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Quantum spin Hall insulators hosting edge spin currents hold great potential for low-power spin-
tronic devices. In this work, we present a universal approach to achieve a high and near-quantized
spin Hall conductance plateau within a sizable bulk gap. Using a nonmagnetic four-band model
Hamiltonian, we demonstrate that an even spin Chern (ESC) insulator can be accessed by tuning
the sign of spin-orbit coupling (SOC) within a crystal symmetry-enforced orbital doublet. With
the assistance of a high spin Chern number of CS = 2 and spin U(1) quasi-symmetry, this orbital-
doublet-driven ESC phase is endowed with the near-double-quantized spin Hall conductance. We
identify 12 crystallographic point groups supporting such a sign-tunable SOC. Furthermore, we ap-
ply our theory to realistic examples, and show the phase transition from a trivial insulator governed
by positive SOC in RuI3 monolayer to an ESC insulator dominated by negative SOC in RuBr3
monolayer. This orbital-doublet-driven ESC insulator, RuBr3, showcases nontrivial characteristics
including helical edge states, near-double-quantized spin Hall conductance, and robust corner states.
Our work provides new pathways in the pursuit of the long-sought quantum spin Hall insulators.

INTRODUCTION

Two-dimensional (2D) quantum spin Hall (QSH) insu-
lators have garnered significant interest for their promis-
ing applications in spintronics and magnetoelectronics
[1–4]. They manifest topologically protected helical edge
states where the spin is locked to the momentum through
spin-orbit coupling (SOC) and time-reversal symmetry
(TRS), providing dissipationless spin transports ideal for
low-power magnetic memory devices. The first predic-
tions of realistic QSH insulators identified graphene [5]
and the HgTe quantum well [6] as candidates, each char-
acterized by a SOC-induced inverted bulk gap along with
a pair of helical edge states within this gap. This topo-
logical phase is generally characterized by the topological
invariant Z2 = 1, which also serves as the symmetry in-
dicator for TRS-preserved systems [7]. Over the years,
this Z2 = 1 topological phase has been observed in sev-
eral quantum wells [8–10] and pristine 2D materials such
as WTe2, bismuthene, Na3Bi, and germanene [11–16].

In addition to the Z2 index, the spin Chern number
CS , also established as a topological invariant, is directly
related to the number of pairs of helical edge states [17].
In particular, when the real-spin component Sz remains
preserved, CS defines the quantized spin Hall conduc-
tance (SHC) as σS

xy = CS
e
2π . These two invariants are

related by Z2 = mod (CS , 2). Therefore, QSH insula-
tors with two pairs of helical edge states in the CS = 2
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regime are considered to be trivial within conventional Z2

classification. However, experiments have observed near-
double-quantized conductance in twisted bilayers WSe2
and MoTe2 [18, 19], demonstrating that QSH effects can
indeed manifest in even spin Chern (ESC) insulators.
Recently, we have emphasized the pivotal role of spin
U(1) quasi-symmetry for the near-quantization of SHC
in TRS-preserved Z2 = 1 or such Z2 = 0 systems, as
well as TRS-broken cases [20]. Beyond theoretical predic-

FIG. 1. Schematic for designing ESC insulators with CS = 2:
by tuning the sign of SOC within an orbital doublet from
positive to negative, a phase transition from CS = 0 to CS = 2
can be realized.
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tions of the ESC phase in monolayer α-Sb/Bi [21, 22] and
TRS-broken Fe2BrMgP monolayer and TiTe bilayer [23],
we have predicted near-double-quantized SHC in twisted
bilayer transition metal dichalcogenides and monolayer
RuBr3 [20] protected by spin U(1) quasi-symmetry. In
this work, we will present a general approach to realize
an ESC phase with a symmetry-protected near-double-
quantized SHC within a large bulk gap, which would be
an ideal platform for observing QSH effects and further
promote applications of QSH insulators.

First, using a nonmagnetic four-band model Hamilto-
nian, we demonstrate that an ESC phase with CS = 2
can be accessed by tuning the sign of SOC within a crys-
tal symmetry-enforced orbital doublet. Such an orbital-
doublet-driven ESC phase is endowed with two notable
features: (i) a sizable bulk gap opened by first-order spin-
preserved SOC; (ii) a high near-quantized SHC approach-
ing 2 (in unit of e/2π) protected by spin U(1) quasi-
symmetry. Thereafter, we enumerate 12 crystallographic
point groups supporting the orbital doublets with sign-
alterable SOC effects. Furthermore, we present realistic
examples to demonstrate our theory. As shown below, a
trivial insulator driven by positive SOC transforms into a
nontrivial ESC insulator induced by negative SOC, as ob-
served in the transition from monolayer RuI3 to RuBr3.
In addition to the topologically nontrivial features such
as the near-double-quantized SHC and two pairs of he-
lical edge states, we further show robust in-gap corner
states that is associated with the slightly gapped edge
states in RuBr3.

COMPUTATIONAL DETAILS

Density functional theory calculations are performed
using the full-potential augmented plane wave plus the
local orbital code (Wien2k) [24]. The optimized lattice
constants of RuI3 and RuBr3 monolayers are a = b =
6.667 Å and 6.159 Å, respectively. A vacuum slab of 15
Å is set along the c axis for both systems. The muffin-
tin sphere radii are chosen to be 2.2 bohr for Ru atoms
and 2.4 bohr for both I and Br atoms. The cutoff en-
ergy of 14 Ry is set for plane wave expansions of in-
terstitial wave functions. We use the 11×11×1 k-mesh
for integration over the Brillouin zone. SOC is included
by the second variational method with scalar relativistic
wave functions. Electron correlation of Ru 4d electrons
is taken into account by adopting a typical Hubbard U of
2 eV and a Hund’s exchange of 0.5 eV [25]. The Wannier
functions of Ru 4d, I 5p, and Br 4p orbitals are con-
structed using Wien2wannier [26] and WANNIER90 [27]
without performing maximally localized procedures. The
topological edge states and SHC are calculated by the
iterative Green’s function and the Kubo formula [28], re-
spectively, as implemented in WannierTools package [29].

RESULTS

I. Symmetry and model of even spin Chern phase

To begin with, we will show that a nontrivial ESC
phase can be realized within a nonmagnetic four-band
model Hamiltonian based on an orbital doublet that
is characterized by a 2D irreducible representation (ir-
rep). We consider a typical doublet formed by px and

py orbitals as p± = (px ± ipy)/
√
2, where the subscript

+/− denotes orbital angular momentum lz = +1/−1.
To generate a 2D irrep furnished by the p± doublet,
here we consider a D6h point group, of which the gen-
erators are three-fold rotation symmetry C3z along the
z axis, two-fold rotation symmetry C2z/C2y along the
z/y axis, and space inversion symmetry I. In the basis
of {|p+, ↑⟩, |p−, ↑⟩, |p+, ↓⟩, |p−, ↓⟩}, the representation of

symmetry operations is given by C3z = ei
π
3 σz ⊗ ei

2π
3 τz ,

C2z = ei
π
2 σz ⊗−τ0, C2y = ei

π
2 σy ⊗−τx, I = I2×2⊗−I2×2,

and TRS T = K· iσy⊗τx, where K is the complex conju-
gation operator, I2×2 is a 2×2 identity matrix, and σx,y,z

and τx,y,z are Pauli matrices for spin and orbital degrees
of freedom, respectively. By imposing those symmetries,
we derive the generic form of the effective Hamiltonian
as follows:

H(k) =ϵ0(k)I4×4 + C[(k2x − k2y)σ0 ⊗ τx − 2kxkyσ0 ⊗ τy]

+D(k2x + k2y)σz ⊗ τz + Eσz ⊗ τz
(1)

with ϵ0(k) = A − B(k2x + k2y). Note that the symmetry
preserves the term Eσz ⊗ τz which is contributed by the
first-order spin-preserved SOC. The resulting electronic
structure consists of two sets of doubly degenerate bands
protected by I and T symmetry, yielding an energy gap
2E. This bulk gap 2E, opened by first-order SOC, can
reach ∼100 meV to against thermal fluctuation and local
disorder. Furthermore, the change of the sign of E from
positive to negative marks a phase transition accompa-
nied by band inversion, as shown in Fig. 2. Note that
such band inversion does not change the Z2 index of the
system because the wavefunctions of the lowest conduc-

FIG. 2. Band structures of the model Hamiltonian in Eq. (1)
with the parameters A = B = 0, C = D = 0.3: from (a)
E = 0.1 to (b) E = −0.1, the band inversion marks a phase
transition from a trivial insulator to an ESC insulator with
CS = 2.
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TABLE I. Crystallographic point groups that permit orbital
doublets with a sign-tunable SOC (both positive and nega-
tive).

point groups doublets SOC-sign

C3h, D3h, C6, C6v, C6h, D6, D6h p±, d± +

d±2 −
C3, C3v, D3, D3d, S6 p±, e

′
g± +

e′± −

tion band and the highest valence band at Γ share the
same parity. However, we find that such a band inver-
sion signifies a topological phase transition from a trivial
insulator to a nontrivial ESC insulator characterized by
CS = 2.
We note that such topological phase transition, driven

by altering the sign of the SOC within orbital dou-
blets, can be achieved by orbital engineering. Specif-
ically, some d-orbital doublets, undergoing transforma-
tions identical to the p± doublet but with an opposite
lz, can contribute negative SOC in contrast to the pos-
itive one within p±. We identify 12 crystallographic
point groups that can support the sign-alterable SOC
within specific orbital doublets, as listed in Table I.
For instance, the orbital doublet d±2 = |lz = ±2⟩
is supported by (C3h, D3h, C6, C6v, C6h, D6, D6h) point
groups. Under the rotational symmetries that can dis-
tinguish the two states in an orbital doublet, the d−2

state transform as p+, and d+2 transforms as p−, e.g.,
the symmetry operation C3z introduces a phase factor
e−i 2π

3 τz to d±2 but an opposite phase factor ei
2π
3 τz to

p±. Therefore, the d±2 doublet will yield a negative
splitting when SOC emerges, in contrast to the positive
SOC-splitting in p±. Similarly, the e′± doublet supported
by (C3, C3v, D3, D3d, S6) point groups is formulated as
e′± = ± cosα|lz = ±2⟩ − sinα|lz = ∓1⟩, where sin2 α
varies from 0 to 1/3 depending on local d-orbital envi-
ronments [30]. The e′± transforms as p∓, and thus also
provides a negative SOC. Note that two other d-orbital
doublets listed in Table I, specifically d± = |lz = ±1⟩
and e′g± = sinα|lz = ∓2⟩ ∓ cosα|lz = ±1⟩, both yield
the positive SOC just like that in p±.
We emphasize that among the 12 crystallographic

point groups in Table I, while lowering symmetries from
the highest symmetric point group D6h [Eq. (1)] may in-
troduce additional terms, the low-energy physics at the Γ
point remains intact. For instance, in point group D3d,
the term F [(k2x − k2y)σx ⊗ τz + 2kxkyσy ⊗ τz] emerges
[20], serving as spin-mixing perturbations. More no-
tably, within the eigenspace of the model Hamiltonian
in Eq. (1), which is spanned by an orbital doublet com-
bined with electron spin, spin U(1) quasi-symmetry is
present to eliminate the first-order spin-mixing pertur-
bation [20, 31]. Such a symmetry plays a pivotal role
for protecting QSH effects in realistic materials. Conse-
quently, despite a trivial Z2 index, the ESC systems de-
scribed by our model can exhibit a near-double-quantized
SHC plateau within a sizable bulk gap. In addition, the

FIG. 3. (a) Crystal structure of RuI3 and RuBr3 monolayers
with Ru and I/Br atoms represented by red and gray balls,
respectively. In the bottom panel, the 1a, 2c, and 3f maximal
Wyckoff positions within the c = 0 plane are denoted. (b)
Band structures of RuI3 monolayer without SOC. The Fermi
level is set at the zero energy.

edge state would open a small gap by spin-mixing pertur-
bation. These features are further confirmed by realistic
2D examples presented in the following section.

II. Realistic materials with tunable SOC

We take the RuI3 and RuBr3 monolayers as examples
to demonstrate an ESC phase that is accessible through
tuning the sign of SOC. The three-dimensional form of
RuI3 has been crystallized in a rhombohedral structure
with space group R3̄ [32], and its 2D counterpart is in the
space group P 3̄1m, providing the little point group D3d

at the Γ point, which is included in Table I. Recent stud-
ies have shown that, due to intricate SOC effects com-
bined with strong Ru-I hybridization, RuI3 exhibits para-
magnetic behavior and undergoes a metal-to-insulator
transition from bulk to monolayer [32–36]. Therefore,
RuI3 monolayer would be a great platform for investigat-
ing SOC effects on topological characteristics. Moreover,
RuBr3 monolayer is also of interest for the variation of
the relative importance of the SOC at the Ru and ligand
Br/I sites, and for the possibly new topological proper-
ties.
We first present the band structures of RuI3 mono-

layer in the absence of SOC. Fig. 3(b) illustrates that,
without SOC, two isolated bands around the Fermi level
form crossings at Γ and K points. This band degeneracy
is protected by the crystal symmetry and can be lifted by
SOC. As shown in Figs. 4 and 5(a), a bulk gap is opened
when SOC emerges, signifying the RuI3 monolayer as a
band insulator [individual I and Ru SOC effect in Figs.
4(a) and 4(c), and joint one in Fig. 5(a)]. To character-
ize the topological phase of RuI3 monolayer, we calculate
the Z2 index by computing the parity eigenvalues of va-
lence bands at two time-reversal-invariant momenta [37],
namely Γ and M. The same parity at Γ and M yields a
Z2 = 0. As a result, we find that RuI3 monolayer is a Z2

trivial insulator.
It is worth to note that within the category of topolog-

ically trivial insulators, there exists a special subgroup
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FIG. 4. Band structures of RuI3 monolayer with (a) only
I SOC active and (c) only Ru SOC active. Combined with
electron spin, the orbital doublets (b) p± of I 5p states and
(d) e′± of Ru 4d-t2g states form the co-irreps around the Fermi
level at the Γ point, undergoing positive and negative SOC-
splitting, respectively.

known as obstructed atomic insulators (OAIs), as pro-
posed based on topological quantum chemistry (TQC)
theory [38–42]. Within the TQC framework, for topo-
logically trivial insulators, the band representation (BR)
of all occupied bands is a sum of elementary band repre-
sentations (EBRs) induced from atomic orbitals at max-
imal Wyckoff positions. And OAI refers to the situa-
tion that some of those Wyckoff positions are empty sites
without atoms occupied. By calculating the BR of va-
lence bands, we find that the BR decompositions of RuI3
monolayer have to include an EBR at empty Wyckoff
position 1a, i.e., the center of the honeycomb lattice, see
Fig. 3(a). Therefore, RuI3 monolayer falls into the cate-
gory of OAIs. This is also captured by the emergence of
obstructed metallic edge states, as shown in Fig. 5(b),
which appears when one cuts the edge containing the
obstructed 1a site.

We now take a close look at SOC effects. As shown
above, SOC-splitting is responsible for the band gap of
RuI3 monolayer. When we examine the individual contri-
butions of SOC from Ru and I elements, we find that the
band splitting in RuI3 is primarily driven by I SOC, as
evidenced by the same co-irrep feature of the lowest con-
duction bands and highest valence bands, i.e., (Γ−

5 ⊕Γ−
6 )-

over-Γ−
4 , for both Figs. 4(a) and 5(a). In contrast, when

Ru SOC is considered independently, as shown in Fig.
4(c), the band gap at Γ point is inverted, yielding a neg-
ative splitting Γ−

4 -over-(Γ
−
5 ⊕Γ−

6 ). Such SOC-sign-change
behavior is well predicted as the case of D3d in Table I.

FIG. 5. (a) Band structures and (b) edge states and SHC of
RuI3 monolayer with SOC; (c) and (d) corresponding results
of RuBr3 monolayer.

Despite the fact that either positive or negative SOC-
splitting of the orbital doublet does not change Z2, the
model Hamiltonian in Eq. (1) predicts that the SOC-
sign-change triggers a topological phase transition be-
tween the trivial CS = 0 phase and the nontrivial CS = 2
phase. To provide a realistic material candidate for the
latter case, we naturally move to RuBr3, taking into
account the reduced SOC strength associated with Br
4p electrons and their weaker hybridization with Ru 4d
states as compared to I 5p electrons. As anticipated, our
results show a band inversion from RuI3 to RuBr3, as ev-
idenced by the SOC-induced splitting at Γ shifting from
a positive (Γ−

5 ⊕Γ−
6 )-over-Γ

−
4 configuration to a negative

Γ−
4 -over-(Γ

−
5 ⊕ Γ−

6 ) one, see Figs. 5(a) and 5(c).

III. Nontrivial features in ESC insulator

Despite both RuI3 and RuBr3 belong to the Z2 = 0
phase, their distinct topological features are evident in
the edge and SHC behaviors. In stark contrast to RuI3,
RuBr3 exhibits four metallic edge states and two Dirac-
like edge crossings, see Figs. 5(b) and 5(d). A closer
examination of these edge crossings reveals a small gap
of 3 meV, which is opened by spin-mixing perturbations.
Moreover, unlike the absent SHC in RuI3, RuBr3 exhibits
a SHC plateau within a large bulk gap of 130 meV, and
the SHC value of 1.93 closely approaches the quantized
value of 2. Note that these topologically nontrivial fea-
tures in RuBr3 are protected by a nonzero CS and spin
U(1) quasi-symmetry [20]. Thus, our findings highlight
the orbital-doublet-driven ESC insulators, as described
by our nonmagnetic four-band model Hamiltonian, as an
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ideal platform for realizing QSH effects.

FIG. 6. Spatial distributions of the state at the Fermi level
for (a) hexagonal, (b) triangular, and (c) rhomboid-shaped
nanodisks of RuBr3.

In addition, we note that in ESC insulators, the small
edge gap induced by spin-mixing perturbations may lead
to in-gap corner states through the mass-kink on the
edges [43]. We construct nanodisks with hexagonal, tri-
angular, and rhomboid shapes for RuBr3 and plot the
real-space distributions of the state at the Fermi level,
determined by valence electron counting. As shown in
Fig. 6, we find that the in-gap states are well localized
at the corners, independent of the geometry. Our results
are accordance with theoretical predictions about robust
corner states in TRS-preserved CS = 2 systems [43]. As
a result, manifold nontrivial characteristics embedded in
the orbital-doublet-driven ESC insulators, including he-
lical edge states, high near-quantized SHC, and robust
in-gap corner modes, enrich their potential applications
spanning various fields.

SUMMARY

To summarize, we develop a nonmagnetic four-
band model Hamiltonian based on a crystal symmetry-

enforced orbital doublet. We propose a generic approach
to realize a nontrivial ESC phase with CS = 2 by tuning
the sign of SOC within orbital doublets, which can be
supported in 12 crystallographic point groups. Realistic
2D examples, specifically the evolution from RuI3 mono-
layer to RuBr3, demonstrate that a trivial CS = 0 insula-
tor governed by positive SOC transforms into a nontrivial
CS = 2 insulator dominated by negative SOC. Moreover,
we show that such orbital-doublet-driven ESC insulators
manifest nontrivial features, including two pairs of helical
edge states, high near-quantized SHC, and robust in-gap
corner modes. Our work presents a universal strategy to
design ESC insulators featuring a near-double-quantized
SHC plateau within a large bulk gap, offering new in-
sights into the exploration of QSH insulators.
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