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Abstract

The behavior of b = 2 real-space renormalization group (RSRG) maps like the
majority rule and the decimation map was examined by numerically applying
RSRG steps to critical q = 2, 3, 4 Potts spin configurations. While the majority
rule is generally believed to work well, a more thorough investigation of the action
of the map has yet to be considered in the literature. When fixing the size of the
renormalized lattice Lg and allowing the source configuration size L0 to vary, we
observed that the RG flow of the spin and energy correlation under the majority
rule map appear to converge to a nontrivial model-dependent curve. We denote
this property as “faithfulness”, because it implies that some information remains
preserved by RSRG maps that fall under this class. Furthermore, we show that
b = 2 weighted majority-like RSRG maps acting on the q = 2 Potts model can
be divided into two categories, maps that behave like decimation and maps that
behave like the majority rule.

Keywords: real space renormalization group, majority rule, scale invariance, fixed
point

1 Introduction

Real-space renormalization group methods like the Migdal-Kadanoff renormalization
group scheme [1, 2] are used to probe the critical behavior of lattice spin models where
each spin takes a finite number of states, operating directly in position space. This gives
RSRG methods an intuitive and diagrammatic expression that make them particularly
straightforward to grasp. However, the behavior of an RSRG method depends largely
on the choice of map, and generally, these methods are difficult to analytically treat,
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with the notable exception of the decimation map, which can be exactly treated in
1D on an Ising chain. In 2D, the first step of the decimation map with a scale factor
of b =

√
2 can be exactly computed, and for the case when b = 2, the bond-moving

approximation can be used to analytically treat the problem. [3]
The majority rule map is another common choice of RSRG map. It has been used to

study a variety of systems numerically, including, but not limited to, the ferromagnetic
Ising model on triangular [4], square [5], and cubic lattices [6], and the Blume-Emery-
Griffiths model on a triangular lattice [7], among others. More recently, the majority
rule has been used in machine learning studies that attempt to construct an optimal
RG transformation [8] and an inverse RG map [9]. Generally, it seems that there
is consensus that the majority rule appears to work well, particularly for Ising-type
systems. Analytically, it has been proven that the renormalized Hamiltonian under
the b = 2 majority rule remains well-defined slightly below the critical point for the
square-lattice Ising model [10]. In this work, we numerically study the fixed-point
behavior of the majority rule and decimation maps acting on Potts models, focusing
on the RG flow generated by repeated applications of these maps on very large spin
configurations.

In this study, we examine the q-state Potts model, where q denotes the number of
states, at the critical point, whose Hamiltonian is:

H = −βJ
∑
⟨i j⟩

δsisj (1)

δsisj can be thought of as the Kronecker delta. More rigorously, it can be defined like
[11]:

δsisj =
1

q
[1 + (q − 1)(êi · êj)] (2)

The objects êi and êj are unit vectors located in a (q − 1)-dimensional space. These
unit vectors are taken from a set that exhibits the spin symmetry of the model, such
that êi · êj = 1 when i = j, and êi · êj = − 1

q−1 otherwise. When q = 2, the Potts model
reduces to the Ising model. For 1 ≤ q ≤ 4, the Potts model exhibits a continuous
phase transition at the temperature [12]:

Tc = β−1
c = ln [1 +

√
q] (3)

When q > 4, the transition is first-order. In this work, we focus on the specific Potts
models where q ∈ {2, 3, 4}, which correspond to instances of the Potts model for which
the transition is second-order [13].

We are particularly interested in the fixed-point behavior of RSRG maps when
the renormalized lattice size Lg is held to be fixed while increasing the source con-
figuration size L0. To this end, we introduce the property of faithfulness, which is
operationally defined as the ability of a particular RSRG map to retain information
about a critical source configuration in the limit of a large number of RSRG iterations
g, fixing Lg. Under repeated applications of a faithful RG map, the distribution of
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configurations at a fixed Lg tends towards a nontrivial fixed point distribution that
shows the correct scaling behaviors. Furthermore, as Lg increases, the estimates for
the scaling exponents tend towards the correct values. On the other hand, an unfaith-
ful RSRG map eventually loses all information about the critical source configuration
(i.e. reaches a trivial fixed point) in the limit of large g. While the existence of a non-
trivial fixed point under an RSRG map is independent of whether or not the resulting
scaling behavior matches the original model, our definition of faithfulness is that a
nontrivial fixed point exists and the correlation functions at the fixed point decay with
the correct exponents.

More rigorously, we can consider a distribution function PL(S) of spin configura-
tions S on the system of size L at criticality (with a certain boundary condition such
as periodic boundary conditions). Then, an RG map is defined as a distribution func-
tion PL to P ′

L/b. Let us consider the result of g repeated applications of the same RG

map, P
(g)
Lg

, with Lg ≡ Lb−g and P
(0)
L0

≡ PL. By increasing g while fixing the final sys-
tem size to be Λ ≡ Lg, we can construct the series of distributions for the same system

size, P
(0)
Λ , P

(1)
Λ , P

(2)
Λ , i.e., the distribution function P

(g)
Λ is the result of g repeated

applications of the RG map to the original system of size Λbg. Now, we consider the
“thermodynamic” limit of this series,

P ∗
Λ ≡ lim

g→∞
P

(g)
Λ (4)

We call the RG map is faithful when P ∗
Λ exists and possesses the same critical proper-

ties as the original distribution. Specifically, the correlation functions ⟨OiOj⟩ according
to P ∗

Λ converges in the large Λ limit for arbitrary local quantities Oi and Oj , located
at the positions, i and j respectively, shows the same asymptotic behavior, e.g., the
same decay exponent for P ∗

∞ and P∞.
The decimation transformation is not faithful since the amplitude of the critical

correlation function at the fixed normalized distance goes down to zero, that is:

⟨s0sr⟩g = ⟨s0srbg ⟩0 ∝ (bg)−(d−2+η) → 0, g → ∞ (5)

Therefore, the distribution converges to a trivial distribution representing no cor-
relation between spins. To obtain meaningful information from the decimation RG,
the correlation function must be rescaled using the scaling dimension of the order
parameter. In contrast, the majority rule provides us with the nontrivial fixed-point
correlation function with no rescaling. Thus, it is a faithful map. In other words,
the majority rule somehow “knows” the value of the scaling dimension. The faithful-
ness of the majority rule seems to have been taken for granted though there is no
mathematical proof or convincing arguments in the literature, as far as we know.
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2 Methodology

2.1 Performing numerical RSRG

The source critical configurations were generated using a parallelized cluster-flip Monte
Carlo method. The details concerning the generated data are specified in Sec. 3.1.
To verify that the generated data was indeed critical, a Bayesian finite-size scaling
analysis [14, 15] was performed on some sample output to check that the obtained
critical exponents were close to the expected values.

We consider b = 2 RSRG maps parametrized by a tensor Rs′;s1,··· ,s4 whose
elements satisfy:

0 ≤ Rs′;s1,··· ,s4 ≤ 1 (6)∑
s′

Rs′;s1,··· ,s4 = 1 (7)

The variable s′ corresponds to the renormalized spin site on the new lattice, and the
variables s1, · · · , s4 corresponds to the spin sites within the block. In other words,
Eqs. 6 and 7 imply that the elements of R are the conditional probabilities that a
particular value for the renormalized spin is selected to represent a block of spin values:

Rs′;s1,··· ,s4 = P (s′|s1, · · · , s4) (8)

The RSRG map can then be repeatedly applied to a source configuration of size L0 =
bgmax by iteratively constructing renormalized configurations based on the elements
of R whose dimensions are reduced by a factor of b. A comprehensive discussion on
RSRG maps treated as probability kernels can be found in [16].

We can recover a deterministic RSRGmap like s′ = T (s1, · · · , s4) (mapping specific
configurations of s1, · · · , s4 to a renormalized spin s′) from the definition in Eq. 8 by
choosing a conditional probability like:

P (s′|s1, · · · , s4) = δs′,T (s1,··· ,s4) (9)

Because the lattices are finite, there is a maximum number of steps gmax for which
the map can be applied. While this approach is amenable to parallelization, it should
be noted that the size of R grows exponentially like O(qb

2

), with q as the number of
states that each spin can take. This means that explicitly specifying the elements of
R is untenable for b > 2, and an alternative approach such as storing the elements as
a function could be used instead.

2.2 Observables of interest and estimating the scaling
exponents

The observables of interest were the connected spin correlation function Gg(r) and
connected energy correlation function Gg(r), which were obtained from the two-point
spin correlation function ⟨s0sr⟩g and the two-point local energy correlation function
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⟨ϵ0ϵr⟩g (r denoting the distance between two spins and g being the number of applied
RSRG map iterations). Both quantities were exactly computed for each considered
spin configuration. For the two-point spin correlation, the Potts spin state indices si
were interpreted as Potts spin vectors si in the simplex representation satisfying:

si · sj =
qδij − 1

q − 1
(10)

From the two-point spin correlation, the connected spin correlation function can be
computed like:

Gg(r) = ⟨s0sr⟩g −
∣∣∣⟨s0⟩g∣∣∣2 (11)

Here, the overline · denotes a spatial average and the angle brackets ⟨·⟩ denotes an
average over configurations, which is essentially the thermal average since all Monte
Carlo simulations were done at the same temperature. The second term is due to
translational invariance for the Potts models considered, which implies ⟨s0⟩ = ⟨sr⟩.
Furthermore, the second term, which is associated with the magnetization, is expected
to vanish on the infinite lattice at the critical point. The local energy at each site i
was defined to be:

ϵi =
1

2

∑
j∈⟨i j⟩

δsisj (12)

The sum runs over nearest-neighbor site pairs denoted by ⟨i j⟩. With this definition,
the sum of the (negative) local energies at each site yields the energy of the config-
uration. The two-point energy correlation can then be computed by taking products
of local energy operators at sites separated by distance r. Since the local energy is a
scalar quantity, the connected energy correlation can be computed like:

Gg(r) =
⟨ϵ0ϵr⟩g − ⟨ϵ0⟩2g〈
ϵ20

〉
g
− ⟨ϵ0⟩2g

(13)

Again, translational invariance was assumed in the above equations, so that ⟨ϵ0⟩ =
⟨ϵr⟩. The second term in the numerator converges to some non-zero constant on the
infinite lattice, because the local energy as defined by Eq. 12 is nonnegative.

After computing the observables for each configuration, the performance of the
RSRG map was gauged by checking the scaling behavior of the connected two-point
functions Gg(r) and Gg(r) across multiple iterations of the map. For critical configu-
rations on infinite lattices, the connected spin correlation Gg(r) is known to obey the
following scaling:

Gg(r) ∼ r2−d−η (14)
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Table 1 Scaling dimensions for the
spin and energy correlation from
CFT considerations.

c ∆G(r) = η ∆G(r)

q = 2 1
2

1
4

2

q = 3 4
5

4
15

8
5

q = 4 1 1
4

1

In Eq. 14, d refers to the dimensionality (d = 2 in this case) and η = ∆G(r) = 2∆s

is the related critical exponent, which is twice the dimension ∆s of the spin operator
in the CFT describing the model. This can be obtained from CFT considerations: the
conformal weights hu,v of a particular operator can be described as a function of the
central charge c in the following manner [17]:

hu,v(c) =
c− 1

24
+

1

4

(
u

√
1− c+

√
25− c√

24
+ v

√
1− c−

√
25− c√

24

)2

(15)

This results in the following expression for the scaling dimension of the spin operator
[18]:

∆s = 2h 1
2 ,0

=
1

96

(
5 + 7c+

√
(1− c)(25− c)

)
(16)

As for the energy correlation, the theoretical value can be obtained by noting that the
energy operator in minimal CFT models has a scaling dimension ∆ϵ equal to:

∆ϵ = 2h2,1 =
1

8

(
5− c+

√
(1− c)(25− c)

)
(17)

The dimension of the energy correlation is ∆G(r) = 2∆ϵ. The exact values for the
scaling exponents of the spin and energy correlation in the Potts models considered
were computed using Eqs. 16 and 17 and are listed in Tab. 1. The estimates for Gg(r)
(and Gg(r)) were fit to a function of the form:

Gg(r) = c1 +
c2
rc3

(18)

In Eq. 18, there are three free parameters: c1 is the bias (which vanishes for the mag-
netization as the lattice size increases and is introduced to account for smaller lattice
sizes), c2 is some constant prefactor, and c3 represents the estimated scaling dimen-
sion of interest (either 2∆s or 2∆ϵ). When r is taken to be large, it is expected that
the correlation function vanishes. Thus, at large r, it is possible that the noise exceeds
the actual amplitude of the quantity of interest. Since the systems included periodic
boundary conditions, the fit was done by excluding the two data points corresponding
to the largest two values of r, so that the cutoff is at r/4 (since b = 2).

Note that the data points obtained from the renormalized configurations are not
independent. This is because the configurations are obtained by iterating an RSRG
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map over one set of source configurations, so that a renormalized configuration and
its parent configuration are related.

2.3 Types of RSRG maps considered

2.3.1 The majority rule and decimation maps for b = 2

The b = 2 majority rule map and decimation map were the reference RSRG maps cho-
sen for this study. The majority rule transformation describes the action of choosing
the most frequent spin state amongst the spins in the block to represent the renor-
malized spin. In the Ising model, the spins only take two states si = ±1, so that the
majority rule can be defined by summing over the spins in the block and taking its
sign. When there is a tie, the behavior can be defined to be a random choice between
the two states. For the general case of Potts models, this approach is not easily gen-
eralizable, but can be done by instead counting the frequencies of each Potts state
and taking the most frequent state. The RSRG tensor elements that define the b = 2
majority rule map are:

Rs′;s1,··· ,s4 =

{
1

||mode(s1,··· ,s4)|| , s′ ∈ mode(s1, · · · , s4)
0, s′ /∈ mode(s1, · · · , s4)

(19)

In Eq. 19, mode(· · · ) refers to the set of statistical modes in the block, and ||·|| denotes
the cardinality of the set. With this definition, when there is one mode (i.e. there is
a clear majority), it is guaranteed to be the representative spin on the renormalized
lattice, whereas when there are multiple modes, the renormalized spin is uniformly
chosen from the modes.

On the other hand, the b = 2 decimation map favoring the site i1 is defined like:

Rs′;s1,··· ,s4 =

{
1, s′ = s1

0, s′ ̸= s1
(20)

Here, Eq. 20 guarantees that the spin at site i1 is always chosen to be the renormal-
ized spin. The decimation transformation is comparatively well-understood due to its
relative simplicity. However, there is a known flaw in the decimation scheme where in
the limit of a large number of decimation transformations on a configuration, the cor-
relation function eventually decays to zero, which contradicts the expected behavior
for a critical configuration [3].

2.3.2 Weighted majority-like maps for b = 2

To interpolate between the majority rule and decimation maps, a parametrization
using weights wj at each site ij was considered. The weights modify the relative
contribution of the spins at each site, so that a weight of zero corresponds to having
no influence on the choice of renormalized spin. Note that the weights are associated
with the sites, and not with the different spin states. With this parametrization, the

7



Table 2 Parametrizations considered for
the weighted majority-like maps with
b = 2. The abbreviation “WM” means
“weighted majority”. Our numerical
results point to the faithfulness of the
majority, WM1, and WM2 maps, and the
unfaithfulness of the remaining maps.

scheme (w1, w2, w3, w4)

majority (1, 1, 1, 1)
decimation (1, 0, 0, 0)

WM1 (1, 0.5, 0.5, 0.5)
WM2 (1, 1, 1, 0)
WM3 (1, 0.5, 0.25, 0.125)
WM4 (1, 1, 0, 0)

prob. majority (1, 1, 1, 1)
prob. decimation (1, 0, 0, 0)

prob. WM1 (1, 0.5, 0.5, 0.5)
prob. WM2 (1, 1, 1, 0)
prob. WM3 (1, 0.5, 0.25, 0.125)
prob. WM4 (1, 1, 0, 0)

elements of the map for a weighted majority-like transformation are:

Rs′;s1,··· ,s4 =


1∥∥∥∥∥argmax

s∈{sk}

{∑b2

j=1 δsj,swj

}∥∥∥∥∥
, s′ ∈ argmax

s∈{sk}

{∑b2

j=1 δsj ,swj

}
0, s′ /∈ argmax

s∈{sk}

{∑b2

j=1 δsj ,swj

} (21)

From the definition in Eq. 21, it can be seen that the majority rule corresponds to
the case when the weights are identical to each other, and the decimation map can be
recovered when all but one weight is zero – that is, only one spin influences the choice
of the renormalized spin. Tab. 2 lists the parametrizations considered in this study.

2.3.3 Weighted probabilistic maps for b = 2

Another family of RSRG maps corresponding to probabalistic analogues of the
weighted majority-like maps was also considered. For these maps, even when there is
a clear majority, there is still a probability that the renormalized spin is chosen to be
one of the spin states present in the block. The map is defined like:

Rs′;s1,··· ,s4 =

∑b2

j=1 δsj ,s′wj∑b2

j=1 wj

(22)

The decimation map can still be obtained from Eq. 22, but this family of maps does
not reduce to the majority rule map when all of the weights are identical.
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Fig. 1 Plots of the two-point spin correlation Gg(r) of the q = 2 Potts model as a function of the
distance r, by the number of decimation (left) and majority rule (right) RSRG iterations g. Note that
Lg is held to be fixed to Lg = 256. The expected power law has a scaling exponent of 2∆s = 1

4
.

Fig. 2 Plots of the two-point energy correlation Gg(r) of the q = 2 Potts model as a function of
the distance r, by the number of decimation (left) and majority rule (right) RSRG iterations g. Note
that Lg is held to be fixed to Lg = 256. The expected power law has a scaling exponent of 2∆ϵ = 2.

3 Results

3.1 Dataset details

The simulations were conducted using critical Potts configurations with q ∈ {2, 3, 4}
states and initial lattice sizes of L0 ∈ {256, 512, 1024, 2048, 4096}. For each combi-
nation of q and L0, 1600 samples were generated using a parallel Swendsen-Wang
method. Each configuration was then repeatedly renormalized using the studied b = 2
RSRG maps until the renormalized lattice size reached Lmin = 16, after which the
observables associated with each configuration (initial or renormalized) were obtained.

3.2 Numerical data on faithfulness

3.2.1 Behavior of the b = 2 majority rule and decimation maps

Our numerical experiments show that the decimation and majority rule maps result in
markedly different behavior when repeatedly applied to critical configurations. In what
follows, we compare between the decimation map and the majority rule map. This
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Fig. 3 Plots of the two-point spin correlation Gg(r) (left) and energy correlation Gg(r) (right) of the
q = 2 Potts model as a function of the number of majority rule RSRG iterations g, by the distance
r. Note that Lg is held to be fixed to Lg = 256. The lines serve as a guide for the eyes.

is not for claiming the superiority of the majority-type rules to the decimation-type
rules as a numerical technique for estimating the critical exponents, but rather, for
establishing the majority rule’s non-trivial property, i.e. its faithfulness, by contrasting
the two types of mappings.

Fig. 1 shows results for the q = 2 (Ising) case, where, when fixing Lg, plots of the
two-point spin correlation as a function of r appear to lie very close to each other in
the case of the majority rule map, but gradually shift downward with the decimation
map. Adding to this, the two-point energy correlation shown in Fig. 2 depicts a similar
trend. In the case of decimation, the curves are shifted downwards as the number
of applied steps g increases (with fixed Lg) as expected. However, for the majority
rule, we observed that the curves are all fairly close to each other (note the scale
on the y-axis), and as g increases, they appear to converge. These results serve as
evidence for the faithfulness of the b = 2 majority rule map. We observed very similar
results for the q = 3 and q = 4 Potts models, for which the analogous plots are in
the appendix. The behavior of the majority rule is alternatively visualized in Fig. 3,
where it is clear that repeated applications of the rule do not appear to change the
two-point spin and energy correlation functions as g increases. This is particularly
evident for the spin correlation. For the energy correlation, the values decay initially,
but appear to converge as g increases. This is in contrast to the consistent decay
in these observables for the decimation map. By plotting the estimates (which were
obtained as described in Sec. 2.2) for the scaling exponents 2∆s and 2∆ϵ in Fig. 4, it
can be seen that both the decimation and majority rule maps produce estimates for
∆s that converge to the expected value as Lg gets larger and larger, staying relatively
consistent as g increases. This is expected behavior for the decimation transformation
because it explicitly preserves the magnetization of the original configuration. For the
majority rule, an argument for why it preserves the magnetization can be found in
the appendix. However, the use of the decimation map does not result in an estimate
for the energy correlation scaling exponent ∆ϵ. This result can be visualized in Fig. 4
where the estimates for c3 clearly do not converge to ∆ϵ under this map. On the
other hand, however, the majority rule map produces estimates for ∆ϵ that tend
towards the expected value as Lg and g increase, albeit slowly. This is further numerical
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Fig. 4 Estimates of the coefficient c3 as in Eq. 18, which should agree with 2∆s (top) and 2∆ϵ

(bottom) provided that the mapping is faithful, for the q = 2 Potts model as a function of the number
of majority rule RSRG iterations g, by the renormalized lattice size Lg . The estimates were obtained
from fitting according to the procedure outlined in Sec. 2.2, under the application of decimation (left)
and majority rule (right). The solid gray lines indicate theoretical values.

evidence for the faithfulness of the majority rule map and similar maps, as well as the
unfaithfulness of the decimation map and other maps that behave like it.

3.2.2 Results for weighted majority-like maps

In addition to observing the difference in the behavior of the decimation and major-
ity rule maps, we also performed numerical experiments with the class of weighted
majority-like rules defined by Eq. 21. For this family of RSRG maps, we found that
all of the specific parametrizations considered (Tab. 2) behaved in one of two ways.
Some of the maps were found to behave like the decimation map, while others were
found to behave like the majority rule map. Fig. 5, which collates plots of the spin
correlation for some of the considered maps, demonstrates that some of the considered
maps behave almost exactly like the b = 2 decimation map. The same behavior was
observed for the energy correlation for the relevant maps when compared to decima-
tion. Note that the standard decimation map and the “WM3” case are also exactly
identical. Furthermore, the “WM1” and “WM2” maps are identical to the majority
rule map except for how ties are treated, and the same can be said for “WM4” and
the decimation map. Similarly, Figs. 6 and 7 show maps that behave very similarly to
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Fig. 5 Plots of the two-point spin correlation Gg(r) of the q = 2 Potts model as a function of the
distance r, by the number of RSRG iterations g. The RSRG maps shown here behave like decimation,
althought the “WM3” map was omitted since its action is identical to decimation. Note that Lg is
held to be fixed to Lg = 256. The expected power law has a scaling exponent of 2∆s = 1

4
.

the standard b = 2 majority rule map. The plots suggest that unlike the decimation-
like maps, the majority rule-like maps generate RG flows (fixing Lg, as usual) that
do not appear to vanish in the limit of a large number of RSRG iterations g. Because
the curves seem to converge to some limiting distribution as g increases, it appears
that these maps all fall in a broader class of RSRG maps that exhibit the property we
denote as faithfulness. We also observed very similar results for the q = 3 and q = 4
Potts models.

3.2.3 Results on probabilistic weighted maps

Repeating the same analysis with the probabilistic weighted maps considered in Eq. 22
(on the q = 2, 3, 4 Potts models, and using the parametrizations in Tab. 2) resulted
in all considered maps, including the probabilistic analogue for the majority rule,
behaving like the decimation transformation. This suggests that some degree of reg-
ularization (provided through the argmax function in Eq. 21) is required to obtain
behavior like the standard b = 2 majority rule map. Otherwise, since these probabilistic
weighted maps preserve the expectation value of the magnetization (without such reg-
ularization), the maps behave like the decimation transformation. The relevant plots
for the q = 2 Potts model are summarized in Fig. 8 for the spin correlation. It is clear
from these plots that all of the probabilistic maps essentially behave like decimation
(for decimation, the deterministic and probabilistic analogues are identical).

To see why all of these maps behave like decimation, we can consider a probabilistic
map acting on some completely ordered region, and then imagine that a single spin
is flipped by some fluctuation. If the RSRG map chooses this flipped spin as the
representative spin for the block in the next iteration, the local fluctuation persists.
The probabilistic map is thus always able to preserve or introduce fluctuations at every
step, but for a faithful map, the probability of introducing a fluctuation must decrease
as the number of RSRG steps increases. This is because introducing a fluctuation
late into the RG procedure corresponds to a large fluctuation in the original model.
Therefore, these maps cannot be faithful.
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Fig. 6 Plots of the two-point spin correlation Gg(r) of the q = 2 Potts model as a function of
the distance r, by the number of RSRG iterations g. The RSRG maps shown here behave like the
majority rule. Note that Lg is held to be fixed to Lg = 256. The expected power law has a scaling
exponent of 2∆s = 1

4
.

3.3 Possible criteria for faithfulness

A natural question that arises from the numerical observations is the question of what
conditions are necessary in order for an RSRG map to behave faithfully. In particular,
for the weighted majority-like maps, some of them behave like the majority rule, which
appears to be faithful, whereas others behave like decimation, which is manifestly an
unfaithful map. On the other hand, the probabilistic weighted maps all seem to behave
like the standard decimation map.

Fortunately, Eq. 21 suggests that there are only a finite number of distinct R
tensors representing weighted majority-like maps that can be constructed, following
from the finiteness of the number of possible block configurations and the regulariza-
tion used in the RSRG map. For b = 2 weighted majority-like maps acting on critical
configurations of the q = 2 Potts model in particular, these R tensors can be exhaus-
tively listed. Furthermore, the regions in parameter space that correspond to a specific
realization of R can be mapped out.

To do this, we fixed one weight to be the largest weight, w1 = 1, leaving three free
parameters. Then, we considered systems of inequalities based on the form:

w1σ1 + w2σ2 + w3σ3 + w4σ4 ≶ 0

=⇒ ±1± w2 ± w3 ± w4 ≶ 0
(23)

13



Fig. 7 Plots of the two-point energy correlation Gg(r) of the q = 2 Potts model as a function of
the distance r, by the number of RSRG iterations g. The RSRG maps shown here behave like the
majority rule. Note that Lg is held to be fixed to Lg = 256. The expected power law has a scaling
exponent of 2∆ϵ = 2.

While there appear to be 16 possibilities for the LHS in Eq. 23, half of these choices are
additive inverses of the other half. This leaves 8 choices for the LHS. We are interested
in solving the system given by:

1 + w2 + w3 + w4 ≶ 0, 1 + w2 + w3 − w4 ≶ 0

1 + w2 − w3 + w4 ≶ 0, 1 + w2 − w3 − w4 ≶ 0

1− w2 + w3 + w4 ≶ 0, 1− w2 + w3 − w4 ≶ 0

1− w2 − w3 + w4 ≶ 0, 1− w2 − w3 − w4 ≶ 0

(24)

There are 28 = 256 instances of this system of inequalities to solve. Most of these
systems result in no solution, but there are a few combinations for which solutions
exist in the region of parameter space given by w2, w3, w4 ∈ [0, 1]. There are five
distinct solution regions that exist in the aforementioned space, which are shown in
Fig. 9. Of these five regions, only one region was found to result in decimation-like
behavior, whereas the other four regions were found to behave like the majority rule
map. This region that describes the decimation-like maps, which is the first region in
Fig. 9, is described by the triangle-like inequality:

w2 + w3 + w4 ≤ w1 (25)
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Fig. 8 Plots of the unconnected two-point spin correlation ⟨s0sr⟩ of the q = 2 Potts model as a
function of the number of RG iterations g, by the RSRG map used. On the left are the deterministic
maps, while the probabilistic maps are on the right. Note that Lg is fixed to Lg = 256 and r is fixed
to r = 128.

Fig. 9 Non-empty solution regions obtained from solving systems of the form given in Eq. 24. Only
the upper left region was found to behave like the decimation map.

The region that contains weighted majority-like maps that behave like the majority
rule map (i.e. exhibit evidence of faithfulness) satisfy the inequality:

w2 + w3 + w4 > w1 (26)

We conjecture based on our numerical experiments that the same condition holds for
the q = 3 and q = 4 Potts models, based on the numerical data that we have collected.
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4 Discussion

Our main numerical results suggest that the majority rule map is a faithful map when
applied to critical configurations of the q-state Potts models. We defined faithful RSRG
maps to be maps that possess a nontrivial fixed point and correctly reproduce the
expected scaling exponents. For the Ising model under the majority rule, we showed
numerically that it possesses a nontrivial fixed point (the right panels of Figs. 1 and 2,
or equivalently, Fig. 3). Furthermore, under the majority rule, the estimated coefficient
c3 approaches the expected scaling exponents (Fig. 4) as the renormalized lattice size
Lg and number of RSRG iterations g (and the source lattice size L0) increase.

We found that the fixed point of the b = 2 majority rule map on the Potts models
appears to differ from the trivial fixed point approached by the b = 2 decimation
map. The majority rule seems to better preserve the information associated with the
original configuration even after multiple iterations, and our results on this property
are in line with those of another work [19] on the mutual information between source
and renormalized Ising congfigurations under the decimation and majority rule maps.
Note that the majority rule map is not necessarily the “best” map for estimating
the critical exponents via a finite-size scaling analysis. In fact, RG transformations
that attempt to improve on the majority rule map for the Ising model have been
constructed in a previous work [8].

Furthermore, we examined a broader family of RSRG maps in an attempt to
clarify the mechanism behind the faithfulness of these maps. We found that consid-
ering weighted counts of spins in a block, which effectively constitutes a weighted
majority-like rule, results in maps that behave like one of two distinct behaviors. These
categories are prototyped by the majority rule and decimation map, and by extension,
describe maps that are faithful and maps that are not faithful, respectively.

We also found that the regularization process employed by these maps, which was
to rule out the possibility of assigning states that were not at the largest weighted
count, was essential to obtaining a faithful map. The observation that all three studied
models behaved similarly under the action of the examined maps suggests that the
majority rule (and similar maps) is faithful when acting on systems exhibiting the Sq

Potts spin symmetry.
The faithful maps discussed in this paper have slight differences in their correlation

profile, and we conjecture that faithful maps do not generate the same correlation
profile when applied to the same model. In other words, the fixed-point correlation
profile for a faithful RSRG map depends not only on the model (and on Lg), but also
on the choice of map. In a similar vein, we conjecture that not all RSRG maps that
exhibit nontrivial fixed-point behavior generate the correct exponents.

Future directions include examining the fixed-point behavior of other families of
RSRG maps (in this direction, some results on b = 4 weighted RSRG maps are pre-
sented in the appendix), and obtaining a clearer understanding of what characteristics
a map must exhibit in order to be faithful.
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Fig. A1 Plots of the two-point spin correlation Gg(r) and energy correlation Gg(r) of the q = 3
Potts model as a function of the distance r, by the number of decimation (left) and majority rule
(right) RSRG iterations g. Note that Lg is held to be fixed to Lg = 256. The expected power laws
have scaling exponents of 2∆s = 4

15
and 2∆ϵ = 8

5
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Appendix A Numerical data for the q = 3 and
q = 4 Potts models

In this appendix, we show figures showing the behavior of the majority rule and
decimation transformations on critical q = 3 and q = 4 Potts configurations.

The plots for the q = 3 Potts model (Fig. A1) suggest the same interpretation as
for the q = 2 case. The data for the majority rule transformation appear to converge
to some curve in the large-g limit, when Lg is fixed. Note that for the case of the q = 4
Potts model, shown in Fig. A2, the discrepancy between the expected power law using
the known theoretical exponents and the data at g = 0 may be due to the additional
logarithmic correction present for the model. Furthermore, the figures for both the
q = 3 and q = 4 models still demonstrate that the majority rule transformation acting
on critical configurations possesses a nontrivial fized point, although more data at
larger Lg and g may be needed to further examine the question of whether or not
the correct scaling exponents are reproduced at large Lg and g, particularly for the
scaling dimension ∆ϵ. From Fig. A3, the majority rule appears to at least preserve the
exponent for the magnetization ∆s. We conjecture, for the Potts models under the
majority rule map, that the estimate for c3 when Lg is large enough approaches the
expected value for the scaling exponent when g is large, for both the spin correlation
and energy correlation (estimating 2∆s and 2∆ϵ, respectively).
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Fig. A2 Plots of the two-point spin correlation Gg(r) and energy correlation Gg(r) of the q = 4
Potts model as a function of the distance r, by the number of decimation (left) and majority rule
(right) RSRG iterations g. Note that Lg is held to be fixed to Lg = 256. The expected power laws
have scaling exponents of 2∆s = 1

4
and 2∆ϵ = 1.

Fig. A3 Estimates of the coefficient c3 as in Eq. 18, which should agree with 2∆s (left) and 2∆ϵ

(right) provided that the mapping is faithful, for the q = 3 (top) and q = 4 (bottom) Potts models
as a function of the number of majority rule RSRG iterations g, by the renormalized lattice size Lg .
The estimates were obtained from fitting according to the procedure outlined in Sec. 2.2, under the
application of decimation (left) and majority rule (right). The solid gray lines indicate theoretical
values.
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Finally, while we omitted the results for the weighted maps and probabilistic ana-
logues for the q = 3 and q = 4 Potts models for brevity, we found that the numerical
data suggest similar conclusions as for the q = 2 case.

Appendix B Correctness of the majority rule for
the magnetization in the Ising model

For the q = 2 Potts model, which is identical to the Ising model, the majority rule
map can be defined like:

s′i′ ≡ sgn(Mi′) = ±1 (B1)

Mi′ ≡ b−d
∑

i∈Λb(i′)

si (B2)

In Eqs. B1 and B2, we consider a configuration si with Ising spins si = ±1 on a d-
dimensional hypercubic lattice. The primed variables s′, i′ denote spins and sites on
the renormalized lattice, respectively, and Λb(i

′) refers to the block of spins in the
preceding lattice that determines the spin at site i′.Mi′ is the magnetization associated
with the block determining s′i′ . Our numerical data for the Ising model suggests that〈
s′i′

〉
∝ b∆s , where ∆s is the scaling dimension for the spin and the expectation is

taken over space and then over configurations. This is demonstrated in Fig. 4, where
the estimates for the scaling exponent approach 2∆s as the renormalized lattice size
Lg increases. In other words, we found that the majority rule correctly preserves the
magnetization of the original lattice.

In this section, we intend to demonstrate that application of the majority rule

results in magnetization scaling of the form
〈
s′i′

〉
∝ b∆s as in the numerical observa-

tions. We start from the following standard scaling of the magnetization at the critical
temperature:

m ∼ L−∆s (B3)

Here, L represents the system size, t is the rescaled temperature (where t = 0 cor-
responds to the critical temperature), yt denotes the thermal exponent, and m̃ is a
homogeneous function describing the scaling of the magnetization. Then, the block
average of the magnetization m′

i′ for block size b at the critical temperature scales like:

m′
i′ ≡ b−dM ′

i′ ∝ b−∆s (B4)

This means that the distribution of block magnetizations at the critical temperature
has a distribution function Pb (b denoting the scale factor) whose width is proportional
to b−∆s . We then have the following scaling for the distribution function (using P̃ to
denote the scaling function for Pb):

Pb(m
′) ∼ b∆s P̃ (m′b∆s) (B5)
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Table C1 Parametrizations considered for the
weighted majority-like maps with b = 4. The
abbreviation “WM” means “weighted
majority”.

scheme wi

majority w1 = · · · = w16 = 1
decimation w1 = 1, w2 = · · · = w16 = 0
WM1-b4 w1 = 1, w2 = · · · = w16 = 0.5
WM2-b4 w1 = 1, w2 = · · · = w16 = 0.07
WM3-b4 w1 = 1, w2 = · · · = w16 = 0.06

Let us consider the expectation value
〈
s′i′

〉
for a typical configuration of a system

with size L. Because of the fluctuation, the total magnetization of the whole system is
not typically exactly zero. So, in what follows, without loss of generality, we assume
that the magnetization is positive. For a system of size L, the magnetization per spin
m0 is typically on the order of L−∆s , which can be treated as the bias in estimating〈
s′i′

〉
. This has the effect of shifting the distribution for m′(i′) by m0. The conditional

probability for the block-average magnetization m′ given the average magnetization
per spin m0 for the whole system is:

Pb(m
′|m0) ∼ Pb(m

′ −m0) ∼ b∆s P̃ ((m′ −m0)b
∆s) (B6)

Then, we can calculate the expectation value of the renormalized spin
〈
s′i′

〉
:

〈
s′i′

〉
≡

∫ 1

0

dm′Pb(m
′|m0)−

∫ 0

−1

dm′Pb(m
′|m0) (B7)

∼
∫ 1

−m0

dm′b∆s P̃ (m′b∆s)−
∫ −m0

−1

dm′b∆s P̃ (m′b∆s) (B8)

=

∫ m0

−m0

dm′b∆s P̃ (m′b∆s) ∼ 2m0b
∆s P̃ (0) ∝ (bL−1)∆s (B9)

This shows that applying the majority rule map results in b-scaling that is consistent
with our numerical observation on its correctness with regards to reproducing the
scaling exponent of the magnetization, ∆s.

Appendix C Numerical data on the faithfulness of
b = 4 RSRG maps

In this section, we present some results for b = 4 maps acting on critical configurations
up to L0 = 4096 and renormalized down to Lmin = 16. Since b = 4, the weighted
RSRG maps require specifying 16 weights. The parametrizations considered are listed
in Tab. C1, and they include parametrizations for the majority rule and decimation
map on 4 × 4 blocks, weighted maps satisfying a b = 4 version of Eq. 26 (WM1-b4,
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Fig. C4 Plots of the two-point spin correlation Gg(r) of the q = 2 Potts model as a function of the
distance r, by the number of RSRG iterations g and RSRG maps (left: faithful, right: unfaithful).
The curves for the b = 4 decimation map coincide with those of the “WM3-b4” map with the same
g. Note that Lg is held to be fixed to Lg = 256. The expected power law has a scaling exponent of
2∆s = 1

4
, and was plotted using the prefactor and bias of the data at the lowest g.

which easily satisfies the inequality, and WM2-b4, which is close to saturating the
inequality), and a weighted map satisfying a b = 4 version of Eq. 25 (WM3-b4, for
which w2, ..., w16 sum to slightly less than w1). The corresponding versions of Eq. 26
and Eq. 25 are:

16∑
i=2

wi > w1 (C10)

16∑
i=2

wi ≤ w1 (C11)

The results, presented in Fig. C4 and Fig. C5, indicate that the majority rule and
WM1-b4 maps are faithful maps, while the WM2-b4 and WM3-b4 maps are unfaithful
and behave like decimation. In particular, WM3-b4, which satisfies Eq. C11, reduces to
decimation and generates identical behavior, while WM2-b4, which satisfies Eq. C10,
does not behave like the 4 × 4 majority rule map and instead behaves qualitatively
like the 4 × 4 decimation map. The WM2-b4 map produces a different profile from
the decimation and WM3-b4 maps. The behavior of the WM2-b4 map suggests that
a naive generalization of Eqs. 25 and 26 is insufficient to distinguish between faithful
and unfaithful maps. The b = 4 faithful maps behave slightly differently compared
to the case of the b = 2 majority rule, but these b = 4 maps are still able to produce
estimates for the critical exponents ∆s and ∆ϵ similar to those of the b = 2 faithful
maps. On the other hand, the unfaithful b = 4 maps produce estimates for ∆ϵ that
get worse as Lg and g increase.
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