
THE SYMPLECTIC FORM ASSOCIATED TO A SINGULAR POISSON ALGEBRA
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Abstract. Given an affine Poisson algebra, that is singular one may ask whether there is an associated
symplectic form. In the smooth case the answer is obvious: for the symplectic form to exist the Poisson

tensor has to be invertible. In the singular case, however, derivations do not form a projective module and
it is less clear what non-degenerate means. For a symplectic singularity one may naively ask if there is

indeed an analogue of a symplectic form. We examine an example of a symplectic singularity, namely the

double cone, and show that here such a symplectic form exists. We use the naive de Rham complex of a
Lie-Rinehart algebra. Our analysis of the double cone relies on Gröbner bases calculations.

Contents

1. Introduction 1
2. The main idea 2
3. The double cone 3
4. Conclusion and outlook 5
Appendix A. Lie-Rinehart algebras and the naive de Rham complex 6
References 6

1. Introduction

Throughout this article k denotes a field of characteristic zero. We consider a polynomial k-algebra
P = k

[
x1, . . . , xn

]
with symplectic Poisson bracket { , }. Let us write for the associated Poisson tensor

Πij =
{
xi, xj

}
∈ P . Let I = (f1, . . . , fℓ) be a Poisson ideal in P , i.e., a multiplicative ideal such that

{I, P} ⊆ I (for examples see [7]). Its generators fµ have the property that
{
xi, fµ

}
=

∑ℓ
ν=1 Z

iν
µ fν for some

(in general, non-unique) Ziν
µ ∈ P . As the Ziν

µ can be interpreted as Christoffel symbols of a connection

(see [6]) of the conormal module I/I2 we refer to them as the Poissoffel symbols of the Poisson ideal. The
quotient A = P/I becomes a Poisson k-algebra. We refer to this type of algebra as an affine Poisson
algebra.

Many singular affine Poisson algebras that arise in nature have ‘symplectic’ properties. For example,
Poisson algebras associated to symplectic quotients or coadjoint orbits typically have symplectic singularities
[1, 8, 4]. However, we do not know of any attempt to construct a symplectic form for such a singular Poisson
algebra. In this paper, we propose a general framework for doing so and elaborate an example of such a
symplectic form. We hope that the likely explanation of our construction in terms of symplectic singularities
can be worked out in the future. We expect complexifications of symplectic reductions of unitary group
actions [8] to have symplectic forms.

Our idea is to search for a symplectic form in the naive de Rham complex (see Appendix A) of the Lie-
Rinehart algebra (A,Der(A)). The main difficulty is that in the singular case the A-module of derivations
Der(A) = {X : A→ A | X(ab) = X(a)b+ aX(b)} is not projective and not every derivation X ∈ Der(A)
can be written as an A-linear combination of Hamiltonian vector fields {a, }, a ∈ A. To get our hands on
explicit descriptions of Der(A) in terms of generators and relations we use Gröbner basis calculations.
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2. The main idea

As a warm-up and to motivate our approach we recall how to invert a non-degenerate constant Poisson
tensor on kn. Assume that Πij =

{
xi, xj

}
∈ k is a non-degenerate Poisson tensor of the Poisson algebra

(P = k[x1, . . . , xn], { , }). Then
(
dxi

)♯
=

∑
j Π

ij∂j defines the musical isomorphism ♯ : ΩP |k → Der(P )

from the P -module of Kähler differentials ΩP |k to the P -module vector fields Der(P ). Then the symplectic

form ω =
∑

i,j
1
2ωij dx

i ∧ dxj is defined by

ω
((

dxi
)♯
, ∂k

)
=

∑
j

ω
(
Πij∂j , ∂k

)
=

∑
j

Πijωjk = δik = ∂kx
i.

This can be rewritten in a coordinate free way as follows ω
(
(d a)

♯
, X

)
=

∑
i,j

∂a
∂xiω

(
Πij∂j , X

k∂k
)
= X(a)

for X ∈ Der(P ) and a ∈ P .
In order to discuss the singular case let us recall the following.

Theorem 2.1 ([2]). If I ⊆ P be an ideal in a polynomial k-algebra P then Der(A) ≃ DerI(P )/I DerI(P ),
where DerI(P ) = {X ∈ Der(P )|X(I) ⊆ I}.

With this isomorphism understood we define a version of the musical map in the singular case as follows.
It is given as the A-linear map

♯ : ΩA|k → Der(A), (d(a+ I))
♯
= {a, }+ I DerI(P ),

where ΩA|k denotes the A-module of Kähler differentials and a ∈ P . Its image is denoted by (ΩA|k)
♯. As we

will see in the next section (ΩA|k)
♯ may be different from Der(A). We denote by ιHam : (ΩA|k)

♯ → Der(A)
the inclusion.

Lemma 2.2. The map ♯ is a morphism of Lie-Rinehart algebras and, accordingly, its image (ΩA|k)
♯ a

Lie-Rinehart subalgebra of (Der(A), A).

Proof. Consider Kähler forms (a1 + I) d(a2 + I) and (b1 + I) d(b2 + I) for a1, a2, b1, b2 ∈ P . Recall [9] that
(ΩA|k, A) forms a Lie-Rinehart algebra whose bracket is the so-called Koszul bracket:

[(a1 + I) d(a2 + I), (b1 + I) d(b2 + I)]

= (a1b1 + I) d({a2, b2}+ I) + (a1{a2, b1}+ I) d(b2 + I)− (b1{b2, a1}+ I) d(a2 + I).

On the other hand we have the commutator

[a1{a2, }+ I, b1{b2, }+ I] = a1b1{{a2, b2}, }+ a1{a2, b1}{b2, } − b1{b2, a1}{a2, }+ I.

□

Definition 2.3. We define the A-linear map ωHam : (ΩA|k)
♯ ⊗A Der(A)→ A by

ωHam
(
(d a+ I)

♯
, X + I DerI(P )

)
:= X(a) + I.

Proposition 2.4.

(1) The form ωHam in Definition 2.3 does not depend on the choice of the representatives a ∈ P ,
X ∈ DerI(P ) and is hence well-defined.

(2) With δHam : Altn
(
(ΩA|k)

♯, A
)
→ Altn+1

(
(ΩA|k)

♯, A
)
the naive de Rham differential of the Lie-

Rinehart algebra
(
(ΩA|k)

♯, A
)
the restriction of ωHam to Alt2

(
(ΩA|k)

♯, A
)
fulfills δHamωHam = 0.

Proof. As (1) is clear we address (2). Consider a, b, c ∈ P with X = {a, }+I DerI(P ), Y = {b, }+I DerI(P ),
Z = {c, }+ I DerI(P )

δHamωHam(X,Y, Z) = Xω(Y,Z)− Y ω(X,Z) + Zω(X,Y )− ω([X,Y ], Z) + ω([X,Z], Y )− ω([Y,Z], X),

= {a, {c, b}} − {b, {c, a}}+ {c, {b, a}} − {a, {c, b}}+ {b, {a, c} − {a, {b, c}}}+ I ∈ I

by Jacobi’s identity. □

We are now in the position to formulate the fundamental question of our approach. Does there exist
a non-degenerate ω ∈ Alt2 (Der(A), A) such that

https://orcid.org/0000-0003-2676-3340


THE SYMPLECTIC FORM ASSOCIATED TO A SINGULAR POISSON ALGEBRA 3

Figure 1. The double cone.

(1) ddR ω = 0 and
(2) ω

(
ιHam ⊗ id

)
= ωHam ?

In this case we say that ω is a symplectic form on Spec(A). We will see in the next section that the answer
can be affirmative.

3. The double cone

Let us check if the program laid out in the Section 2 makes sense for the double cone

A = k
[
x1, x2, x3

]
/
(
x1x2 −

(
x3

)2)
=: P/(f).

We view A = k
[
x1, x2, x3

]
/
(
x1x2 −

(
x3

)2)
as the Poisson algebra of invariants of the linear cotangent

lifted Z2 = O2(k)-action on k2 = T ∗k (see [7]). Here the coordinates x1, x2 and x3 correspond to the Z2-
invariants q2, p2 and qp understood with canonical bracket {q, p} = 1. The variety Spec(A) has an isolated
symplectic singularity at the origin (see [8]).

Proposition 3.1. Let I = (f) ⊂ P be a principal ideal and A = P/I. Consider the intersection J :=

Jacf ∩(f) of the Jacobian ideal Jacf =
(

∂f
∂x1 , . . . ,

∂f
∂xn

)
⊂ P with (f). Since J is in Jacf we can write any

ξ ∈ J as
∑

i X
i ∂f
∂xi with Xi ∈ P . The choice of each Xi is unique up to the P -module Syz (Jacf ) of first

syzygies of Jacf . Any such ξ gives rise to an Xξ :=
∑

i X
i ∂
∂xi ∈ DerI(P ). We write

f̂ : J → DerI(P ), ξ 7→ Xξ

for the corresponding morphism of P -modules. Define for each
(
Y 1, . . . , Y n

)
∈ Syz (Jacf ) the derivation

Y =
∑

i Y
i ∂
∂xi so that Y (f) = 0. Write for the corresponding P -linear map

f̃ : Syz (Jacf )→ Der(P ),
(
Y 1, . . . , Y n

)
7→ Y .

Then DerI(P ) = im(f̂) + im
(
f̃
)
.

Proof. For any ξ ∈ J we have by construction Xξ(f) ∈ (f) and, conversely any such vector field can be
obtained this way. The ambiguities in the choice of Xξ are dealt with by including all first syzygies of Jacf
into the list of generators of DerI(P ), by interpreting them as vector fields. □

The table of Poisson brackets is

{ , } x1 x2 x3

x1 0 4x3 2x1

x2 −4x3 0 −2x2

x3 −2x1 2x2 0
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and the generators of (ΩA|k)
♯ as an A-module are given by the I DerI(P ) classes of{

x1,
}
= 4x3 ∂

∂x2
+ 2x1 ∂

∂x3
,
{
x2,

}
= −4x3 ∂

∂x1
− 2x2 ∂

∂x3
,
{
x3,

}
= 2x2 ∂

∂x2
− 2x1 ∂

∂x1
.(3.1)

It turns out that the Poissoffel symbols vanish, i.e., the polynomial f = x1x2 −
(
x3

)2
is actually a Casimir.

Moreover, im
(
f̃
)
= (ΩA|k)

♯. We have Jacf ∩(f) = (f) since 2f = 2x1∂f/∂x1 + x3∂f/∂x3. So the list (3.1)

has to be amended by

Z := 2x1 ∂

∂x1
+ x3 ∂

∂x3
(3.2)

to get the generators of DerI(P ) as a P -module. Note that 2x2 ∂
∂x2 + x3 ∂

∂x3 = Z −
{
x3,

}
. According to

Macaulay2, there is a short exact sequence of A-modules

0← Der(A)


0 −4x3 −2x1 2x1

4x3 0 2x2 0

2x1 −2x2 0 x3


←−−−−−−−−−−−−−−−−−−−−− A4



x2

x1

−2x3

0


←−−−−−− A← 0,(3.3)

so that pd(Der(A)) = 1.
Since dim

(
coker

(
ιHam

))
= 1 the form ω ∈ Alt2 (Der(A), A) is already defined by Definition 2.3. It

remains to check that ω is non-degenerate and that ddR ω = 0. To this end let us evaluate(
ddR ω

)
(X,Y, Z) = Xω(Y,Z)− Y ω(X,Z) + Zω(X,Y )− ω([X,Y ], Z) + ω([X,Z], Y )− ω([Y,Z], X),

where X,Y are distinct
{
xi,

}
with i = 1, 2, 3. In fact, we have(

ddR ω
) ({

x1,
}
,
{
x2,

}
, Z

)
=

{
x1, ω

({
x2,

}
, Z

)}
−
{
x2, ω

({
x1,

}
, Z

)}
+ Zω

({
x1,

}
,
{
x2,

})
− ω

([{
x1,

}
,
{
x2,

}]
, Z

)
+ ω

([{
x1,

}
, Z

]
,
{
x2,

})
− ω

([{
x2,

}
, Z

]
,
{
x1,

})
=

{
x1, Z

(
x2

)}
−
{
x2, Z

(
x1

)}
+ Z

({
x2, x1

})
− ω

({{
x1, x2

}
,
}
, Z

)
+ ω

(
{x1, },

{
x2,

})
− ω

({
x2,

}
,
{
x1,

})
= 0− 2

{
x2, x1

}
+ Z

(
4x3

)
− ω

({
4x3,

}
, Z

)
+ 4x3 + 4x3

= −8x3 − 4x3 + 4x3 + 4x3 + 4x3 = 0.

All expressions above are to be understood modulo I DerI(P ) and I, respectively. To unclutter the nota-
tion we did not annotate these expressions and continue with this habit later on. We used the auxiliary
evaluations:[{

x1,
}
,
{
x2,

}]
=

{
x1,

{
x2,

}}
−
{
x2,

{
x1,

}}
=

{{
x1, x2

}
,
}
, Z

(
x2

)
= 0, Z

(
x1

)
= 2x1,[{

x1,
}
, Z

]
=

[
4x3 ∂

∂x2
+ 2x1 ∂

∂x3
, 2x1 ∂

∂x1
+ x3 ∂

∂x3

]
= −2x1 ∂

∂x3
− 4x3 ∂

∂x2
= −{x1, },

[{
x2,

}
, Z

]
=

[
4x3 ∂

∂x2
+ 2x1 ∂

∂x3
, 2x1 ∂

∂x1
+ x3 ∂

∂x3

]
= −4x3 ∂

∂x1
− 2x2 ∂

∂x3
= {x2, }

Next we determine(
ddR ω

) ({
x1,

}
,
{
x3,

}
, Z

)
=

{
x1, ω

({
x3,

}
, Z

)}
−
{
x3, ω

({
x1,

}
, Z

)}
+ Zω

({
x1,

}
,
{
x3,

})
− ω

([{
x1,

}
,
{
x3,

}]
, Z

)
+ ω

([{
x1,

}
, Z

]
,
{
x3,

})
− ω

([{
x3,

}
, Z

]
,
{
x1,

})
=

{
x1, Z

(
x3

)}
−
{
x3, Z

(
x1

)}
+ Z

({
x3, x1

})
− ω

({{
x1, x3

}
,
}
, Z

)
+ ω

(
−{x1, },

{
x3,

})
− 0

=
{
x1, x3

}
− 2

{
x3, x1

}
− Z

(
2x1

)
− Z

(
2x1

)
+
{
x1, x3

}
= 4

{
x1, x3

}
− 8x1 = 0,
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where we have used[{
x3,

}
, Z

]
=

[
2x2 ∂

∂x2
− 2x1 ∂

∂x1
, 2x1 ∂

∂x1
+ x3 ∂

∂x3

]
= 0, Z

(
x3

)
= x3,[{

x1,
}
,
{
x3,

}]
=

{
x1,

{
x3,

}}
−

{
x3,

{
x1,

}}
=

{{
x1, x3

}
,
}
.

Finally, we calculate(
ddR ω

) ({
x2,

}
,
{
x3,

}
, Z

)
=

{
x2, ω

({
x3,

}
, Z

)}
−
{
x3, ω

({
x2,

}
, Z

)}
+ Zω

({
x2,

}
,
{
x3,

})
− ω

([{
x2,

}
,
{
x3,

}]
, Z

)
+ ω

([{
x2,

}
, Z

]
,
{
x3,

})
− ω

([{
x3,

}
, Z

]
,
{
x2,

})
=

{
x2, Z

(
x3

)}
−
{
x3, Z

(
x2

)}
+ Z

({
x2, x3

})
− ω

({{
x2, x3

}
,
}
, Z

)
+ ω

({
x2,

}
,
{
x3,

})
=

{
x2, x3

}
− 0 + 0 + ω

({
2x2,

}
, Z

)
+
{
x3, x2

}
= 0,

proving that ddR ω = 0.
To check non-degeneracy we used Macaulay2 [5] to calculate the kernel of the matrix

ω( , )
{
x1,

} {
x2,

} {
x3,

}
Z{

x1,
}

0 −4x3 −2x1 2x1{
x2,

}
4x3 0 2x2 0{

x3,
}

2x1 −2x2 0 x3

Z −2x1 0 −x3 0

over A = P/(f). By the exact sequence (3.3) the transposed gradient vector of f ,
[
x2 x1 −2x3 0

]⊤
,

generates the kernel when the matrix is interpreted as a 2-form on the free module A4. This means that
the 2-form ω is well-defined on Der(A) and nondegenerate. We have no explanation for the fact that its
determinant is (4f)2.

We have proven that ω is a symplectic form on the double cone.

4. Conclusion and outlook

We proposed a general framework of how to make sense of a symplectic form for a singular affine Poisson
variety and showed that it is not void by exhibiting a symplectic form on the double cone. The setup is not
at all restricted to the hypersurface case. Proposition 3.1 can be easily generalized for affine algebras. It
then can happen that dimDer(A)/

(
ΩA|k

♯
)
> 1. If one is attempting to construct the symplectic form the

simplest assumption to try is to suppose that the generators of DerI(A) not belonging to ΩA|k
♯ are isotropic.

Then the calculations checking closedness of ω appear to be straight forward. Yet the catch is that those
generators are unique up to ΩA|k

♯, which in turn is typically not isotropic. It should be said that the concrete
data of an affine Poisson algebra are typically bulky, if available at all. A more systematic empirical study
must rely on computer implementations to be practically feasible. Of course, a conceptual way to prove the
existence of the symplectic form is desirable.

It should be also said that algebraic geometry is not the proper setting for symplectic geometry since
Hamiltonian flows do not respect polynomial observables. The appropriate framework for singular symplectic
geometry appears to be a Poisson differential space (X, C∞(X), { , }) in the sense of [3], or variations thereof
such as, e.g., [13, 10]. This is because symplectic reductions by compact group actions and gauge theoretic
moduli spaces are to be described in this language. The notion of the module of differentials D(X) for
a differential space has been developed in [11] and the idea of using the naive de Rham complexes of the
Lie-Rinehart algebras

(
C∞(X),D(X)♯

)
and (C∞(X),Der (C∞(X)) goes through without difficulty. One

faces however the problem that it is not so clear how to gain explicit descriptions of the C∞(X)-module
Der (C∞(X)), since the ideal theory of C∞ (Rn) is more subtle. As the naive de Rham complex is natural
it is expected to be straight forward to show that the singular symplectic form restricts to the symplectic
forms on the symplectic strata (compare [13]).
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Appendix A. Lie-Rinehart algebras and the naive de Rham complex

A Lie-Rinehart algebra (L,A) (see [12]) is a commutative k-algebra A and an A-module L such that

(1) L is a k-Lie algebra,
(2) L acts on A by derivations via L⊗k A→ A, X ⊗ a 7→ X(a),
(3) [X, aY ] = X(a)Y + a[X,Y ] for all X,Y ∈ L and a ∈ A,
(4) (aX)(b) = aX(b) for all X ∈ L and a, b ∈ A.

The A-module of n-cochains of the naive de Rham complex of the Lie-Rinehart algebra (L,A) is given by the
space Altn(L,A) of alternating A-linear forms of arity n with values in A. The differential d : Altn(L,A)→
Altn+1(L,A) of the naive de Rham complex is given by the Koszul formula

(dω) (X0, X1, . . . , Xn) =

n∑
i=0

(−1)iXi

(
ω
(
X0, . . . , X̂i, . . . , Xn

))
+

n∑
i<j

(−1)i+j
(
X0, . . . , X̂i, . . . , X̂j , . . . , Xn

)
,

where X0, X1, . . . , Xn ∈ L and Altn(L,A). The ̂ indicates omission of the corresponding term. It is well-
known that (Altn(L,A),d) forms a differential graded k-algebra with respect to the product ∪ : Altp(L,A)×
Altq(L,A)→ Altp+q(L,A)

ω ∪ η(X1, X2, . . . , Xp+q) =
∑

σ∈Shp,q

(−1)σω(Xσ(1), . . . , Xσ(q))η(Xσ(p+1), . . . , Xσ(p+q))

where Shp,q denotes the set of p, q-shuffle permutations. If L = Der(A) we use the notation ddR := d.
Rinehart [12] has shown that if L is a projective A-module then the nth cohomology of (Altn(L,A),d)
computes ExtnU(L,A)(A,A), where U(L,A) denotes Rinehart’s universal enveloping algebra of (L,A). If L is
not projective there is no such result to be expected in general. For this reason the complex is called naive.
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6. Hans-Christian Herbig and Ana Maŕıa Chaparro Castañeda, Higher form brackets for even Nambu-Poisson algebras., Lett.

Math. Phys. 113 (2023), no. 5, 42.
7. Hans-Christian Herbig, Daniel Herden, and Christopher Seaton, Higher Koszul brackets on the cotangent complex, Int.

Math. Res. Not. 2023 (2023), no. 13, 11592–11644.

8. Hans-Christian Herbig, Gerald W. Schwarz, and Christopher Seaton, Symplectic quotients have symplectic singularities,
Compos. Math. 156 (2020), no. 3, 613–646.

9. Johannes Huebschmann, Poisson cohomology and quantization, J. Reine Angew. Math. 408 (1990), 57–113.

10. , Kähler spaces, nilpotent orbits, and singular reduction, Mem. Am. Math. Soc., vol. 814, Providence, RI: American
Mathematical Society (AMS), 2004.
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