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This work uncovers a fundamental connection between doped stabilizer states, a concept from
quantum information theory, and the structure of eigenstates in perturbed many-body quantum
systems. We prove that for Hamiltonians consisting of a sum of commuting Pauli operators (i.e.,
stabilizer Hamiltonians) and a perturbation composed of a limited number of arbitrary Pauli terms,
the eigenstates can be represented as doped stabilizer states with small stabilizer nullity. This
result enables the application of stabilizer techniques to a broad class of many-body systems, even in
highly entangled regimes. Building on this, we develop efficient classical algorithms for tasks such as
finding low-energy eigenstates, simulating quench dynamics, preparing Gibbs states, and computing
entanglement entropies in these systems. Our work opens up new possibilities for understanding
the robustness of topological order and the dynamics of many-body systems under perturbations,
paving the way for novel insights into the interplay of quantum information, entanglement, and
many-body systems.

Introduction. The study of quantum states that can
be efficiently described using stabilizer theory has been
an active area of research in recent years. Of particular
interest are “t-doped stabilizer states”, which are quan-
tum states obtained by applying t non-Clifford gates to
stabilizer states [1, 2]. Doped stabilizer states encom-
pass a much broader class of states than exact stabi-
lizer states [3, 4] while retaining some of their desirable
properties, such as efficient representability, making them
promising for understanding the boundary between clas-
sical and quantum complexity in many-body systems.

In this work, we establish a surprising connection be-
tween doped stabilizer states and the physics of many-
body quantum systems. We make this connection by
studying a generalization of stabilizer Hamiltonians. Sta-
bilizer Hamiltonians are Hamiltonians comprised of sums
of mutually commuting Pauli operators. These Hamil-
tonians have a wide range of applications, appearing
in studies of quantum error-correcting codes [5–11],
measurement-based quantum computation [12–15], and
topological phases of matter [6, 16]. While the special
properties of stabilizer Hamiltonians make them espe-
cially amenable to theoretical analysis, the rigid require-
ment that each Pauli operator in the Hamiltonian must
commute means they are rarely encountered in practice.

We address this by developing theoretical and numer-
ical tools that remain effective even when we relax these
stringent requirements. Specifically, we consider stabi-
lizer Hamiltonians which are perturbed by adding a lim-
ited number of arbitrary (possibly non-commuting) Pauli
terms. Our central result is that the eigenstates of per-
turbed stabilizer Hamiltonians can be efficiently repre-
sented as t-doped stabilizer states [17]. Remarkably, this
fact holds independently of the perturbation strength, as
well as the locality of the perturbing Hamiltonian.

Our approach based on doped stabilizer states offers a
new perspective on the simulation of many-body quan-
tum systems, complementing existing techniques. For
instance, tensor networks [18–20] have proven incredibly
successful for simulating low-entanglement states obey-
ing area law scaling, but they typically struggle in highly
entangled or critical regimes [21]. Quantum Monte Carlo
methods [22, 23], on the other hand, can handle some
forms of high entanglement but often suffer from the sign
problem for frustrated or fermionic systems. Neural net-
work states offer a promising approach to representing
complex quantum states [24, 25], but their training and
interpretation can be challenging.

Our techniques, in contrast, are well-suited for study-
ing a broad class of Hamiltonians (perturbed stabilizer
Hamiltonians), which can exhibit high entanglement and
non-trivial dynamics. This allows us to develop efficient
algorithms for tasks such as finding low-energy eigen-
states, simulating quenched dynamics, preparing thermal
states, and computing entanglement entropies on these
perturbed Hamiltonians. Importantly, our algorithms
offer rigorous efficiency guarantees and interpretability,
thanks to their grounding in the stabilizer formalism. By
leveraging quantum information tools to tackle complex
many-body problems, we pave the way for a deeper un-
derstanding of the phenomenology of perturbed quantum
systems and enhance our computational capabilities for
studying these systems in previously inaccessible regimes.

Doped stabilizer states. An n-qubit pure state |ψ⟩ is
said to be stabilized by a Pauli Pi ∈ Pn if Pi |ψ⟩ = θi |ψ⟩,
where θi = ±1 and Pn is the n-qubit Pauli group. A
state |ψ⟩ is called a stabilizer state if it is stabilized by
n algebraically independent commuting Pauli operators
S = {P1, . . . , Pn}. This set generates the full stabilizer
groupG of |ψ⟩, which is a size-2n Abelian subgroup of Pn.
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We will often speak of the dimension |G| of an Abelian
subgroup G, which simply means the number of alge-
braically independent generators required to generate the
full group G. Exact stabilizer states have a stabilizer
group of dimension n.
We can consider a relaxation of stabilizer states, since

most states have stabilizer groups that have dimension
less than n. If a state |ψ⟩ has a stabilizer group G of size
2n−ν (hence a dimension of n− ν), we say that the state
has stabilizer nullity ν [17]. States with stabilizer nullity
ν can be ‘compressed’ [26, 27]: we can efficiently find a
Clifford unitary C, which depends only on G, such that

C |ψ⟩ = |x⟩n−ν ⊗ |ϕ⟩ν , (1)

where x ∈ {0, 1}n−ν
is a bitstring. That is, |x⟩n−ν is a

computational basis state on n− ν qubits which encodes
the phases θ1, . . . , θn−ν . On the other hand, |ϕ⟩ν is a
general ν-qubit state which encodes the non-stabilizer
content of |ψ⟩. States with bounded stabilizer nullity ν
are closely related to t-doped stabilizer states, which are
states that are prepared by circuits comprised of Clifford
gates and t l-qubit non-Clifford unitaries (note that this
strictly generalizes the usual definition, which assumes
l = 1). Eq. (1) shows how any state with stabilizer nullity
ν can be prepared by a general ν-qubit unitary followed
by a Clifford operation (i.e., a doped Clifford circuit).
That is, states with stabilizer nullity ν are doped stabi-
lizer states, and we will refer to them as such.

Doped stabilizer states as energy eigenstates. Re-
markably, doped stabilizer states appear naturally in the
context of many-body physics as energy eigenstates of
a large class of Hamiltonians. To establish this con-
nection, we begin by introducing stabilizer Hamiltoni-
ans [28]. H0 is a stabilizer Hamiltonian if it can be writ-
ten H0 = −

∑
P∈G αPP , where G ⊂ Pn is an Abelian

subgroup of the Pauli group. In this work, we assume
that G is a maximal commuting set of Pn, meaning it
has size 2n. This is completely general, because we can
write any stabilizer Hamiltonian in this form by choosing
an arbitrary maximal commuting set G compatible with
the Hamiltonian, then setting the appropriate αP = 0.
Any such Hamiltonian admits an eigenbasis in which ev-
ery state is a stabilizer state with stabilizer group G [5].
Examples of stabilizer Hamiltonians include the cluster
state Hamiltonian [15] and stabilizer code Hamiltonians,
such as the toric code [6] and color code [29] Hamiltoni-
ans. This definition also includes operators not typically
understood as Hamiltonians. For instance, H0 = |ϕ⟩⟨ϕ|
is a stabilizer Hamiltonian for any stabilizer state |ϕ⟩.
Now, consider a perturbation δH comprised of a sum

of k arbitrary Pauli operators P1, . . . , Pk:

H = H0 + δH; δH :=

k∑
i=1

γiPi . (2)

Traditional perturbation theory says that if δH is small

enough, the eigenstates of the new HamiltonianH should
be close to those of the original H0. However, these ap-
proaches measure the strength of the perturbation δH
by the size of the coefficients γi, and the closeness of
the new eigenstates by trace distance. In the theorem
below, we show something in the same spirit, but for
new notions of ‘weak’ perturbation and ‘resemblance to
the original solutions’. Our result is independent of the
strength of the coefficients γi, as well as the character-
istics (e.g., locality) of the perturbing Pauli operators
Pi. Instead, we measure the perturbation strength al-
gebraically. Weak perturbations are those for which the
group K = ⟨{P1, P2, . . . , Pk}⟩ generated by the perturb-
ing Pauli operators is small. The new eigenstates resem-
ble the original stabilizer eigenstates in the sense that
they are ‘almost’ stabilizer states — specifically, they are
doped stabilizer states. This idea is similar in spirit to a
recent proof that the low-energy eigenstates of perturbed
free fermionic Hamiltonians can be well approximated by
doped Gaussian states [30, 31]. However, the following
theorem shows something stronger: every eigenstate of
perturbed stabilizer Hamiltonians can be exactly repre-
sented as a doped stabilizer state with bounded nullity.

Theorem 1. Let H = H0+ δH, where H0 is a stabilizer
Hamiltonian corresponding to an Abelian subgroup G ⊂
Pn, and δH follows the form in Eq. (2). There exists an
Abelian subgroup J ⊆ G with |J | ≥ n− |K| such that H
admits an eigenbasis where every eigenstate has stabilizer
group J . Each of the eigenstates in this eigenbasis has
nullity ν ≤ |K| ≤ k (the latter inequality is saturated
when all the Pis in Eq. (2) are algebraically independent).

The proof is in Appendix A. This theorem introduces
doped stabilizer states to many-body physics, opening
many new possibilities. It shows how the vast literature
on doped stabilizer state simulation techniques [e.g., 32,
33] can be applied in many-body physics, enabling us to
probe previously inaccessible high entanglement regimes.
In a similar vein, this also provides theoretical grounding
for recent work exploring the integration of the stabilizer
formalism with tensor networks [34–36].

Diagonalization. Another consequence of Theorem 1
is that diagonalizing H can be reduced to diagonalizing
a much smaller |K|-qubit Hamiltonian.

Theorem 2. Let H be a Hamiltonian of the form (2).
There is a classical algorithm to sample an eigenstate of
H uniformly at random and has a runtime O(n3+23|K|).

The algorithm is as follows. We first apply the Clif-
ford compression in Eq. (1) to transform every eigenstate
|ψx,i⟩ of H into a state in the form |x⟩ ⊗ |ϕx,i⟩. These
states can be understood as eigenstates of a transformed
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Hamiltonian H̃ := CHC†, which takes the form

H̃ =
∑
x

|x⟩⟨x| ⊗
2|K|∑
i=1

Ex,i |ϕx,i⟩⟨ϕx,i|︸ ︷︷ ︸
H̃x

. (3)

Formally, this shows that the Clifford C block-
diagonalizes the Hamiltonian H into a series of |K|-qubit
Hamiltonians H̃x. The idea to use Clifford transforma-
tions for block-diagonalizing Hamiltonians has also been
explored in other works [37–40], but these approaches
choose C heuristically, hence they lack the theoretical
guarantees that we are able to prove in this work.

The block-diagonalized form of H̃ in Eq. (3) makes it
easy to sample a random eigenstate. We start by picking

an arbitrary bitstring x ∈ {0, 1}n−|K|
. We then calculate

H̃x = Trn−|K|((|x⟩⟨x| ⊗ I|K|)H̃), where Trn−|K| denotes
tracing out the first n−|K| qubits and I|K| is the identity
operator on the last |K| qubits. To sample the compo-
nent |ϕx,i⟩, we simply diagonalize H̃x. Since H̃x acts on

a Hilbert space of dimension 2|K|, diagonalizing H̃x takes
time O(23|K|). The pair |ϕx,i⟩ , |x⟩ determines a random
eigenstate via |ψx,i⟩ = C†(|x⟩ ⊗ |ϕx,i⟩). Note that this
procedure can only be guaranteed to return a randomly
sampled eigenstate, independent of its energy. Impor-
tantly, it cannot (efficiently) find the ground state of H.
Such an algorithm cannot exist: finding the ground state
for even classical spin Hamiltonians, which are instances
of stabilizer Hamiltonians, is in general NP-complete [41].
However, merely finding random eigenstates is some-

what unsatisfactory, as generic eigenstates are not partic-
ularly useful. Rather, we are typically interested in the
low-energy part of the spectrum. In Theorem 3, we show
that the difficulty of finding the low-energy states of H
is in some sense limited by the difficulty of finding low-
energy states of H0. In other words, when the low-energy
states of H0 can be found, so can the low-energy states
of H. We define S(E0, E1) as the set of eigenstates of H0

whose energy with respect to H0 is between E0 and E1.

Theorem 3. Given any two energies E0, E1 with E0 <
E1, there exists a classical algorithm that outputs all
eigenstates of H that have energy between E0 and E1

in time O(|S(E0 − ∥δH∥, E1 + ∥δH∥)| · (n3 + 23|K|)).

As we describe in Appendix C, the algorithm simply it-
erates over the members of S(E0−∥δH∥, E1+∥δH∥), de-
rives their associated bitstrings x, and returns all eigen-
states of H̃x with energy between E0 and E1. This finds
all possible eigenstates of H with energy between E0 and
E1. Clearly, the runtime of this algorithm strongly de-
pends on the number of unperturbed eigenstates within
a certain energy band. In most cases of physical inter-
est, the set S(E0, E1) is known, hence its size can be
bounded. For instance, we derive such bounds below for
the 2D toric code Hamiltonian.

Example 1. When H0 is the 2D toric code Hamiltonian,
|S(E0 − δE,E1 + δE)| = O(δE · (E1−E0) · (2n)δE/2) for
any δE (see Appendix C for the proof). Therefore, the
algorithm in Theorem 3 is efficient for perturbations to
the 2D toric code that have operator norm ∥δH∥ = O(1),
while it is quasi-polynomial for ∥δH∥ = O(log n).

Simulating thermal states. Simulating quantum ther-
mal states is a fundamental task in many-body physics,
with applications ranging from studying exotic quan-
tum many-body states to understanding quantum phase
transitions [42]. Recently, quantum algorithms for ther-
mal state preparation have received considerable atten-
tion [43–46]. Here, we instead describe a simple classical
algorithm for simulating Gibbs states of a perturbed sta-
bilizer Hamiltonian H at inverse temperature β. These
states are defined as ρβ = exp(−βH)/Tr(exp(−βH)).
Theorem 2 tells us that uniformly random eigenstates

of H are easily accessible. We generalize this to sampling
eigenstates from the Gibbs distribution of H, wherein the
probability associated with an eigenstate |ψx,i⟩ is propor-
tional to exp(−βEx,i). This is equivalent to sampling
from the Gibbs distribution of the block-diagonalized
Hamiltonian H̃, since H and H̃ are related by a Clifford
transformation. Thanks to Eq. (3), this problem then re-

duces to sampling bitstrings x ∈ {0, 1}n−|K|
: once |x⟩ has

been fixed, the rest of the Gibbs state is proportional to

exp
(
−βH̃x

)
. Using that the probability associated with

a bitstring x is proportional to
∑

i exp(−βEx,i), we apply
classical Gibbs sampling [47] to sample |x⟩.

Algorithm 1 Gibbs state simulation

1: function GibbsSample(H̃, β, nsample)

2: x(0) ∼ Uniform({0, 1}n−|K|)
3: for i = 1, . . . , nsample do

4: x(i) ← x(i−1)

5: for j ← 1 to n− |K| do
6: x

(i)
j ← 0

7: p0 ← Tr exp
(
−βH̃x(i)

)
8: x

(i)
j ← 1

9: p1 ← Tr exp
(
−βH̃x(i)

)
10: x

(i)
j ∼ Bernoulli( p1

p1+p0
)

11: end for
12: end for
13: return

{
x(1), x(2), . . .

}
14: end function

The runtime of Algorithm 1 is O(nsample · n · 23|K|),
which is dominated by the cost of computing the quanti-
ties p0 and p1. This requires diagonalizing the small ef-
fective Hamiltonian H̃x, which can be performed in time
O(23|K|) using standard techniques. This algorithm is
only guaranteed to faithfully sample from the Gibbs dis-
tribution in the limit as nsample → ∞. For finite nsample,
whether it converges to the Gibbs state depends on the
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FIG. 1. Thermal expectation values at β = 1 for Z3 on the
2D toric code with a local defect (4). Colored lines indicate
individual Markov chains, the black indicates the ensemble
average, and the dashed red shows the overall mean.

mixing time of the Hamiltonian [48]; we expect that for
thermalizing Hamiltonians, this algorithm should con-
verge quickly. To test this, we consider the 2D toric code
with N = 7 (hence n = 2N2 = 98 qubits), perturbed by
local defects. We model this perturbation with

δH = −γ1Z1X2 − γ2Z3 − γ3X4, (4)

where sites 1 through 4 are four qubits on the same star.
We simulate the thermal state for the perturbed Hamil-
tonian Htoric + δH at a temperature β = 1. As shown in
Fig. 1, the sampling converges very quickly. We observe
that, as expected, when the strength of the perturbing
term −γ2Z3 is increased, the thermal expectation value
Tr(Z3ρβ) approaches 1, since the δH begins to dominate
Htoric. Although the model we consider has 98 qubits,
the total runtime for each of the sampling runs was just
under a minute on a consumer-grade laptop.

Quenched dynamics. Consider a system with a stabi-
lizer Hamiltonian H0, initially in some eigenstate |ψ0⟩.
Then, a perturbation δH in the form of Eq. (2) sud-
denly kicks in, so the Hamiltonian of the system is now
H = H0 + δH. Since |ψ0⟩ may not be an eigenstate of
H, it begins to evolve. When δH obeys |K| = O(log n),
this evolution can be simulated efficiently.

Theorem 4. Let |ψ0⟩ be an eigenstate of H0. Defin-
ing the quenched state |ψ(t)⟩ = e−iHt |ψ0⟩, there exists a
classical simulation algorithm that can

• exactly evaluate the amplitude ⟨x|ψ(t)⟩ for any bit-
string x ∈ {0, 1}n,

• exactly evaluate the expectation of any Pauli ob-
servable ⟨ψ(t)|P |ψ(t)⟩, or

• sample from the measurement outcome distribution
of |ψ(t)⟩ in the computational basis.
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FIG. 2. Time evolution of two plaquette operators under a
2D toric code with a local defect. We sweep the perturba-
tion strength from 0 to 1, where |δH| measures the relative
strength of δH compared to H.

Moreover, this algorithm has runtime O(n3 + 23|K|).

The algorithm is simple. Let C be the Clifford
which block-diagonalizes H as in Eq. (3). Observe that
C |ψ0⟩ = |x⟩ ⊗ |ϕ⟩ for some |K|-qubit state |ϕ⟩. Since

H̃(|x⟩⊗|ϕ⟩) = |x⟩⊗H̃x |ϕ⟩, |ψ(t)⟩ = C†(|x⟩⊗e−iH̃xt |ϕ⟩),
which is to say that finding |ψ(t)⟩ reduces to simply

calculating the action of e−iH̃xt on |ϕ⟩. Then, each
of the three simulation tasks in Theorem 4 can be ac-
complished using well-known algorithms for simulating
states with bounded stabilizer nullity [32, 33]. A re-
markable aspect of Theorem 4 is that the simulation cost
is independent of the evolution time t. In other words,
quenched dynamics for perturbed stabilizer Hamiltonians
with |K| = O(log n) are classically fast-forwardable [49].
We demonstrate this on the pertubed toric code Hamil-

tonian from Eq. (4). We choose |ψ0⟩ to be the ground
state |00⟩L of the toric code (i.e., the logical 00 state).
In Fig. 2, we show the evolution of two plaquette op-
erators Bp,0 and Bp,1 that overlap with the local defect,
after quenching by adding the perturbation from Eq. (4).
As expected, in the unperturbed case, the plaquette op-
erators are always +1, and they begin to vary as the
perturbation strength is increased.
Computing entanglement. To conclude, we provide

an efficient algorithm for computing entanglement in
doped stabilizer states. This is important because this
algorithm can be used to calculate entanglement for the
eigenstates of the Hamiltonians studied in this paper.
The entanglement of t-doped states is more thoroughly
studied in Ref. [50]. Here, we simply present an algo-
rithm to compute the 2-Rényi entanglement entropy. For
a state ψ and a bipartition A|B, the 2-Rényi entangle-
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ment entropy is defined as S2(ψ;A|B) := − log tr
(
ψ2
A

)
.

Theorem 5. Consider any eigenstate |ψx,i⟩ for the per-
turbed Hamiltonian H in Eq. (2). For any bipartition
A|B, there exists a classical algorithm that exactly com-
putes S2(ψx,i;A|B) in time O(n322|K|).

We describe the algorithm below; the proof of correct-
ness can be found in Ref. [50].

Algorithm 2 Exact calculation of S2(ψ;A|B)

Input: The states |x⟩ and |ϕx,i⟩ associated with C |ψx,i⟩.
Input: The stabilizer group J of H (see Theorem 1).
1: function 2RényiEntropy(ψ,A|B)
2: TJ ← tableau associated with J
3: |SA| ← dim(ker(PB(TJ))) ▷ PB(gA ⊗ gB) := I ⊗ gB
4: r ← 0
5: for P ∈ P|K| do

6: y⃗ ∈ F2n
2 ← symplectic representation of C†PC

7: if PB(y⃗) ∈ rowsp(PB(TS)) then
8: r ← r + ⟨ϕx,i|P |ϕx,i⟩2
9: end if

10: end for
11: return nA − |SA| − log(r)
12: end function

Conclusion. The results presented in this work un-
covers fundamental connections between the theory of
doped stabilizer states and many-body quantum physics.
We have shown that a broad class of physically motivated
Hamiltonians have eigenstates that can be efficiently rep-
resented as doped stabilizer states with bounded stabi-
lizer nullity. This finding allows us to bring the powerful
tools of stabilizer theory to bear on the study of these
perturbed many-body systems.

Our work goes beyond the fundamental result of iden-
tifying doped stabilizer states as eigenstates. By lever-
aging this connection, we have developed a suite of effi-
cient algorithms for tasks that are typically computation-
ally demanding in highly entangled regimes. These in-
clude finding eigenstates, simulating quenched dynamics,
preparing Gibbs states, and computing entanglement en-
tropies. The computational efficiency of these algorithms
hinges on the compact representation of the eigenstates
as doped stabilizer states.

The implications of our results are multifaceted. From
a theoretical perspective, we have opened up new av-
enues for exploring the rich phenomenology of perturbed
many-body systems through the lens of doped stabilizer
states. This could lead to insights into phenomena such
as thermalization, entanglement dynamics, and the in-
terplay between noise and quantum correlations. On the
computational front, our algorithms provide a powerful
toolbox for probing these systems beyond the limitations
of traditional tensor network methods.

Moreover, our work facilitates cross-pollination be-
tween quantum computing, the stabilizer formalism, and
many-body physics. The doped stabilizer state formalism

can import concepts from quantum error correction and
fault-tolerance into the study of noisy, perturbed many-
body systems. Conversely, the rich variety of Hamiltoni-
ans studied in many-body physics can inspire the design
of new families of quantum states and circuits tailored
for quantum computational tasks. Looking forward, we
anticipate that combining ideas from stabilizer formalism
with other simulation paradigms could lead to powerful
new tools for many-body quantum physics.
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Damian S. Steiger, Markus Reiher, Martin Roetteler,
and Matthias Troyer. Quantum computing enhanced
computational catalysis. Phys. Rev. Res., 3:033055,
Jul 2021. doi:10.1103/PhysRevResearch.3.033055.
URL https://link.aps.org/doi/10.1103/

PhysRevResearch.3.033055.
[45] Ryan Babbush, Nathan Wiebe, Jarrod McClean,

James McClain, Hartmut Neven, and Garnet Kin-
Lic Chan. Low-depth quantum simulation of ma-
terials. Phys. Rev. X, 8:011044, Mar 2018. doi:
10.1103/PhysRevX.8.011044. URL https://link.aps.

org/doi/10.1103/PhysRevX.8.011044.
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Appendix A: Proof of Theorem 1

Let K = ⟨{P1, . . . , Pk}⟩ be the group generated by P1, . . . , Pk, and define K⊥ := {P ∈ Pn | [Q,P ] = 0, ∀Q ∈ K}.
For convenience, we will denote the dimension of a group as |K| = dimK. Consider the subgroup J := K⊥ ∩ G –
this contains all Pauli operators that commute with every element in K and G. Since both K⊥ and G are subgroups
with dimension 2n − |K| and n respectively, we use the fact that

∣∣K⊥
∣∣ + |G| −

∣∣K⊥ ∩G
∣∣ ≤ 2n to conclude that

their intersection is a subgroup with dimension at least n − |K|, which can again be lower bounded by n − k. This
subgroup J has two properties: first, it must be Abelian, since G Abelian, and second, every Pauli operator in this
subgroup commutes with the Hamiltonian, since every Pauli operator already commutes with each individual term of
the Hamiltonian. We can therefore simultaneously diagonalize H and each element of J . This tells us that there is an
eigenbasis for H such that all the eigenstates are also eigenstates of the Pauli operators in J . That is, their stabilizer
group is J (or a superset thereof), which has dimension at least n− |K|.

Appendix B: Proof of Theorem 2

For Hamiltonians of the form (2), recall from Theorem 1 that we can find some J ⊆ G which is the stabilizer group of
an eigenbasis for H. Let C be the Clifford unitary such that CJC† = Zn−|K|⊗In−|K|, where Zn = ⟨{Z1, Z2, . . . , Zn}⟩.
Note that C then maps every eigenstate to |x⟩ ⊗ |ϕx,i⟩, where x ∈ {0, 1}n−|K|

and ϕx,i is some arbitrary |K|-qubit
state. Applying the same transform to the Hamiltonian with H̃ = CHC†, we must have then have

H̃ =
∑
x

|x⟩⟨x| ⊗
2|K|∑
i=1

Ex,i |ϕx,i⟩⟨ϕx,i|︸ ︷︷ ︸
H̃x

(B1)

We can calculate H̃x = Trn−|K|((|x⟩⟨x| ⊗ I|K|)H̃) by evaluating Trn−|K|((|x⟩⟨x| ⊗ I|K|)P ) on each Pauli operator P of

the transformed Hamiltonian H̃. Each of these Pauli operators P must take the form Z ⊗ P ′, where Z ∈ Zn−|K| and
P ′ ∈ P|K|, so the partial trace is ±P ′, with the sign depending on whether ⟨x|Z|x⟩ is +1 or −1. Having calculated

H̃x for a given x, we can then find 2|K| eigenvalue/eigenstate pairs in time O(n3 +23|K|), because H̃x is a 2|K| × 2|K|

matrix. The additive term n3 comes from the computational cost of finding and applying the Clifford unitary C.
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Appendix C: Proof of Theorem 3

We are interested in all eigenstates |ψ⟩ of H with an energy between E0 and E1. A naive bound says that any such
eigenstate must satisfy

E0 − ∥δH∥ ≤ ⟨ψ|H0|ψ⟩ ≤ E1 + ∥δH∥ , (C1)

where ∥ · ∥ denotes the operator norm. Define the set S(E0 − ∥δH∥, E1 + ∥δH∥) to be all (stabilizer) eigenstates of
H0 with energy between E0−∥δH∥ and E1+ ∥δH∥. We will use S to denote this set for brevity. We know that there
is a Clifford unitary such that

S =
{
C(|yi⟩ ⊗ |ρy,i⟩ | yi ∈ {0, 1}n−|K|

}
. (C2)

This holds because CGC† ⊆ Zn−|K|⊗P|K| by construction. Therefore, the bitstrings yi in S identify all blocks of the

block-diagonalized Hamiltonian CHC† that contain an eigenstate with energy between E0 and E1. Therefore, simply
doing a brute force search over each of the bitstrings yi, and diagonalizing the resulting Hamiltonian H̃yi

, allows us
to identify all eigenstates with eigenenergy between E0 and E1.

1. Alternative proof

The efficient algorithm is based on brute force search for the ground space of perturbed Hamiltonian. This is possible
thanks to the following bounds. Define Hγ =

∑
i γiPi. Let us assume, without loss of generality, that HG ≥ 0 and,

in particular, having zero ground energy. Let E be the ground energy of H. First denote |ψx,i⟩ the eigenvectors of H
and Ex,i its eigenvalues. Denote |σx0

⟩ a ground state of H0. We have the following chain of inequalities

E ≤
∑
x,i

Ex,i⟨ψx,i|σx0⟩⟨σx0 |ψx,i⟩ = ⟨σx0 |H|σx0⟩ = ⟨σx0 |Hγ |σx0⟩ ≤ ∥Hγ∥∞ (C3)

where we used that ⟨σx0 |H0|σx0⟩ = 0. Let now |ψ′
x̄,̄i

⟩ = |x̄⟩⊗ |ϕī⟩ denote a ground state of H ′ = H ′
0 +H ′

γ , introduced

in Appendix A, where H ′
0 is diagonal in the computational basis. Expanding |ϕī⟩ =

∑
j ai |xj⟩ We have the following

chain of inequalities

E = ⟨ψ′
x̄,̄i|H

′|ψ′
x̄,̄i⟩ =

∑
j

|aj |2⟨xj x̄|H ′
0|xj x̄⟩+ ⟨ϕx̄|H ′

γ |ϕx̄⟩

≥
∑
j

|aj |2⟨xj x̄|H ′
0|xj x̄⟩ − |⟨ϕx̄|H ′

γ |ϕx̄⟩|

≥ min
j∈{0,1}n−κ

⟨xj x̄|H ′
0|xj x̄⟩ − ∥Hγ∥∞ (C4)

Notice that |xj x̄⟩ is a eigenvector of H ′
0. To find the eigenvector

∣∣ψx̄,̄i

〉
, through the algorithm of Theorem 2, it is

sufficient to input the right x̄. Since |xj x̄⟩ are eigenvectors of H ′
0, it is sufficient to input all the computational basis

states |x⟩ obeying

⟨x|H ′
0|x⟩ ≤ 2∥Hγ∥∞ (C5)

and sort the eigenenergies found by algorithm in Theorem 2. The last bound is obtained by merging together Eq. (C3)
and Eq. (C4). Recalling the definition in the main text, it is sufficient to input S0(2∥Hγ∥∞) many computational
basis states. Therefore, the present algorithm is based on a brute force search on among the low energy states of H0

that are assumed to be known by the assumption of the theorem. The total runtime of the algorithm is therefore, the
runtime of the algorithm in Theorem 2 times the number of times one needs to executes (neglecting the additional
computational effort spent to sort the various eigenenergies), i.e.

O
(
S0(2∥Hγ∥∞)(n2 + 23k)

)
(C6)

further bounding

∥Hγ∥∞ = hp

∥∥∥∥∥
k∑

i=1

γiPi

∥∥∥∥∥
∞

≤ khp (C7)

we obtain the desired result.
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2. Proof of Example 1

The toric code Hamiltonian is one of the most widely studied models of topological order, and as its name suggests,
it is intimately connected with error correction [6]. The Hamiltonian is

H0 = −
∑
v

Av −
∑
p

Bp, (C8)

where Av and Bp are the star and plaquette operators, respectively. Formally, Av =
∏

j∈star(v) Zj , Bp =
∏

j∈bd(p)Xj ,

where star(v) is a star around the vertex v and bd(p) is the boundary of the plaquette p. The total number of qubits
is 2n. The spectrum is E2l = −2n + 4l for l ∈ {0, . . . , n}, which corresponds to 2l anyonic excitations (hence 2l
stabilizers having flipped signs). The degeneracy of this energy is

d(E2l) = 4

l∑
j=0

(
n

2j

)(
n

2(l − j)

)
≤ 4

2l∑
j=0

(
n

j

)(
n

2l − j

)
= 4

(
2n

2l

)
. (C9)

where each term in the first sum represents the number of ways to distribute 2j e anyons and 2(l− j) m anyons. The
factor 4 is due to the topological degeneracy. If we are interested in the ground states for a toric code perturbed by
a Hamiltonian δH, the size of the set we will need to search over includes eigenstates of the original toric code from

l = 0, . . . , ∥δH∥
4 . Since

(
2n
2l

)
∼ O((2n)2l), the size of this set will be O(∥δH∥(2n)∥δH∥/2). For ∥δH∥ = O(1), this is

polynomial in n.
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