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Abstract

A fat API exposes nearly all of a C++ object’s public attributes and
methods to a consuming environment, such as a scripting language, or web
client. This can be contrasted with a conventional, or thin API, where the
API is defined up front, and the C++ object provides the implementation,
most of which is private to the C++ layer.

Obviously, reflection is required to expose C++ objects to a consum-
ing layer like this — this paper explores using the Classdesc system to
implement reflection of C++ objects into a JavaScript/TypeScript envi-
ronment via a REST service, and also via a Node.js API module.

1 Introduction

Minsky[16] is a systems dynamics[5] simulation package, with an orientation
towards economics, that has been under continual development since 2011. It is
implemented in C++, and historically the user interface was implemented using
the TCL/Tk toolkit[13], with C++ bindings provided by the EcoLab[14, 3]
library.

From 2019-2021, the TCL/Tk layer was completely reimplemented in Type-
script[1, 6], on top of the Angular[7] and Electron[10] toolkits, running in the
Node.js[9] interpreter. The advantages to doing this include accessing a much
larger ecosystem of 3rd party components, a much larger pool of programmers
(JavaScript is consistently in the top 10 of programming languages according to
the Tiobe index[17]), and potentially longer term an in-browser version of the
code could be enabled via technologies such as WebASM[8].

This paper reports on the subtask of exposing the Minsky’s C++ core to
the TypeScript layer, allowing C++ objects to be manipulated in a seamless
manner in TypeScript code. The approach is quite general, and could be readily
adapted to other language binding APIs, or even without an explicit binding
API by means of a REST service that can be accessed with an HTTP client
implementation.
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2 REST service

REST (REpresentational State Transfer)[4] is based on web technologies. The
part of a URL after the domain such as http://www.somewhere.com/path/to/page
is called the URL’s pathinfo. In REST terminology, it is called an endpoint, and
represents a resource. What to do with the resource is given by the HTTP
verb of the request. A web browser typically performs a GET request when you
type a URL into its address bar, but there are verbs covering all of the CRUD

operations (create, read, update and delete):

POST create an object at the resource location

GET read an object at the resource location

PUT update the object

DELETE destroy the object

In something like an EcoLab model, or the Minsky project, there is a global
static object that holds the state of the model. In the C++ code, this is acces-
sible via a Meyer singleton pattern, ie the minsky() function. So for example, a
REST GET call on /minsky/t returns the value of the current timestep of the
Minsky model, and performing a PUT, with floating point data in the HTTP
request body updates the timestep to the supplied value. For convenience, the
Minsky REST service ignores whether a PUT or GET is used — using the pres-
ence or absence of HTTP body data to determine whether the operation is an
update or a read.

One can also map method calls into the same schema. For example /minsky/reset
calls the reset method, which has no arguments. The above schema for reading
or updating an attribute could be considered an example of calling an implied
overloaded getter/setter method, with overload resolution determined by the
presence or absence of data in the request body. Since we’re targeting the
JavaScript ecosystem, it is natural to use JSON[2] to encode the parameters be-
ing passed, and the return value. Compound objects can be serialised to/from
JSON using Classdesc’s existing JSON serialiser into a JSON object (delimited
by braces). Calling a method with more than one parameter can be achieved
by placing the JSON representation of the arguments in a JSON array, which
conveniently are allowed to be of different types. So the command to export a
LATEX document describing the model’s differential equation, which has signa-
ture void latex(const std::string& fileName, bool wrapLaTeXLines), can
be called through the REST service as /minsky/latex ["foo.tex", true],
where the first space delineates the pathinfo and request body.

Whilst JSON is used for data encoding in this example, it is perfectly pos-
sible to use alternate encodings. The RESTProcess_t1 descriptor2 object has a

1Released in Classdesc 3.43, available from https://classdesc.sourceforge.net, or
https://github.com/highperformancecoder/classdesc.

2In the Classdesc reflection system[11], a descriptor is an overloaded set of function defi-
nitions that is mostly automatically generated by the Classdesc processor for each type used
in the program
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method:

REST_PROCESS_BUFFER RESTProcess_t::process

(const std::string& pathinfo, const REST_PROCESS_BUFFER& body);

where REST_PROCESS_BUFFER is a macro representing the “buffer” concept,
which defaults to json_pack_t. A buffer implements:

• REST_PROCESS_BUFFER::operator>>(T&) for deserialisation to an arbi-
trary type

• REST_PROCESS_BUFFER::operator<<(const T&) for serialisation of an ar-
bitrary type

• RESTProcessType REST_PROCESS_BUFFER::type()which refers to the type
of the object serialised in the buffer

• REST_PROCESS_BUFFER::Array REST_PROCESS_BUFFER::array() const

returns a sequence concept object (eg std::vector or std::deque) if called
on a REST_PROCESS_BUFFER that is an array, or usually an empty sequence
if not. REST_PROCESS_BUFFER::Array::operator[](size_t) returns a
REST_PROCESS_BUFFER.

The RESTProcess_t type is a map, where the keys are the endpoints of
the fat API, and the values are wrappers around the C++ object, or method.
These wrappers are polymorphic, with different implementations depending on
whether it is an object or a method, smart pointer or container type. The
interface is

class RESTProcessBase

{

public:

virtual ~RESTProcessBase() {}

/// perform the REST operation, with \a remainder being the query string and \a arguments

virtual REST_PROCESS_BUFFER process(const string& remainder, const REST_PROCESS_BUFFER&

/// return signature(s) of the operations

virtual REST_PROCESS_BUFFER signature() const=0;

/// return list of subcommands to this

virtual REST_PROCESS_BUFFER list() const=0;

/// return type name of this

virtual REST_PROCESS_BUFFER type() const=0;

};

The reason REST_PROCESS_BUFFER is a macro rather than a template argu-
ment, is because RESTProcessBase is polymorphic, and C++ does not allow
templated virtual functions.

The methods signature,list and type provide a modicum of introspection
to allow exploration of the fat API from the calling side. signature returns an
array containing the return type and types of all arguments.
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3 Node.js API

Minsky’s C++ layer renders directly to a native window for performance rea-
sons. Electron’s BrowserWindow class has a native window handle getter method
that can be used to pass the native window to the C++ layer. The strategy
described in the previous section of making the C++ implementation a REST
service worked well for Windows, where the native window handles are system
wide, and X-Windows system, which is distributed by design, but unfortunately
failed for the MacOSX architecture. It turns out that Mac native window han-
dles are actually pointers which are, of course, only meaningful within the same
process address space.

So the C++ layer needed to be implemented as a dynamic library, and
linked within the Node.js process using the Node.js API. Conceptually, this
is quite simple, implementing a single Node.js API endpoint (call) that takes
the pathinfo and body arguments as above. Of course, it hasn’t stayed simple
— the Node.js API allows for callbacks into the JavaScript world from C++,
which is important for some interactive functionality; as well as also allowing
offloading of C++ processing to a separate thread, and returning the results
via a JavaScript promise, which is important for not blocking the user interface
during long-running backend operations.

4 Attributes and Methods

We map C++ public attributes to an implied pair of overloaded setter/getter
methods. If an argument is provided to the method, a setter is called, and the
argument assigned to the attribute. For the Minsky project, JSON encoding
of the attribute is performed, using the existing json_pack and json_unpack

descriptors.
This is a very simple example of a method overload. However, C++ pro-

vides for overload resolution based on types as well as number of arguments.
JavaScript does not provide for overloaded functions at all, but with type in-
trospection built into the language, it is possible to write a method that can
dispatch to different implementations based on types and number of arguments.
However, with an impoverished set of types compared with C++, this leaves
us with the problem of how to match a particular JavaScript call with a C++
method.

The approach taken in this work is to walk the C++ argument list for each
overloaded C++ method (Classdesc has been able to address overloaded meth-
ods since version 3.37[15]), and add a penalty for each argument that doesn’t
quite match. For instance if the JavaScript environment passes a number with
a non-zero fractional part, then an integer argument C++ will receive a small
penalty, but a float or double parameter does not. If there are fewer arguments
passed than the arity of the function, or no meaningful conversion possible, then
an infinite penalty is applied. Default C++ arguments are not supported as is,
but a default argument can be reimplemented as an overloaded method the fewer
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argument calls, delegating to the method with the full number of arguments.
Finally, the method with lowest finite penalty is called, if it is unique. Oth-

erwise and exception is thrown back to the JavaScript environment.
Modern C++ variadic templates are used to walk the C++ type arguments

to determine the penalty values. Then to call the C++method, currying is used.
The JSON arguments are converted to the relevant C++ type, starting from
the last argument, currying the bound method to an n − 1 argument functor,
where the last argument has been fixed by the converted JSON argument. It
takes one walk through the C++ argument list to generate the curry functors,
then the final zero argument curried functor is called, which in turn calls the
curried functors up into the final bound method. The technique works well,
except that each of these curried functors need to be linked, blowing up the
build time. In §7, I describe a number of techniques to reduce the build times.

5 TypeScript

JavaScript, being a dynamic language, only checks numbers and types of ar-
guments at runtime. TypeScript[1, 6] is an extension of JavaScript with type
annotations that are checked at compile time. For larger more complex projects
like Minsky, the TypeScript compile step is an invaluable means of eliminating
logic errors.

The JavaScript interface to C++ is of the form

call("method.name", args...);

which performs type checking at runtime. For Minsky, we created another
descriptor that outputs a series of TypeScript definitions. This is not the only
viable method. The REST API has sufficient introspection built in, that it
should be possible to build a TypeScript script that queries the REST API, and
emits the TypeScript definitions. However doing it as a C++ process for the
Minsky project was chosen due to greater familiarity with that environment.

For example, the Minsky class has a t double precision attribute, a complex
attribute model of type Group and classifyOp method, amongst others. The
custom TypeScript descriptor outputs a definition like:

export class Minsky extends CppClass {

model: Group;

constructor(prefix: string){

super(prefix);

this.model=new Group(this.$prefix()+’.model’);

...

}

async classifyOp(a1: string): Promise<string>

{return this.$callMethod(’classifyOp’,a1);}

async t(...args: number[]): Promise<number>

{return this.$callMethod(’t’,...args);}
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...

}

The TypeScript class CppClass provides a number of features, including the
$prefix() accessor and the $callMethod()method that arranges for the named
C++ method to be called on a separate thread, and returns a promise that is
resolved or rejected with the return value or exception from the C++ method.
Calling into C++ asynchronously in this way prevents the C++ code from
blocking the GUI interface if the C++ method takes a long time to run (as
some do). There is also a $callMethodSync() which calls into C++ directly
on the Node.js thread, which is useful when you need to call C++ from a non-
asynchronous function — such as at application startup. Note the use of the
$ character in the identifier, which is a valid character in JavaScript identi-
fiers, but not C++, so preventing any possibility of a name clash with C++
identifiers.

To use the class definition for any object, you just have to declare:

let minsky=new Minsky("minsky");

Then you can access the time attribute via minsky.t() or set the time
attribute via minsky.t(10.2). For the complex object model above, because
one can call methods on it (eg minsky.model.numItems()), and in TypeScript
identifiers cannot be both attributes and methods at the same time, setting
and getting that object has to be done via the special $properties() method,
ie minsky.model.$properties() returns a JavaScript object containing the
public attributes of minsky.model, and minsky.model.$properties(object)

sets the public attributes of minsky.model using the data contained in object.
Since minsky is a global object, this definition is already provided in the

backend module. But for example, the attribute minsky.canvas.item is a
polymorphic type with base type Item — it can be cast to the correct type in
TypeScript via (eg)

let variable=new VariableBase(minsky.canvas.item);

then variable gets all of the additional attributes and methods of the Vari-
ableBase subclass.

6 Python

A Python API descriptor already exists[15]. However, it has a couple of serious
downsides. The first is that it requires the boost-python library, which is not
available currently for the MXE cross compiler[12], and may never be, as it
depends on the Python library being available, the codebase of which is not
friendly towards cross compilation.

The second issue is just calling the Python descriptor on the minsky global
object was not sufficient to create all the types required, and that additional
explicit descriptor calls were required to generate all the types. This is not
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insurmountable — something like this approach was done with the TypeScript
descriptor, but given the full fat API was available through the RESTService
descriptor, it was decided to use the existing RESTService API descriptor, and
write a Python interface using the low level Python C API. That way, we should
be able to load the built Python module dynamic library into an unmodified
running Python interpreter on Windows. As well as that, there would be no
inconsistencies between the TypeScript API and the Python API.

It was relatively straight forward, following online tutorials, to implement
a “call” function that takes one or two arguments, the first being the REST
function name, and the second being a JSON5 string for arguments. The
second step involved creating a REST PROCESS BUFFER object (called a
PythonBuffer) that directly marshals Python objects into their C++ coun-
terparts without going via JSON serialisation. Of course, for simplicity, and
to avoid creating yet another descriptor, complex objects (structs, classes etc)
will always go via JSON serialisation. Unfortunately, this exposed a weakness
in the macro approach outlined above, and the explicit instantiation of tem-
plates, which meant that at link time there was a definitional conflict between
REST PROCESS BUFFER being a JSONBuffer and a PythonBuffer. So for
now, the PythonBuffer containing the arguments is serialised to JSON before
being passed to the RESTProcess, and the returned JSON string used to instan-
tiate a PythonBuffer. Another attempt at implementing a template solution of
the RESTProcess descriptor is planned.

Finally, for return values, the PythonBuffer stores the value as an appro-
priate Python object (PyObject) for the type, whether number, string, array
or so on. For objects, a custom object is returned that has the JSON string
returned by the RESTProcess stored as the attribute _properties ($ is not a
valid character in Python identifiers), and also new callable attributes for each
method, allowing usage like

r=container._elem(2).method()

within Python code.

7 Build time optimisation

As previously alluded, extensive use of variadic templates for processing over-
loaded functions caused a dramatic impact on compile times for the Minsky
project, which went from circa 2 minutes for the TCL/Tk version (which doesn’t
support overloaded methods) to around 20 minutes for the JavaScript build.
Profiling the build times indicated a massive increase in the time taken to link
the “executable” — in this case a dynamic library with a .node extension that
Node.js loads as an “add on”.

One of the identified reasons for the slowdown in linking speeds is the large
number of generated template helper functions to handle introspection of func-
tional objects. The number grows as the square of the number of arguments
of the method, and linking objects is O(n2), so the link time grows as the 4th
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Strategy GCC Clang
None 1048 377

Explicit instantiation 445 287
Unrolled templates 427 291

Arity reduction 409 284

Table 1: Build times for the different build time optimisations for the two
different compiler toolchains.

power of the number of method arguments. As noted later, the link times for
standard Linux linkers is not actually too bad — in the few years since this
work was started, Linux linkers have improved remarkably.

In some way, the link strategy is quite stupid, as these helper functions only
need to be used on one place in one object file, and so resolved at compile
time. This suggested a strategy of privately declaring the variadic templates
and explicitly instantiating them within just a single object file where they were
used — unfortunately, the compiler still emitted symbols for each and every
helper template, even if they’re not linked to from other object files, and this
technique didn’t help.

So the next thing was to remove the RESTProcess ’.rcd’ definition files
from the include headers, and include them in just one compilation unit, and
explicitly instantiate the template within that compilation unit. This improved
the build time quite significantly.

The next strategy tried, is to do things the old-fashioned way. Instead of
recursively defined variadic templates, explicit templates created by means of a
shell script that creates explicit support functions for 0, 1, 2 etc arity functions
up to some predefined maximum value (6 was found to be the maximum arity
function present, with the renderWindow method being one of the biggest).

The final strategy was to reduce the maximum arity of the exposed methods.
The simplest way to do this, given that one could pass a Javascript object which
is packed and then unpacked into the C++ object via JSON, is to rollup several
of the arguments into a compound object. In this way, the maximum arity was
reduced to 4.

Finally, it turned out that the clang ecosystem had a much more perfor-
mant compiler and linker for these purposes than the GCC ecosystem, and that
template unrolling gave negligible benefit in the clang case.

Table 1 shows the build times for the various build time optimisations de-
scribed in the text above, displayed graphically in figure 1. The optimisations
were applied consecutively from top to bottom, so that the unrolled template
method was applied to explicitly instantiated code, and so on.

The final test was to try the extremely performant mold[18] linker. As per
Mold’s README, adding the flag -fuse_ld=mold is sufficient to delegate the
link step to mold. Link times were measured by building the target (min-
skyRESTService.node), removing just the target, leaving all the object files
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Figure 1: Build times for the different build time optimisations for the two
different compiler toolchains.

Linker Version Time (seconds)
GNU ld 2.41 4

LLVM ld (lld) 15.07 3.9
Mold 2.3 0.7

MXE ld.bfd 2.37 791

Table 2: Link times for various linkers tested

present, and timing how long it takes to build the target again.
As can be seen from table 2, for Linux builds, the linking time is inconse-

quential, well within noise, so even though Mold is blazingly fast, there is no
particular advantage for this project. What isn’t inconsequential is the link
time for generating Windows versions of the Node.js addon, which takes over 13
minutes. Just quite why the linker is so slow for Windows is unclear, however
a neat trick discovered whilst doing this benchmarking is to symbolically link
the LLVM linker ld.lld to the MXE linker x86_64-w64-mingw32.shared-ld.
It works just as well, and only takes around 4 seconds.

8 Methods

Build times were recorded using the inbuilt “time” command, running on a
quad-core Intel(R) Core(TM) i5-1135G7, at 3.8GHz, with a Samsung 970 EVO
500GB NVMe M.2 SSD. The operating system was OpenSUSE Leap 15.5, and
the compilers used: GCC 13.2.1 and Clang 15.0.7.

The codebase used was Minsky 3.3.2,3 except for the “none” strategy above.
In explicitly instantiating the templates that define the descriptor, it is not fea-

3Available from https://minsky.sourceforge.net, or https://github.com/highperformancecoder/minsky
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Toolchain,Strategy Command
GCC,none4 rm *.i; time make -j9 GCC=1 CLASSDESC_ARITIES=

Clang,none4 rm *.i; time make -j9 GCC= CLASSDESC_ARITIES=

GCC,explicit rm *.i; time make -j9 GCC=1 CLASSDESC_ARITIES=

Clang,explicit rm *.i; time make -j9 GCC= CLASSDESC_ARITIES=

GCC,unrolled rm *.i; time make -j9 GCC=1 CLASSDESC_ARITIES=0xffff

Clang,unrolled rm *.i; time make -j9 GCC= CLASSDESC_ARITIES=0xffff

GCC,arity reduction rm *.i; time make -j9 GCC=1 CLASSDESC_ARITIES=0xf

Clang,arity reduction rm *.i; time make -j9 GCC= CLASSDESC_ARITIES=0xf

Link time rm gui-js/node-addons/minskyRESTService.node; \

GCC link time time make -j9 GCC=1

Clang link time time make -j9 GCC=

Mold link time time make -j9 OPT=-fuse_ld=mold

Table 3: Commands for timing different optimisation strategies.

sible to put the code change behind a feature flag. Going back to the earlier
version of the code will not be comparing apples with apples, as about a year’s
worth of development has occurred since that change. So the particular opti-
misations were backed out from the 3.3.2 codebase: the explicit instantiations
removed (they were implemented in a macro, so this was easy), then the inlined
descriptor definitions included back in the header files. The code changes were
committed to the branch compile-optimisations-undone4.

Particular optimisation feature flags can be turned on via Makefile flags, as
shown in table 3. The command was run after an initial make -j9 to ensure
all prerequisites were built, to avoid including the prerequisites build time. One
can measure the overhead time required for make to start up via make -n, which
proved to be about 1.3 seconds, so well within experimental noise.

9 Conclusion

The RESTService API descriptor provides a scripting language independent
fat API interface to C++ code. Method arguments and return values can be
marshaled using a custom native type “buffer” object, or using JSON5 encoding
with the preexisting Classdesc json descriptor. In practice, JSON5 encoding
tends to be sufficiently performant. Both a Javascript and Python bindings
were generated automatically for the Minsky systems dynamics simulator, and
furthermore, TypeScript binding were generated automatically though a custom
descriptor, leading to easier to read scripting code, and relatively more type-safe
use in Minsky’s front end code.

Using the RESTService descriptor comes at additional build cost, compared
with the original TCL bindings used for the EcoLab package, which is ameliorated

4compile-optimisations-undone branch, available from https://github.com/highperformancecoder/minsky
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via a number of C++ coding techniques, the use of the Clang toolchain over
the GCC one, and the use of modern Linux linkers.
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