, 37, 39, 40]. Particularly,
previous research on this model, utilizing different pa-
rameter setups, examined a specific scenario involving
five options. It’s worth noting that increasing the num-
ber of available options doesn’t qualitatively alter the
model’s behavior. In a general k-site scenario, we still
observe the same interplay between independent discov-
ery and social feedback. At high λ values, the system
effectively identifies the best site, while at low λ val-
ues, it settles into a multi-opinion state where each site
is occupied in proportion to its quality and discovery
probability. Therefore, in a broader best-of-N scenario,
the specific dance frequency values and consensus transi-
tions will rely on the πα and qα parameters defining each
unique scenario. However, the overall behavioral trend
of the system remains consistent across different setups.
In Fig. 12 we represent the consensus parameter to-

gether with the dance frequency for the best-site fk (de-
picted in the inset) for different number of available sites
k. We consider two different symmetric scenarios: one
where each site has the same self-discovery probabil-
ity (independently of the number of sites k), and an-
other where the total sum of self-discovery probabili-

ties remains constant, i.e.,
∑k

α=1 πα = 0.6, and conse-
quently each time a new site is added the overall value
of πα = 0.6/k decreases. In both scenarios, site qual-
ities are different and ordered following the sequence
q1 < q2 < ... < qk. While there is a slight quantitative
change with increasing k, the system’s behavioral trend
observed in the binary problem remains consistent.

As the number of available options with the same dis-
covery probability increases, the system is exposed to a
greater amount of external information. Consequently,
slightly higher values of λ are required to achieve the con-
sensus crossover, as evidenced by the rightward shift of
the consensus curves in Fig. 12A around Q = 0. Contrar-
ily, when the overall level of external information (

∑
πα)

remains constant but the individual discovery probabil-
ities πα decrease as the number of options increases, as
shown in Fig. 12B - the system achieves consensus more
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readily as the number of options increases, a result that
may appear counter-intuitive compared to other stud-
ies on the best-of-N scenario with different models [24].
However, this outcome is a direct consequence of the de-
cision mechanisms embedded in our model: increasing
λ strengthens the positive feedback on populations asso-
ciated with the best quality, leading to the rapid elim-
ination of options with lower qualities from considera-
tion. Consequently, the decision process becomes nearly
binary between the top two options. Decreasing the over-
all values of the discovery probabilities simplifies the dis-
cussion process further, facilitating consensus. Supple-
mentary Fig. ?? illustrates all dance frequencies fα in

the reported scenarios, demonstrating the consistently
decreasing trends of the remaining populations in favor
of the highest-quality option as λ increases.
Other scenarios, such as a generally asymmetric dis-

covery scenario (where π1 > π2 > ... > πk) or equivalent
inferior options (q1 = ... = qk−1), exhibit similar trends
to the discussed symmetric discovery scenario. Naturally,
the specific values of fk or the consensus may vary, as
it becomes more challenging for the swarm to achieve
consensus under these conditions. However, the inter-
play between interdependence, site qualities, and discov-
ery probabilities remains unchanged. In Supplementary
Fig. ?? we present the results obtained in these scenarios
to emphasize the qualitative similarities discussed earlier.

IV. CONCLUSIONS

We have performed an analytical study of an agent-
based model inspired by the collective behavior of honey-
bees [21], following the mathematical framework outlined
in [31]. This model incorporates key features such as
the balance between independent exploration and social
interdependence, as well as the sensitivity of agents to
option quality. Using analytical reductions of this agent-
based model, we extensively analyzed its behavior in the
space of relevant parameters. Our goal was to investi-
gate whether the system achieves consensus for the best
available option when balancing information acquisition
and social interactions. Furthermore, we supplemented
this analysis with simulations to report the time required
for the system to converge to its stationary state.
We have explored two scenarios: one where options

are equally likely to be discovered, and another where the
worst quality option (among two) is more likely to be dis-
covered. In both cases, when the system prioritizes inter-
dependence, the established consensus is stronger. This
highlights the role of social interactions in achieving a
higher accuracy in the final decision, consistent with sim-
ilar honeybee-inspired models [23–25]. Interdependence
plays a critical role, especially when the system deals with
high values of the self-discovery probabilities or when the
superior option faces a disadvantage in terms of discovery
likelihood. In such scenarios, interdependence emerges as
a crucial noise-reducing mechanism, allowing the system
to maintain a high degree of coherence even when indi-
viduals are more prone to random changes in their state.
However, escalating social feedback diminishes the ex-

tent of individual exploration, leading to a prolonged
time required to reach the stationary state. This observa-
tion underscores a trade-off between speed and accuracy,
indicating that a moderate level of social interactions is
most beneficial when a system seeks to balance consen-
sus accuracy and convergence time [52]. This finding
aligns with previous research investigating the emergence
of a speed-accuracy trade-off in opinion dynamics mod-
els [27, 41]. In those studies, interactions governed by a
majority rule revealed a trade-off between decision accu-
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racy and the size of the interaction group.

When confronted with a decision problem between two
equal-quality options, the deterministic solution of the
LES model predicts a system unable to break the sym-
metry and achieve consensus for one option. In such sit-
uations, the introduction of more complex higher-order
interactions, such as cross-inhibition, becomes necessary.
This need for higher-order interactions has been ob-
served in both on-field honeybee experiments [20], com-
putational models [23, 25, 53], and robot swarm exper-
iments [26, 33, 53, 54]. However, finite-size fluctuations
can readily break the symmetry between the options if
the system is driven around the so-called ”fully inter-
dependent” limit, where individual exploration behav-
ior plays a minimal role. This finding suggests a simple
adaptive behavior of the model: reducing the strength
of the self-discovery probabilities as the decision process
progresses, especially in scenarios where options are ad-
vertised similarly. By doing so, the system can break
the symmetry even between identical options. However,
it’s important to note that while this mechanism al-
lows for simple symmetry breaking, it makes the system
less flexible when it needs to adapt in changing environ-
ments [28, 32].

We have discovered an interesting correspondence be-
tween the behavior of the model at the fully interde-
pendent limit and the well-known contact process [43].
In this limit, where the discovery probabilities are neg-
ligible, the dynamics are solely governed by interac-
tions. By adjusting the interdependence, which repre-
sents the strength of these interactions, the system un-
dergoes a non-equilibrium phase transition. Below a crit-
ical value λ̃c, the system settles into an inactive, absorb-
ing state—referred to as the uncommitted state in opin-
ion dynamics terminology. Conversely, above the critical
value, the system can maintain a non-negligible propor-
tion of active or committed population for either of the
two options, particularly when they are of equal quality.
We have derived the model equations, which exactly map
to the mean-field contact process equations. In addition,
making use of d = 2 lattice simulations, we have explored
the critical behavior and some of the critical exponents
surrounding the phase transition. Our findings confirm
that the critical exponents of the order parameter and
susceptibility consistently align with those reported for
the contact process in d = 2, which falls within the di-
rected percolation universality class.

We have further evaluated the model’s compliance with
Weber’s Law of psychological perception, which suggests
that the smallest noticeable change between two stimuli
is proportional to the intensity of the base stimulus [47].
This relation was first studied in individual organisms,
but recently efforts have been devoted to study swarms
faced with perception tasks as superorganisms, capable
of obeying the same laws [30, 36]. This assessment was
conducted in both symmetric and asymmetric discovery
scenarios. While the discovery probabilities do impact
the discernible quality differences for a given level of in-

terdependence, they do not alter the linear relationship
with the base stimulus strength. Thus, our findings in-
dicate a broad concordance with Weber’s Law. In this
context, we have also confirmed that the system’s capa-
bility to distinguish between two similar stimuli enhances
with an increase in system size.
While our primary focus has been on a binary decision

problem, we have also evaluated the model’s robustness
when expanding the number of available options. Unlike
other studies [24], we observe that increasing the number
of sites consistently improves the swarm performance, or
accuracy, when making decisions among non-equivalent
options. As discussed in [24], the main distinction be-
tween our approaches lies in the absence or inclusion
of negative social feedback, such as cross-inhibition be-
tween populations representing different options. Con-
sequently, the effect of increasing social interactions, or
signaling, has varying impacts on the system dynamics.
In conclusion, our study of a simple honeybee-inspired

collective decision-making model reveals the intricate in-
terplay between individual exploration and social inter-
actions in shaping consensus and decision outcomes. We
have demonstrated how the balance of these factors in-
fluences the system’s ability to discriminate between op-
tions, and to achieve strong enough consensus. The role
of finite-size or critical fluctuations becomes particularly
relevant in decision-making processes of adaptive sys-
tems when available alternatives are very similar. In-
deed, these fluctuations play a crucial role in breaking
deadlocks or abandoning fully uncommitted states, thus
avoiding potentially dangerous situations in ecological
systems. Our findings contribute to a deeper understand-
ing of collective behavior in biological systems and pro-
vide insights that may inform the design and optimiza-
tion of decision-making algorithms in artificial systems.
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Appendix A: Appendix

1. Linear Stability Analysis on the general solution

Studying the effects of perturbations on the general
deterministic solution up to linear order leads to a square-
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FIG. A1. Characteristic relaxation times τ of linear per-
turbations obtained from the LSA eigenvalues. A: Sym-
metric discovery scenario. B: Asymmetric discovery sce-
nario with π1 = 0.25. In both scenarios, the qualities are
(q1, q2) = (7, 10). White dashed lines indicate the transitions
occurring at the fully interdependent limit πα = 0 (null-πk

limit) for the symmetric (asymmetric) scenario. For the ex-
act value of λ′ ≃ 0.43, refer to Eq. (10).

k matrix with coefficients:

aαα = λ(f∗0 − f∗α)− (1− λ)πα − rα

aαβ = −(1− λ)πα − λf∗α

where α = 1, ...k. The stability of any solution can be
verified by obtaining the matrix eigenvalues numerically,
once the actual solution (f∗0 , f

∗
1 , ..., f

∗
k ) is known.

The eigenvalues obtained from the numerical analysis
of this matrix can be used to compute the relaxation time
of a perturbation in the stationary state, denoted as τ .
This represents the characteristic time for the system to
return to the state (f∗0 , f

∗
1 , ..., f

∗
k ) after a small perturba-

tion f ′α is introduced in any value of f∗α (note that these

perturbations must satisfy that
∑k

α=0 f
′
α = 0). Specifi-

cally, the relaxation time is determined by the smallest
eigenvalue, τ−1 = min(θα). In Fig. A1, we illustrate the
characteristic relaxation times for a fixed set of qualities

in both the symmetric and asymmetric discovery scenar-
ios.
We observe that in the limit of small π, near the transi-

tion occurring at the fully interdependent limit (marked
with a white-dashed line at the appropriate value of λ
in both scenarios), the relaxation times increase sharply.
This suggests the onset of a critical slowing down of the
system dynamics around these points. Finally, it’s worth
noting the similarity between these relaxation times and
the stationary times discussed in the main text (see sec-
tions IIIA and III B, and Figs. 4C and 6D). The same
mechanisms that govern the convergence time to reach
the stationary state also play a role when the system is
relaxing from a small perturbation. However, in simula-
tions of the asymmetric discovery scenario, the increase
in time when π2 → 0 occurs at slightly larger values of λ,
above the transition at λ′, and while it slightly decreases
with increasing λ, it does not return to the level prior to
the transition, unlike the relaxation time of linear per-
turbations.

2. Linear Stability Analysis on the Fully
Interdependent limit

In the fully interdependent limit (π = 0), we encounter
k+ 1 feasible fixed point solutions (see Eqs. (9)). To as-
certain their stability, we conduct a linear stability anal-
ysis. Our analysis reveals that the best-site winning so-
lution f∗k yields all negative eigenvalues, indicating its
stability when λ > rk. Specifically, the resulting eigen-
values are as follows:

θm = rk − rm < 0 m = 1, ..., k − 1

θk = rk − λ < 0 if λ > rk

If λ < rk, this fixed point becomes unstable, and the
stable solution is the absorbing fixed point f∗0 = 1. The
eigenvalues for this stable solution are of the form: θα =
λ − rα < 0, confirming the change of stability between
solutions.
Alternative fixed points that correspond to any other

α ̸= k less-quality winning site have, at least, k−α posi-
tive eigenvalues, indicating that these solutions are actu-
ally saddle points. For instance, the eigenvalues for the
winning option α = k − 1 are:

θm = rk−1 − rm < 0 m = 1, ..., k − 2

θk−1 = rk−1 − λ

θk = rk−1 − rk > 0

3. Imperfect quality assessment: The case of
non-null parameter µ

As we explained in the main text, the parameter µ in
the orginal LES model governs the bees’ quality assess-
ment behavior. When µ → 0, bees independently assess
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FIG. A2. Consensus crossover lines for different values of the independent quality assessment parameter µ. A: Consensus Q2 in
the symmetric discovery scenario. B: Consensus Q′

2 in the symmetric discovery scenario. C: Consensus Q2 in the asymmetric
discovery scenario with π1 = 0.25 and varying π2. The quality parameters are q1 = 7, q2 = 10.

the quality of sites, and thus, the duration of the adver-
tisement period strongly correlates with the actual site
quality. Conversely, when µ → 1, bees do not individ-
ually assess site qualities but rather imitate their peers
without regard to the options’ qualities. Consequently,
the advertisement duration is influenced by a generic pa-
rameter K that is the same for all sites, as indicated in
Eq. (3). Although we have primarily considered µ = 0
in the text to explore the interplay between other pa-
rameters such as interdependence, discovery probabili-
ties, and qualities, here we provide a brief overview of
how the results change when nonzero values of the inde-
pendent quality assessment parameter, µ, are considered.
For simplicity and in accordance with the prescription by
List et al. in the original formulation of the model [21],
we set K equal to the maximum quality among all sites,
i.e., K = qk.

The deterministic solutions described in Section IIA
are expressed as functions of the rates, rα, and therefore
remain valid for any value of µ. However, the results
presented in the subsequent analysis of the model, par-
ticularly in the binary decision problem concerning con-
sensus and stationary time, were obtained with µ = 0.
After introducing µ ̸= 0, achieving the same levels of con-
sensus would simply require increased values of interde-
pendence compared to the case of µ = 0. Figure A2 illus-
trates how the consensus crossover lines change, shifting
towards greater λ∗, when varying µ for both symmetric
and asymmetric discovery scenarios.

The condition to achieve consensus without interde-
pendence, i.e. by simply relying on the different adver-
tisement times for each option, q1 < q2/x, is now mod-
ified as follows. For the symmetric discovery scenario,
either fixing (q2, µ) or (q1, q2), we obtain:

λ = 0: q1 ≤ q2
1− µ

x− µ
or µ ≤ q2 − 2q1

q2 − q1
. (A1)

For the asymmetric discovery probabilities, fixing
(π1, q1, q2, µ) or (π1, π2, q1, q2), respectively, we obtain:

λ = 0: π2 ≥ π1x

µ+ q2
q1
(1− µ)

or µ ≤
q2 − q1

π1

π2
x

q2 − q1
.

(A2)

4. Criterion for measuring convergence times to
the stationary state

The criterion for measuring the time when the system
reaches the stationary state is as follows: We monitor the
time evolution of each population fraction fα(t), includ-
ing the uncommitted state, and calculate the average of
fα over a time window of size w, i.e., over the time inter-
val [t, t + w]. We consider a population to have reached
the stationary state if the absolute difference between
this average value and the value of fα at the subsequent
time step is below a certain threshold κ. In other words,
if:

|f2(t+ w + 1)− ⟨f2⟩t,w+t| < κ, (A3)

we identify the stationary time for this particular pop-
ulation as tss = t + w + 1. The longest time among all
populations will be considered the effective simulation’s
stationary time. For our simulations in the binary deci-
sion problem, we have used a block size of w = 50 and
a threshold κ = 5 × 10−4. Other values within the in-
tervals w ∈ [25, 100] or κ ∈ [5× 10−4, 5× 10−3] produce
qualitatively similar results.

5. Lattice simulations in d = 2

We additionally implement a spatially distributed ver-
sion of the model described in Sec II. In the spatially
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distributed version of the model, each scout bee occu-
pies a specific location on a square lattice with periodic
boundary conditions. The lattice has a lateral length of
L, resulting in a total ofN = L×L nodes. Each scout bee
interacts only with its nearest neighbors on the lattice.

The state si of each bee i now corresponds to a specific
location r = (x, y) on the lattice, denoted as si(t) ≡
s(r, t) ≡ s(x, y; t). The fractions fα,t of bees promoting
site α at time t, which enter into the equation defining
the system dynamics (Eq. 2), are computed as follows:

fα(r, t) =
1

4

∑

<n.n.r′>

δ(α, s(r′, t)), (A4)

where δ is the Kronecker’s delta, the sum runs over the
four nearest neighbors of r on the square lattice, and
the index α = 1, . . . , k indicates the possible committed
states. In addition to the spatial dependence of fα, the
state update rules at each site, as described by Eq. (1),
remain the same. Each time step involves updating (or
attempting to update) the states of every bee or node
in the lattice. We implement this process using a mas-
sively parallel programming approach and ensure that
the evolution of interdependent nodes on each time step
is serialized by using a checkerboard lattice decomposi-
tion.

The spatially distributed model, similar to [31], is not
designed to replicate realistic spatial behavior of bees
but rather to analyze the dynamic competition of states
within a spatio-temporal framework. As discussed in
the main text, the general stationary results of this spa-
tial model align perfectly with mean field (i.e., fully-
connected) simulations. Analyses such as the time to
reach the stationary state, as depicted in Fig. 4F or
Fig. 6E, also yield qualitatively similar results, exhibiting

2 4 6 8 10

q1

100

200

300

400

500

600

700

t s
s

−1.0 −0.5 0.0 0.5 1.0

π1 = π2 = 0.1
q1 = 10

λ

0.3

0.6

0.9

FIG. A3. Time to reach the stationary state, tss, plotted as
a function of the bad-quality option, q1, while maintaining
q2 = 10 in lattice simulations. Lattice size is L = 1024. As in
the main text, three values of the interdependence parameter
have bee considered, namely λ = 0.3, 0.6, 0.9, with discovery
probabilities π1 = π2 = 0.1.

the same trends discussed in the main text - see Fig. A3.

On the other hand, two-dimensional lattice simulations
enable the study of critical behavior and some critical ex-
ponents around the absorbing phase transition occurring
in equal-quality, and almost fully-interdependent, scenar-
ios. In this limit, lattice simulations provide valuable in-
sights into the universality class of the phase transition
and help classify the critical behavior of the system be-
yond the mean-field approximation, as these simulations
incorporate spatial fluctuations.
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