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Abstract

We study a general factor analysis framework where the 𝑛-by-𝑝
data matrix is assumed to follow a general exponential family distri-
bution entry-wise. While this model framework has been proposed
before, we here further relax its distributional assumption by using
a quasi-likelihood setup. By parameterizing the mean-variance re-
lationship on data entries, we additionally introduce a dispersion
parameter and entry-wise weights to model large variations and
missing values. The resulting model is thus not only robust to dis-
tribution misspecification but also more flexible and able to capture
non-Gaussian covariance structures of the data matrix. Our main
focus is on efficient computational approaches to perform the factor
analysis. Previous modeling frameworks rely on simulated maxi-
mum likelihood (SML) to find the factorization solution, but this
method was shown to lead to asymptotic bias when the simulated
sample size grows slower than the square root of the sample size
𝑛, eliminating its practical application for data matrices with large
𝑛. Borrowing from expectation-maximization (EM) and stochastic
gradient descent (SGD), we investigate three estimation procedures
based on iterative factorization updates. Our proposed solution
does not show asymptotic biases, and scales even better for large
matrix factorizations with error 𝑂 (1/𝑝). To support our findings,
we conduct simulation experiments and discuss its application in
three case studies.
Keywords: matrix factorization, exponential family, factor model.

1. Introduction

Over the past decades, factor analysis has gained tremendous at-
tention in psychology (Ford et al., 1986), computer science (Prince
et al., 2008), finance (Fama and French, 2015), and biological re-
search (Xu et al., 2021). In particular, when the data 𝑋 ∈ R𝑛×𝑝 is
high dimensional (𝑛 ≪ 𝑝), effectively modeling and estimating the
covariance structure has been problematic (Basilevsky, 1994). The
factor model provides an effective approach to model high dimen-
sional data in which the covariance of the observations is assumed
to lie on a lower dimensional manifold.

Despite its popularity in modeling high dimensional data, fac-
tor models have several limitations. First and foremost, both data
and latent variables are assumed to follow a Gaussian distribution,
which is not ideal for modeling binary, count, or other non-constant

variance data. To address the first limitation, there exist some prior
works (Wedel and Kamakura, 2001; Wedel et al., 2003) that extend
the factor model with more general exponential family assump-
tion. However, even with the improved assumption from Gaussian,
the exponential family distribution assumption is often too restric-
tive for real world, overly dispersed data. Moreover, as we shown
later in Section 1.1.3, the proposed maximum likelihood estima-
tion algorithm for such an extended model is problematic with both
numerical and asymptotic convergence issues. As a minor issue,
the latent factors are only identifiable up to a rotational transforma-
tion, potentially causing problems in interpreting the latent factors.
Lastly, both these extended works and the traditionally factor analy-
sis framework lack the flexibility to model missing data, preventing
several interesting applications such as matrix completion.

This paper thus aims at generalizing the existing works by:
• Assuming only a mean-variance relationship along with

column-wise dispersion parameters to model data covariance;

• Providing interpretability for latent factors via orthogonal
identifiability constraints;

• Proposing fast, accurate, and robust optimization algorithms
leveraging modern advances in stochastic optimization;

• Facilitating application with an efficient package implementa-
tion that allows for entry-wise factor weights and covariance
modeling.

To introduce appropriate notations and to understand some of
the relevant attempts to address those issues, we elaborate below on
the limitations of factor models along with some existing remedies
proposed in the literature that motivated our generalization.

1.1. The Factor Model and Its Limitations
For given data 𝑋 ∈ R𝑛×𝑝 , the traditional rank 𝑞 factor model

assumes that 𝑞 ≪ 𝑝 and that the data is generated by latent factors
Λ ∈ R𝑛×𝑞 with Λ⊤ = [Λ1 · · ·Λ𝑛], and a deterministic projection
matrix𝑉 ∈ R𝑝×𝑞 , the loading matrix. We implicitly assume the fol-
lowing data generating process: for each observation 𝑖 = 1, . . . , 𝑛:

Λ𝑖
iid∼ 𝑁 (0, 𝐼𝑞),

𝑋𝑖 |Λ𝑖
ind∼ 𝑁 (𝑉Λ𝑖 ,Φ)

(1)
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where Φ is a 𝑝-th order symmetric positive definite matrix, a co-
variance matrix providing potential heterogeneous noise.

Marginally, 𝑋𝑖
ind∼ 𝑁 (0,Φ + 𝑉𝑉⊤), so maximum likelihood es-

timation of 𝑉 and Φ is equivalent to covariance estimation. It is
common to assume that Φ is diagonal so as to not confound the ef-
fect of the loadings 𝑉 (Bartholomew et al., 2011), and so we adopt
the same assumption from now on. In this case, the MLE estimator
for 𝑉 can be obtained in closed form using matrix calculus, based
on the eigen-decomposition of the data covariance. Alternatively,
𝑉 and Φ can be estimated via expectation-maximization, especially
if some of the entries in the data matrix 𝑋 are missing.

The model in general has interesting connections to matrix fac-
torization. For example, probability PCA (Tipping and Bishop,
1998) can be considered as equivalent to the factor model with the
only difference that the factor model permits heterogeneous noise
structure through the specification of Φ. Under Φ = 𝜎2𝐼𝑝 , Ander-
son (1963) established the connection between these two models by
demonstrating that the stationary point solution of the factor model
likelihood spans the columns of the sample covariance eigenvec-
tors. Drawing further the analogy from the relationship between
probability PCA and PCA, the factor model can be considered as
the random counterpart of matrix factorization by allowing the fac-
torized components (or latent local factors) Λ to be random.

While finding a wide range of applications, the factor model
and its deterministic counterpart (matrix factorization) have, how-
ever, some limitations. We discuss them below, including a brief
summary on some recent improvements, along with our proposed
solutions to further generalize the factor model.

1.1.1. Relaxing the restrictive distributional assumption

In a factor model setup, both the latent variableΛ𝑖 and the data are
assumed to (conditionally) follow a Gaussian distribution, yielding
a marginal Gaussian distribution for the data. Both assumptions
require careful examination when dealing with real data.

For the data distribution, assuming simply a Gaussian data like-
lihood overlooks many interesting structures in the data. For ex-
ample, network adjacency matrices take only binary values of 0
and 1, while computer images take a integer values for pixel inten-
sities. Both types of data have been shown to be better modeled
with discrete distributions from the exponential family (Wang and
Carvalho, 2023). One obvious relaxation is thus to extend the data
likelihood assumption from Gaussian to exponential families, or,
to accommodate more robust specifications, to specify mean and
covariance structures, as in quasi-likelihood approaches. More-
over, those exponential family generalizations do not consider the
flexible covariance modeling of the data matrix, which has shown
to be one of the most important applications of Gaussian factor
model (Fan et al., 2008). Ideally, at least a column-wise idiosyn-
cratic error structure should be modeled for a flexible consideration
of the high-dimensional data covariance.

The latent variable assumption is usually considered less restric-
tive when compared to the likelihood assumption, as evidenced

from similar Gaussian latent structures in hierarchical statistical
models (e.g. the random effects model (Borenstein et al., 2010)
and the state space model (Carter and Kohn, 1996)). This assump-
tion is however frequently studied together with factor identifiabil-
ity (Shapiro, 1985) to ensure unique latent representations of the
data. Specifically, the factor model (1) is not identifiable (or unique)
since for any orthogonal matrix 𝑇 ∈ 𝑂 (𝑞), Λ∗

𝑖
� 𝑇Λ𝑖

iid∼ 𝑁 (0, 𝐼𝑞)
and, with 𝑉∗ = 𝑉𝑇⊤, 𝑋𝑖 |Λ∗

𝑖

ind∼ 𝑁 (𝑉∗Λ∗
𝑖
,Φ) specify the same

model since 𝑉Λ𝑖 = 𝑉𝑇⊤𝑇Λ𝑖 = 𝑉∗Λ∗
𝑖
, that is, Λ∗ = Λ𝑇⊤ and 𝑉∗ are

not identifiable from Λ and 𝑉 . For this reason it is common in fac-
tor analysis to rotate factors after fitting the model to achieve better
sparsity and/or interpretability, e.g. with varimax rotation (Kaiser,
1958). However, it is advantageous to address these identifiability
issues from the outset to reduce the space of potential solutions and
speed up estimation procedures. In this case, it is helpful to bor-
row from the matrix factorization research. For example, adding
various factorization constraints such as sparsity (Gribonval and
Schnass, 2010), positivity (Lee and Choi, 1999) and orthogonal-
ity (Li et al., 2010) was shown to provide more representative and
unique latent factors. The stochastic counterpart of these factor
constraints is closely related to an evolving research field related to
data manifolds (Ma and Fu, 2012).

1.1.2. Allowing entry-wise weight and link transformation

Another potential improvement that has remained absent from
factor analysis research is the specification of entry-wise likeli-
hood weights and non-linear transformations. In matrix factoriza-
tion, allowing entry-wise factorization weights and the flexibility
of transforming the original data has been shown to be valuable in
providing more representative factorized results. For example, in
the field of natural language processing, Global Vectors for Word
Representation (GloVe; Jeffrey Pennington and Manning, 2014) re-
ceived great success in obtaining word embeddings. The method
essentially applied a log transformation on the word-occurrence
matrix with heuristic entry-wise weights to avoid over and under-
weighting toward rare and common word co-occurrences. In the
field of computer vision (Kalayeh et al., 2014), weighting matrices
related to classification class frequencies are introduced to alleviate
issues with class imbalance. This residual boosting weight matrix
provides latent factors that are more suitable for downstream classi-
fication. In the field of matrix completion (Davenport et al., 2014),
specification of zero factorization weights can eliminate missing en-
tries from the factorization, which in turn allows the latent structure
to impute them.

Perhaps due to the computational complexity associated with
these enhancements, such flexibility has not been transferred from
matrix factorization to factor analysis. Link transformations might
appear in the literature, e.g. (Reimann et al., 2002), but are mostly
applied as an ad-hoc pre-processing methodology. In practice, it is
clear that entry-wise factor weights and link transformations could
greatly improve the flexibility of the factor modeling framework.
Nevertheless, a unified factor modeling framework that enables
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such flexibility is still missing from the literature.

1.1.3. Improving on efficient optimization
Lastly, as we seek to improve on the traditional Gaussian factor

model, it is natural to consider practical computational concerns:
can we scale fitting the improved model to modern large datasets?

While the marginal likelihood under model (1) is available in
closed form, deriving the marginal likelihood under a non-Gaussian
data assumption is typically difficult and recent research have re-
sorted to simulated maximum likelihood (SML; Wedel and Ka-
makura, 2001), Markov chain Monte Carlo (MCMC) or variational
inference (Gopalan et al., 2015). However, these methods have
their own difficulties. Variational inference is based on an approx-
imation to the target marginal distribution and usually relies on
oversimplified representations for computational gains at the cost
of poor representativity. As for MCMC, due to the identifiability
issue introduced earlier, the marginal likelihood is constant along
high dimensional quotient spaces on 𝑉 imposed by equivalence
under orthogonal operations (rotations). These equivalent spaces
cause significant challenges for both the MCMC sampling and the
assessment of convergence. Lastly, although theoretically attrac-
tive, MCMC is computationally expensive since it usually requires
long running times to achieve convergence up to a desired precision
when compared to other approaches such as Laplacian approxima-
tions (Rue et al., 2009).

As the original optimization method proposed with the initial
exponential factor generalization (Wedel and Kamakura, 2001; Wu
and Zhang, 2003), the SML approach is considered as one of the
most common estimation methods. Specifically, the maximum like-
lihood estimator is obtained by maximizing the following simulated
likelihood based on 𝑆 Monte Carlo samples,

𝐿 (𝑉 ; 𝑋) =
𝑛∏
𝑖=1

𝑓𝑉 (𝑋𝑖) ≈
𝑛∏
𝑖=1

1
𝑆

𝑆∑︁
𝑠=1

𝑓𝑉
(
𝑋𝑖 |Λ(𝑠)

𝑖

)
� 𝐿MC (𝑉 ; 𝑋),

whereΛ(𝑠)
𝑖

iid∼ 𝑁 (0, 𝐼𝑞). To obtain the maximizer of log 𝐿MC (𝑉 ; 𝑋),
the gradient is needed (up to a constant):

∇𝑉

𝑛∑︁
𝑖=1

log
𝑆∑︁
𝑠=1

𝑓𝑉 (𝑋𝑖 |Λ(𝑠)
𝑖

) =
𝑛∑︁
𝑖=1

∑𝑆
𝑠=1 ∇𝑉 𝑓𝑉 (𝑋𝑖 |Λ(𝑠)

𝑖
)∑𝑆

𝑠=1 𝑓𝑉 (𝑋𝑖 |Λ(𝑠)
𝑖

)
. (2)

Despite the fact that ∇𝑉 𝑓𝑉 (𝑋𝑖 |Λ(𝑠)
𝑖

) is readily known in closed
form, optimization using (2) has both numerical and theoretical is-
sues. For the numerical issue, we need to observe that the likelihood
𝑓𝑉 (𝑋𝑖 |Λ(𝑠)

𝑖
) evaluations in the denominator need to be performed

in log space to avoid underflows and usually require good start-
ing points for 𝑉 , which are particularly challenging when the data
dimension 𝑝 is large.

From a theoretical perspective, the likelihood along its gradient
evaluation depends heavily on the asymptotic behavior of sample
size 𝑆. It has been shown in (Lee, 1995) that the estimator will
be asymptotically biased if the MC sample size 𝑆 does not grow

faster than data sample size
√
𝑛. In fact, we verified with numer-

ical studies that the gradient estimation can potentially require a
larger MC sample size 𝑆 ≫

√
𝑛 to stabilize ∇𝑉 𝑓𝜃 (𝑋𝑖 |Λ(𝑠)

𝑖
) in (2).

Consequently, when optimizing the likelihood via SML, there is a
trade-off between computation efficiency and estimation bias. For
modern applications of large data dimensions, the sample size 𝑆 re-
quired to control the MC variance can be quite large, thus preventing
the practical applications of such methods.

1.1.4. Real world applications
Although PCA has been traditionally used for many real world

applications (Li et al., 2024), in the past decades, the generalization
of the deterministic PCA factorization to the exponential family
has enabled a series of benchmark models across different fields.
For example, the non-negative matrix factorization (NMF; Lee and
Choi, 1999) in computer vision generalized the data distributional
assumption to Poisson. The non-Gaussian state space model (Kita-
gawa, 1987) in time series generalized the data distributional as-
sumption to non-Gaussian using non-parametric estimation; the
Skip-gram model (Levy and Goldberg, 2014; Mikolov et al., 2013)
in natural language processing generalized the data assumption to
multinomial. Perhaps most relevant to statistics factor model re-
search, (Wedel and Kamakura, 2001) and (Wu and Zhang, 2003)
generalized the data likelihood to exponential family distribution
while allowing the random specification of a latent factor Λ.

Perhaps due to the infeasibility of the SML estimation described
in the previous subsection, the lack of a practical estimation method
has limited the application of the random factorization to only
Bernoulli factor models with an identity link function, i.e, the ran-
dom dot product model (RDPM; Hoff et al., 2002; Young and
Scheinerman, 2007). Despite its restrictive identity link assump-
tion, the RDPM has established its popularity on its empirical evi-
dence from network analysis. After addressing the SML estimation
problem, we also feel that empirical evidence of such a generalized
model has still been missing from the literature.

1.2. Organization of the paper
The paper is organized as follows: in Section 2 we introduce

a more general exponential factor model that addresses the short-
comings listed in 1.1.1 and 1.1.2; next, in Section 3, we discuss our
main contributions—a collection of efficient and robust optimiza-
tion strategies for inference, tackling the points in 1.1.3; Section 4
demonstrates the effectiveness of our factorization with simulated
examples and applications on benchmark data from various fields;
finally, Section 5 concludes with a summary of the innovations and
directions for future work.

2. Exponential Factor Models
2.1. Guaranteeing factor identifiability

We start by addressing the model issues raised in Section 1.
Given our concern with computational efficiency, our first issue is
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non-identifiability; as discussed in 1.1.1, we need to constraint the
factors to avoid lack of identifiability due to rotations. From now
on we adopt the following standardization of the factors:

(i) Λ𝑖
iid∼ 𝑁 (0, 𝐼𝑞) for 𝑖 ∈ [𝑛] as usual, with the distribution of the

rows of Λ being invariant to orthogonal transformations;

(ii) 𝑉 has scaled pairwise orthogonal columns, that is, 𝑉 = 𝑈𝐷

with 𝑈 ∈ S𝑝,𝑞 (R), a 𝑝-frame in the Stiefel manifold of order
𝑞, and 𝐷 = Diag 𝑗∈[𝑞 ]{𝑑 𝑗 } with 𝑑1 ≥ · · · ≥ 𝑑𝑞 > 0, so that
𝑉⊤𝑉 = 𝐷2. We denote this space for 𝑉 as S̃𝑝,𝑞 (R).

This setup makes the factorization model identifiable since for
any arbitrary 𝑇 ∈ 𝑂 (𝑞), 𝑉∗ = 𝑉𝑇⊤ can only belong to S̃𝑝,𝑞 (R) if
𝑇⊤ commutes with a diagonal matrix, that is, if 𝑇 ∈ 𝑂 (1)𝑞 , and so
𝑉 is unique (up to column sign changes, as in the SVD). In practice,
given any pair of factors Λ̂ and 𝑉 we just need to find the singular
value decomposition of Λ̂𝑉⊤ = Λ𝐷𝑈⊤ to identify Λ and 𝑉 = 𝑈𝐷.

2.2. Generalizing the normal likelihood

Next, we relax the convenient but often unrealistic Gaussian as-
sumptions in the likelihood and settle with a more general mean
and variance specification in the spirit of quasi-likelihood. We as-
sume that 𝑋𝑖 |Λ𝑖 ∼ 𝐹 (𝑉Λ𝑖 ,Φ𝑖) where 𝐹 belongs to the exponential
family with link function 𝑔 and variance function V, that is,

E(𝑋𝑖 |Λ𝑖) � 𝜇𝑖 = 𝑔−1 (𝜂𝑖), with 𝜂𝑖 = 𝑉Λ𝑖 + 𝜂0, and
Var(𝑋𝑖 |Λ𝑖) = Φ𝑖V(𝜇𝑖),

(3)

where V(𝜇𝑖) = Diag{V(𝜇𝑖)} is the diagonal variance and 𝜂0 ∈ R𝑝

is the latent center of the factor model. This way, we can more
naturally represent data 𝑋 belonging to fields other than real num-
bers; common cases are binary data with 𝐹 being Bernoulli or
binomial (with weights) and count data with 𝐹 being Poisson or
negative binomial. In particular, the negative binomial distribu-
tion offers enhancements over the Poisson distribution by effec-
tively accommodating the over-dispersion characteristic often ob-
served in count data; see, e.g., (Xia, 2020) for a detailed treat-
ment of negative binomial distributions as a compound Poisson
type. To accommodate entry-wise weights, as motivated in Sec-
tion 1.1.2, we set Φ𝑖 = Φ𝑊−1

𝑖
where 𝑊𝑖 = Diag 𝑗=1,..., 𝑝{𝑤𝑖 𝑗 } are

the known weights, that is, Φ𝑖 = Diag 𝑗=1,..., 𝑝{𝜙 𝑗/𝑤𝑖 𝑗 }. This setup
implies E(𝑋𝑖 𝑗 |Λ𝑖) = 𝜇𝑖 𝑗 and Var(𝑋𝑖 𝑗 |Λ𝑖) = 𝜙 𝑗V(𝜇𝑖 𝑗 )/𝑤𝑖 𝑗 . From
these two moment conditions, we can adopt the extended quasi-
likelihood (Nelder and Pregibon, 1987) to define:

log 𝑓𝑉,𝜂0 ,Φ (𝑋𝑖 |Λ𝑖) =

−
𝑝∑︁
𝑗=1

𝑤𝑖 𝑗

𝜙 𝑗

∫ 𝑋𝑖 𝑗

𝜇𝑖 𝑗

𝑋𝑖 𝑗 − 𝑡

V(𝑡) 𝑑𝑡 − 1
2

log
(
2𝜋

𝜙 𝑗V(𝑋𝑖 𝑗 )
𝑤𝑖 𝑗

)
. (4)

We call this the exponential factor model (EFM).

The MLE estimate of 𝜃 = (𝑉, 𝜂0,Φ) then requires access to the
marginal density for each observation 𝑖 ∈ [𝑛],

log 𝑓𝜃 (𝑋𝑖) =
∫
Λ𝑖

log 𝑓𝜃 (𝑋𝑖 |Λ𝑖) 𝑓 (Λ𝑖)𝑑Λ𝑖 (5)

where 𝑓 is the density of the standard multivariate normal density
of order 𝑞:

�̂� = argmax
𝑉∈S̃𝑝,𝑞 (R) ,𝜂0∈R𝑝 ,𝜙1 ,...,𝜙𝑝>0

𝑛∑︁
𝑖=1

log 𝑓𝑉,Φ (𝑋𝑖). (6)

2.3. Modeling covariance

Such a generalized factor framework can be used to efficiently
estimate the covariance structure of high dimensional data. Specif-
ically, applying the total variance formula we can derive the covari-
ance of a new observation 𝑋 | 𝜆 ∼ 𝐹 (𝑉𝜆,Φ) given 𝜆 ∼ 𝑁 (0, 𝐼𝑞),

Cov𝜃 (𝑋) = E𝜆
(
Var𝜃 (𝑋 |𝜆)

)
+ Var𝜆

(
E𝜃 (𝑋 |𝜆)

)
. (7)

Here, the first term is a diagonal matrix but the second term requires
an outer product that induces correlations among the entries of 𝑋 ,

E𝜆
(
Var𝜃 (𝑋 |𝜆)

)
= Diag 𝑗∈[𝑝]

{
𝜙 𝑗E𝜆

[
V ◦ 𝑔−1 ((𝑉𝜆) 𝑗 ) ] },

Var𝜆
(
E𝜃 (𝑋 |𝜆)

)
= E𝜆

[ (
𝑔−1 (𝑉𝜆) − 𝜇𝜆

) (
𝑔−1 (𝑉𝜆) − 𝜇𝜆

)⊤]
,

(8)

where 𝜇𝜆 = E𝜆
(
𝑔−1 (𝑉𝜆)

)
.

In the special case of Gaussian distribution, we have 𝑔(𝜇) = 𝜇

andV(𝜇) = 1 and so, as expected, Cov𝜃 (𝑋) = Φ+𝑉𝑉⊤. Using this
result, Fan et al. (2008) demonstrated the efficiency of the plug-in
covariance estimator via estimation of 𝑉, 𝜙,Cov(Λ). Similarly, we
demonstrate that the plug-in efficiency of (𝑉,Φ) in high dimen-
sional covariance estimation is preserved under our generalized
quasi-factor setup using Eq (8).

3. Approximate but Efficient and Robust Optimization

As we mentioned in Section 1.1.3, directly optimizing Eq (6)
through simulated gradients has both numerical and theoretical
issues. Next, we demonstrate how we can conduct maximum like-
lihood estimation on the factor matrix 𝑉 and conditional variances
Φ through some approximate but efficient and robust algorithms.

3.1. EM optimization with small 𝑞

Similar to the Gaussian factor model, one common estimation
method for such a latent space model should be Expectation Maxi-
mization (EM). In our setup, the EM can be formulated as follow:

• E-Step:
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Given parameter at iteratoin step t: 𝜃 (𝑡 ) , we compute:

EΛ𝑖 |𝑋𝑖
(log 𝑓𝜃 (𝑡 ) (𝑋𝑖 ,Λ𝑖)) =

∫
Λ𝑖

log 𝑓𝜃 (𝑡 ) (𝑋𝑖 ,Λ𝑖) 𝑓𝜃 (𝑡 ) (Λ𝑖 |𝑋𝑖)𝑑Λ𝑖

≈
∫
Λ𝑖

log 𝑓𝜃 (𝑡 ) (𝑋𝑖 ,Λ𝑖) �̃�𝜃 (𝑡 ) (Λ𝑖 |𝑋𝑖)𝑑Λ𝑖

= E
Λ̃𝑖 |𝑋𝑖

(log 𝑓𝜃 (𝑡 ) (𝑋𝑖 ,Λ𝑖))
(9)

where �̃�𝜃 (𝑡 ) (Λ𝑖 |𝑋𝑖) is the Gaussian approximated posterior den-
sity:

�̃�𝜃 (𝑡 ) (Λ𝑖 |𝑋𝑖) = 𝑓𝑁 (Λ̂𝑖 , 𝐻Λ̂𝑖
)

with Λ̂𝑖 and 𝐻
Λ̂𝑖

easily obtained from penalized GLM problem:

Λ̂𝑖 = argmax
Λ𝑖

log 𝑓𝜃 (𝑡 ) (𝑋𝑖 |Λ𝑖) + log 𝑓 (Λ𝑖)

𝐻
Λ̂𝑖

= ∇(2)
Λ𝑖

(
log 𝑓𝜃 (𝑡 ) (𝑋𝑖 |Λ𝑖) + log 𝑓 (Λ𝑖)

)
(Λ̂𝑖)

(10)

Generally denote response 𝑦 ∈ R𝑛, covariate 𝑥 ∈ R𝑛×𝑝 , coeffi-
cient 𝛽 ∈ R𝑝 , prior 𝜇0 ∈ R𝑝 , Σ0 ∈ R𝑝×𝑝

+ , dispersion, 𝜙 ∈ R, and
weight 𝑤 ∈ R𝑛, the solution to the Bayesian/penalized GLM of
Eq (10) can be formulated as:

argmin
𝛽 (𝑡+1)

𝑛∑︁
𝑖=1

𝑤𝑖 log 𝑓𝛽 (𝑡 ) (𝑦𝑖 |𝑥𝑖) + log 𝑓𝑁 (𝜇0, Σ0) (11)

The solution can be obtained by solving 𝛽 (𝑡+1) from the following
equation:

(𝑥⊤𝑆𝑥 + Σ−1
0 )𝛽 (𝑡+1) = 𝑥⊤𝑆𝑧 + 𝜇0Σ

−1
0 (12)

where:

– 𝑆 ∈ R𝑛×𝑛 is a diagonal matrix with 𝑆𝑖𝑖 =
𝑤𝑖

(𝑔′ (𝜇𝑖 ) )2𝜙V(𝜇𝑖 )

– 𝑧 ∈ R𝑛 is working response with 𝑧 = 𝑥⊤𝛽 (𝑡 ) + (𝑦 − 𝜇)𝑔′ (𝜇)

In the observation that Λ𝑖 ∈ R𝑞 , the expectation could be nu-
merically integrated when the latent dimension 𝑞 is small. Using
the standard Gaussian quadrature method with number of nodes
being denoted as 𝑚, we can write the Eq (9) as:

EΛ𝑖 |𝑋𝑖
(log 𝑓𝜃 (𝑡 ) (𝑋𝑖 ,Λ𝑖)) =

𝑚∑︁
𝑙=1

log 𝑓𝜃 (𝑡 ) (𝑋𝑖 ,Λ𝑖𝑙) �̃�𝜃 (𝑡 ) (Λ𝑖𝑙 |𝑋𝑖)

(13)
where {Λ𝑖𝑙}𝑚𝑙=1 are the quadrature node of evaluation parti-
tioning on the domain of Λ𝑖: dom(Λ𝑖). To effectively find
those quadrature nodes, we can locate the {Λ𝑖𝑙}𝑚𝑙=1 such that
the integrand function { �̃�𝜃 (𝑡 ) (Λ𝑖𝑙)}𝑚𝑙=1 is non-zero. Those points
{Λ𝑖𝑙}𝑚𝑙=1 can be defined according to the contour of the density
�̃�𝜃 (𝑡 ) (Λ𝑖) = 𝑓𝑁 (Λ̂𝑖 , 𝐻Λ̂𝑖

), which is sufficiently characterized by
an exploration of Λ̂ and 𝐻

Λ̂𝑖
using the Gaussian property.

Remark This Gaussian approximation idea is similar to (Rue
et al., 2009). That is, we firstly locate the center Λ̂𝑖 of function
log 𝑓𝜃 (𝑡 ) (Λ𝑖 |𝑋𝑖), then we explore the 𝑚 points using the hessian
𝐻

Λ̂𝑖
of function log 𝑓𝜃 (𝑡 ) (Λ𝑖 |𝑋𝑖). Those exploration will be exact

if log(𝑋𝑖 ,Λ𝑖) is Gaussian and can not be bad under the observa-
tion that log 𝑓𝜃 (𝑡 ) (Λ𝑖 |𝑋𝑖) = log 𝑓𝜃 (𝑡 ) (Λ𝑖 |𝑋𝑖) + log 𝑓 (Λ𝑖) and the
assumption that 𝑓 (Λ𝑖) is a Gaussian density.

• M-Step:
We can then solve the M-step by finding the parameters of 𝜃 (𝑡+1)

that maximizing E
Λ̃𝑖 |𝑋𝑖

(log 𝑓𝜃 (𝑡 ) (𝑋𝑖 ,Λ𝑖)):

𝜃 (𝑡+1) ≈ argmin
𝜃=(𝑉,Φ,𝜂0 )

−
𝑛∑︁
𝑖=1
E
Λ̃𝑖 |𝑋𝑖

(log 𝑓𝜃 (𝑡 ) (𝑋𝑖 ,Λ𝑖)) (14)

For this, observe that after the exploration from the E step,
we finalize the quadrature nodes {Λ𝑖𝑙}𝑚𝑙=1 and can thus treat
�̃�𝜃 (𝑡 ) (Λ𝑖𝑙 |𝑋𝑖) as quasi-GLM weight to solve weighted GLM prob-
lem below:

𝜃 (𝑡+1) = argmin
𝜃=(𝑉,𝜂0 )

−
𝑛∑︁
𝑖=1

𝑚∑︁
𝑙=1

log 𝑓𝜃 (𝑡 ) (𝑋𝑖 ,Λ𝑖𝑙) �̃�𝜃 (𝑡 ) (Λ𝑖𝑙 |𝑋𝑖)

(15)
The update of {𝜙 𝑗 }𝑝𝑗=1 is simplified to be the Pearson residual:

𝜙 𝑗 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑋𝑖 𝑗 − 𝜇𝑖 𝑗 )2

V(𝜇𝑖 𝑗 )
, 𝑗 ∈ [𝑝] (16)

However, both the the complexity and the error of this optimization
is proportional to the latent dimension 𝑞. In some of the existing
literature (Fan et al., 2020), it is often assumed that 𝑞 ≪ 𝑝 so that
the factorization needs to be applied. For other cases that we do
need a larger 𝑞, we explore two alternative optimization methods
utilizing Stochastic Gradient Descent (SGD). The algorithm for this
EM optimization is summarized in Algorithm 1.

Algorithm 1: Numerical EM (recommended for small 𝑞)
Data: 𝑋 ∈ F𝑛×𝑝 with F = N+,R+ · · ·
Input factorization rank 𝑞, number of Gaussian nodes 𝑚,

and maximum iteration 𝑇

Initialization Initialize (𝑉0, 𝜂0) using centered DMF or
SVD, Initialize Φ 𝑗 using Eq (16)

for t=0 : 𝑇 do
compute location 𝜇 = Λ̂𝑖 and scale Σ = 𝐻

Λ̂𝑖
of Gaussian

integrator using Eq (10)
compute the integrator { �̃�𝜃 (𝑡 ) (Λ𝑖𝑙 |𝑋𝑖)}𝑚𝑙=1 using Eq (13)
solve 𝑉𝑡 , 𝜂𝑡 via weighted GLM problem in Eq (15)
solve dispersion Φ𝑡 via pearson residual using Eq (16).

identify 𝑉𝑇 , 𝜂𝑇 according to Section 2.1
Result: MLE estimator of 𝑉 = 𝑉𝑇 , 𝜂0 = 𝜂𝑇 , Φ̂ = Φ𝑇
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3.2. SGD optimization with large 𝑞

Denote 𝑋
𝑑
= 𝑌 as random variable 𝑋 is equivalent to random

variable 𝑌 in distribution. Under some regularity conditions to
allow the exchange of differentiation and integration, the gradient
of likelihood can be written as:

∇𝜃 [
𝑛∑︁
𝑖=1

log( 𝑓𝜃 (𝑋𝑖))]

=

𝑛∑︁
𝑖=1

∇𝜃 (
∫
Λ𝑖

𝑓𝜃 (𝑋𝑖 ,Λ𝑖)𝑑Λ𝑖)∫
Λ𝑖

𝑓𝜃 (𝑋𝑖 ,Λ𝑖)𝑑Λ𝑖

=

𝑛∑︁
𝑖=1

∫
Λ𝑖

∇𝜃 [ 𝑓𝜃 (𝑋𝑖 ,Λ𝑖)]
1

𝑓𝜃 (𝑋𝑖)
𝑑Λ𝑖

=

𝑛∑︁
𝑖=1

∫
Λ𝑖

∇𝜃 [log 𝑓𝜃 (𝑋𝑖 ,Λ𝑖)]
𝑓𝜃 (𝑋𝑖 ,Λ𝑖)
𝑓𝜃 (𝑋𝑖)

𝑑Λ𝑖

=

𝑛∑︁
𝑖=1
E
Λ̃𝑖
[∇𝜃 [log 𝑓𝜃 (𝑋𝑖 , Λ̃𝑖)]], Λ̃𝑖

𝑑
= Λ𝑖 |𝑋𝑖

(17)

If we can evaluate Eq (17) efficiently and accurately, we could then
update the EFM parameters through gradient descent with step size
𝛼:

𝜃𝑡+1 = 𝜃𝑡 − 𝛼∇𝜃 [−
𝑛∑︁
𝑖=1

log( 𝑓𝑉 (𝑋𝑖))] (18)

Ignoring for now the expectation E
Λ̃𝑖
(¤), ∇𝜃 [ 𝑓𝜃 (𝑋𝑖 ,Λ𝑖)] are in

fact available in closed form given a specification of our model in
Eq (3). We provided a summary of those gradient below:

• Gradient for 𝑉 𝑗 :

−∇𝑉𝑗
log 𝑓𝜃 (𝑋𝑖 ,Λ𝑖) =

𝑤𝑖 𝑗

𝜙 𝑗

∇𝑉𝑗

( ∫ 𝑋𝑖 𝑗

𝜇𝑖 𝑗

1
V(𝑡) (𝑋𝑖 𝑗 − 𝑡)𝑑𝑡

)
= −

𝑤𝑖 𝑗

𝜙 𝑗

1
V(𝜇𝑖 𝑗 )

(𝑋𝑖 𝑗 − 𝜇𝑖 𝑗 )
𝜕𝜇𝑖 𝑗

𝜕𝜂𝑖 𝑗

𝜕𝜂𝑖 𝑗

𝜕𝑉 𝑗

= −
𝑤𝑖 𝑗

𝜙 𝑗

1
V(𝜇𝑖 𝑗 )

(𝑋𝑖 𝑗 − 𝜇𝑖 𝑗 )
1

𝑔′ (𝜇𝑖 𝑗 )
Λ𝑖

(19)

• Gradient for 𝜙 𝑗 :
Calculating the gradient for 𝜙 will require a function form of
𝑐(𝑋𝑖 𝑗 ,Φ𝑖 𝑗 ), which doesn’t entitle easy closed form. But as ar-
gued in (Nelder and Pregibon, 1987), little is lost if we focus on
the unnormalized version of of quasi-likelihood since the normal-
ization value 𝑐(𝑋𝑖 𝑗 ,Φ𝑖 𝑗 ) contains almost no information about
main parameter𝑉 . Ignoring 𝑐(𝑋𝑖 𝑗 ,Φ𝑖 𝑗 ), we repeat the derivation

for parameter 𝜙 𝑗 ∈ R+:

∇𝜙 𝑗
(− log 𝑓𝜃 (𝑋𝑖 ,Λ𝑖)) = −

𝑤𝑖 𝑗

𝜙2
𝑗

( ∫ 𝑋𝑖 𝑗

𝜇𝑖 𝑗

1
V(𝑡) (𝑋𝑖 − 𝑡)𝑑𝑡

)
+ 1

2𝜙 𝑗

= −
𝑤𝑖 𝑗

2𝜙2
𝑗

𝑄(𝑋𝑖 𝑗 ; 𝜇𝑖 𝑗 ) +
1

2𝜙 𝑗

,∀ 𝑗 ∈ [𝑝]

=
1

2𝜙 𝑗

(
−
𝑤𝑖 𝑗

𝜙 𝑗

𝑄(𝑋𝑖 𝑗 ; 𝜇𝑖 𝑗 ) + 1
)
,∀ 𝑗 ∈ [𝑝]

≈ 1
2𝜙 𝑗

(
−
𝑤𝑖 𝑗 (𝑋𝑖 𝑗 − 𝜇𝑖 𝑗 )2

𝜙 𝑗V(𝜇𝑖 𝑗 )
+ 1

)
,∀ 𝑗 ∈ [𝑝]

(20)
where 𝑄(𝑋𝑖 𝑗 ; 𝜇𝑖 𝑗 ) = −2

∫ 𝜇𝑖 𝑗

𝑋𝑖 𝑗

1
V(𝑡 ) (𝑋𝑖 − 𝑡)𝑑𝑡 = 𝑄(𝑋𝑖 𝑗 ; 𝑋𝑖 𝑗 ) −

𝑄(𝑋𝑖 𝑗 ; 𝜇𝑖 𝑗 ) is the quasi-deviance function.

• Gradient for 𝜂0:
Ignoring 𝑐(𝑋𝑖 𝑗 ,Φ𝑖 𝑗 ), we repeat the derivation for 𝜂0 𝑗 ∈ R:

∇𝜂0 𝑗 (log 𝑓𝜃 (𝑋𝑖 ,Λ𝑖)) =
𝑤𝑖 𝑗

𝜙 𝑗

∇𝜂0 𝑗

( ∫ 𝑋𝑖 𝑗

𝜇𝑖 𝑗

1
V(𝑡) (𝑋𝑖 − 𝑡)𝑑𝑡

)
= −

𝑤𝑖 𝑗

𝜙 𝑗

1
V(𝜇𝑖 𝑗 )

(𝑋𝑖 𝑗 − 𝜇𝑖 𝑗 )
𝜕𝜇𝑖 𝑗

𝜕𝜂𝑖 𝑗

𝜕𝜂𝑖 𝑗

𝜕𝜂0 𝑗

=
1

Φ 𝑗 𝑗

1
V(𝜇𝑖 𝑗 )𝑔′ (𝜇𝑖 𝑗 )

(𝜇𝑖 𝑗 − 𝑋𝑖 𝑗 ),∀ 𝑗 ∈ [𝑝]
(21)

In our later optimization, we additionally need the Hessian of the
log 𝑓𝜃 (𝑋𝑖 ,Λ𝑖).

• Hessian for 𝑉 𝑗 and Λ𝑖:
The Hessian for 𝑉 𝑗 and Λ𝑖 are symmetric with respect to each
other with a simple notation change, below we use 𝐻𝑉𝑗

as an
example:

E𝑋𝑖

[
∇(2)
𝑉𝑗

(− log 𝑓𝜃 (𝑋𝑖 ,Λ𝑖))
]
=

E𝑋𝑖

[(
∇𝑉𝑗

(
𝐺 (𝜇𝑖)⊤ [𝑆

1
2 (𝜇𝑖)Φ𝑆

1
2 (𝜇𝑖)]−1) (𝜇𝑖 − 𝑋𝑖)+

𝐺 (𝜇𝑖)⊤ [𝑆
1
2 (𝜇𝑖)Φ𝑆

1
2 (𝜇𝑖)]−1∇𝑉𝑗

(
𝜇𝑖 − 𝑋𝑖

) )
Λ𝑖

]
=

𝑝∑︁
𝑗=1

𝐺 (𝜇𝑖 𝑗 )2 [𝑆 1
2 (𝜇𝑖 𝑗 )Φ 𝑗 𝑗𝑆

1
2 (𝜇𝑖 𝑗 )]−1 𝜕𝜇𝑖 𝑗

𝜕𝜂𝑖 𝑗

𝜕𝜂𝑖 𝑗

𝜕𝑉 𝑗

Λ𝑖

= Λ𝑖

(
Diag(𝐺 (𝜇𝑖)2) [𝑆 1

2 (𝜇𝑖)Φ𝑆
1
2 (𝜇𝑖)]−1

)
Λ⊤
𝑖

(22)

where the first components is 0 because E(𝜇𝑖 − 𝑋𝑖) = 0𝑝 .

The random sampling for the gradient of every observation 𝑖 ∈ [𝑛]
in Eq (17) is however expensive. We here additionally leverage
modern stochastic optimization to randomly sample partial data to
approximate the optimization gradient. The optimization is termed
Stochastic Gradient Descent (SGD) due to its interpretation as a
stochastic approximation of the actual gradient function. Since
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the method effectively reduces the sample size by applying a sub-
sampling on the original dataset, the SGD can be used to accelerate
all optimization algorithms with explicit gradient formulation. We
here use the SML optimization as an example to illustrate the im-
plementation.

Taking last equality from Eq (17) and applying the law of large
number, we can compute the gradient using stochastic sample of
size 𝐵 and 𝑆:

𝑛∑︁
𝑖=1

∇𝜃

(
log( 𝑓𝜃 (𝑋𝑖))

)
≈ 𝑛E𝑋 [∇𝜃

(
log( 𝑓𝜃 (𝑋))

)
]

= 𝑛E𝑋 (𝐵) [∇𝜃

(
log( 𝑓𝜃 (𝑋𝑏))

)
], 𝑋 (𝐵) 𝑑

= 𝑋

≈ 𝑛

𝐵

𝐵∑︁
𝑏=1

∇𝜃

(
log( 𝑓𝜃 (𝑋 (𝐵)

𝑏
))

=
𝑛

𝐵

𝐵∑︁
𝑏=1
E
Λ̃𝑏

[∇𝜃 [log 𝑓𝜃 (𝑋 (𝐵)
𝑏

, Λ̃𝑏)]], Λ̃𝑏
𝑑
= 𝑁 (0𝑞 , 𝐼𝑞)

≈ 𝑛

𝐵

𝐵∑︁
𝑏=1

𝑆∑︁
𝑠=1

1
𝑆
∇𝜃 [log 𝑓𝜃 (𝑋 (𝐵)

𝑏
, Λ̃

(𝑆)
𝑏,𝑠

)]], Λ̃(𝑆)
𝑏,𝑠

𝑑
= 𝑁 (0𝑞 , 𝐼𝑞)

(23)

The batch size 𝐵 is chosen to be smaller than sample size 𝑛, which
scales the original complexity with a factor of 𝐵

𝑛
per iteration. To

maintain the relationship 𝑋 (𝐵) 𝑑
= 𝑋 , one can sample with replace-

ment from the original data 𝑋 . In addition, since this stochastic
sampled gradient is proposed to maximize the true likelihood in-
stead of the simulated likelihood, the sample size 𝑆 required to
compute the optimization gradients does not need to grow in an
order of the actual sample size (e.g. 𝑆 = 𝑛1/2 as required for
SML(Lee, 1995)).

As it is compared to second-order optimization such as Newton’s
method, step size selection is of crucial importance for stochastic
gradient descent. A large step size will make the algorithm oscil-
late while a small step size hardly improves our likelihood function.
The theoretical analysis states that we should choose the step size
according to the conditional number of the parameter hessian ma-
trix (Bertsekas, 1999). When the hessian matrix is not available,
recent researchers have refined the step size selection by utiliz-
ing the momentum and the scale of the parameters. Specifically,
AdaGrad (Duchi et al., 2011) scales the gradient update with the
gradient’s second moment while the RMSProp (Ieleman and Hin-
ton, 2012) employed exponential decay to smooth out the gradient
direction. More recently, combining both RMSprop and AdaGrad,
Adam (Kingma and Ba, 2015) method has gained its well-deserved
attention in modern stochastic optimization research. Here we
adopt the Adam method with the parameter recommended in the
original Adam paper (𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8). To avoid
the oscillation around the minimum, we also employed a decay
learning rate with 𝛾𝑡 =

𝛼
1+0.5𝑡 . When it is necessary, the tuning on

the hyperparameter 𝛼 can be conducted by randomly sampling 𝛼

on a log grid.
To tackle specifically the expectation E

Λ̃𝑖
(·) with Λ̃𝑖

𝑑
= Λ𝑖 |𝑋𝑖 , we

propose two optimization algorithms in the following subsections.

3.2.1. Computing the gradient using laplacian approximation
The evaluation of the gradient is thus equivalently an evaluation

on the posterior moment of general function 𝑔(·). To such integra-
tion, laplacian approximation (Tierney and Kadane, 1986) has been
frequently studied. Denote

• 𝑔(Λ𝑖) : R𝑞 → R𝑞 , 𝑔(Λ𝑖) = ∇𝜃 [log 𝑓𝜃 (𝑋𝑖 ,Λ𝑖)]

• ℎ(Λ𝑖) : R𝑞 → R, ℎ(Λ𝑖) = − 1
𝑝

∑𝑝

𝑗=1 log 𝑓𝜃 (𝑋𝑖 𝑗 |Λ𝑖) + 𝑓 (Λ𝑖)

It is easy to verify that ℎ(Λ𝑖) is a constant order function of 𝑝 as
𝑝 → ∞ and that 𝑔(Λ𝑖) does not growth with 𝑝. Interestingly, even
if 𝑔(Λ𝑖) is permitted to grow with p, provided that the growth rate is
bounded by 𝑂 (𝑒𝑔0 𝑝

1−𝛿 ), a valid approximation can still be derived
with an error estimate of 𝑂 (𝑒𝑝1−𝛿 ). The precise approximation
in this general scenario can be found in Lemma 5 of (Xia and
Zhang, 2023). The evaluation follows from the derivation below
with Λ̃𝑖 = Λ𝑖 |𝑋𝑖 being the posterior:

𝑛∑︁
𝑖=1
E
Λ̃𝑖
[𝑔(Λ̃𝑖)] =

∫
R𝑞

𝑔(Λ𝑖) 𝑓 (Λ𝑖 |𝑋𝑖)𝑑Λ𝑖

=

∫
R𝑞

𝑔(Λ𝑖) exp(−𝑝ℎ(Λ𝑖))𝑑Λ𝑖∫
R𝑞

exp(−𝑝ℎ(Λ𝑖))𝑑Λ𝑖

(24)

To further simplify the notation, we denote 𝐻Λ𝑖
= ∇(2)

Λ𝑖
ℎ(Λ̂𝑖), and

𝑈Λ𝑖
= ∇Λ𝑖

ℎ(Λ̂𝑖). If we choose Λ̂𝑖 to maximize −ℎ(Λ𝑖), we will
have the gradient 𝑈Λ𝑖

= ∇Λ𝑖
ℎ(Λ̂𝑖) = 0𝑞 and the numerator can be

simplified with the leading term (Tierney et al., 1989):∫
R𝑞

𝑔(Λ𝑖) exp(−𝑝ℎ(Λ𝑖))𝑑Λ𝑖

=𝑔(Λ̂𝑖) exp(−𝑝ℎ(Λ̂𝑖))
∫
R𝑞

exp(− 𝑝

2
(Λ𝑖 − Λ̂𝑖)⊤𝐻Λ𝑖

(Λ𝑖 − Λ̂𝑖))

=𝑔(Λ̂𝑖) exp(−𝑝ℎ(Λ̂𝑖)) (2𝜋/𝑝)𝑞/2 |Σ(Λ̂𝑖) |−1/2 (1 +𝑂 (1/𝑝)
)

(25)
As a corollary of this 𝑂 (1/𝑝) approximation result, the denomi-
nator of

∫
R𝑞

𝑔 (Λ𝑖 ) exp(−𝑝ℎ(Λ𝑖 ) )𝑑Λ𝑖∫
R𝑞

exp(−𝑝ℎ(Λ𝑖 ) )𝑑Λ𝑖
is a special case of the numerator

with 𝑔(Λ𝑖) = 1, a more accurate approximation with a relative order
𝑂 (1/𝑝2) can be obtained by applying approximation in Eq (25) to
both the numerator and denominator. Such an approximation how-
ever would require additionally either of the following components:

• The higher order of derivative {∇(𝑘 )
𝑉

𝑔(Λ̂𝑖)}2
𝑘=1 and ∇(3)

Λ𝑖
𝑔(Λ̂𝑖).

• The maximization solution of Λ̂𝑖 = argminΛ𝑖
− 1

𝑝
log 𝑔(Λ𝑖) +

ℎ(Λ𝑖).

The approximation with the first evaluation is named as Standard
Form while the one with the second evaluation is named as the
Fully Exponential Form (Tierney et al., 1989).
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However, Eq (25) still requires an evaluation of ℎ(Λ̂𝑖) =

− 1
𝑝

∑𝑝

𝑗=1 log( 𝑓𝜃 (𝑋𝑖 𝑗 |Λ𝑖)), which will asymptotically approach 0
with bad initialization of 𝑉 as 𝑝 → ∞. Fortunately, for an order of
𝑂 (1/𝑝) approximation, a joint approximation of the denominator
and numerator integral with the Standard Form (Tierney et al., 1989)
suggests 𝑔(Λ̂𝑖) would equivalently provide 𝑂 (1/𝑝) approximation
by simply plugging Λ̂𝑖 = argminΛ𝑖

ℎ(Λ𝑖) into function ℎ(·):

𝑛∑︁
𝑖=1
E
Λ̃𝑖
[𝑔(Λ̃𝑖))] =

𝑛∑︁
𝑖=1

𝑔(Λ̂𝑖)
(
1 +𝑂 (1/𝑝)

)
(26)

To facilitate later reference, we name this optimization as Lapla-
cian optimization, whose gradient evaluation is accurate for large 𝑝

with a relative error rate of 𝑂 (1/𝑝). Although our setup assumes a
Gaussian latent variable, the optimization can be generally applied
to non-Gaussian latent prior with a simple modification of 𝑓 (Λ𝑖) in

ℎ(Λ𝑖) =
1
𝑝

𝑝∑︁
𝑗=1

log 𝑓𝜃 (𝑋𝑖 𝑗 |Λ𝑖) + 𝑓 (Λ𝑖)

The optimization can be readily accommodated as weighted MAP
solution of Bayesian GLM regression for the given prior of Λ𝑖 with
density 𝑓 (Λ𝑖):

Λ̂𝑖 = argmax
Λ𝑖

1
𝑝

𝑝∑︁
𝑗=1

log 𝑓𝜃 (𝑋𝑖 𝑗 |Λ𝑖) + 𝑓 (Λ𝑖) (27)

3.2.2. Computing the gradient using posterior sampling
When 𝑝 is of moderate dimension, the evaluation of Eq (2) still

would require a good starting point, yet the gradient evaluation us-
ing Eq (25) is inaccurate. In this case, we observe from Eq (17) that
if the posterior distribution ofΛ𝑖 |𝑋𝑖 can be easily simulated without
numerical issue, then computing the Eq (17) using stochastic sam-
pling will be handy. Our second optimization idea thus comes from
approximating the posterior distribution instead of approximating
the likelihood gradient.

If we conduct Taylor expansion of the 𝑓𝜃 (𝑋𝑖 |Λ𝑖) to the second
order around the stationary point of Λ̂𝑖 , we can obtain the following
data likelihood approximation:

log( 𝑓𝜃 (𝑋𝑖 |Λ𝑖)) ≈ log( 𝑓𝜃 (𝑋𝑖 |Λ̂𝑖)) + (Λ𝑖 − Λ̂𝑖)⊤𝑈Λ𝑖
(Λ̂𝑖)+

1
2
(Λ𝑖 − Λ̂𝑖)⊤𝐻Λ𝑖

(Λ̂𝑖) (Λ𝑖 − Λ̂𝑖)

∝ (Λ𝑖 − Λ̂𝑖)⊤𝐻Λ𝑖
(Λ̂𝑖) (Λ𝑖 − Λ̂𝑖)

(28)

The required stationary point of Λ̂𝑖 can be obtained by solving the
following normal equation for 𝑛 rows of 𝑋 with index 𝑖 = 1, . . . , 𝑛:

𝑉⊤𝐷𝑖 ·𝑉𝜆
(𝑡+1)
𝑖

= 𝑉⊤𝐷𝑖 · (𝑉𝜆 (𝑡 )
𝑖

+ 𝐷−1
𝑖 · 𝐺𝑖 ·) = 𝑉⊤𝐷𝑖 ·𝑍

(𝑡 )
𝑖 · , (29)

where 𝜆𝑖 denotes the 𝑖-th row of matrix Λ. 𝜙 is the dispersion
parameter from exponential family. 𝑍 (𝑡 ) , 𝐷−1

𝑖 · , 𝐺𝑖 · are defined as:.

• 𝑆𝑖 𝑗 =
𝑤𝑖 𝑗

𝜙 𝑗

𝑔−1′ (𝜂𝑖 𝑗 )
2

𝑉 (𝜇𝑖 𝑗 ) and 𝐺𝑖 𝑗 =
𝑔−1′ (𝜂𝑖 𝑗 )
𝑉 (𝜇𝑖 𝑗 )

𝑤𝑖 𝑗

𝜙 𝑗
(𝑋𝑖 𝑗 − 𝜇𝑖 𝑗 )

• 𝐷𝑖 ·
𝑑
= Diag{𝑆 (𝑡 )

𝑖 · } with 𝑆𝑖 · denotes the 𝑖-th row of 𝑆. Similarly,
Diag{𝑆 (𝑡 )

· 𝑗 } with 𝑆 · 𝑗 denotes the 𝑗-th column of 𝑆.

• 𝑍 (𝑡 ) is the working response:

𝑍
(𝑡 )
𝑖 𝑗

= 𝜂
(𝑡 )
𝑖 𝑗

+
𝐺

(𝑡 )
𝑖 𝑗

𝑆
(𝑡 )
𝑖 𝑗

= 𝜂
(𝑡 )
𝑖 𝑗

+
𝑋𝑖 𝑗 − 𝜇

(𝑡 )
𝑖 𝑗

𝑔−1′ (𝜂 (𝑡 )
𝑖 𝑗

)
. (30)

After which, the posterior distribution of the latent variable Λ can
be approximated with the Gaussian formula:

𝑓 (Λ𝑖 |𝑋𝑖) ∝ 𝑓 (𝑋𝑖 |Λ𝑖) 𝑓 (Λ𝑖) ≈ 𝑓𝑁 (Λ̂𝑖 , 𝐻
−1
Λ𝑖

(Λ̂𝑖)) 𝑓𝑁 (0, 𝐼𝑞)
= 𝑓𝑁 (𝜇𝑖 , Σ𝑖)

(31)

where 𝑓𝑁 (𝜇, Σ) is the multivariate normal density with mean 𝜇 and
variance Σ. We have from the Gaussian integration formula that
𝜇𝑖 = [𝐼𝑞 + 𝐻−1

Λ𝑖
(Λ̂𝑖)]−1Λ̂𝑖 , Σ𝑖 = [𝐼𝑞 + 𝐻Λ𝑖

(Λ̂𝑖)]−1.
Under this closed-form expression of the posterior, the complex-

ity of evaluating the gradient Eq (23) becomes as small as sampling
from a multivariate normal distribution with parameter 𝜇𝑖 , Σ𝑖 . As
for the quality of this approximation, we appeal to a similar state-
ment in (Rue et al., 2009) that we are implicitly assuming the shape
of the posterior is determined solely by the prior and the likelihood
only contributes to the location and scale. The approximation can
be inaccurate when the prior is non-Gaussian but this is not the case
for the factor model where 𝑓 (Λ𝑖) ∼ 𝑁 (0, 𝐼𝑞).

For the convenience of later reference, this second optimization
method is named as Posterior Sampling optimization. This pos-
terior sampling optimization is in fact closely related to MCEM
algorithm (Dempster et al., 1977), whose convergence result is
proven to be superior compared to SML(Jank and Booth, 2003). To
observe this connection, notice that we can introduce a new prob-
ability measure 𝑄(Λ𝑖) to reformulate the optimization problem in
Eq (6) as:

𝑉 = argmax
𝜃

𝑛∑︁
𝑖=1

log
∫
Λ𝑖

𝑓𝜃 (𝑋𝑖 |Λ𝑖) 𝑓 (Λ𝑖)𝑑Λ𝑖

= argmax
𝜃

𝑛∑︁
𝑖=1

log
∫
Λ𝑖

𝑓𝜃 (𝑋𝑖 |Λ𝑖) 𝑓 (Λ𝑖)
𝑄(Λ𝑖)

𝑄(Λ𝑖)𝑑Λ𝑖

= argmax
𝜃

𝑛∑︁
𝑖=1

log
(
E𝑄 (Λ𝑖 ) [

𝑓𝜃 (𝑋𝑖 ,Λ𝑖)
𝑄(Λ𝑖)

]
)

(32)

Now if we apply Jensen’s inequality to switch the order of expecta-
tions and log operation:

𝑓𝜃 (𝑋) =
𝑛∑︁
𝑖=1

logE𝑄 (Λ𝑖 ) [
𝑓𝜃 (𝑋𝑖 ,Λ𝑖)
𝑄(Λ𝑖)

]

≥
𝑛∑︁
𝑖=1
E𝑄 (Λ𝑖 ) [log( 𝑓𝜃 (𝑋𝑖 ,Λ𝑖)

𝑄(Λ𝑖)
)]

(33)
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The derived inequality becomes equality if log( 𝑓𝜃 (𝑋𝑖 ,Λ𝑖 )
𝑄 (Λ𝑖 ) ) is a

constant, which can only be achieved by choosing the posterior
𝑄(Λ𝑖) ∝ 𝑓𝜃 (𝑋𝑖 ,Λ𝑖) = 𝑓𝜃 (𝑋𝑖 |Λ𝑖) 𝑓 (Λ𝑖).
Then the ”M step” of the EM algorithm optimizes:

argmax
𝜃

𝑛∑︁
𝑖=1
E𝑄 (Λ𝑖 ) [log( 𝑓𝜃 (𝑋𝑖 ,Λ𝑖)

𝑄(Λ𝑖)
)]

whose gradient, under similar regularity conditions to switch the
order of derivative and integration, can be obtained in the following
form:

𝑛∑︁
𝑖=1

∫
Λ𝑖

∇𝑉 [log 𝑓𝜃 (𝑋𝑖 ,Λ𝑖)]𝑄(𝑋𝑖)𝑑Λ𝑖

Hence, our proposed stochastic gradient descent is equivalent to
an EM algorithm iteratively maximizing the marginalized likeli-
hood. However, as indicated in (Caffo et al., 2005), this MCEM
using simulated gradient for optimization often requires an adap-
tive change of the sample size 𝑆𝑡 to converge successfully. Recent
research (Jank, 2006) circumvent the choice of adaptive 𝑆𝑡 by aver-
aging the past iterations. The average is oftentimes weighted with
an emphasis on the recent iterations, which is in fact equivalent
to the step size selection of Adam optimization (Kingma and Ba,
2015).

We summarize those two SGD algorithms in Algorithm 2

Remark Although the iteration ends after𝑇 passes the data, similar
early stopping criteria (Yao et al., 2007) can be adopted if the main
objective of the model is to make future predictions. If one hopes
to focus on the interpretability of the factorized components, one
can stop the algorithm with small 𝑉𝑡+1 updates.

4. Examples and Results
In this section, we first demonstrate the result of simulation

experiments, which validates the effectiveness and superiority of
our SGD estimation compared to the SML estimation. Then with
benchmark dataset in computer vision and network analysis, we
compare our EFM factorization result against other commonly
applied factorizations such as Non-negative Matrix Factorization
(NMF), t-distributed stochastic neighbor embedding (t-SNE) and
deviance matrix factorization (DMF, Wang and Carvalho, 2023).
The factorization ranks 𝑞 on those empirical datasets are deter-
mined according to a rank determination proposition in (Wang and
Carvalho, 2023).

4.1. Simulated data

To validate the effectiveness of the optimization algorithm, we
applied our optimization to some simulated datasets. We design
small, simulated datasets where the marginalized likelihood can be
evaluated using SML with a large sample size 𝑆. To avoid potential
confusion, we denote 𝑆 as the sample size used to evaluate the
gradient and denote 𝑅 as the sample size used to evaluate the

Algorithm 2: Adam SGD (recommended for large q)
Data: 𝑋 ∈ F𝑛×𝑝 with F = N+,R+ · · ·
Notations 𝑍 standard normal, Σ−1/2 cholesky
decomposition of Σ, ◦ element-wise product. Stochastic
sample of size 𝐵 and 𝑆: 𝑋 (𝐵) and Λ(𝑆) .

Input Batch size 𝐵, Sample size 𝑆, learning rate 𝛼,
factorization rank 𝑞 and maximum iteration 𝑇

Initialization Initialize 𝑉0, 𝜂0 using centered DMF or SVD,
Φ0 through pearson residual; set Adam param:
𝑉𝑑𝜃 = 0, 𝑆𝑑𝜃 = 0, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8

for t=0 : 𝑇 do
sample with replacement batch 𝑋 (𝐵) from data 𝑋

if if p is large then
compute Λ̂𝑖 as the MAP solution defined in Eq (27)
compute the gradient ∇̃𝜃 =

∑𝑛
𝑖=1 𝑔(Λ̂𝑖) as Eq (26)

else
compute Λ̂𝑖 according to Eq (29)
compute ®𝜇(Λ̂𝑖), Σ(Λ̂𝑖) according to Eq (31)
draw 𝑆 samples of Λ(𝑆) = ®𝜇 + (Σ)1/2𝑍 (𝑆)

compute ∇̃𝜃 =
∑𝑛

𝑖=1 ∇𝜃

(
log( 𝑓𝜃 (𝑋𝑖))

)
via Eq (23)

update 𝑉𝑑𝜃 = 𝛽1𝑉𝑑𝜃 + (1 − 𝛽1)∇̃𝑉 // Adam momentum
update 𝑆𝑑𝜃 = 𝛽2𝑆𝑑𝜃 + (1 − 𝛽2) (∇̃𝑉 ◦ ∇̃𝑉 ) // Adam scale
obtain 𝑉𝑑𝜃 = 𝑉𝑑𝜃/(1 − 𝛽1) // bias correct 1st moment
obtain 𝑆𝑑𝜃 = 𝑆𝑑𝜃/(1 − 𝛽2) // bias correct 2nd moment
update 𝑉𝑡+1 = 𝑉𝑡 − 𝛼

1+0.5𝑡
𝑉𝑑𝜃√
𝑆𝑑𝜃+𝜖

decompose(SVD) 𝑉 ′
𝑡+1 = 𝑈𝐷𝑆⊤ with 𝑑1 ≥ · · · ≥ 𝑑𝑞 > 0

identify 𝑉𝑇 , 𝜂𝑇 according to Section 2.1
Result: MLE estimator of 𝑉 = 𝑉𝑇 , 𝜂0 = 𝜂𝑇 , Φ̂ = Φ𝑇 ,

posterior approximation of the 𝑖-th latent variable
parameter ®𝜇(Λ̂𝑖), Σ(Λ̂𝑖)

marginal likelihood. The notation is further clarified according to
the marginal likelihood evaluation below:

L(𝑉) =
𝑛∑︁
𝑖=1

log 𝑓 (𝑋𝑖 |𝑉)

≈
𝑛∑︁
𝑖=1

log(
𝑅∑︁
𝑟=1

1
𝑅
𝑓 (𝑋𝑖 |Λ(𝑅)

𝑖
𝑉⊤))

=

𝑛∑︁
𝑖=1

log( 1
𝑅

𝑅∑︁
𝑟=1

exp(log 𝑓 (𝑋𝑖 |Λ(𝑅)
𝑖

𝑉⊤)))

=

𝑛∑︁
𝑖=1

LogSumExp({log 𝑓 (𝑋𝑖 |Λ(𝑅)
𝑖

𝑉⊤)}) − 𝑛 log(𝑅)

(34)

Notice that the evaluation of Eq (34) is not required for the imple-
mentation of our Algorithm 2. The evaluation is only introduced
to compare the effectiveness and efficiency of those optimization to
decrease the integrated negative log-likelihood, which can only be
obtained using SML with large 𝑅 for non-Gaussian data likelihood.
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To compare the quality of our optimization algorithm with the
SML solution, we experimented with simulated data from Negative
Binomial (𝜙 = 20), Binomial and Poisson. The parameters are
chosen as 𝑛 = 500, 𝐵 = 128, 𝑞 = 2, 𝑝 = 10, 𝛼 = 0.5 with their
canonical link function. Note that the sample size 𝑛 is chosen to be
small for an efficient evaluation of the loss function using Monte
Carlo. Based upon the true generating parameter 𝑉∗, we empir-
ically verify that an accurate evaluation of the likelihood using
Eq (34) would require 𝑅 = 1, 500, which is three times larger than
the sample size 𝑛 = 500. This observation is consistent to existing
literature yet interesting to practitioners since the common litera-
ture is concentrated on the discussion of asymptotic efficiency with
a lower bound of 𝑅 >

√
𝑛 (Lee, 1995). In reality, the Monte Carlo

samples required for accurate gradient or likelihood evaluation ob-
viously depend on the variance of the gradient and likelihood of
the ”specific” dataset, which has no upper bound. We here adopted
𝑅 = 1, 500 to accurately monitor the loss decrease per unit of time
with the same initialization point. The evaluation time using sam-
ple size 𝑅 is later subtracted from the optimization time for a fair
comparison.

To investigate the dimensionality and variance effect on different
optimization algorithms, we first conducted two experiments with
𝑝 = 5 and 𝑝 = 10 and then conducted two additional experiments
with large 𝑝 = 512. Notice that the dimension size 𝑝 = 5, 𝑝 = 10
are designed to accommodate the numerical stability of SML opti-
mization, which has evaluation issues with large 𝑝 as mentioned in
Section 1.1.3. For each of the optimization, we fix the initialization
and the random seed to fairly compare the optimization paths.

We abbreviated LAPL for Laplacian Approximation optimiza-
tion, PS for posterior sampling optimization, and SML for simulated
maximum likelihood optimization. To also investigate the sampling
requirement, we varied sample size 𝑆 from 𝑆 = {50, 300, 500}. The
optimization paths with 𝑝 = 5 are plotted below: As we can see

Figure 1: EFM Optimization Comparison, p =5

from Figure 1, the Posterior Sampling (PS) optimization is not
very sensitive to the choice of sample size 𝑆 while the SML opti-
mization solution varies greatly according to a different choice of
sample size with larger 𝑆 leads to faster decrement. The Lapla-
cian approximation decreases the loss function at the slowest speed
due to the approximation error of 𝑂 (1/𝑝) in gradient evaluation

(Eq (24)). The result indicates that the EM and PS optimization
should be preferred on small data dimension 𝑝 due to its efficiency,
less sensitivity of sample size 𝑆, and numerical stability.

In theory, the LAPL optimization should become more accurate
with a relative error with respect to the data dimensionality𝑂 (1/𝑝).
To observe the effectiveness of LAPL with moderate dimension-
ality, we continued the same experiments with 𝑝 = 10. We also
adopted 𝑆 = 500 for both SML and PS optimization to compare the
optimization efficiency. The optimization paths are again recorded
with respect to the Adam optimization steps: As we can see from

Figure 2: EFM Optimization Comparison, p =10

Figure 2, the posterior sampling optimization is still the most ef-
ficient among the three optimizations with more loss descended
per unit of time. However, as it reaches the convergence region,
the PS optimization contains higher variance as it is compared to
the LAPL. This observation indicate that the potential superiority
of the Laplacian optimization when the gradient evaluation con-
tains large variance. The SML optimization undoubtedly decreases
the negative likelihood at the slowest rate and should not be ever
considered for practical applications.

To effectively compare the optimization performance on large-
dimensional dataset, we experimented with 𝑝 = 512, under which
scenario, the SML completely lost its power due to the numeri-
cal stability issue. In fact, we observe that the SML consistently
increase the loss with respect to the optimization steps. We thus
compare only the PS of different sample sizes 𝑆 and LAPL optimiza-
tion with their optimization paths prorated across the optimization
time: As we can see from Figure 3, despite the potentially larger
Monte Carlo error in gradient evaluation with a smaller sample size
𝑆 = 50, the PS optimization converges as it is compared to the
LAPL and EM optimization. Such a behaviour is very desired as it
also indicates low computational budget required for large dimen-
sion optimization. However, the PS optimization would potentially
require a large 𝑆 when the variance of the gradient evaluation in-
creases. To validate this argument, we increased the magnitude of
𝑉∗ = 𝑈∗𝐷∗ in simulation through a multiplication 𝑐 > 1 on its
diagonal elements. This multiplication will enlarge the magnitude
of gradient according to the function relationship in Table 1.

We then continued the data simulation process with large dimen-
sion 𝑝 = 512 to compare the performance between PS and LAPL:
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Table 1: Distributions and their respective gradient and hessian functions.

Distribution 𝐹 Negative Log-likelihood 𝑙 (𝑋) Gradient −∇𝑉𝑗
𝑙 (𝑋) Hessian −∇(2)

Λ𝑖
𝑙 (𝑋)

Gaussian(identity) 1
2𝜎2

∑𝑝

𝑗=1 (𝑋 𝑗 − Λ𝑉 𝑗 )⊤ (𝑋 𝑗 − Λ𝑉 𝑗 ) − 1
𝜎2 Λ

⊤ (𝑋 𝑗 − Λ𝑉⊤
𝑗
) 1

𝜎2𝑉
⊤𝑉

Poisson(log)
∑𝑝

𝑗=1 1⊤𝑛 exp(Λ𝑉⊤
𝑗
) − 𝑋⊤

𝑗
(Λ𝑉⊤

𝑗
) −𝑋⊤

𝑗
Λ + exp(Λ𝑉⊤

𝑗
)⊤Λ 𝑉⊤Diag[exp(Λ𝑖𝑉

⊤)]𝑉
Gamma(log) −𝜙[∑𝑝

𝑗=1 𝑋
⊤
𝑗
Λ𝑉⊤

𝑗
+ log(−Λ𝑉⊤

𝑗
)] (−1/Λ𝑉⊤

𝑗
)Λ − 𝑋⊤

𝑗
Λ 𝑉⊤Diag2 [𝜙/Λ𝑖𝑉

⊤]𝑉
Binomial(logit)

∑𝑝

𝑗=1 −(𝑤 𝑗 ◦ 𝑋⊤
𝑗
)Λ𝑉⊤

𝑗
+ [𝑤 𝑗/(1 + exp(−Λ𝑉⊤

𝑗
))]⊤Λ− 𝑉⊤ (𝑤𝑖 ◦ Diag[exp(Λ𝑖𝑉

⊤)
𝑤⊤

𝑗
log(1𝑛 + exp(Λ𝑉⊤

𝑗
)) (𝑤 𝑗 ◦ 𝑋 𝑗 )⊤Λ /(1 + exp(Λ𝑖𝑉

⊤𝑎))])𝑉
Negative Binomial(𝛼)
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Figure 3: EFM Optimization Comparison, p =512 and small V

Figure 4: EFM Optimization Comparison, p =512 and large V

As we can see from Figure 4, when the data demonstrates high
variance in the sampled gradients, the PS optimization deteriorates
by indicating a higher requirement for the sample size 𝑆. As a con-
clusion, the LAPL optimization can should be preferred considering
the scenarios of non-Gaussian prior, an even larger dimensionality,
and potential high variance in gradient evaluation using posterior
sampling. Due to its efficiency demonstrated in the simulation stud-
ies, we adopted the Posterior Sampling Optimization for our later

empirical studies with careful monitoring on the loss decrement.

4.2. Covariance modeling
One of the major application of Gaussian factor model is its

efficiency in covariance estimation for high dimensional data(Fan
et al., 2008). Using similar setup in (Fan et al., 2008), we simulate
three quasi-factor data with 𝑛 = 756, 𝑝 = [66, 116, . . . , 466] and
four families (qausi-possion, negative-binomial, binomial, pois-
son). For comparison, we used the same prior configuration for
both factors Λ and projection matrix 𝑉 according to the setup in
Table 1 of (Fan et al., 2008). That is, for each 𝑝 and family:

• we firstly simulate for 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑝]

Λ𝑖 ∼ 𝑁

©«
0.023558
0.012989
0.020714

ª®¬, ©«
1.2507 0 0

0 0.31564 0
0 0 0.19303

ª®¬


𝑉 𝑗 ∼ 𝑁

©«
0.78282
0.51803
0.41003

ª®¬, ©«
0.029145 0.023873 0.010184
0.023873 0.053951 −0.006967
0.010184 0.006967 0.086856

ª®¬


Φ 𝑗 ∼
{

Gamma(𝛼 = 4.0713, 𝛽 = 0.1623) for quasi-possion
1 for others

𝑤𝑖 𝑗 ∼
{
𝑃𝑜𝑖𝑠𝑠𝑜𝑛(20) for binomial
1 for others

(35)

• condition on simulated (Λ, 𝑉,Φ), we generate 𝑋 ∈ F𝑛×𝑝 using
the four quasi-family with quasi-density 𝑓 satisfying Eq (3).

• based upon generated data 𝑋 , quasi-family defined by density
𝑓 and prior of Λ in (35), we estimate 𝜃 = (𝑉,Φ,Λ|𝑋) by
solving Eq (6).

• we compute covariance via

(a) naive sample covariance Σ̂𝑠𝑎𝑚 = 𝑋𝑋⊤

𝑛−1 − 𝑋11⊤𝑋⊤

𝑛(𝑛−1) .

(b) total covariance Σ̂ by plugging the estimated 𝜃 into
Eq (7).
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Figure 5: Estimation Error on Covariance

(c) true covarianceΣ by plugging the actual𝑉,Φ andΛ prior
into Eq (7).

• we compute the error of covariance estimation via:

(a) Frobenius norm ∥Σ − Σ̂∥𝐹
(b) Entropy loss Tr(Σ̂Σ−1) − log |Σ̂Σ−1 | − 𝑝

(c) Normalized loss 1√
𝑝
∥Σ−1/2 (Σ̂ − Σ)Σ−1/2∥𝐹

• we repeat the above process 𝑘 times.

With k = 5, we have obtained the estimation error of covariance
accordingly:

As we observe from Figure 5, we have obtained similar Non-
Gaussian covariance estimation error as in it was shown previously
(Fan et al., 2008) for the Gaussian case. Judging from the l2
normalized and l2 entropy distance, our EM optimization estimates
the covariance matrix of high dimensional data in a much more
accurately manner as it is compared to the naive estimation using
covariance formula.

4.3. Computer vision data
To illustrate the advantages that our EFM can provide more repre-

sentative factorization, we also conducted experiments on computer

vision dataset. Perhaps one of the most popular computer vision
dataset is the MNIST dataset, which contains 70,000 handwrit-
ing pictures labeled from 0 to 9. However, the modern machine
learning researchers have evidenced that the classification task of
the MNIST dataset might be too simple in the sense that an ap-
propriately tuned classical machine learning algorithm can easily
achieve 97% accuracy1. With also 70,000 pictures of 10 classes, the
Fashion-MNIST dataset (Xiao et al., 2017)is proposed to replace
the original dataset by constructing a more complicated classifi-
cation problem. We here examine our EFM factorization when
applied to the Fashion-MNIST dataset and compare our factorized
components against DMF, NMF, and t-SNE.

To determine the rank, we adopted the rank determination propo-
sition in (Wang and Carvalho, 2023). The resulting eigenvalue plot
in Figure 6 indicates a potential ranks three or seven for the fac-
torization. We adopt rank three for visualization convenience and
the simulated likelihood demonstrates convergence result after 15
epochs with 𝐵 = 256, 𝑆 = 50, 𝛼 = 0.5. To illustrate the superior
capability for model generalization, we used only the first 2,000
samples of the 70,000 data as our training dataset to estimate 𝑉 .
After obtaining this𝑉 , we conduct penalized GLM regression based

1https://paperswithcode.com/sota/image-classification-on-mnist
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Figure 6: Simulated Likelihood and Eigenvalue Gap for MNIST

upon another 2,000 sampled testing set 𝑋 to estimate Λ̂𝑖 |𝑋 . Those
Λ̂𝑖 |𝑋 can be considered as the out of sample latent estimation based
upon EFM estimated 𝑉 . Due to the factorization algorithm setup,
the t-SNE and NMF result are based up on the 2,000 training dataset
and the DMF and EFM results are obtained on the separate 2,000
testing set. We summarize the factorized result in Figure 7.

As it is indicated by the Fashion-MNIST factorization result,
both our EFM and the t-SNE methods indicates great separability
on the 10 classes with some mistakes on pullover, shirt and coat,
which are actually similar classes when we look at the image rep-
resentation. The NMF performs the worst by having utilizing only
two dimensions to separate the 10 different classes. Without the
stochastic optimization and regularization, the DMF performs no
better than our EFM on the testing samples with the potential reason
of overfitting.

To illustrate that our EFM method also provide reasonable uncer-
tainty quantification, we also conducted experiments on the ORL
face dataset, which contains 40 subjects with pictures taken under
10 different conditions. Those pictures are in 64x64 pixel dimen-
sion, which provides high resolution pixel for restoration. To add
uncertainty to the image restoration, we cropped part of the face
image by setting the pixels to 0. For example, in Figure 8, we can
see that the mouths of the person is covered with white background
pixel. Similar to the eigen-face decomposition, We adopt 𝑞 = 41
for factorization since we expect to find 40 individual face eigen-
vectors and one ”average face”. We fit EFM with negative binomial
and estimated 𝜙 = 10.8861 by using the moment estimator. For
comparison, we also conducted eigen-face restoration with rank 40
after centering the ”average face”. The result is summarized in
Figure 9:

Our EFM not only restore the faces much more accurately com-
pared to eigen-face, but also could quantify the uncertainty in the
image restoration. With laplacian approximation, we compute the
MAP estimator of Λ̂𝑖 and Σ̂𝑖 and simulate the latent variable Λ

(𝑠)
𝑖

accordingly. The simulated Λ
(𝑠)
𝑖

can then be combined with 𝑉 to
provide simulated human faces. As it is shown in Figure 10, the
uncertainty due to the crop of the image is correctly identified after
centering the simulated faces, which demonstrates different mouth
characteristics.

4.4. Network analysis

Another interesting application of our weighted EFM is on social
network analysis. One of the popular interest in this field is to sum-
marize the large adjacency matrix using lower-dimensional rep-
resentations. Such lower-dimensional representations are named
nodes embedding and can be further applied for many statistical
inference (e.g. community detection, link prediction). Recently,
emerging interests has been directed to embedding inference based
upon multiple networks. Those multiple networks are formally
observed as multiple interaction graphs, {G (1) , . . . ,G (𝑘 ) }, which
consists of multiple edge relationships, {E (1) , . . . , E (𝑘 ) }, for the
same sets of vertices 𝑉 . This emerging field of research is named
as multi-layer or multiplex network analysis (Kivelä et al., 2014).
Denoting the number of vertices as 𝑛 = |𝑉 |, the multiplex net-
work inference starts by transforming those multiple graphs into
adjacency matrices {𝐴(1) , . . . , 𝐴(𝑘 ) } of same the dimension of size
𝑛 × 𝑛 with the diagram provided below:

Factorization and inference jointly on those constructed
{𝐴(1) , . . . , 𝐴(𝑘 ) } have been shown to provide better nodes embed-
ding with potential application of community detection and link
prediction (Wang et al., 2019; Jones and Rubin-Delanchy, 2020).
One method to enable the joint inference on adjacency matrices
is to effectively combine {𝐴(1) , . . . , 𝐴(𝑘 ) } into a single adjacency
matrix 𝐴. Chapter two of (Draves, 2022) provided a decent intro-
duction to various aggregation techniques. To briefly summarize
some of the relevant aggregation techniques used in this section,
there are

• Average Adjacency Spectral Embedding(AASE) (Tang et al.,
2018) which simply average the adjacency matrix through

𝐴𝑖 𝑗 =
1
𝑘

𝑘∑︁
𝑙=1

𝐴
(𝑙)
𝑖 𝑗

(36)

• Unfolded Adjacency Spectral Embedding (UASE) that con-
catenate the adjacency matrices columns wisely

𝐴 = [𝐴(1) , 𝐴(2) , . . . , 𝐴(𝑘 ) ] ∈ Z𝑛×𝑛𝑘 (37)

• Omnibus Embedding (OE) by constructing pair-wisely the fol-
lowing adjacency matrix:

𝐴 =


𝐴(1) , 1

2 (𝐴
(1) + 𝐴(2) ), . . . , 1

2 (𝐴
(1) + 𝐴(𝑘 ) )

1
2 (𝐴

(1) + 𝐴(2) ), 𝐴(2) , . . . , 1
2 (𝐴

(2) + 𝐴(𝑘 ) )
...,

...,
...,

...
1
2 (𝐴

(𝑘 ) + 𝐴(1) ), 1
2 (𝐴

(𝑘 ) + 𝐴(2) ), . . . , 𝐴(𝑘 )


(38)

With definition 𝐷 = Diag(𝑑1, . . . , 𝑑𝑞), 𝑑1 ≥ . . . ≥ 𝑑𝑞 and S𝑛,𝑞

as the space of 𝑛 × 𝑞 matrix that has orthogonal columns, we
can conduct SVD for the asymmetric 𝐴 from UASE and eigen-
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Figure 7: Fashion-MNIST Factorization result( L to R shows results for EFM, DMF, NMF and t-SNE)

Figure 8: Cropped ORL Face

decomposition for the symmetric 𝐴 from ASE, OE:

𝐴(ASE) = 𝑈𝐷𝑈,𝑈 ∈ S𝑛,𝑞

𝐴(UASE) = 𝑈𝐷𝑉⊤,𝑈 ∈ S𝑛𝑘,𝑞 , 𝑉 ∈ S𝑛,𝑞

𝐴(OE) = 𝑈𝐷𝑈,𝑈 ∈ S𝑛𝑘,𝑞

(39)

The nodes embedding Λ can then be defined as Λ = 𝑈𝐷1/2 with
dimension 𝑛 × 𝑞.

However, one obvious shortcomings of such an aggregation is
that the factorization implicitly assumes an equal contribution from
each of the layers. In reality, we know that each layer of the net-
work is at least different according to different level of sparsity.
Treating equally the interaction in a dense graph and the interaction
in a sparse graph is problematic by over-emphasizing the interac-
tions on the dense graphs. Additionally for the temporal network
that consists of the edge relationship of same vertices across dif-
ferent time-step, it intuitively makes more sense if we apply higher
weights to the more recent adjacency matrices compared to an equal
aggregation on those edge relationship since those recent adjacency
matrices are more powerful in the prediction of future interaction.

Naturally one immediate improvement to an equal aggregation
of those individual networks is to apply different weights through

Figure 9: Restored Face: Left(EFM), Right(Eigen-Face)

the factor inference. The EFM provides solution to this aggre-
gation technique by allowing entry-wise/layer-wise weight to the
aggregated interaction. With this flexibility on heuristic weight
specification, we demonstrate that we can factorize to obtain im-
proved embedding results for multiplex network analysis.

We thus explore our EFM inference on the AUCS dataset 2

(Dickison et al., 2016). The dataset records interactions among its
61 employees (𝑛 = 61) at the Department of Computer Science at
Aarhus University. As we confirmed with the author, among those
61 employees, there are 55 employees with labels from one of the
eight research groups. There are 6 employees that do not belong to
any of the eight research groups. The research group labels of those
55 employees can thus be treated as known community structure to
validate the effectiveness of community inference.

For the whole community, interaction are recorded according
to five different online and offline relationships, whose adjacency

2https://manliodedomenico.com/data.php
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Figure 10: Simulated ORL Face after Centering

matrices can be represented with the following diagram:

nnodes

𝐴(1)
Facebook

n nodes

,

nnodes

𝐴(2)
Coauthor

n nodes

,

nnodes

𝐴(3)
Leisure

n nodes

,

nnodes

𝐴(4)
Work

n nodes

,

nnodes

𝐴(5)
Lunch

n nodes

As we observe from the interaction network data, the co-author net-
work is definitely more sparse as it is compared to other layer of the
network. By following the heuristic introduced in the beginning of
this section, we propose to weight each interaction of different layer
of the network according to the sparsity of the layer. Specifically,
with 𝜆

(𝑘 )
𝑚𝑎𝑥 denoted as the largest eigen-value of adjacency matrix

𝐴(𝑘 ) , we

• weight each of the interaction according to 1/𝜆 (𝑘 )
𝑚𝑎𝑥 to ensure

each matrix has its largest eigen-value equal to 1.

• weight all the diagonal terms with value 0 since the zero in-
teraction of a node with respect to itself does not necessarily
contain any information

• weight all the remaining zero terms as the minimal value of
the non zero terms in the weight matrix since the interaction
is usually sparse with bias toward 0.

• assign value 1 to the interaction/adjacency matrix 𝐴𝑖 𝑗 to value
1 as long as there exists an interaction between node 𝑖 and node
𝑗 .

The more formal mathematical definition is provided below:

𝑊𝑖 𝑗 =


∑𝑘

𝑙=1
1

𝜆
(𝑙)
𝑚𝑎𝑥

𝐴
(𝑙)
𝑖 𝑗
, if 𝐴𝑘

𝑖 𝑗
= 1

0, ∀𝑖 = 𝑗

min({𝑊𝑖 𝑗 ,𝑊𝑖 𝑗 ≠ 0}), ∀𝐴𝑖 𝑗 = 0

𝐴𝑖 𝑗 =

{
1, if ∃ 𝑘 s.t 𝐴𝑘

𝑖 𝑗
= 1

0, if ∀ 𝑘 s.t 𝐴𝑘
𝑖 𝑗
= 0

(40)

With weight 𝑊 and adjacency matrix 𝐴 definition in Eq (40), we
then apply binomial EFM with logit link to obtain three dimen-
sional nodes embedding. We can then visualize those factorized
embedding according the separability of the known research group
community labels. For a comparison to the {AASE, UASE, OM}
embedding techniques, SVD or eigen-decomposition are also con-
ducted on their corresponding aggregated adjacency matrix 𝐴 to
obtain their corresponding nodes embedding defined in Eq (39).
For the Omnibus Embedding, we choose the first 𝑛 vectors since it
has dimension 𝑛𝑘 . The visualization comparison on those factor-
ized embedding Λ = 𝑈𝐷1/2 is provided below:

As we can see from Figure 11 that the weighted EFM separated
more research groups as it is compared to a naive SVD on any of
the embedded graphs. The classification result is also consistent
with the existing literature (Magnani et al., 2021) who have claimed
that there are five major research groups identified by publisher of
the dataset.

5. Conclusion

We propose a EFM with an efficient optimization algorithm. The
model assumption is justified from orientational statistics and thus
provide more representative factorized result for many interesting
application. The optimization algorithm improves the simulated
likelihood estimation (SML) by eliminating the asymptotic estima-
tion bias with moderate simulation sample size 𝑆. Additionally,
utilizing the SGD optimization, our EFM generalizes better than
alternative factorization models such as DMF. Both the simulation
studies and empirical studies provide compelling evidence to those
advantages.

References

J. Kevin Ford, Robert C. MacCallum, and Marianne Tait. The
application of exploratory factor analysis in applied psychology:
A critical review and analysis. Personnel Psychology, 1986.

15



Figure 11: AUCS embedding visualization comparison

Simon J D Prince, James H Elder, Jonathan Warrell, and Fatima M
Felisberti. Tied factor analysis for face recognition across large
pose differences. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2008.

Eugene F Fama and Kenneth R. French. A five-factor asset pricing
model. Journal of Financial Economics, 2015.

Tianchen Xu, Ryan T., and Demmer Gen Li. Zero-inflated pois-
son factor model with application to microbiome read counts.
Biometrics, 2021.

Alexander Basilevsky. Statistical factor analysis and related meth-
ods. Wiley Series in Probability and Mathematical Statistics,
1994.

Michel Wedel and Wagner A. Kamakura. Factor analysis with
(mixed) observed and latent variables in the exponential family.
Psychometrika, 66:513–30, 2001.

Michel Wedel, Ulf Bo Ckenholt, and Wagner A. Kamakurac. Fac-
tor models for multivariate count data. Journal of Multivariate
Analysis, 2003.

David J Bartholomew, Martin Knott, and Irini Moustaki. Latent
variable models and factor analysis: A unified approach. John
Wiley & Sons, 2011.

Michael E. Tipping and Christopher M. Bishop. Probabilistic prin-
cipal component analysis. Journal of the Royal Statistical Society,
Series B, 1998.

Theodore Wilbur Anderson. The use of factor analysis in the sta-
tistical analysis of multiple time series. Psychometrika, 1963.

Liang Wang and Luis Carvalho. Deviance matrix factorization.
Electronic Journal of Statistics, 17(2):3762–3810, 2023.

Jianqing Fan, Yingying Fan, and Jinchi Lv. High dimensional
covariance matrix estimation using a factor model. Journal of
Econometrics, 147(1):186–197, 2008.

Michael Borenstein, Larry V Hedges, Julian PT Higgins, and Han-
nah R Rothstein. A basic introduction to fixed-effect and random-
effects models for meta-analysis. Research synthesis methods, 1
(2):97–111, 2010.

Chris K Carter and Robert Kohn. Markov chain monte carlo in
conditionally gaussian state space models. Biometrika, 83(3):
589–601, 1996.

Alexander Shapiro. Identifiability of factor analysis: Some results
and open problems. Linear Algebra and its Applications, 70:1–7,
1985.

Henry F Kaiser. The varimax criterion for analytic rotation in factor
analysis. Psychometrika, 23(3):187–200, 1958.
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