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bUniversité Grenoble Alpes, CNRS, LIPhy, Grenoble, F-38000, France

Abstract

We develop a numerical a framework to study phoretic particle dynamics in two dimensions.
The particles are modeled as chemically active rigid circles, which can emit or absorb a so-
lute into surrounding fluid. The interaction between particles and solute induces a slip flow
on particle surfaces, and the solute is advected by the fluid flow and diffuses with a constant
diffusivity. The fluid-structure interaction is resolved by a boundary integral method accel-
erated by Ewald-like decomposition. The sharp resolution of moving boundaries for solute
kinetics is performed thanks to an overlapping mesh method. The framework is validated
separately for the Stokes problem and the advection–diffusion problem, reaching relatively
high order of accuracy. Moreover, we employ the framework to more general problems, in-
cluding particles in nearly infinite domain and straight channels, and multiparticle motions.
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1. Introduction

In the past decades, phoretic particles (including rigid particles and droplets) have drawn
increasing attention in experimental, theoretical, and numerical studies [1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11]. This problem involves an intimate coupling of fluid flow and solute transport
with a moving boundary. More precisely, the fluid flow is induced by solute concentration
gradient on particle surface, while the solute, besides diffusion and reactions, is advected
by the flow [1, 2, 4]. In addition, the flow and solute concentration are affected by freely
swimming particles and fixed boundaries [3, 6, 12, 13]. The interaction among multiple
particles might lead to collective behaviors such as traveling lines, dynamic crystallites [7],
caging [14], and rotating clusters [15]. In order to study these complex dynamics, a general
numerical framework is needed. This constitutes the main motivation of the present work.

Numerical modeling of phoretic particles is not a trivial task, due to the nonlinear char-
acter of the solute advection by the fluid flows as well as to the presence of moving boundary
conditions. Most numerical frameworks are designed for specific problems, which either deal
with simple geometries or simplified models. For simple geometric configurations like the
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case of a single particle in an unconfined domain or the case of two-particle interactions, the
full coupling of flow and solute field can be resolved using polar coordinates [1, 4, 5, 8, 10] or
bi-polar coordinates [16, 17]. However, this does not apply to the case of more particles or
to the case of a confined geometry, like in the presence of bounding walls (e.g. straight chan-
nels). To investigate collective behaviors for multiple particles, simplified models have been
used. A simplification consisted of considering the particles as point sources [18], instead of
being of finite size. Another simplification considered the case of rapid diffusion and rapid
viscous transport [19, 20, 21]. In these simplified models, the hydrochemical coupling is dis-
carded, and the solute transport reduces to either unsteady diffusion or Laplace problems.
For this reason, some behaviors which result from hydrodynamic interactions, like particle
attraction [12, 15], cannot be reproduced. Recently, some efforts have been directed to-
wards accounting for more general geometries, larger numbers of particles, and nonlinearity
of solute advection. By combining the embedded boundary method (EBM) with adaptive
mesh refinement, the self-propulsion of an isotropic active particle in cylindrical pipes have
been studied [22]. Others studies used the immersed boundary method (IBM) for both flow
and solute field [23, 24], which transfers sharp boundary problems into diffuse boundary
problems.

A full numerical framework for phoretic particles consists of two parts: the Stokes flow
and the advection-diffusion problem for solute, which both contain moving boundaries. As
particle motions are determined by solute distributions on their surfaces [1], the key point
is to resolve boundary conditions on these moving boundaries. For the Stokes flow, the
moving boundary problem can be solved by Green’s function, also know as boundary integral
method (BIM) [25]. However, most boundary integral based methods are not appropriate
for the present study due to following reasons. First, as the solute is advected by the
flow, the boundary integral equation should be calculated on all sampling points in the
fluid domain, not just on boundaries. Second, with the increase of particle numbers, the
computational complexity scales as O(N2), where N is proportional to the product of the
number of particles and the number of sampling points on each particle. To overcome
these limitations, several accelerated techniques have been developed, such as the particle-
particle-particle-mesh (P3M) method [26], the particle-mesh-Ewald (PME) method [27, 28],
and general geometry Ewald-like method (GGEM) [29, 30].

There are other numerical techniques for simulating fluid flow and advection-diffusion
problems with moving boundaries. One candidate is the EBM or the cut-cell method (CCM),
by which the Cartesian meshes are cut and reconstructed by moving boundaries [31, 32].
The reconstructed meshes are body-fitted in the vicinity of boundaries, which provide sharp
resolution of boundaries and interfaces, while the remainder remains fixed Cartesian meshes.
The overlapping mesh method (OMM) employs body-fitted meshes to several overlapping
subdomains, and interpolates values on subdomain interfaces [33, 34]. Moreover, it allows
these decomposed subdomains to move independently, suitable for moving boundary prob-
lems [35, 36, 37]. Another popular technique is the immersed boundary method (IBM)
[38, 39, 40]. Boundary conditions are considered as source terms, and are spreaded to
neighboring mesh points with a smoothed delta function, creating a smeared interface with
finite thickness. To obtain sharp interfaces, the immersed interface method (IIM) applies
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interpolation or extrapolation to derive approximate boundary values or normal deriva-
tives on neighboring mesh points [41, 42]. Similar ideas are applied to lattice Boltzmann
method (LBM) as modified bounce-back boundary conditions [43, 44, 45]. Last but not
least, particle-based methods are also used for studies of moving boundary problems, such
as multiparticle collision dynamics (MPC) [46, 47], dissipative particle dynamics (DPD)
[48, 49, 50], and smoothed particle hydrodynamics (SPH) [51, 52], to name but a few.

In preliminary studies, we first attempted to modify an IBM-based framework [53, 54]
to model phoretic particles numerically. The Stokes flow was solved using the combined
immersed boundary-lattice Boltzmann method (IBLBM) [55]. To account for low inertial
effect, the Reynolds number was set to 0.05. The LBM with modified bounce-back boundary
condition was employed for the advection and diffusion of solute [45]. Although this IBM-
based framework could reproduce the symmetry breaking from stationary to straight motion
for a circular phoretic particle, we found that the critical Péclet number Pe for straight
motion was smaller (within 5 to 10 %) than the analytical finding [8]. Here Pe is the
ratio of advection and diffusion. Moreover, we could obtain only qualitative agreement
for meandering, circular, and chaotic motions. Further analysis showed that the IBM and
the modified bounce-back boundary condition were only 1st-order accurate on the particle
surface. In fact, quantitative disagreements have been observed in other studies [23, 24]
when using IBM-based methods. For a circular phoretic particle, the critical Pe for straight
motion was also smaller than the benchmark in Ref. [24], and meandering or circular
motions were not reported in that work. For a spherical phoretic particle, chaotic motion
was reported for Pe > 15 in Ref. [23], while a more accurate result should be Pe ≥ 24.2
[56, 57]. These works indicate that a better alternative for the IBM should be proposed for
quantitative studies of phoretic particles.

In this work, we develop a fast boundary integral method (FBIM) for arbitrary geome-
tries, inspired by the GGEM [29]. The FBIM combines the advantages of BIM and IBM,
being sufficiently efficient and accurate at the same time. For the advection-diffusion prob-
lem, we employ an OMM with second order accuracy in space. The subdomains attached
to particles can move freely in the background fluid domain, resolving moving boundary
conditions. The rest of this paper is organized as follows. In Section 2, we first recall the
governing equations for the motion of phoretic particles. Then we present the numerical
implementation of the FBIM and the OMM in Sections 3 and 4, respectively. The solution
procedure is presented in Section 5. In Section 6, the FBIM and the OMM are validated
separately, and convergence studies are performed. Lastly, the combined FBIM-OMM is em-
ployed to solve several general problems in Section 7, and the effects of confined geometries
and multiparticle interactions are explored.

2. Problem formulation

We consider a two-dimensional (2D) domain Ω of circular shaped particles of radius a
immersed in a Newtonian fluid of viscosity µ. These particles are chemically active and
can emit or absorb a solute into the surrounding fluid with an isotropic flux A. The solute
diffuses with a molecular diffusivity D and is advected by the fluid flow. There is a chemical
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consumption/production proportional to the local solute concentration with coefficient B.
The interaction of the solute molecules with the particles induces a slip tangential flow on
the particle surfaces with a mobility M [4].

In the following, we adopt the non-dimensionalization of Ref. [1] where the length, fluid
velocity, the solute concentration, and the pressure (or stress) are scaled by the characteristic
values a, |AM|/D, a|A|/D, and µ|AM|/aD, respectively. The governing equations in
dimensionless form are

∇p(x, t) = ∇2u(x, t),∇ · u(x, t) = 0, (1)

∂c(x, t)

∂t
+ u(x, t) · ∇c(x, t) =

1

Pe
∇2c(x, t)− βc(x, t), (2)

where p, u and c are the dimensionless fluid pressure, velocity and solute concentration, Pe =
a|AM|/D2 is the Péclet number which describes the ratio of advection and diffusion over
the transport of solute, and β = aBD/|AM| is the dimensionless consumption/production
coefficient.

At the surface of a particle Γp or a fixed boundary Γf , the boundary conditions for the
flow and the concentration field read

u(x, t)|Γp = M∇sc(x, t)|Γp +U p(t) +Ωp(t)× (x−Xp),u(x, t)|Γf
= 0, (3)

n · ∇c(x, t)|Γp = −A,n · ∇c(x, t)|Γf
= 0, (4)

where U p and Ωp are the translational and rotational velocities of the particle, Xp is the
center of the particle, ∇s is the surface gradient operator, n is the unit outward normal,
M = M/|M| is the dimensionless mobility and A = A/|A| is the dimensionless activity.
In order to trigger self-propulsion in infinite fluid, A and M must have the same sign [1, 8].
The particle moves as a rigid body, and its center Xp and orientation angle Θp are given by

dXp

dt
= U p(t),

dΘp

dt
= Ωp(t). (5)

In the Stokes regime, there are two other constraints on each particle in the absence of
external force: the force-free and torque-free conditions∫

Γp

σ(x, t) · ndS(x) = 0,

∫
Γp

(x−Xp)× [σ(x, t) · n] dS(x) = 0, (6)

where σ = −pI +∇u +∇uT is the flow stress tensor, and S is the curvilinear coordinate
on the particle boundary Γp.

3. Fast boundary integral method for fluid

The implementation of the FBIM is given as follows. We first recall the boundary
integral equation, and then derive the analytical solution due to a point force based on
Ewald-like decomposition. Later we apply the decomposed solution to calculate the single
layer integral on boundaries. At last, a feedback forcing method is introduced to derive
surface forces applied by rigid body on the fluid.
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3.1. Boundary integral equation

The flow field is described by the Stokes equation (1) with Dirichlet boundary conditions
(3). A general solution can be obtained by the boundary integral equation [25]

ui(x) =
1

4π

Nb∑
n=1

∫
Γn

Gij(x,X)Fj(X)dS(X), (7)

where Γn is the contour of the nth boundary, X is a point on this boundary, G is the
2D Green’s function, F is the surface force applied by the boundary on the fluid, and the
summations are over all the Nb boundaries. For an infinite domain, the free-space Green’s
function [25] is used as

Gij(x,x
′) = −δij ln(|x− x′|) +

(xi − x′
i)(xj − x′

j)

|x− x′|2
. (8)

The FBIM is derived based on Eqs. (7) and (8).

3.2. Decomposed solution due to a point force

We start from the simplest case, which is the flow due to a point force:

∇p(x) = ∇2u(x) + gvδ(|x− xv|),∇ · u(x) = 0, (9)

where gv is the force applied at a point xv (see Fig. 1a). The resulted velocity is

ui(x) =
1

4π
Gij(x,x

v)gvj . (10)

Inspired by other Ewald-summation-based methods [27, 28, 29], the idea of the FBIM is
to split the Dirac-delta density δ(r) in Eq. (9) into a sum of a short-range density Ds(r)
containing the singularity, and a sufficiently smooth long-range density Dl(r) = δ(r)−Ds(r).
Here r refers to the magnitude of the vector from any position to the pole of singularity,
r = x − xv. The short-range density is chosen in such a way that for any point beyond a
certain cutoff distance rc (i.e. r > rc), the flow velocity due to the short-range force density
gvDs(r) is zero.

The solution of the Stokes and continuity equation is also decomposed into two parts.
For the long-range part, the solution ul(x) and pl(x) due to the long-range force density
satisfies the following set of equations

∇pl(x) = ∇2ul(x) + gvDl(|x− xv|),∇ · ul(x) = 0. (11)

This equation can be solved by any Stokes solver, and we will use a Fourier spectral method
in this study. The short-range solution us(x) and ps(x) satisfies the short-range set of
equations

∇ps(x) = ∇2us(x) + gvDs(|x− xv|),∇ · us(x) = 0. (12)

This equation will be solved by using a short-range Green’s function for any points within
the cutoff distance (r ≤ rc). Once the two problems are solved, the overall solution is
obtained as

u(x) = ul(x) + us(x), p(x) = pl(x) + ps(x). (13)
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Figure 1: (a) Schematic of the point force at xv and the near neighbor region Ωc. (b) Long-range density
Dl [see Eq. (17)] as the function of r. Here the cutoff distance is set as rc = 4.

3.2.1. Long-range solution

To solve the long-range problem, a proper long-range density Dl(r) should be chosen.
The first constraint on Dl(r) is the finite cutoff distance rc, such that

Dl(r) = 0,∀r ≥ rc. (14)

Despite this, in order to have a smooth solution of ul(x), its derivatives should be continuous
at r = rc as

∂kDl

∂rk

∣∣∣∣
r=rc

= 0, k = 1, 2, 3, ..., kmax (15)

where kmax is the cut-off order of the derivatives.
The second constraint is related to the solution induced by the point force. As follows

from the above, the solution driven by the long-range force density is the same as that driven
by the point force for any point beyond the cutoff distance. Define Ωc as the near neighbor
region around the singular point xv within the cutoff distance rc (see Fig. 1a), then the
following equation is valid for any point x ∈ Ω \Ωc:

ul
i(x) =

1

4π
Gij(x,x

v)gvj =
1

4π

∫
Ωc

Gij(x,x
′)gvjD

l(|x′ − xv|)dx′. (16)

We found a 6th-order polynomial which satisfies the above constraints as (see Fig. 1b)

Dl(r) =


0, r ≥ rc

56

3πr2c

[
−25

2
(
r

rc
)6 + 54(

r

rc
)5 − 90(

r

rc
)4 + 70(

r

rc
)3 − 45

2
(
r

rc
)2 + 1

]
, r < rc

. (17)

The detailed derivation is given in Appendix A. Actually, it turns out that an expansion of
Dl(r) as higher-order polynomial with only even degree terms leads to higher order accuracy.
It should be noted that the choice of long-range density is not unique. Any functions that
satisfy Eqs. (14)–(16) would be valid. Moreover, the long-range density Dl is strictly equal
to 0 for any point beyond the cutoff distance. This is different from the screening function
in GGEM [29], which is quasi-Gaussian and decays exponentially to 0.
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To solve Eq. (11), the discrete Fourier series approximation is employed in the periodic
x and y directions. The two components of the long-range velocity ul = (ul

x, u
l
y) is expressed

as

ul
x(x) + iul

y(x) =

Nx/2∑
m=−Nx/2

Ny/2∑
n=−Ny/2

ûl
mne

i2πmx/Lxei2πny/Ly , (18)

where Nx and Ny are the number of modes in the corresponding series approximation,
and ûl

mn is the complex amplitude of the harmonic. Similarly, the long-range force density
f l(x) = gvDl(|x− xv|) is also represented by discrete Fourier series as

f l
x(x) + if l

y(x) =

Nx/2∑
m=−Nx/2

Ny/2∑
n=−Ny/2

f̂ l
mne

i2πmx/Lxei2πny/Ly , (19)

where f̂ l
mn is the complex amplitude of the harmonic. The computational domain is a

rectangle, and is discretized by means of equally spaced Cartesian mesh. The number of
mesh points in x and y directions are set equal to the number of Fourier modes Nx and Ny

respectively, so that the fast Fourier transform (FFT) can be used to transfer data between
real and Fourier space. The FFT and reverse FFT are calculated by the cuFFT library [58],
which is accelerated by GPU. In practice, Eq. (11) is first transformed into Fourier space
using FFT. Then the harmonic’s amplitude ûl

mn is calculated as

ûl
mn =

1

2(m2 + n2)

(
f̂ l
mn −

m2 + i2mn− n2

m2 + n2
f̂ l∗
−m−n

)
,mn ̸= 0, (20)

where f̂ l∗
−m−n is the complex conjugate of f̂ l

−m−n. The 0th mode ûl
00 corresponds to the

average velocity in the computational domain, which is zero, unless there is an imposed
flow (not considered here). Finally, a reverse FFT is employed to compute the long-range
velocity ul in real space. For any point not lying on the mesh, the velocity is obtained by
bi-cubic interpolation with fourth order accuracy in space.

3.2.2. Short-range solution

The short-range density is
Ds(r) = δ(r)−Dl(r). (21)

The short-range velocity is then obtained as

us
i (x) =

1

4π

∫
Ωc

Gij(x,x
′)gvjD

s(|x′ − xv|)dx′. (22)

According to Eqs. (17) and (21), us
i (x) = 0 for any point x ∈ Ω \ Ωc. Hence Eq. (22) is

solved for the points within the cutoff distance (i.e. x ∈ Ωc) only. We define the short-range
Green’s function as

Gs
ij(x,x

v) =

∫
Ωc

Gij(x,x
′)Ds(|x′ − xv|)dx′. (23)
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Then the short-range velocity reads

us
i (x) =

1

4π
gvjG

s
ij(x,x

v). (24)

The derivation of the short-range Green’s function is given in Appendix B.

3.3. Single layer integral
The velocity due to a boundary Γ is given by the single layer integral according to Eq.

(7). Applying the same decomposition as Sec. 3.2, we rewrite this equation in the following
form

ui(x) =
1

4π

∫
Γ

Gij(x,X)

[∫
Ω

Fj(X)δ(x′ −X)dx′
]
dS(X)

=
1

4π

∫
Γ

{∫
Ω

Gij(x,x
′)Fj(X)

[
Dl(|x′ −X|) +Ds(|x′ −X|)

]
dx′

}
dS(X).

(25)

The contribution due to the long-range density is

ul
i(x) =

1

4π

∫
Ω

Gij(x,x
′)

[∫
Γ

Fj(X)Dl(|x′ −X|)dS(X)

]
dx′, (26)

and the long-range force density is

f l(x) =

∫
Γ

F (X)Dl(|x−X|)dS(X). (27)

Next, the contribution due to the short-range density is

us
i (x) =

1

4π

∫
Γ

Fj(X)

[∫
Ω

Gij(x,x
′)Ds(|x′ −X|)dx′

]
dS(X)

=
1

4π

∫
Γ

Fj(X)Gs
ij(x,X)dS(X).

(28)

Here we describe the numerical implementation of the above problems. The surface Γ
is discretized into Ne elements. For the long-range problem, we first need to know the long-
range force density f l by computing the integral in Eq. (27). Its discretized form is written
as

f l(x) =
Ne∑
k=1

∫
Γk

F (X)Dl(|x−X|)dS(X), (29)

where Γk denotes the kth element. The above integral can be evaluated by a simple trape-
zoidal rule. Then the long-range velocity ul is solved for as described in Sec. 3.2. For the
shor-range problem, the boundary integral in Eq. (28) is discretized as

us(x) =
1

4π

∑
Γk∈Ωc

∫
Γk

F (X)Gs(x,X)dS(X). (30)

As the integrand in Eq. (30) includes logarithmic singularity at boundaries x = X, a
special quadrature rule [59] is used to ensure sufficient accuracy. It should be noted that the
summation in Eq. (30) is calculated over elements within the near neighbor region of x, i.e.
Γk ∈ Ωc. The contribution of other elements has been included in the long-range solution.
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3.4. Rigid body dynamics

In the present study, particles and geometric boundaries are considered as rigid bodies.
The surface force F on these boundaries can be calculated by considering them as elastic
bodies with a large elastic modulus. An alternative method is to apply a feedback force [38]
as

F (X, t) =

∫ t

0

α [V (X, t′)− u(X, t′)] dt′, (31)

so that the desired velocity V is enforced on the boundary. Here α is a positive coefficient.
In numerical application, the time integral in Eq. (32) is computed in an iterative form as

F (X, t+∆t) = F (X, t) + α [V (X, t)− u(X, t)]∆t, (32)

where ∆t is the time step.
The desired velocity depends on the boundary conditions (3). For a fixed boundary

with no-slip boundary condition, V = 0. For a freely-moving circular phoretic particle, the
desired velocity is the summation of the slip velocity, rigid body translation, and rotation

V (X) = M∇sc(X) +U p +Ωp × (X −Xp). (33)

As the surface force F equals to the hydrodynamic traction σ·n on boundaries, the force-free
and torque-free conditions in Eq. (6) read∫

Γp

F (X)dS(X) = 0,

∫
Γp

(X −Xp)× F (X)dS(X) = 0. (34)

The 4 variables F , V , U p, and Ωp can be obtained by solving the system of Eqs. (32), (33)
and (34). Then the motion of each particle is integrated in time by a forward Euler scheme
as

Xp(t+∆t) = Xp(t) + ∆tU p(t), Θp(t+∆t) = Θp(t) +∆tΩp(t). (35)

For circular particles, pre-conditioning is applied for better convergence. In a polar
coordinate system (1, θ) attached to the particle center Xp, the surface force F [X(θ)], the
surface velocity u[X(θ)], and the surface concentration c[X(θ)] are all periodic, and can be
expressed by Fourier series as

Fx(θ, t) + iFy(θ, t) =
∞∑

k=−∞

F̂k(t)e
ikθ, (36)

ux(θ, t) + iuy(θ, t) =
∞∑

k=−∞

ûk(t)e
ikθ, (37)

c(θ, t) =
∞∑

k=−∞

ĉk(t)e
ikθ, (38)
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where F̂k, ûk, and ĉk are the complex amplitudes. Applying force-free, torque-free, and
velocity divergence-free conditions, one finds

F̂0 = 0, Im(F̂1) = 0,Re(û1) = 0, (39)

where Re and Im denote real and imaginary parts, respectively. The value of Re(F̂1) does
not affect the flow field, and is set to 0. From time t to t + ∆t, a small change of surface
force is applied, inducing a change of surface velocity as

α̂[V (θ, t)− u(θ, t)] =

∫ 2π

0

G(θ, ϕ) [F (ϕ, t+∆t)− F (ϕ, t)] dϕ. (40)

Here α̂ is a coefficient between 0 to 1. This equation can be rewritten using Fourier series
as

Upx(t)+iUpy(t)+i|Ωp(t)|eiθ+
∞∑

k=−∞

[M(1− k)ĉk−1(t)− ûk(t)] e
ikθ =

∑
k ̸=0,1

F̂k(t+∆t)− F̂k(t)

4α̂|k|
eikθ.

(41)
Solving the equation for the kth Fourier harmonics, we obtain

U p(t) =

[
Re[û0(t)]−MRe[ĉ1(t)]
Im[û0(t)] +MIm[ĉ1(t)]

]
, (42)

|Ωp(t)| = Im[û1(t)], (43)

F̂k(t+∆t) = F̂k(t) + 4α̂|k| [M(1− k)ĉk−1(t)− ûk(t)] , k ̸= 0, 1. (44)

The surface force F (θ, t+∆t) can then be calculated using Fourier series.
To ensure long-term stability of simulations, we perform a small correction of particle

position when a particle approaches other particles or fixed boundaries. The correction is
introduced thanks to the Morse potential [60]

Φ(d) = De[e
2γ(d0−d) − 2eγ(d0−d)], (45)

where De is the surface energy, γ is the scaling factor, d is the distance between two bound-
aries, and d0 is the zero force distance, set to 3∆x for all simulations in the present work.
Consider the mth and the nth particles located at Xpm and Xpn . The distance between the
two particle surfaces is dmn = rmn − 2, where rmn = Xpm − Xpn . The correction for the
mth particle due to the nth particle is

Xc
mn =


0, dmn > d0

−∆t
∂Φ(dmn)

∂dmn

rmn

rmn

, dmn ≤ d0
. (46)

For the mth particle close to the nth fixed boundary, the distance dmn is the minimum
distance between the particle surface and the fixed boundary, and rmn is the normal vector
of the fixed boundary pointing into the particle center. The correction is then calculated
using Eq. (46). The position of the mth particle after correction is

Xpm(t+∆t) = Xpm(t) + ∆tU pm(t) +
∑
m̸=n

Xc
mn(t). (47)
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4. Overlapping mesh method for solute

The detailed implementation of the OMM is given in this section. First we decompose
the computational domain into two overlapping subdomains. Then the advection-diffusion
problem is discretized in each subdomain. Last but not least, the treatment of moving
boundary is introduced.

4.1. Domain decomposition

The main idea of the OMM is to divide a computational domain into several overlap-
ping subdomains [33]. For the present work, we consider a circular particle immersed in
a rectangular domain. The global solution domain Ω is decomposed into two overlapping
subdomains, the fluid subdomain Ωf and the particle subdomain Ωp, so that Ω = Ωf ∪Ωp,
as shown in Fig. 2a. For an annular subdomain like Ωp, the difference of radius between
the inner and outer circles is defined as the subdomain size rp. Boundary conditions (4) are
employed on global boundaries (solid lines in Fig. 2a). Solute concentration at interface
boundaries Γfp and Γpf (dashed lines in Fig. 2a) is equal to contiguous value in adjacent
subdomains, leading to additional Dirichlet boundary conditions [as shown in Eqs. (51) and
(54)]. As the particle swims, the subdomain Ωp moves with the particle, so do the interface
boundaries. Here we use polar coordinates (r, θ) in Ωp, where the origin is set at the particle
center Xp. The mapping between two subdomains is written as

r = x−Xp = r

[
cos(θ +Θp)
sin(θ +Θp)

]
, (48)

where Θp is the orientation angle of the particle. The governing equations with boundary
conditions in each subdomain read

∂c(x, t)

∂t
+ u(x, t) · ∇c(x, t) =

1

Pe
∇2c(x, t)− βc(x, t),x ∈ Ωf , (49)

n · ∇c(x, t)|Γf
= 0, (50)

c(x, t)|Γfp
= c(r, t)|Γfp∩Ωp , (51)

and
∂c(r, t)

∂t
+ up(r, t) · ∇c(r, t) =

1

Pe
∇2c(r, t)− βc(r, t), r ∈ Ωp, (52)

n · ∇c(r, t)|Γp = −A, (53)

c(r, t)|Γpf
= c(x, t)|Γpf∩Ωf

, (54)

where up = u−U p −Ωp × r is the relative velocity in the particle subdomain Ωp.
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Figure 2: Schematics of the OMM. (a) Domain decomposition. (b) Polar mesh in the particle subdomain
Ωp (c) Cartesian mesh in the fluid subdomain Ωf (d) Overlapped polar mesh and Cartesian mesh. For an
annular subdomain, the difference of radius between the inner and outer circles is defined as the subdomain
size rp. The solid lines represent global boundaries, and the dashed lines represent interface boundaries.

4.2. Spatial discretization

The two subdomains are discretized separately. The particle subdomain Ωp is discretized
with polar mesh, and the outermost mesh points from the interface boundary Γpf (see Fig.
2b). The fluid subdomain Ωf is discretized with Cartesian mesh, and its interface boundary
Γfp is set as the Cartesian mesh points around the particle (see Fig. 2c). A schematic of
overlapping meshes is shown in Fig. 2d. As the particle swims in the fluid, the polar mesh
translates and rotates with the particle, while the Cartesian mesh remains fixed. It should
be noted that the particle interface boundaries may evolve due to particle movement, as
shown in Fig. 3.

Figure 3: Schematics of interface boundaries. (a) A particle close to a global boundary. (b) Two particles
close to each other. The solid lines represent global boundaries, and the dashed lines represent interface
boundaries.

In each subdomain, the finite difference method is employed to solve the advection-
diffusion problem numerically. The second-order centered difference is used to approximate
the first and second derivatives in Eqs. (49) and (52). For the Neumann boundary conditions
(50) and (53), we apply the second-order forward or backward difference approximation. The
interface boundary conditions (51) and (54) are obtained by interpolation from the other
subdomain. Consider the situation shown in Fig. 4 as an example, in which the concentration
at point x(x, y) ∈ Γfp is going to be interpolated from that in the particle subdomain Ωp.
First, the point x is mapped from Cartesian coordinates to polar coordinates as r(r, θ), then
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the interpolation is calculated in a rectangular grid as

c(r) =
ir∑

i=i0

jr∑
j=j0

γijcij, (55)

where γij is the interpolation weight, cij is the solute concentration at grid points, and
(i0, j0) and (ir, jr) are the lower left corner and the upper right corner of the interpolation
stencil, respectively. To maintain second-order accuracy of the global solution, a bi-quadratic
interpolation stencil is used [33] (see the red grids in Fig. 4).

Figure 4: Interpolation of interface boundary conditions. The point x(x, y) in Cartesian coordinates is
mapped to r(r, θ) in polar coordinates.

4.3. Moving boundary treatment

In the Cartesian mesh, some mesh points are covered by the particle, as shown in Fig.
5a. At these points, concentration is set as 0. As the particle moves, these mesh points may
become uncovered, and solute concentrations should be evaluated at these points (see the
red dots in Fig. 5b). Similar situations happen to polar mesh points when the particle get
close to fixed boundaries in the fluid subdomain. To update concentrations at these newly
appeared points, we employ interpolations from other subdomains using Eqs. (51) and (54)
after advancing the particle.

Figure 5: Refilling of mesh points (red dots) at two consecutive time steps. The solid lines indicate the
particle, and the dashed lines indicate the interface boundaries Γfp of the fluid subdomain Ωf .

Another problem arises when there are multiple particles. As two particles get too close
to each other, there might not be enough Cartesian mesh points for interpolation using Eq.
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(54). At this time, the interface boundary conditions of one particle are interpolated from
the subdomain of the other particle. This ensures accuracy without local mesh refinement.

5. Solution procedure

The full numerical framework integrates the FBIM for fluid-structure interactions and
the OMM for sharp-interface advection-diffusion problems. Given all values at time t, the
solutions at time t+∆t are calculated by following procedures:

(1) Advance particles using Eq. (35);
(2) Refill solute concentrations at newly appered mesh points using Eqs. (51) and (54);
(3) Solve advection-diffusion problems Eqs. (49) and (52) in each subdomain with global

and interface boundary conditions, and update solute concentrations on particles;
(4) Solve for surface force F , desired velocity V , translational velocity U p, and rotational

velocity Ωp.
(5) Solve the long range problem Eq. (11) with force density f l and the short range

problem Eq. (12) using Eq. (30), and update flow field and velocities on boundaries (both
particles and fixed boundaries).

6. Validations

In this section, the FBIM and the OMM are validated seperately by several numerical
simulations. Their convergence behaviors are also presented. Here we define the relative
error of any parameter C as

εC =
|C(num) − C(ref)|

|C(ref)|
, (56)

where C(num) and C(ref) are the numerical and reference solutions, respectively.

6.1. Parabolic flow with circular boundary

We first validate the FBIM by considering a simple parabolic flow. The computational
domain is a square of side length L = 6.4. Periodic boundary conditions are employed in
x and y directions. A circular boundary Γ of radius 2.5 is located at coordinates (3.0, 3.0),
and the boundary condition reads

ux|Γ = y2, uy|Γ = 0. (57)

The surface force F on the boundary is calculated by Eq. (32) with the desired velocity
V = (y2, 0). The velocity due to this surface force is computed at coordinates (3.2, 3.2) at
t = 20.

Fig. 6 shows the relative error of ux and the computational time by varying the number
of mesh points Nx and Ny between 24 to 512. With fixed cutoff distance rc = L/16, we
observe a 4th order convergence, and the computational time per step scales as 1/∆x. Here
N = Nx ×Ny. When setting rc = 8∆x, the cutoff distance decreases linearly with the mesh
size. On the one hand, decreasing rc leads to a lower order convergence (1st order); on the
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Figure 6: Validation and convergence study of the FBIM. (a) Convergence of velocity ux with respect to
mesh size ∆x at coordinates (3.2, 3.2). (b) Computational time per step with respect to mesh size ∆x and
number of Cartesian mesh points N . Here N scales with ∆x−2.

other hand, the computational time per step is hardly affected. This indicates that most
of the computational time is spent on the short-range problem depending on rc. Taking
both the accuracy and efficiency into consideration, the cutoff distance is set as rc = 8∆x
in following simulations.

6.2. Single phoretic particle with finite system size

For the validation of the OMM, we consider a phoretic particle with limited system size.
This problem has been studied analytically and numerically in Ref. [9]. As shown in Fig. 7,
the particle boundary Γp and the outer boundary Γo are concentric circles of radius 1 and
R = 3.25, respectively. Here R is the system size. The governing equations are Eqs. (1) and
(2) with 0 consumption/production rate (β = 0). The boundary conditions are summarized
as follows [8]:

u(x, t)|Γp = M∇sc(x, t)|Γp +U p(t) (58)

n · ∇c(x, t)|Γp = −A, c(x, t)|Γo = 0. (59)

Moreover, the velocity attenuates to 0 in the far field. The flow field is calculated analytically
by stream function [5, 8]. The solute concentration is computed by the OMM in a square
domain Ω. As shown in Fig. 7, the computational domain Ω is decomposed into three
overlapping subdomains. The fluid subdomain Ωf coincides with Ω, and periodic boundary
conditions are used in x and y directions. The particle subdomain Ωp is an annular domain
comoving with the particle (see the red ring in Fig. 7). Another annular subdomain (the
outer subdomain Ωo, as shown by the blue ring in Fig. 7) is attached to the outer boundary
Γo which also comoves with the particle. For the two annular subdomains, the global bound-
aries are represented by solid lines, and the boundary conditions follow Eq. (59), while the
interface boundaries are labeled by dashed lines (see Fig. 7).

The particle velocity ||U p|| and angular velocity ωp obtained by the OMM are compared
with the analytical results from Ref. [9], as shown in Fig. 8a. Here a non-zero angular
velocity indicates circular motion. Good agreement between the two results is observed
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Figure 7: Schematic of the computational domain for single particle dynamics. The domain Ω is decomposed
into three overlapping subdomains: the fluid subdomain Ωf which coincides with Ω, the particle subdomain
Ωp, and the outer subdomain Ωo. The solid lines represent the global boundaries, and the dashed lines
represent the interface boundaries.

when setting the mesh size ∆x = 1/64. Convergence of the phoretic velocity ||U p|| with
respect to ∆x is demonstrated in Fig. 8b, as the Péclet number is Pe = 5.72. To calculate
the relative error ϵ||Up||, the analytical result from Ref. [9] is used as a reference. As
∆x varies between 1/100 to 1/32, a 3rd order accuracy is reached, thereby validating our
implementation of the OMM.

Figure 8: Comparison between the analytical prediction and numerical simulation using the OMM. (a)
Phoretic velocity ||Up(t)|| and angular velocity ωp in stationary, straight and circular phases. The mesh size
is ∆x = 1/64. (b) Convergence of phoretic velocity ||Up|| with respect to mesh size ∆x at Pe = 5.72. The
system size is set to R = 3.25. The analytical prediction is obtained by Ref. [9].

7. Applications

In this section, we combine the FBIM and the OMM to explore new simulations for single
particle and many particles dynamics. First we study particle swimming in a nearly infinite
domain with periodic boundary conditions. Then particle dynamics in a straight channel is
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investigated. Finally we show examples of multiple particles in a rectangular domain with
periodic boundary conditions to reveal some interesting phenomena. For all simulations, the
comsumption rate is set to β = 0.01.

7.1. Single particle in a nearly infinite domain

We first consider a similar case as presented in section 6.2, but with larger system size
R = 200, which is large enough to mimic an infinite domain [8]. The computational domain
is a square and its size is L = 409.6. The flow field is computed on a Cartesian mesh
containing 8192 grid points in each direction, corresponding to a mesh size of ∆x = 0.05.
The particle surface is discretized into Ne = 128 elements. The subdomain sizes are set
as rp = 1.6 for the two annular subdomains Ωp and Ωf . The radial and tangential meshes
contain 32 and 128 grid points for Ωp, and 32 and 2560 grid points for Ωo, respectively.

Figure 9: Phoretic velocity ||Up|| as a function of Pe at R = 200. The solid line represents the data obtained
by Ref. [8].

The phoretic velocity ||U p|| computed by the FBIM-OMM is in good agreement with
the published data [8] as demonstrated in Fig. 9. We further plot particle trajectories for
Pe = 6, 12.8, 13 in Fig. 10. At short enough time scale, the trajectories obtained by the
FBIM-OMM are similar to those in Ref. [8], as shown in the insets of Fig. 10. However,
at larger time scales, the particle does not move along a straight line at Pe = 6 (Fig. 10a),
or along a circle at Pe = 12.8 (Fig. 10b), as reported in [8]. Moreover, the chaotic motion
at Pe = 13 is different from that in Ref. [8] (see Fig. 10c). These deviations result from
the finite computational domain size L and the periodic boundary conditions. In Ref. [8],
the flow velocity attenuates to 0 in the far field. In contrast, for the present work, the flow
in the computational domain is affected by its images due to periodic boundary conditions.
Although the domain size L is 2 orders of magnitude larger than the particle radius, this
effect is still non-negligible. For this reason, the particle trajectories are different in long
scale.

17



Figure 10: Different trajectories obtained by the FBIM-OMM.

7.2. Single particle in a straight channel

In this subsection, we consider a phoretic particle immersed in a straight channel of
length L = 25.6 and width W = 5, as shown in Fig. 11a. Periodic boundary conditions are
used at the left and right boundaries for both the flow and solute fields. At other boundaries,
the boundary conditions follow Eqs. (3) and (4). Other simulation parameters are: mesh
size ∆x = 0.05, particle surface element number Ne = 128, and particle subdomain size
rp = 0.8. A convergence study with respect to ∆x and rp will be presented later in this
subsection.

As shown in Fig. 11a, the particle swimms in a straight line (indicated by the white solid
arrows), and its velocity is shown in Fig. 11b. The phoretic velocity ||U p|| shows a transition
from stationary state to straight motion around Pe ≈ 0.6, which corresponds to a pitchfork
bifurcation. Moreover, a symmetry breaking is found around Pe ≈ 8, so that the particle
stays at an off-centered position and rotates around its center (see Fig. 11c and d). Here
yp is the particle lateral position from the channel center. Indeed, when the particle locates
in the center of the channel, the hydrodynamic interactions of the two fixed boundaries are
equal, and no rotational motion occurs. As the particle gets closer to one solid boundary
than the other, it rotates clockwise (counter-clockwise) if the closest boundary is on the left
(right) in the frame moving with the particle (see the white dashed arrow in Fig. 11a).
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Figure 11: Single particle swimming in a straight channel. (a) Steady-state relative solute concentration
at Pe = 2 and 12, where the arrows indicate translational and rotational directions. (b) Phoretic velocity
||Up||, (c) rotational velocity ||Ωp||, and (d) lateral position |yp| at steady state.

Figure 12: Convergence of phoretic velocity ||Up|| with respect to (a) mesh size ∆x and (b) particle subdo-
main size rp. The Péclet number is fixed at Pe = 2.

The convergence test is conducted at Pe = 2. The relative error of phoretic velocity
ϵ||Up|| is computed, and the numerical solution for ∆x = 0.0125, Ne = 512, and rp = 2.0
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is used as reference solution. First rp = 0.8 is fixed, while ∆x is varied between 0.025 to
0.1 and Ne scales as 1/∆x. As shown in Fig. 12a, a second order convergence is obtained,
in agreement with the nominal accuracy of the FBIM-OMM. Then we fix the mesh size at
∆x = 0.05 and the particle surface element number at Ne = 128, while rp is varied between
0.4 to 1.6. The error is slightly reduced with the increase of rp, as demonstrated in Fig. 12b.
In fact, larger overlap sizes exhibit better stability, while the accuracy is determined by the
interpolation scheme at interface boundaries [33, 61].

7.3. Collective behaviors of multiple particles

In this subsection, a suspension of particles in a square domain is simulated with the
proposed method. The side length of the domain is set as L = 25, and 40 phoretic particles
are distributed in the domain, as shown in Fig. 13a. The corresponding area concentration
is about 20%. Periodic boundary conditions are used in both directions. According to the
convergence study in the previous subsection, the other simulation parameters are chosen:
mesh size ∆x = 0.05, particle surface element number Ne = 128, and particle subdomain
size rp = 0.8.

Figure 13: Collective behaviors of multiple particles. (a–c) Snapshots of particles and relative solute con-
centration at Pe = 2, 4, and 6. The white dashed line in (a) is a guide for the eyes. The arrows in (b)
and (c) indicate translational velocity directions. (d) Phoretic velocity ||U || and (e) rotational velocity ||Ω||
averaged over all particles.

At Pe ≤ 2, the particles form a crystal-like structure at steady state, as shown in Fig.
13a. Although the particles stay at equilibrium positions (i.e. ||U || = 0, see Fig. 13c), there
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is flow among them, since the surface concentration on each particle is not homogeneous.
Moreover, some particles rotate around their centers due to hydrodynamic interactions. As
a result, non-zero rotational velocity ||Ω|| is observed in Fig. 13d. It should be noted
that ||U || and ||Ω|| are average values over all particles. The crystal-like structure loses
its stability for Pe > 3 in favor of a liquid-like regime, as shown in Fig. 13b. Particles
can swim in a short range, caged by other surrounding particles. For such a disordered (no
noise is introduced) solution, the translational and rotational velocities are defined as their
time-averaged values:

||U || = 1

T

∫ T

0

||U(t)||dt, ||Ω|| = 1

T

∫ T

0

||Ω(t)||dt, (60)

which is measured over a time interval T . Increasing further Pe leads to a more chaotic
regime (Pe ≥ 5), as shown in Fig. 13c. In this gas-like regime, both translation and orien-
tation orders are lost, and particles can travel freely for longer distance. Moreover, particles
form traveling lines for Pe ≥ 6 (see Fig. 13c). Similar behaviors have been observed exper-
imentally [7]. With the increase of Pe, both ||U || and ||Ω|| show nonmonotonic behaviors,
as shown in Fig. 13d and e. These results lay the foundation for investigations of collective
motions of phoretic particles. We leave detailed explanation and systemic studies in future
works.

8. Conclusion

A full numerical framework for phoretic particles was presented. This framework consists
of a FBIM for fluid-structure interactions in Stokes flow, and an OMM for advection-diffusion
problems with moving boundaries. The FBIM decomposes the Stokes equations into short-
range and long-range parts, so that the former is computed by boundary integral equation
within a cut-off distance, while the latter is solved by a Fourier spectral method accelerated
by FFT. To resolve moving boundaries in advection-diffusion problems, the OMM divides
the computational domain into several overlapping subdomains, which are allowed to move
independently. The FBIM and the OMM were then validated separately, showing relatively
high order accuracy. We further applied this framework to more general problems, including
single particle in nearly infinite domain, single particle in a straight channel, and collective
behaviors of multiple particles. This framework can be further extended to non-circular
rigid particles and even deformable particles, which will be our future research.
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Appendix A. Long-range density

A natural choice of Dl(r) is the polynomial, of which the high order derivatives are
continuous. In practice, we chose a 6th-order polynomial Dl(r) =

∑6
i=0 air

i and set

∂kDl

∂rk

∣∣∣∣
r=rc

= 0,
∂Dl

∂r

∣∣∣∣
r=0

= 0, (A.1)

where k = 0, 1, 2, 3.
The integral in Eq. (16) can be writen in polar coordinates, and the following equation

is obtained as

Gij(x,x
v) =

∫ rc

0

Dl(r′)r′
[∫ 2π

0

Gij(r, r
′)dθ

]
dr′, (A.2)

where r′ = x′−xv and θ is the angle between r and r′. Substitute Eq. (8) into the equation
above and integrate over θ, we obtain the following equation

Gij(x,x
v) = 2πGij(x,x

v)

∫ rc

0

Dl(r′)r′dr′ + π
r∗i r

∗
j − rirj

r4

∫ rc

0

Dl(r′)r′3dr′. (A.3)

Here r∗ is the vector perpendicular to r. To satisfy (A.3), we set∫ rc

0

Dl(r′)r′dr′ =
1

2π
,

∫ rc

0

Dl(r′)r′3dr′ = 0. (A.4)

By solving the system of (A.1) and (A.4), we obtain the polynomial coefficients, and the
long-range density is given as

Dl(r) =


0, r ≥ rc

56

3πr2c

[
−25

2
(
r

rc
)6 + 54(

r

rc
)5 − 90(

r

rc
)4 + 70(

r

rc
)3 − 45

2
(
r

rc
)2 + 1

]
, r < rc

. (A.5)

Appendix B. Short-range Green’s function

Rewrite the integral in Eq. (22) in polar coordinate and substitute Eqs. (17) and (21),
the short-range boundary integral equation becomes:

us
i (x) =

1

4π
gvjGij(x,x

v)− 1

4π
gvj

∫ rc

0

Dl(r′)r′
[∫ 2π

0

Gij(r, r
′)dθ

]
dr′

=
1

4π
gvjGij(x,x

v)− A1g
v
jGij(x,x

v)− A2g
v
j (r

∗
i r

∗
j − rirj)− A3g

v
j δij − A4g

v
j δij.

(B.1)
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where

A1 =
1

2

∫ r

0

Dl(r′)r′dr′

=
28

3π

[
−25

16
(
r

rc
)8 +

54

7
(
r

rc
)7 − 15(

r

rc
)6 + 14(

r

rc
)5 − 45

8
(
r

rc
)4 +

1

2
(
r

rc
)2
]
,

A2 =
1

4r4

∫ r

0

Dl(r′)r′3dr′

=
14

3πr2c

[
−5

4
(
r

rc
)6 + 6(

r

rc
)5 − 45

4
(
r

rc
)4 + 10(

r

rc
)3 − 15

4
(
r

rc
)2 +

1

4

]
,

A3 = −1

2

∫ rc

r

Dl(r′)r′ ln(r′)dr′

= − 28

3π
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− 25
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(
r
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r
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r
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7
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(B.2)

Then the short-range Green’s function is obtained as

Gs
ij(x,x

v) =

∫
Ωc

Gij(x,x
′)Ds(|x′ − xv|)dx′

= (1− 4πA1)Gij(x,x
v)− 4πA2(r

∗
i r

∗
j − rirj)− 4π(A3 + A4)δij.

(B.3)
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