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Abstract: The probing of coherent lattice vibrations in solids has been conventionally carried 

out using time-resolved transient spectroscopy where only the relative oscillation amplitude 

can be obtained. Using time-resolved X-ray techniques, absolute electron-phonon coupling 

strength could be extracted. However, the complexity of such an experiment renders it 

impossible to be carried out in conventional laboratories. Here we demonstrate that the 

electron-phonon, anharmonic phonon-phonon coupling, and their relaxation dynamics can be 

probed in real-time using high-harmonic spectroscopy. Our technique is background-free and 

has extreme sensitivity directly in the energy domain. In combination with the optical 

deformation potential calculated from density functional perturbation theory and the absolute 

energy modulation depth, our measurement reveals the maximum displacement of neighboring 

oxygen atoms in α-quartz crystal to tens of picometers in real space. By employing a 

straightforward and robust time-windowed Gabor analysis for the phonon-modulated high-

harmonic spectrum, we successfully observe channel-resolved four-phonon scattering 

processes in such highly nonlinear interactions. Our work opens a new realm for accurate 

measurement of coherent phonons and their scattering dynamics, which allows for potential 

benchmarking ab-initio calculations in solids. 
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         Electron-phonon (e-ph, fermion-boson) and phonon-phonon (ph-ph, boson-boson) 

scatterings are two universal interactions in solid matter1,2. The former almost entirely 

determines the optical and electrical properties, and gives rise to new phenomena, e.g., Kohn 

anomalies3, the formation of quasiparticles4, phonon stiffening5, phonon-assisted absorption6, 

etc. It also plays a crucial role in superconductivity7 and renormalizes electronic excitation 

energies8. The latter originates from the inherent anharmonicity of the chemical bonds in solids 

and determines important properties of crystals such as lattice thermal conductivity, expansion, 

infrared, Raman, and neutron scattering cross-sections9, and closely correlates with interesting 

effects, such as phonon drag10, phonon bottleneck11, and second sound12. The advent of 

ultrafast pump-probe spectroscopy sets the basis to coherently initiate collective atomic 

motions inside the crystal lattice by photo-absorption of a pump pulse, then detect their 

electronic and vibrational relaxation processes in real-time through a probe pulse. Over the past 

few decades, a great number of time-resolved detection techniques have been developed13. 

Generally, coherent phonons can be detected with another ultrashort pulse via transient 

intensity modulations in reflectivity or transmittivity 14,15. However, due to the lack of absolute 

measurement of phonon-induced perturbations, all these methods have limitations in directly 

quantifying the e-ph and anharmonic ph-ph interactions. 

         Since non-perturbative high-harmonic generation (HHG) from solids16 has been 

demonstrated following decades of development in strong-field physics and attosecond science 

from gases17-19, it quickly attracted much attention from many fields. HHG in solids has been 

investigated in diverse materials, including bulk insulators20,21, semiconductors22, Weyl 

semimetals23, metals24, as well as low dimensional materials25,26, and the coherent radiation 

spectrum has been observed from the Terahertz (THz) to the extreme ultraviolet (EUV) range 

under different driving fields19-26. The microscopic mechanism of the HHG process in solids 

primarily involves two main contributions: intraband current and interband polarization. The 

latter can be satisfactorily understood by employing a three-step recollision model27. The 

extremely nonlinear nature of the HHG process has opened novel avenues to probe material 

properties in terms of electronic structure and ultrafast dynamics on sub-femtosecond (1 fs = 

10-15 s) timescales, such as all-optical band structure reconstruction20, crystal symmetry 

determination28, topological character and correlation of materials29-32, and Berry curvature 

reconstruction33. Furthermore, the high-harmonic spectroscopy (HHS) technique has been 

utilized to investigate an additional degree of freedom in condensed matter, namely lattice 

vibrations. While few theoretical studies have proposed the detection of lattice vibrations using 
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HHS34,35, the experimental observations of phonon oscillations in VO2 and ZnO systems have 

been successfully achieved36,37. These investigations have predominantly focused on the 

transient modulation of phonon oscillations within the domain of HHG yields. 

         Here, we demonstrate for the first time directly in the energy domain, that this 

extremely sensitive spectroscopy approach can be used to explore e-ph and ph-ph scattering 

processes in real-time. Collective periodic lattice vibrations, which can be selectively triggered 

with a short laser pulse are referred to as coherent phonons38. A small displacement Q of the 

nuclei upon an external driving force ( )F t , the time-dependent lattice oscillations can be 

described by the classical equation39 ( )2

0( ) ( ) ( ) ( )Q t Q t Q t F tµ γ ω+ + =  , where µ is the reduced 

lattice mass, γ  the damping constant, and 0ω the oscillation frequency. In general, ( )F t

determines the generation mechanism of the coherent phonons that can be classified into a few 

types, impulsive stimulated Raman scattering (ISRS)40,41, displacive excitation of coherent 

phonons (DECP)42, and resonant excitation mechanisms43. As a coherent nuclear displacement 

( )Q t causes a change in the optical properties (e.g., reflectivity R) of the crystal through the 

refractive index n  and the susceptibility χ , the impact of a single mode coherent phonon on 

the optical response is approximately given by a harmonic response, i.e., 

0 0( ) / exp( )cos( ).Q t R R A t tγ ω ϕ∝ ∆ = − + This is how a standard transient pump-probe 

spectroscopy technique detects the dynamics of coherent optical phonons, including four-wave 

mixing44, transient reflectivity14, and transmissivity15, X-ray diffraction45,46, as well as second 

harmonic generation (SHG)39 spectroscopy methods. 

High-harmonic spectroscopy probes lattice dynamics 

         The main idea of initiating and tracking coherent lattice vibrations based on HHG 

spectroscopy in the dielectric z-cut α-quartz crystal ([0001] direction) is illustrated in Fig. 1. 

An intense ultrashort pump pulse (~30 fs) and a weaker probe pulse (~25 fs) constitute a non-

collinear pump-probe configuration, and time-delayed spectra are recorded by an EUV 

spectrometer. More details are provided in the Methods part. In principle, when a light pulse 

interacts with a solid, both direct (resonant) and indirect (non-resonant) excitations of electrons 

from the valence band (VB) to the conduction band (CB) exist for a small band gap material. 

The band gap of α-quartz is experimentally measured to be around ~9.5 eV47 (see calculated 

band structure in Extended Data Fig. 1) which is much larger than the centre frequency of both 

pump (~1.55 eV) and probe (~3.1 eV) pulses. Therefore, the creation of electron-hole pairs 
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across the large direct band gap near the Brillouin zone centre only becomes relevant and 

dominates the transition rate when the laser intensity is sufficiently high to initiate the 

multiphoton transitions, i.e., when it is close to or higher than 1012 W/cm2 (nonlinear regime). 

         As shown in Fig. 1b, the electron transition in a bulk α-quartz crystal happens by an 

intense laser pulse (~1013 W/cm2) primarily through nonlinear multiphoton absorption or 

electron tunnelling. The coherent driving with two pulses leads to HHG as presented in the 

Extended Data Fig. 2, both the static HHG spectra of 400 and 800 nm, the harmonics up to 5th 

of 400 nm and 11th of 800 nm are clearly observed, where the 3rd harmonic has the highest 

yields. Accompanying electronic transitions, a rapid shift of the crystal potential for the lattice 

atoms kick-starts coherent phonon oscillations. Conversely, the generated coherent phonon 

represents a disturbance of the crystal lattice, leading to a variation of the band structure. The 

photoexcited electron density ( )en t  linearly governs the amplitude of the nuclear shift 

(coherent phonon amplitude) in the equilibrium coordinate ( '
0 0( ( ) )Q t Q− ). Note that the 

timescale of electronic transitions (10-18 s) is much faster than typical phonon periods (10-15-

10-12 s), such that the conditions for the (adiabatic) Born-Oppenheimer approximation are 

satisfied. A time-delayed probe pulse with an intensity of around 1012 W/cm2 is utilized to 

detect the coherent phonon dynamics via monitoring the modulation of the time-dependent 

HHG spectrum of the probe. Figure 1c shows a typical integrated time-delayed 3rd harmonic 

generation (THG) spectrum of the probe. It obviously exhibits a periodic beating pattern, which 

is straightforwardly attributed to the coherent lattice vibrations. However, the observed 

quantity was the time-resolved modulation depth in the spectral domain ΔE(t)/E0, where 

ΔE(t)=E(t)-E0 is the spectral deviation from the HHG spectrum without phonons E0 (‘reference 

spectrum’ when comparing to a typical transient spectroscopy measurement). Note that this 

significantly differs from conventional intensity modulation techniques in transmission (ΔT/T) 

or reflection (ΔR/R)14,15,44-46.  It should also be emphasized that our HHG-based technique is 

background-free. 

         As illustrated in Extended Data Fig. 3a and 3c, distinct phonon oscillations were also 

observed in the 4th and 5th harmonics of the probe pulse, and all the modulations show the same 

phases and frequencies. While no periodic oscillation was observed in the pump pulse when 

we switched the time delay of the two pulses. In comparison to the THG signal, other harmonics 

of the probe exhibit a relatively low signal-to-noise ratio (SNR) in the time-resolved spectra. 

Therefore, unless otherwise specified, our subsequent discussions will solely focus on the THG 
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spectrum of the probe. It should be clarified that by combining the X-ray diffraction and 

photoemission spectroscopy techniques46, one can track the e-ph interaction strength in real 

time and real space, yet the complexity of the experimental setup makes it not possible to be 

carried out in conventional laboratories. In short, our phonon detection method based on HHS 

offers absolute amplitude information in the energy domain, outperforming current laboratory-

based techniques that can only provide amplitude information up to an unknown proportional 

constant. 

         To determine the lattice vibration modes and their symmetries, a fast Fourier transform 

(FFT) of Fig. 1c is performed (Fig. 1d), and two main peaks located at 207.8 ± 0.7 cm-1 and 

464.8 ± 0.4 cm-1 are found. In comparison to Raman spectra15 and calculated phonon 

dispersions based on self-consistent density functional theory (DFT) (see Extended Data Fig. 

4), we can assign the two peaks to optical phonons of A1 symmetry, rotation of SiO4 tetrahedra 

(A1g), and a ring Obridge-breathing (A1b) mode. This analysis further indicates that the electronic 

state of the α-quartz crystal adiabatically follows the combination of A1g and A1b modes. A 

direct visualization can be found in the Extended Data Movie. 1. The apparent absence of the 

ground optical phonon mode E128 (located at ~128 cm-1) confirms the DECP generation 

mechanism42 for the two observed optical phonon modes. In contrast, previous work on α-

quartz crystals was mainly focused on the E128 mode that is generated by the ISRS mechanism41. 

Once optical phonon states are populated (i.e., “hot” phonons are created), the phonon 

perturbation not only contributes to the e-ph interaction but can also be scattered 

anharmonically to other phonon branches via three and higher phonon scattering processes as 

sketched by the waved arrows in Fig. 1b. Within a time-frequency analysis using the Gabor 

transform (GT, see Methods part) of the observed spectra (Fig. 1c), as shown in Fig. 1e (A1g) 

and Fig. 1f (A1b), clear frequency modulation spectra of the two hot phonon modes are 

discovered, which grants us to additionally trace the anharmonic ph-ph scattering dynamics on 

a fs timescale. Note that the GT sacrifices spectral resolution but allows us to keep temporal 

information in a spectral representation. 

Quantum-classical model 

         The α-quartz crystal has three high symmetry points, Γ, K, and M in the Brillouin zone 

(see Extended Data Fig. 4b). Through HHG measurements in solids one can acquire the 

symmetry information of the crystal28, such that we can select the laser polarization parallel to 

the high symmetry path Γ-M or Γ-K via rotating the orientation of the crystal. Figure 2a shows 
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the integrated THG trace and its centre of mass (COM, solid black line) of probe that is detected 

when the laser is polarized in the Γ-K direction. To extract the spectral dynamics of the 

observed two hot phonon modes (A1g and A1b), we perform a GT of the spectrum that yields 

instantaneous frequencies and amplitudes of the phonon oscillations. Figure 2b shows the GT 

corresponding to the COM of the detected spectrum (Fig. 2a), evidently showing the strong 

modulations in the COM line at the frequency centres of the A1g and the A1b mode. The 

modulation depth (peak-to-peak) of the A1g and the A1b mode is found to be ~60 cm-1 and ~14 

cm-1, respectively. 

         To develop a deeper understanding of the time evolution of the physical processes of 

the THG radiation trace of the probe pulse, following the findings that the optical properties in 

the region close to the band gap are strongly dominated by excitonic effects47, we numerically 

solve the following two-level quantum model describing the optically driven and phonon-

coupled exciton (detail see Methods, Dynamical Quantum Model for HHG Radiation Involving 

Phonons) 

                                                         0 2 ( ) Im[ ]d f t p
dt

ε= −                                                        (1) 

 0
2

( ) ( )(1 2 ) ,d pp i t p i t f
dt T

ε= − Ω + − −   (2)           

with the exciton occupation 0f , the polarization p , the instantaneous Rabi frequency of the 

driving electric field ( )tε , the time-dependent exciton energy ( )tΩ  and the dephasing time 2T . 

We want to remark that the terms ( ) Im( )t pε  and 0( )t fε  in eq. (1-2) give rise to a nonlinear, 

mutual coupling of the two equations which is the reason why such optical Bloch equation-

based models can be used to describe HHG processes48,49. We examine the Fourier transform 

of the microscopic polarization as the source of the emitted radiation ( ) ( ).E pω ω∝  Due to the 

e-ph interaction, the excitonic variables are coupled to the phonon dynamics. While incoherent 

phonons give rise to exciton-phonon scattering processes and phonon-induced dephasing, 

coherent phonons lead to a modulation of the exciton energy according to the time-dependent 

coherent phonon amplitude50, as will be shown in more detail in the Methods section. To 

quantitively determine the strength of e-ph and ph-ph interactions, we combine the two-level 

quantum model with a classical coupled oscillator interaction model by considering that the 
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phonon coupling leads to a time-dependent exciton energy as51,52            

 [ ]1 1 1 1 1 1 1
1 1

( ) cos ( ) exp cos ( ) expS b b b g g g
b g

t tt E V t t V t tω ϕ ω ϕ
τ τ

  
 Ω = + + − + + −         

   (3) 

 [ ]1 1 1 1 1 2 2 2( ) 1 cos(2 ) cos( )g gt t tω ω γ ω ϕ γ ω ϕ= + + + +   (4) 

 [ ]1 1 1 1 1 2 2 2( ) 1 cos(2 ) cos( ) ,b bt t tω ω γ ω ϕ γ ω ϕ′ ′ ′ ′ ′ ′= + + + +   (5) 

Where 1SE represents the unperturbed exciton energy, iV the e-ph interaction strength, iω and 

'
iω the centre phonon oscillation frequencies, iτ the phonon decay time, iγ and '

iγ the 

dimensionless anharmonic ph-ph coupling constants, iϕ and '
iϕ  the initial phonon phases. Note 

that in order to quantify the anharmonic ph-ph scattering strength by using the classical coupled 

oscillator model51, an acoustic ( 1ω and '
1ω ) and an optical phonon ( 2ω and '

2ω ) are considered 

(see following ph-ph scattering). The result of the simulated spectral dynamics is shown in Fig. 

2c and its GT in Fig. 2d. With properly fitted parameters of phonon modes (for the details, see 

the Least-Squares Fitting in the Methods part), we achieve remarkably good agreement with 

the experimental results. The time-resolved even, and higher odd harmonic spectra traces also 

can be accurately reproduced, as demonstrated in Extended Data Fig. 3b and 3d, by taking into 

account a complex transition dipole moment33. 

Optical manipulation of e-ph coupling dynamics 

         To quantitatively measure the impact of the A1g and A1b hot phonon scattering dynamics 

by the light pulses, we fix the electric field strength of the probe pulse to ~0.15 V/Å and record 

the time delayed THG spectra under different pump intensities (~0.76 to 1.14 V/Å). Figures 

3a-3c show the spectral dynamics for pump intensity scaling, where the periodic oscillation 

amplitude linearly rises with increasing pump fluence. We also find that the modulation 

amplitude does not grow symmetrically, while the minima remain almost unaffected, the 

maxima shift to higher energies. This implies that the lattice vibration-induced perturbation has 

an anisotropic character when interacting with VB and CB. Indeed, as shown in Fig. 3d, the 

exciton energy determined with our model, reflecting the density-dependent band gap, shows 

a linear dependence on the pump fluence with a slope of 21.8 ± 4 meV/(V/Å). This is very 

surprising because the band gap usually shows a well-known decreasing trend with increasing 

temperature in thermodynamics theory53. This unusual discrepancy indicates that, in a highly 
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nonlinear system where both ‘hot’ electrons and phonons are involved in light-matter 

interactions, the contribution of the e-ph coupling dominates the process for the pump influence 

rather than thermal expansion54 on such short time scales, and inversely for the probe influence 

(see Extended Data Fig. 5). 

         In addition to the constant shift of the band gap, as displayed in Fig. 3e, the e-ph 

interaction strengths of the A1g and A1b modes show a linear growth with slopes of 52.7 ± 8 

and 31.7 ± 7 meV/(V/Å). This is reasonable because the coherent phonon amplitude increases 

with a higher pump flux, which then results in a larger modulation amplitude of electron and 

hole energies. To figure out the main reasons, we recorded for the probe intensity scaling as 

shown in Extended Data Fig. 6, where for the whole range scaling is more appropriately fitted 

with linear rather than the perturbative power law fitting, implying the light-matter interaction 

is close to the non-perturbative regime (at least at higher intensity). One usually expects that 

the phonon relaxation time (or lifetime) monotonically drops with increasing temperature of 

the crystal. Nevertheless, we observed an anomalous phenomenon, as shown in Fig. 3g, the 

pump dependent relaxation time grows with a slope of 873 ± 82 and 409 ± 73 fs/(V/Å) for the 

A1g and A1b modes, respectively. One possible explanation is that the e-ph interaction changes 

more actively at higher pump fluences and marginally delays the direct decay channel of the 

two hot phonon modes. Another significant factor of coherent phonons is the initial phase, 

which can be interpreted as excitation time to form a specific lattice vibration upon photo 

absorption. Figure 3h shows the phase variation of the two phonon modes with the pump 

fluence, indicating that the A1g mode kickstarts the oscillation earlier than A1b, and displays a 

slightly shorter excitation time with higher pump intensity. Based on the measured initial phase 

and oscillation frequency of the two phonon modes, one can define a relative excitation time 

1 1 1 1/ /g g b btδ ϕ ω ϕ ω= −  (Fig. 3k) between A1g and A1b mode, representing their relative 

initialization time when absorbing the pump photons in the beginning. The relative delay time 

between A1b and A1g can be up to 60 ± 10 fs and shows a decrease with higher pump strength 

with a rate of -25 ± 5 fs/(V/Å).  

Moreover, the e-ph interaction can be quantified by the optical deformation potential 

(ODP, see Methods part, Optical Deformation Potential Calculation) from self-consistent 

density functional perturbation theory (DFPT). For the A1g and the A1b mode the calculated 

ODP values at the Brillouin zone centre are -0.54 ± 0.15 and 2.31± 0.27 meV/pm, respectively. 

Applying these values, we retrieve a maximum displacement of neighbouring oxygen (O) 
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atoms in α-quartz crystal to ~27 pm and ~10 pm in real space, respectively (see the Fig. 3f). 

Associating with the measured e-ph strength and calculated ODP, we can access the pulse 

intensity dependent O atoms displacement of the A1g and A1b mode as shown in Fig. 4a and 4b. 

In addition, considering the A1g and A1b mode are two orthogonal phonon modes (see Extended 

Data Fig. 4a and 4b), the 2D oxygen atom displacement trajectories in real space can be 

conveniently constructed in Cartesian coordinates as shown in Fig. 4c (pump intensity 1.1 V/ 

Å). The vibrational direction of neighbouring base atoms (Si/O) associated with the A1g and 

A1b modes show almost a π flip in the beginning, which agrees with the calculated vibrational 

direction and strength from first principles (see Extended Data Fig. 4). 

ph-ph scattering process 

         In the next step, we investigate the anharmonic ph-ph coupling dynamics that are 

encoded in the e-ph coupling process. The Extended Data Fig. 7a and 7b display the spectral 

dynamics of the phonon modes A1g and A1b under different probe peak intensities (0.161 to 

0.170 V/Å) and fixed pump (~1 V/Å) with polarization in the Γ-M direction. The modulated 

amplitudes of the phonon frequencies present an insensitive variation under different probe 

fluences compared to the e-ph interaction in the pump fluence dependence. The extracted 

parameters from our model are shown in Extended Data Figs. 7c to 7f, where all physical 

quantities show a very flat tendency when changing the probe fluence, also considering the 

statistical error bar range. Therefore, here we only quantitatively discuss the averaged 

interactions for the ph-ph coupling dynamics. 

         The fitted modulation frequencies, as shown in Extended Data Fig. 7c for the A1b and 

A1g modes, are located at 1 36 6ω = ±  and 2 129 8ω = ± , as well as '
1 112 9ω = ±  and 

'
2 258 8ω = ± cm-1, respectively, which agree well with the results from direct FFT (see 

Extended Data Fig. 8c and 8d). The finding that 1ω  and '
1ω  are even smaller than the ground 

optical phonon mode E128 suggests that these two modes belong to acoustic (ac) phonons. The 

oscillation frequencies 2ω and '
2ω  are similar to those of the degenerate optical phonon modes 

E128 and E262 of the α-quartz crystal, which indicate the scattered optical phonon modes for A1g 

and A1b can be E128 and E262. The obtained anharmonic constants (Extended Data Fig. 7d for 

the A1g phonon mode), i.e., the scattering strength of A1g with ac and E128 modes, are 

1 0.06 0.02γ = ±  and 2 0.12 0.03γ = ± , respectively. While for the A1b mode, the anharmonic 
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scattering strength with ac and E262 modes are '
1 0.007 0.002γ = ± and '

2 0.01 0.003γ = ± , 

respectively. Based on the anharmonic coupling analysis of the two A1 phonons, we can 

conclude that the A1b is more robust and less perturbed by other phonons than A1g. The initial 

phases of the acoustic and optical phonon E128 frequencies (Extended Data Fig. 7e) are

1 0.15 0.06ϕ = ±  and '
1 4.4 0.5ϕ = ±  rad for A1g, and  2 1.1 0.2ϕ = ± and '

2 1.1 0.3ϕ = ± rad for 

A1b, which results in corresponding relative delay times of 22 9tδ = ± fs for the 1gA ac→  

and 1 128gA E→ , and ' 68 23tδ = ± fs for the 1bA ac→  and 1 262bA E→ scattering processes 

(Extended Data Fig. 7f). From these measurements we can conclude: (1) Even though a 

coherent phonon mode is excited early and decays faster, the coherent ph-ph scattering process 

is still present and can be traced by a faster attosecond scale electronic motion; (2) usually in a 

quantum picture the ph-ph scattering description is instantaneous, but the time for the build-up 

of a collective lattice oscillation varies among the different vibrational modes from a classical 

perspective. 

        In accordance with the extracted modulation frequencies, together with a reliable phonon 

dispersion relation (see Extended Data Fig. 4c and Tab. 1), we can assign the previous results 

to possible ph-ph scattering pathways using the following four-phonon scattering selection 

rules1  

                                                  1 2 3 4q q q q G= + + +     (Type I)                                          (6) 

  1 2 3 4 ,q q q q G+ + = +     (Type II) (7) 

where the four phonons participating in the scattering process have wave vectors 1 2 3, ,q q q and 

4q  and G is a reciprocal lattice vector to account for normal (G = 0) and umklapp (G ≠ 0) 

processes. The α-quartz has three acoustic and twenty-four optical phonon branches. Due to 

the limited time window of the phonon oscillation signal, it is difficult to directly resolve the 

lower frequency of the modulated phonon mode. From the obvious spectral modulation peak 

of the fundamental phonon mode, as shown in Extended Data Fig. 8a, a regular spacing 

frequency around 130 cm-1 is observed. There is no splitting in the spectrum indicating that the 

degenerate mode E128 at q = 0 participates in the scattering process. The almost continuous 

spectrum between 0 and 100 cm-1 implies that the other scattered phonons are likely continuous 

mode phonons, i.e., acoustic phonons. Similarly, we can assign the E262 and acoustic modes as 
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the scattering process based on the peak spacing in the GT spectra of the A1b mode as presented 

in Extended Data Fig. 8b. Based on the regular spacing frequency analysis and the selection 

rules of the conservation of phonon energy and quasi-momentum, the most likely phonon 

scattering is a  process (1) and belongs to 1st type scattering, thus the assignment of the possible 

pathways for A1g and A1b phonons are indicated by the arrows in Fig. 5. 

         Since we analyse the ph-ph scattering directly in the time-domain, the time dependent 

scattering rate, as illustrated in Extended Data Fig. 8a and 8b, can be monitored from a time-

frequency analysis of the spectral dynamics in Extended Data Figs. 7a and 7b, respectively. 

The scattering processes reach maxima at times around 430 fs (E128) and 350 fs (ac) for A1g, 

and 0 (E262) and 150 fs (ac) for A1b. Such a time-frequency analysis of the ph-ph interaction 

allows us to extract information on the connected phonon frequencies in real time. Taking the 

short-lived A1g mode as an example, as shown in Extended Data Fig. 8a, the center frequency 

of the excited ac phonon shifts towards lower energies with time, indicating that the A1g phonon 

either scatters to a lower ac phonon branch or that the ac phonon decays along its phonon 

dispersion curve. Thus, comparing to the conventional angle-resolved photoemission 

spectroscopy technique46, an alternative all-optical way to measure the phonon dispersion 

curve could be developed from here, i.e., from a hot ph-ph scattering process and the considered 

simple time-frequency analysis. Note that there have been some slight deviations between the 

observed phonons and DFT calculations, to access a full phonon dispersion relation with higher 

accuracy to benchmark calculations from the first principles, for instance under cryocooling 

conditions, a high SNR spectrum and long time-window of phonon oscillations should be 

measured and analysed. 

Conclusion 

         All-optical triggering and probing lattice vibration dynamics using HHS directly in the 

energy domain establishes a new paradigm for direct measurements of e-ph and ph-ph 

couplings. Our technique not only provides benchmark data for theoretically determining 

fundamental physical quantities describing the couplings from first principle’s calculation (e.g., 

DFT). The linearly dependent intensity scaling law of e-ph coupling dynamics also reveals the 

feasibility to optically control the electronic, phononic, and their interaction properties in 

condensed matter with millielectronvolt (meV, lattice potential) and picometre (pm, real space) 

precisions. The identification and analysis of channel-resolved four-phonon scattering 

processes using a simple and reliable time-windowed Gabor analysis method present a valuable 



12 
 

opportunity to further explore the intricate and intriguing anharmonic phonon-phonon coupling 

processes in complex systems. Beyond α-quartz, 2D crystals such as graphene55 and transition-

metal dichalcogenides (TMDs)56 as a new generation of electronic functional device materials, 

will benefit from accurate measurements of the fundamental e-ph and ph-ph interaction 

dynamics, which will shed some insights on their carrier mobility, heat transfer, and 

consequently applications in the future. 
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Methods 

Material 

In the experiment, we utilize a z-cut α-quartz crystal (100 orientation) (United Crystal) of 5*5 mm size 

as target for high-order harmonics generation (HHG). Its surface was two-sided optically polished, and 

the thickness was measured to be around 20 μm with our homemade white light interferometry 

spectrometer. The crystal structure of α-quartz is made of a continuous framework of Si–O tetrahedron 

(SiO4
4−), and each oxygen atom is shared by two tetrahedrons. The unit cell consists of 9 atoms in total 

as shown in Extended Data Fig. 1a. According to group theory, α-quartz has a trigonal crystal system 

and belongs to the space group P3221 (right-handed)57. The resulting phonon modes are divided into 

three acoustic vibrations (A2 + E) and twenty-four optical vibrations of 4A1 + 4A2 + 8E symmetry. The 

non-degenerate A1 modes are Raman active, the A2 modes are infrared active, and the doubly degenerate 

E modes are both infrared and Raman active. 

Experimental Setup and HHG Spectroscopy Technique 

The experimental setup is shown in Fig. 1a of the main text, two linearly polarized (P) laser pulses 

constitute the non-collinear time-delayed pump-probe HHG spectral detection geometry. The non-

collinear angle is less than 1.5 degree.  The pump stems from a high-power Ti: Sapphire near-infrared 

(NIR) laser at the carrier wavelength of 800 nm with a total energy of 7 mJ, and a repetition rate of 1 

kHz. The probe pulse (400 nm) is obtained by frequency-doubling the 800 nm pulse. The pulse 

durations of the pump and probe are determined by our homemade transient grating frequency-resolved 

optical gating (XEng Limited) setup to around 30 fs and 25 fs, respectively. A 75 cm focal length lens 

is used to focus the two light pulses on the sample. Note that due to the different opening sizes of the 

iris, the resulting focal beam size on the sample of pump and probe is around 150 - 200 µm, and 60-80 

μm, respectively. The size of the probe beam at the focus is roughly half that of the pump beam due to 

the lower power input (and also the Rayleigh criterion for diffraction limits). After strong interaction 

with the sample, the HHG signal will be generated along the same direction of the two-driving pulses. 

Then through a slit for filtering the fundamental pulses, the high order harmonics signal is separated by 

a flat-field variable groove density grating (Hamamatsu), and each harmonic is amplified and recorded 

by the CCD camera (PCO Panda) coupled micro-channel plates (MCP) detector.  The spectral range 

reaches from 5 eV to 55 eV, limited by the collection angle of the EUV spectrometer. Note that the 

resolution of the EUV spectrometer is around 0.05 eV but can be improved further via the higher 

statistical averages. The spectrum is not corrected for the sensitivity of the grating. When performing 

the time delay scan, a linearly closed-loop piezo stage is used for precisely detuning one of the arms of 

the pump and probe. Also, using Fresnel’s formula for S and P polarization, under a normal incident 

condition together with power-camera measurements, the intensity amplitude of the pump and probe 
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inside the sample are estimated to be around 1013 and 1012 W/cm2, respectively. Note that our EUV 

spectrometer has a limited capability to resolve phonon modulation depths, with a maximum resolution 

of up to 0.001 eV. Additionally, it can only measure phonon oscillations within a restricted time window 

of less than 1.5 ps. These limitations are due to the rapid decay time of phonon modes and the limited 

range of our piezo stage. 

Fast Fourier Transform and Gabor Transform 

When performing the time-resolved spectral analysis, we make use of the Fast Fourier Transform (FFT) 

and the Gabor Transform (GT). The FFT, converts a signal from its original domain F(t) (usually time 

or space) to a representation in the reciprocal domain ( )vφ (frequency or momentum, respectively) and 

vice versa. It is given by the following well-known formula as58 

                                                             2( ) ( ) i tF t e dπ νφ ν ν
∞

−∞

= ∫  (8) 

 2( ) ( ) .i tF t e dtπ νφ ν
∞

−

−∞

= ∫  (9)                                          

The GT is a special case of the short-time FFT and it is usually utilized to determine the sinusoidal 

frequency and phase content of local parts of a signal that changes over time. The function to be 

transformed is first multiplied by a (modified) Gaussian function, which can be regarded as a window 

function g(t), and the resulting function is then transformed with a Fourier transform to derive the time-

frequency analysis when varying the center of the window function59. A peaked window function leads 

to a higher weight of the signal at the time being analysed. The Gabor transform is defined as 

 ( , ) ( ) ( ) exp( ) ,S s t g t i t dtω τ τ ω
∞

−∞

= − −∫   (10) 

where ( )s t is the time-dependent signal and ( )g t τ−  a super-Gaussian window function reading 

 ( ) exp( ( ) / ).n n
pg t tτ τ τ− = − −  (11) 

To achieve a high-resolution time-dependent spectrum, it is crucial to optimize the time width and the 

order n of the super-Gaussian window function. In this study, two phonon modes, namely the A1g and 

A1b modes, were observed at approximate phonon wave numbers of 207 cm-1 and 464 cm-1, respectively. 

The corresponding phonon oscillation periods for the A1g and A1b modes are 161 fs and 72 fs, 

respectively. In order to monitor the anharmonic phonon-phonon coupling between these two modes in 

real-time, we employed a time-window of 160 fs, n = 6 for the time-delayed HHG spectrum, and 350 

fs, n = 8 for the phonon frequency modulation spectrum, respectively. To clearly explain the influence 

https://en.wikipedia.org/wiki/Short-time_Fourier_transform
https://en.wikipedia.org/wiki/Short-time_Fourier_transform
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of the window width influence, as one can see in the Extended Data Fig. 9, with the decreasing of the 

window width from 150 to 50 fs, there will be no dynamic feature of A1g mode on the spectra. 

Least-Squares Fitting 

All the fittings we used in the present are based on the Curve Fitting Toolbox in MATLAB software, 

which uses least-squares fitting methods to estimate the coefficients of a regression model. The 

algorithm for calculating the vector of estimated responses is  

                                                                                  ( , ).y f X b=                                                        

(12) 

Where the y  response estimates, f is the general form of the regression model. X is a design matrix. 

b is the parameters of fitted model coefficients. A least-squares fitting method is employed to compute 

model coefficients that minimize the sum of squared errors (SSE), also known as the residual sum of 

squares. For a given set of n data points, the residual for the ith data point is calculated using the 

following formula: 

                                                                              

2

1
( ) .

n

i i
i

SSE y y
=

= −∑                                                        

(13) 

The fitting result as in Extended Data Fig. 10, which excellently agrees with the experimental data, with 

a residual error of less than 1%. To assess the robustness of our fitting, we conducted an analysis where 

we intentionally set the pre-values of the A1b and A1g phonon modes to 200 and 100 cm-1, respectively, 

with lifetimes of 800 and 200 fs. These values resulted in all four parameters being off by 50%. Even 

with such significant deviations, as shown in Extended Fig. 10 b) as long as we employed a larger 

number of iterations (~15,000) based on our fitting algorithm, the fitting still achieved a very low 

residual error. The excellent agreement between the experimental observations and the fitted results 

suggests that the main contribution to the modulation in the central energy of the harmonics arises from 

phonon modulations. In contrast, the propagation effect, or phase matching, appears to be weak and 

negligible. 

Density Functional Theory 

Ab initio density functional theory (DFT) is employed to determine the electron band structure and 

density of states (DOS) of the α-quartz crystal. The band structure and DOS shown in Extended Data 

Figs. 1c and 1d were calculated on a commercial platform: Quantum Atomistix ToolKit (ATK) Q-
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2019.1260 based on first principles methods. In the calculation, geometry optimization was done under 

the force field approximation, with the force tolerance reached the level of 10-3 eV/Å. and the following 

electronic structure calculations were done within the meta generalized gradient approximation (MGGA) 

in the parametrization of Perdew-Burke-Ernzerhof (PBE). In the calculation, the TB09 functional and 

a high-accuracy Pseudo-Dojo basis set were used, and the energy cut-off was set to 830 eV, the iteration 

tolerance is 10-6. A Γ–centered Monkhorst-Pack of 6 x 6 x 5 was applied in the Brillouin zone. By using 

the TB09 functionals and the Pseudo-Dojo pseudopotential, we determine the direct band gap (i.e., the 

band gap at the Γ point) to 9.3 eV, which agrees well with the experimentally measured value of 9.5 

eV61-63. 

Density Functional Perturbation Theory 

Phonon quantities, such as phonon dispersion curves, vibrational modes, and optical deformation 

potentials (related to the electron-phonon coupling) are calculated by density functional perturbation 

theory (DFPT) using the frozen phonon method of lattice displacements2 on the same ATK platform59. 

As all these calculations are correlated to the dynamical matrix calculation, the lattice constants were 

selected as a = 4.9160 Å and c = 5.4054 Å upon a zero-pressure optimized structure using the Limited-

memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) optimizer method. The calculations were 

performed with the GGA-PBE variant of the GGA exchange-correlation functional. The 

pseudopotentials were chosen as the optimized norm-conserving variety that was generated by the GGA 

method and gave a converged calculation result at a cut-off energy of 1250 eV. A 11×11×9 Monkhorst-

Pack mesh was used to calculate the electronic Brillouin-zone integrals, which converged the 

computation at a force constant less than 1 meV/Å. A 7×7×5 supercell (corresponding to 2205 atoms 

in total) and a 5 pm atomic displacement of Si and O atoms in the 3D real space were used for the 

dynamical matrix and Hamiltonian derivatives calculations, and the iteration tolerance is 10-10. 

Especially when performing the calculation of phonon dispersions as shown in Extended Data Fig. 4, 

we directly used the previously published classical force field constants64 which gave the best 

comparable results with the experimental Raman spectroscopy measurements 65,66 until now. 

Dynamical Quantum Model for HHG Radiation Involving Phonons 

The band gap of α-quartz lies around 9.5 eV61-63 and it also exhibits strong excitonic features around 

the band gap47, which dominate the optical response in this frequency range. The central frequency of 

the probe pulse (3.1 eV) is far away from a resonant band gap transition and high above the THz-region 

where polarization and current sources of the HHG are of the same order. Therefore, we conclude that 

the optical signals are dominated by excitonic transitions rather than by quasiparticle band-to-band 

transitions. Since the oscillator strength of higher excitonic transitions is quickly decaying with 

increasing exciton quantum number n (~𝑛𝑛−3 in the case of bulk Wannier excitons67), we will restrict 
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ourselves to a single exciton level with 𝑛𝑛 = 1, i.e., the 1s-exciton, which is most strongly coupled to 

the light field. Introducing the creation and annihilation operators KX and
†
KX  for 1s-excitons with 

center-of-mass wave vector K 49,68, the free exciton Hamiltonian then reads 

 †
K K KX

k
H E X X=∑  (14)

with the corresponding energies 2 2
1 / 2K SE E K M= +   with the total exciton mass M. Due to the far 

off-resonant excitation, high-density effects can be neglected, and the exciton operators therefore fulfil 

bosonic commutation relations †, .K K KKX X δ′ ′  =   We consider the excitonic transition driven by an 

electric field 0( ) cos( )E t E tω=  coupled via the dipole moment matrix element along the direction of 

the electric field 0d , which we assume to be real. Note, that we do not perform the rotating wave 

approximation. Assuming a homogeneous system with a homogeneous excitation, only excitons with

0K =  couple to the electric field resulting in the exciton-light coupling Hamiltonian                                       

                           

                                                   
†

0 0 0 0

†
0 0

( ) ( )

( )( ),
X lightH d E t X d E t X

t X Xε
− = − −

= − +

                                 (15)  

where we have introduced the abbreviation 0( ) ( ) /t d E tε =   denoting the instantaneous Rabi 

frequency of the driving field. To describe the coupling of the excitons to the phonons we introduce the 

bosonic phonon creation and annihilation operators †
,QiB and ,QiB for a phonon with wave vectorQ and 

energy ,Qiω in branch ,i as well as the exciton-phonon coupling matrix element ( ).Q
ig  Then the free 

phonon Hamiltonian and the Hamiltonian of the exciton-phonon interaction read 

 † ( ) † †
, , , , ,

, , ,
( ).Q Q Q Q K+Q K Q Q

Q K Q

i
ph X ph i i i i i

i i
H H B B X X B Bω− −+ = + +∑ ∑ g   (16) 

With this Hamiltonian we can set up the equations of motion for any expectation value via the 

Heisenberg equation of motion 

 [ ], ,d iA H A
dt

=


 (17) 

which for the exciton occupation †
K K Kf X X=  leads to the equation 
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 ( )

*
,0

( ) † † † † † †
, , , ,

,

( )( )

,

K K

Q K Q K Q K Q Q Q K K Q Q K K Q Q
Q

i
i i i i

i

d f i t p p
dt

i X X B X X B X X B X X B

ε δ

+ − + − − −

= − − +

+ − −∑g  (18)

for the polarization 0p X=  to 

 ( ) †1
0 , ,

,
( )(1 2 ) ,Q Q Q Q Q

Q

is
i i

i

Ed p i p i t f i X B X B
dt

ε − − −= − + − + +∑


g  (19) 

and for the coherent phonon amplitude ,QiB  to 

 
( ) †

, , , .Q Q Q Q K+Q K
K

i
i i i

d B i B i X X
dt

ω= − − ∑g  (20) 

Because of the many-body nature of the coupled exciton-phonon system, we find that higher order terms
†
,Q QiX B− −  and , ,Q QiX B−  giving rise to phonon-assisted transitions as well as dephasing due to 

exciton-phonon scattering, appear in the equation of motion of the polarization 𝑝𝑝. Furthermore, terms 

such as † †
,K Q K QiX X B+ −  describing redistributions in the exciton occupation due to exciton-phonon 

scattering processes appear in the equation for .Kf In order to deal with these terms, we use a 

factorization scheme according to 

 † † †
, , , ,Q Q Q Q Q Qi i iX B X B X Bδ− − − − − −= +  (21)

 † † † † † †
, , , ,K Q K Q K Q K Q K Q K Qi i iX X B X X B X X Bδ+ − + − + −= +  (22) 

which separates the influence of the coherent phonons from exciton-phonon correlations. On the sub-

picosecond time scales considered here phonon scattering-induced redistributions are of minor 

importance, therefore in the lowest order, we neglect the correlations †
,Q QiX Bδ − − and 

† †
, .K Q K QiX X Bδ + −  Since, due to the homogeneous excitation, only excitons with 0Q =  are optically 

excited and the exciton occupation remains diagonal, also coherent phonons are only created with wave 

vector 0Q = and the phonon-related terms in the equation of motion for the occupation cancel. The 

equations of motion then simplify to 

 *
0 ( )( ),d f i t p p

dt
ε= − −  (23) 
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 ( )( ) †1
0 ,0 ,0 0 0

0

( )(1 2 )

( ) ( )(1 2 ),

is
i i

Ed p i B B X i t f
dt

i t p i t f

ε

ε

 = − − + + − 
 

= − Ω + −


g
 (24) 

 ( )
,0 ,0 ,0 0 0.i

i i i
d B i B i f
dt

ω= − − g  (25) 

From these equations, it is clear that the exciton-phonon coupling on the one hand leads to the creation 

of coherent phonons with vanishing wave vectors and on the other hand leads to a dynamical 

renormalization of the exciton energy via the function 

 ( )( ) †1
0 ,0 ,0( ) .is

i i
i

Et B BΩ = − +∑


g  (26) 

Note, that since only phonons with vanishing wave vector can be excited in a homogeneously excited 

homogeneous system, only optical phonons are relevant. The renormalization is directly proportional 

to the displacement of the respective phonon mode given by 

 ( )†
,0 ,0

,0

,
2i i i

i i

u B B
µω

= +
  (27) 

where iµ denotes the reduced mass of the corresponding optical phonon mode i. Let us briefly comment 

on the phonon-induced dynamical energy shift. The typical exciton-phonon coupling as in Eq. (16) is 

linear in the displacement, the coupling Hamiltonian therefore describes an energy proportional to the 

lattice displacement operator. In first order perturbation theory this leads to an energy shift proportional 

to the expectation value of the displacement (see Eq. (26)). In the case of incoherent phonons, e.g., in 

the presence of thermal phonons, this expectation value is zero and one has to go to second order 

perturbation theory, where the exciton-phonon correlations in Eq. (21) lead to an energy shift depending 

on the mean square displacement or, for thermal phonons, on the temperature. In the present case, 

however, due to the ultrafast pump pulse, coherent phonons are excited, characterized by a non-

vanishing expectation value of the lattice displacement. Therefore, we observe in the HHG spectra a 

non-vanishing energy correction to the exciton energy in first order perturbation theory proportional to 

the lattice displacement, according to Eqs. (26,27). 

In the case of the excitation by optical pulses in the few femtosecond range the driving term in the 

equation for the coherent phonon amplitudes, resulting from the exciton occupation, acts essentially as 

a step function, which initiates oscillations around a displaced equilibrium position for each coupled 

optical phonon mode. This results in the time-dependent energy renormalization in Eq. (26) reading 
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 1
,0( ) cos( ) exp ,s i

i i
i i

E V tt tω ϕ
τ

 
Ω = + + − 

 
∑

 

 (28) 

with coefficients 𝑉𝑉𝑖𝑖 being proportional to the amplitude 〈𝐵𝐵𝑖𝑖,0〉 of the coherent phonon mode i and we 

have added a phenomenological damping time 𝜏𝜏𝑖𝑖 of the respective phonon mode. 

To obtain the optical signals, we numerically solve the coupled set of equations of motion driven by the 

probe pulse (Eq. (23-25)) (complemented by a phenomenological dephasing time T2 in Eq. (24)) and 

subsequently calculate the Fourier transform of the microscopic polarization p, which acts as the source 

of the emitted radiation, i.e., 𝐸𝐸(𝜔𝜔) ∝ 𝑝𝑝(𝜔𝜔). In other words, the main microscopic contribution of the 

high-harmonic generation in this study is the interband polarization, which is similar with the "three-

step model" observed when an atom (or molecule) is subjected to a strong light field. Note that the 𝑝𝑝(𝜔𝜔) 

To take into account the effect of anharmonic couplings among the phonons, we replace the frequencies 

𝜔𝜔𝑖𝑖,0 in the energy renormalizations in Eq. (28) according to the coupled oscillator model, as outlined in 

the main next. For the exciton-phonon coupling constants optical deformation potentials for the valence 

and the conduction band are obtained from DFT and DFPT calculations, as will be described below. 

Optical Deformation Potential Calculation  

In order to theoretically quantify the e-ph interaction strength from first principles, the key task is to 

calculate the e-ph matrix element ( , )K Qi
mng  representing the electronic response following an electron 

transition process where a Bloch electron from a state with band index n and wave vector K transitions 

to a state with band index m and wave vector K+Q69-71. As mentioned previously in the quantum model, 

here the electronic excitation mainly happens at K = 0, it is reasonable to calculate the optical 

deformation potential of conduction band and valence band at K = 0 and take their difference as the 

optical deformation potential of the observed exciton. 

The e-ph matrix can be determined from the variational formulation in DFPT as  

 ( , ) ( , )
2 Q

K Q K Qi i
mn mn

i i

M
uω

=g
   (29) 

where
Qiω is the specific phonon frequency, and ( , )K Qi

mnM  is defined as 

 
,

*
,( , ) ( ) ( ) ( ) ,

K Q Q K
r

K Q r r r r
m

i
mn i nM V dψ δ ψ

+
= ∫   (30) 

where the initial and final electronic wave functions are extracted from DFT calculations and the 

perturbation potential ( )Q ri Vδ can be computed by DFPT. 
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Generally, the electron band structure is determined by the crystal potential and can be influenced by 

the lattice displacement. For optical phonons, the unit cell of the crystal has two or more atoms, and the 

neighbouring atoms are displaced in opposite directions (see Extended Data Figs. 4a and 4b). In this 

case, it is the varying distances between the basis atoms, which disturbs the surrounding lattice potential, 

serving as a source for the interaction with the electrons. Therefore, the perturbation potential is directly 

proportional to the oxygen atomic displacement as70  

 ,e ph ODPV D u− =   (31) 

where DODP (eV/pm) is the optical deformation potential (ODP) and u is the atomic displacement. 

Compared to (0,0) ( , )Q ri
e ph mn iV M u t− = ⋅ , we can find that the (0,0)i

mnM is directly the DODP. 

Consequently, DODP is described as the zero-order deformation potential, which can be calculated as

  

 (0,0).i
ODP mnD M=   (32) 

According to the measured phonon-perturbed THG spectrum, we can directly quantify the e-ph 

interaction strength (perturbation potential). Therefore, after obtaining the deformation potential DODP 

value at the Γ point from DFPT of first principles, we can quantify the corresponding atomic 

displacements for the two phonons in the α-quartz crystal. To compute DODP, we consider the highest 

valence and lowest conduction band as an initial and final electronic state that can be extracted from 

DFT calculation. The optical phonon branches are selected as those of the experimentally observed 

phonon modes. In addition, as the laser polarization is always parallel with a high-symmetry direction 

(either Γ-K or Γ-M direction) in momentum space, we can directly calculate DODP along this direction. 

The DODP value in the main text is given by the difference of the ODP values of VB to CB at the Γ point. 

Different XC functions were applied on the calculation and provided the averaged value of the DODP. 
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Fig. 1 | The HHS based principle of measuring lattice vibration dynamics. a, Schematic of 

the experimental setup: two ultrashort laser pulses with centre wavelengths at 800 nm (Pump 

~30 fs) and 400 nm (Probe ~25 fs) are used to form a non-collinear pump-probe HHG detection 

geometry. The HHG spectra both from the pump and probe are recorded by an EUV 

spectrometer placed downstream of the sample. b, Optical excitation and e-ph interaction 

scheme in the electron band structure. The red, blue, and violet waves and arrows show the 

pump excitation, probe excitation, and THG emission respectively. The green and yellow 

waves represent the phonon creation and scattering. The back-action of the phonons leads to 

modulations of the electron bands (green arrows). c, Detected lattice vibrations from the time-

delayed THG spectrum of the probe. d, FFT of (c), two optical phonons with A1 symmetry 

located at ~207 cm-1 and ~464 cm-1 are found and assigned to the A1g and A1b phonon modes 

with eigenmodes depicted as insets. e and f, Frequency modulated spectra of A1g (e) and A1b 

(f) phonon modes from a time-frequency analysis of c. 
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Fig. 2 | Experimental and simulated time delayed THG trace of lattice dynamics from 

HHS. a, Experimentally measured raw data of the integrated time-delayed THG trace of the 

probe polarized in Γ-K direction. b, Time-frequency analysis of a, the two dominant hot 

phonons show a periodic frequency modulation in their centre frequencies around 207 and 464 

cm-1. c, Reconstructed THG trace that is based on the two-level quantum-classical model 

summarized in the main and methods text. d, Time-frequency analysis of c. All solid black 

lines in the figure represent the COM of the corresponding trace and the intensities of all traces 

are normalized to their maximum. The colorbars are linear and normalized to the maximal 

value of the harmonic signal. 
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Fig. 3 | Optical manipulation of electronic and phononic properties of α-quartz crystal. a-

c, Integrated time delayed THG spectra of the probe through the intensity-scaling measurement 

when both pump and probe pulses are polarized along the Γ−K direction. The estimated pump 

peak electric field ranging from 0.76 to 1.14 V/Å, and for clarity only three spectra are shown. 

The dots and solid line represent the experimental measurement and their fits (R^2 is around 

0.85 to 0.95 from lower to higher laser intensity). d, The extracted pump-intensity dependent 

band gap variation based on the two-level model at vanishing delay time. e, same as d but 

showing the extracted e-ph interaction strength variation of the A1b (red dots) and A1g (blue 

dots) phonon mode. f the calculated oxygen atom displacement in the optical phonon modes 

based on the optical deformation potential calculated by DFPT and the measured e-ph 

interaction strength. g, Decay time variation of the two phonon modes. h and k, Extracted 

initial phase of the phonon excitation, and corresponding relative delay excitation times. All 

solid lines from d to k indicate linear fittings of the extracted data and the error bars denote 

fitting uncertainties, whereas the shaded areas represent systematic fluence and statistical 

uncertainties.  
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Fig. 4 | Reconstructed O atom displacement dynamics of the two optical modes A1g and 

A1b by combining the calculated ODP from DFPT. a, b, The real-time dynamics of the 

oxygen atomic displacements of the α-quartz crystal by the optical phonons A1g, A1b. The 

colored dots represent the different pump strengths of 0.81, 0.96 and 1.10 V/Å. The solid lines 

indicate the fits of the oscillations. c, The combined (A1g + A1b) oxygen oscillations exhibit 2D 

motion trajectories in real space (Cartesian coordinates) when a pump intensity of 1.10 V/Å is 

selected. The brown, yellow, and green curves represent the projected trajectories of the time-

dependent 2D motion in real space.  
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Fig. 5 | Phonon dispersion and possible anharmonic decays for A1g and A1b phonons by a 

4-phonon scattering pathways. Phonon band structure of α-quartz calculated by DFPT, where 

the coloured lines represent the participating phonon branches, and the coloured dots represent 

the optical phonons, and the black dots represent specific ac phonons. The arrows indicate the 

possible phonon-phonon scattering paths of the the A1g and A1b modes. 
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Extended Data Fig. 1 | Electronic Band structure of quartz crystal. a, Unit cell of bulk α-

quartz crystal which consists of nine atoms (three Si and six O atoms) in total and b, the 

corresponding Brillouin zone.  c and d, Calculated electronic band structure and density of 

states from DFT. 
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Extended Data Fig. 2 | Energy-calibrated, spatially resolved HHG spectra. a, 400 nm only. 

b,800 nm only. c, Combination of them after vertical integration on the MCP image. 
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Extended Data Fig. 3 | Measured and Simulated Time-resolved HHG spectra of 400nm 

pulses. a and c, Time-resolved spectrum trace of 4th and 5th harmonic of 400 nm probe. b, and 

d, The corresponding simulations from the quantum model. The color bar is linear and 

normalized to the maximal value of the harmonic signal. 
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Extended Data Fig. 4 | Phonon mode and phonon dispersion curve of quartz crystal. a and 

b, Vibrational modes of A1g and A1b phonon modes of α-quartz in the z-direction of the lattice, 

the arrows and their lengths indicate the directions of atomic motion and oscillation amplitudes. 

c and d, Phonon dispersion and phonon density of states that were calculated from DFPT. 
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Extended Data Fig. 5 | Band gap variation at different probe pulse field strengths. a and 

b, Denote the values extracted from experimental spectra that were measured in Γ-M and Γ-K 

direction when the pump intensity was fixed aroung 1.1 V/Å, respectively. 
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Extended Data Fig. 6 | Intensity scalling of THG of 400nm probe. The blue dot line 

represents the measured THG yields at varying laser intensities, while the red solid line 

corresponds to the fitting results obtained using a perturbative power law model In (I is the 

pulse intenstity and n is the harmonic order, here n = 3). The yellow line is a linear fit to the 

experimental data. 
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Extended Data Fig.7 | Quantifying ph-ph couplings from the classical coupled oscillator 

model. a and b, Modulated spectrum of A1g and A1b modes with probe intensity-scaling 

measurement when both pump and probe pulses are polarized in Γ−M direction. The legends 

show the estimated probe peak intensity ranging from 0.161 to 0.170 V/Å, and fixed pump 

field strength ~1.0 V/Å. The solid line indicates the linear fitting according to the coupled 

classical oscillator interaction model. c, Extracted modulation frequency variations for both 

modes, the dashed lines represent the experimentally observed E128 and E262 phonon modes15. 

d, Anharmonic dimensionless ph-ph interaction constants. e and f, Initial phases of the 

modulation frequencies and corresponding relative delay time of connected phonon modes. 

The error bars in c to f include fitting, statistical and systematic uncertainties. 
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Extended Data Fig. 8 | Time-frequency and FFT analysis of the modulated spectra. a. 

Time-frequency analysis of the modulated spectra from Extended Data Fig. 8a and 8b in the 

Γ−M direction. The solid green lines indicate the spacing frequencies of the specific phonon 

modes that contribute to the four-phonon scattering process. The intensity of all traces is 

normalized to their maximum. c and d, direct FFT of the modulated spetra in Fig. 8a and 7b, 

respectively. The arrows indicate the main peaks of the spectra.  
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Extended Data Fig. 9 | Time-Frequency analysis (GT) under different time window widths.   a, 

b, and c. The GT Spectrum variation under different time window widths from 150 f, 100 fs, and 50 fs, 

respectively. 
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Extended Data Fig. 10 | Phonon parameters fitting and residual errors. a. Measured (dot) and 

fitted (solid line) COM spectrum of THG (upper panel), and the lower panel represents the residual 

error between the fitted and the measured data. b. Iterated SSE value variations after setting four pre-

values off by 50 %. 
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Extended Data Tab. 1 | Comparison of the phonon frequencies. (A and E symmetry) at 

the Γ point based on DFPT calculations in this work and the previous experimental Raman 

spectroscopy measurements. 

 

  

 

 

 

 

 

 

Symmetry Phonon Frequency (cm-1) 

  

A1 

207 205.9 205.7 

356 355.6 346.8 

464 464.1 466.2 

1085 1084.5 1171 

E(LO+TO) 128 127.9 134.7 

E(LO+TO) 265 264.6 262.3 

E(LO+TO) 697 696 658.3 

E(LO+TO) 1162 1161.5 1152 

References [65] [66] This work 
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Phonon parameters 
1bV (meV) 1bω  (cm-1) 1bτ  (fs) 1bϕ  (rad) gE  (eV) 

Fitted value 17.2 464.2 1600.2  3.7 9.48 

Phonon parameters 
1gV  (meV) 1gω (cm-1) 1gτ  (fs) 1gϕ  (rad)  

Fitted value 10.3 207.1 498.2 0.22  

Extended Data Tab. 2 | Fitted Phonon parameters of A1b and A1g modes. The fitted phonon 

parameters of extended data Fig. 10 are based on equation (3) in the main text. 
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Extended Data Movie. 1 | Visualizing the lattice vibrations with HHS technique. Movie 

(screenshot). 
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