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Abstract. Rheology plays a pivotal role in understanding and predicting material

behavior by discovering governing equations that relate deformation and stress, known

as constitutive equations. Despite the critical importance of constitutive equations in

predicting dynamics of complex fluids, a systematic methodology for deriving these

equations from available data has remained a significant challenge in the field. To

overcome the problem, we propose a novel method named Rheo-SINDy, which employs

the sparse identification of nonlinear dynamics (SINDy) for discovering constitutive

models from rheological data. Rheo-SINDy was applied to five distinct scenarios,

including four cases with well-established constitutive equations and one without

predefined equations. Our results demonstrate that Rheo-SINDy successfully identifies

accurate models for the known constitutive equations and derives physically plausible

approximate models for the scenario with the unknown one. These findings validate

the robustness of Rheo-SINDy in handling real-world data complexities and underscore

its efficacy as a powerful tool for advancing the development of data-driven approaches

in rheology.

1. Introduction

Mathematical models grounded in physical laws are indispensable across science and

engineering, offering profound insights into the behavior of complex systems. These

models clarify the underlying mechanisms governing system dynamics and empower

predictions and innovations in technology and natural science. Traditionally, model

derivation has leaned heavily on theoretical and empirical knowledge, often requiring

expert knowledge and intuition. Data-driven methods have become capable of

assisting in developing mathematical models and constructing models that provide

advanced predictions [1]. These data-driven methods involve the sparse identification

http://arxiv.org/abs/2403.14980v1
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methods [2–5], symbolic regression methods [6–11], and physics-informed machine

learning methods [12–15]. These methods have emerged as powerful tools for deriving

governing equations directly from data, overcoming the limitations of conventional

expert-dependent approaches.

Rheology is one of the scientific fields that address the properties of flowing matter,

which plays a crucial role in many industries, such as designs of chemical processes, by

providing insights into flow behaviors of complex fluids. One of the roles of rheology

is to discover or derive governing equations that relate deformation and stress, referred

to as constitutive equations [16]. From an engineering perspective, accurate constitutive

equations are necessary to predict the flows of complex fluids under complex boundary

conditions. Nevertheless, it is generally difficult to theoretically obtain constitutive

equations for complex fluids. Instead, mesoscopic coarse-grained models, which are

based on molecular theories, have been explored in the field of rheology. For example,

for polymeric liquids, standard molecular theories have been proposed [17,18], on which

refined mesoscopic models have been constructed [19–21]. In these models, the motion

of individual (coarse-grained) molecules is numerically tracked. Although these models

require significantly more computational time compared to constitutive equations, they

can reproduce (nearly) accurate rheological data. Despite these advancements, a clear

methodology for obtaining constitutive equations from available data remains elusive.

Data-driven methods are powerful approaches for addressing the aforementioned

challenges in rheology. Indeed, such methods have enhanced rheological studies such as

constitutive modeling, flow predictions of complex fluids, and model selection [22, 23].

Some applications have successfully identified constitutive relations of complex fluids or

governing equations to predict the dynamics of fluids with knowledge of rheology. These

studies have employed neural networks (NN), including deep NN [24], graph NN [25],

recurrent NN [26], physics-informed NN [27–29], multi-fidelity NN [30], and tensor basis

NN [31]. Gaussian processes (GP) have also been employed, for example, for strain-rate

dependent viscosity [32] or for viscoelastic properties [33–36].

Despite the success of NNs and GPs, their black-box nature often obscures

the underlying physics, making symbolic regression techniques more appealing for

transparency and interoperability. These methods, such as the sparse identification of

nonlinear dynamics (SINDy) [2], have been frequently utilized to track (reduced order)

dynamics in the field of fluid mechanics [37]. Inspired by these successes, symbolic

regression methods have recently started to be used in the field of rheology as well. For

example, Mohammadamin and coworkers [38] relied on SINDy for flexibly identifying

the constitutive equations of an elasto-visco-plastic fluid. Nevertheless, although there

are several attempts along this line, a comprehensive study to test SINDy for rheological

data has not yet been conducted.

In this study, we employ SINDy to find constitutive models from rheological data,

which we call as Rheo-SINDy. After verifying the performance of Rheo-SINDy when

the constitutive equations are known, we apply Rheo-SINDy to problems where the

constitutive equations are unknown. The details are shown below.
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Figure 1. Schematic illustration of Rheo-SINDy.

2. Methods

We use a data-driven method known as a sparse identification of nonlinear dynamics

(SINDy), which was originally developed by Brunton and coworkers [2]. In this study,

we attempt to obtain constitutive equations of complex fluids using SINDy. Here, we

briefly explain the basic concepts of SINDy.

We consider dynamical systems generally expressed by the following differential

equation:

dx(t)

dt
= f [x(t)], (1)

where the vector x(t) represents the state of a system at time t and the function

f [x(t)] determines the dynamics of the state x(t). The basic idea of SINDy is to

find dominant terms for describing the dynamics out of numerous candidates using a

sparse identification method. One can determine the (sparse) representation of f by

a dataset including a collection of x(t) and ẋ(t) (the time derivative of x(t)). The

regression to points of x(t) and ẋ(t) is computed with sparsity-promoting techniques,

such as ℓ1-regularization.

In the rheological community, it is of great importance to determine a relation

between stress and strain rate. This relation is a so-called constitutive model or

constitutive equation. Most constitutive equations are differential equations that depend

on the (extra) stress tensor τ and velocity gradient tensor κ. In this study, we prefer to

use the so-called extra stress tensor τ as the stress tensor because this stress tensor is

τ = 0 at equilibrium, which is convenient for SINDy regression. The total stress tensor

σ can be obtained by the relation σ = τ + GI, where G is the modulus and I is the

unit tensor. A general form for such constitutive equations can be written as

dτ (t)

dt
= τ̇ (t) = f [τ (t),κ(t)]. (2)

Here, κ(t) is a control variable during rheological measurements. We use SINDy

algorithm to find constitutive equations for complex fluids and we refer to this technique

as Rheo-SINDy.
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The training data needed to Rheo-SINDy are transient stress data T and those

time derivatives Ṫ , which can be summarized as the following two matrices:

T =
[

txx tyy · · · tzx

]

=















τxx(t1) τyy(t1) · · · τzx(t1)

τxx(t2) τyy(t2) · · · τzx(t2)
...

...
. . .

...

τxx(tn) τyy(tn) · · · τzx(tn)















(3)

and

Ṫ =
[

ṫxx ṫyy · · · ṫzx

]

=















τ̇xx(t1) τ̇yy(t1) · · · τ̇zx(t1)

τ̇xx(t2) τ̇yy(t2) · · · τ̇zx(t2)
...

...
. . .

...

τ̇xx(tn) τ̇yy(tn) · · · τ̇zx(tn)















, (4)

where tµν (µν ∈ {xx, yy, zz, xy, yz, zx}) is the column of T , and we take the stress data

for n sequential times. The time derivatives of the stress data Ṫ are computed by a

numerical differentiation method. In this study, we apply the velocity gradient κ to

systems of prescribed constitutive equations or mesoscopic models for viscoelastic fluids

to take the stress data determined by the states of the systems. The data of the velocity

gradient tensor K are summarized as

K =
[

kxx kyy · · · kzx

]

=















κxx(t1) κyy(t1) · · · κzx(t1)

κxx(t2) κyy(t2) · · · κzx(t2)
...

...
. . .

...

κxx(tn) κyy(tn) · · · κzx(tn)















, (5)

where kµν (µ, ν ∈ {x, y, z}) is the column of K.

In Rheo-SINDy, we construct a library matrix of functions, denoted as Θ, which

can include various nonlinear functions. Θ is expressed as

Θ =
[

1 T K (T ⊗ T ) (T ⊗K) (K ⊗K) · · ·
]

, (6)

where T ⊗K, for example, denotes all possible combinations of the products of the row

components in T and K for each time ti (1 ≤ i ≤ n). We note that Θ can incorporate

not only polynomials but also other functions, such as sinusoidal functions. Using these

expressions, we can substitute Eq. (2) as

Ṫ = ΘΞ, (7)

where Ξ is the coefficient matrix written as

Ξ =
[

ξxx ξyy · · · ξzx

]

=















ξxx,1 ξyy,1 · · · ξzx,1
ξxx,2 ξyy,2 · · · ξzx,2
...

...
. . .

...

ξxx,NΘ
ξyy,NΘ

· · · ξzx,NΘ















. (8)

where NΘ is the total number of library functions.

To determine the coefficient matrix Ξ, we solve the following optimization problem:

ξ̂µν = argmin
ξµν

‖ṫµν −Θξµν‖
2
2 +R(ξµν), (9)
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where ξ̂µν is the optimized sparse vector, || · · · ||2 is the ℓ2 norm defined as

||x||2 =

(

∑

i

x2
i

)1/2

, (10)

and R(ξµν) is the regularization term. To obtain a sparse solution of Ξ, we apply

the following five methods [37]: (i) the sequentially thresholded least square algorithm

(STLSQ), (ii) sequentially thresholded Ridge regression (STRidge), (iii) least absolute

shrinkage and selection operator (Lasso), (iv) Elastic-Net (E-Net), and (v) adaptive-

Lasso (a-Lasso). These methods employ different regularization terms to obtain sparse

solutions (see Sec. S1 in the supporting information for detail). Each method has a

hyperparameter α to penalize the solution complexity, which is to be tuned for obtaining

good predictive yet parsimonious representations. For this purpose, we test various α

values and pick an appropriate value of α that gives a small loss value and the (nearly)

correct number of terms for known constitutive equations.

In this study, we limit ourselves to shear rheological measurements that give

fundamental rheological properties. Under shear flow, among the components of κ,

only κxy has non-zero values. Here, x is the velocity direction, and y is the velocity

gradient direction. Since the major stress components are τxx, τyy, τzz, and τxy under

shear flow, we only use these components to conduct Rheo-SINDy.

3. Case Studies

For case studies, we first test whether Rheo-SINDy can find appropriate constitutive

equations from training data generated by phenomenological constitutive equations,

namely the Upper Convected Maxwell (UCM) model and the Giesekus model (the

details are summarized in Sec. S2 in the supporting information). Subsequently, we

apply Rheo-SINDy to constitutive models for the Dumbbell model, which is the most

basic mesoscale model of viscoelastic fluids. This section provides a brief overview of

the models used in this study and the conditions for creating the datasets.

3.1. Fundamental Equations of Dumbbell Models

The dumbbell-based models have been widely utilized in numerous previous studies for

the computation of viscoelastic fluids and are considered a standard mesoscopic model

for viscoelastic fluids [39]. As illustrated in Fig. 2, a dumbbell consists of two beads

(indexed as 1 or 2) and a spring that connects them. The Langevin equations for the

positions of the two beads r1/2(t) can be written as

ζ

[

dri(t)

dt
− κ · ri(t)

]

= −h(t) {ri(t)− rj(t)}+ FBi(t), (11)

with (i, j) = (1, 2) or (2, 1). Here, ζ is the friction coefficient, h(t) is the spring strength,

and FBi(t) is the Brownian force acting on the bead i. The time evolution equation for
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Figure 2. Schematic illustration of the dumbbell model.

the end-to-end vector R(t) (= r2(t)− r1(t)) of the beads is thus obtained as

ζ

[

dR(t)

dt
− κ ·R(t)

]

= −2h(t)R(t) + {FB2(t)− FB1(t)} . (12)

The Brownian force is characterized by the first and second-moment averages as

〈FBi(t)〉 = 0, (13)

and

〈FBi(t)FBj(t
′)〉 = 2ζkBTδijδ(t− t′)I, (14)

where kB is the Boltzmann constant and T is the temperature. From the end-to-end

vector R(t), the stress tensor can be expressed as

τ (t) = ρ〈h(t)R(t)R(t)〉 − ρkBTI, (15)

where ρ is the density of dumbbells.

There are several expressions for the spring strength h(t). The most basic one is

the Hookean spring, defined as

h(t) = heq =
3kBT

nKb2K
, (16)

where nK is the number of Kuhn segments per spring and bK is the Kuhn length.

To reproduce several properties of polymers, such as shear thinning under shear flow,

it is essential to address finite extensible nonlinear elastic (FENE) effects. Although

the exact expression for FENE springs is given by the inverse Langevin function, the

following empirical expression is widely used [39]:

h(t) = heq

1− 〈R2
eq〉/R

2
max

1−R2(t)/R2
max

, (17)

where 〈R2
eq〉

1/2 = (nK)
1/2bK is the equilibrium length of the springs, and Rmax = nKbK is

the maximum length of the springs. As shown later in Sec. 3.4, a constitutive equation

cannot be analytically obtained for the FENE dumbbell model. To address the FENE
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spring more analytically, the following approximate expression of the FENE spring has

been proposed [39]:

h(t) = heq

1− 〈R2
eq〉/R

2
max

1− 〈R2(t)〉/R2
max

= heqfFENE(t). (18)

This spring is referred to as the FENE-P spring. Here, “P” means Peterlin, who

proposed the approximate form of the FENE spring law. The average appearing in

Eq. (18) makes it possible to obtain the analytical constitutive equation.

We use λ = ζ/4heq as the unit time and G = ρkBT as the unit stress for the

dumbbell models. To simplify the expressions, in what follows, we omit the tilde

representing dimensionless quantities.

3.2. Hookean dumbbell model

The most basic dumbbell model is the Hookean dumbbell model, where Hookean springs

are employed (cf. Eq. (16)). From Eqs. (12), (15), and (16), the Hookean dumbbell

model reduces to the constitutive equation of the UCM model (cf. Eq. (S5) in the

supporting information) in the limit ofNp → ∞ with Np being the number of dumbbells.

For the Hookean dumbbell model, we generate training data by Brownian dynamics

(BD) simulations with the finite numbers of dumbbells (Np ∈ {103, 104, 105}). We apply

the oscillatory shear flow, γ(t) = γ0 sin(ωt), with γ0 = 2 and ω = 0.5, over a period

from t = 0 to t = 100. The simulations are run with ∆t = 1× 10−3 for 0 ≤ t ≤ 100 and

data are collected at the interval of ∆ttrain = 1 × 10−2. Each simulation is conducted

with five different random seeds, and their average data is used for training. Due

to the characteristics of the BD simulation, the training data inherently include noise

originating from the finite Np. We here test whether Rheo-SINDy can find from the noisy

data the following equations for the UCM model under shear flow (cf. Eqs. (S6)–(S8)

in the supporting information):

τ̇xx = −τxx + 2τxyκxy, (19)

τ̇yy/zz = τyy/zz = 0, (20)

τ̇xy = −τxy + κxy + τyyκxy = −τxy + κxy. (21)

3.3. FENE-P dumbbell model

We next address the so-called FENE-P dumbbell model, where Eq. (18) is utilized as

the spring strength. As shown below, the FENE-P dumbbell model has an analytical

solution and is utilized for various flow problems, such as turbulent flows [40].

Due to the assumption shown in Eq. (18), a simple representation of the time

evolution for the conformation tensor C = 〈R(t)R(t)〉 can be obtained as

dC

dt
−C · κ+ − κ ·C = −fFENE(t)C +

nK

3
I, (22)
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where κ+ is the transposed κ. The stress tensor is thus obtained by

τ (t) = ρh(t)C(t) − ρkBTI. (23)

Under shear flow, Eq. (22) reduces to the following expressions:

Ċxx = −fFENECxx + 2Cxyκxy +
nK

3
, (24)

Ċyy/zz = −fFENECyy/zz +
nK

3
, (25)

Ċxy = −fFENECxy + Cyyκxy. (26)

Using Rheo-SINDy, we test whether or not Eqs. (24)–(26) can be discovered from the

data.

Although it has not been as widely recognized due to its complexity, the FENE-P

dumbbell model can also be expressed in the form of the constitutive equation (i.e., the

stress expression) [41]. From the textbook of Bird and coworkers [39], the constitutive

equation for the FENE-P model is

dτ

dt
− τ · κ+ − κ · τ = −fFENE(t)τ + 2D +

D lnZ

Dt
(τ + I), (27)

where D(· · ·)/Dt is the substantial derivative and Z is the function expressed as

Z =
1

1− 〈R2(t)/R2
max〉

= 1 +
1

3nKZ−1
eq

(trτ + 3). (28)

Here, Zeq indicates Z at equilibrium. From Eq. (28), we can see that trτ is tightly related

to the (squared) length of dumbbells. Since we do not address the spatial gradient in

rheological calculations, D(· · ·)/Dt simply reduces to d(· · ·)/dt. Using Eqs. (22), (27),

and (28), the constitutive equations for the FENE-P dumbbell model under shear flow

can be expressed as

τ̇xx = −

{

1 +
1

3(nK − 1)

}

τxx −
1

3(nK − 1)
(τyy + τzz)

−
1

9nK(nK − 1)
(tr τ )2 −

1

3nK

(

2 +
1

nK − 1

)

tr τ τxx

+ 2

{

1 +
1

3(nK − 1)

}

τxyκxy −
1

9nK(nK − 1)
(tr τ )2τxx

+
2

3(nK − 1)
τxxτxyκxy, (29)

τ̇yy/zz = −

{

1 +
1

3(nK − 1)

}

τyy/zz −
1

3(nK − 1)
(τxx + τzz/yy)

−
1

9nK(nK − 1)
(tr τ )2 −

1

3nK

(

2 +
1

nK − 1

)

tr τ τyy/zz

+
2

3(nK − 1)
τxyκxy −

1

9nK(nK − 1)
(tr τ )2τyy/zz

+
2

3(nK − 1)
τyy/zzτxyκxy, (30)
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τ̇xy = −τxy + κxy + τyyκxy −
1

3nK

(

2 +
1

nK − 1

)

tr τ τxy

−
1

9nK(nK − 1)
(tr τ )2τxy +

2

3(nK − 1)
τ 2xyκxy. (31)

For the derivation, please refer to Sec. S5 in the supporting information. From Eqs. (29)–

(31), the constitutive equation for the FENE-P model can be expressed by a polynomial

of up to third degree in τ and κ. Here, we note that Eqs. (29)–(31) become equivalent

to the UCM model shown in Eqs. (S6)–(S8) in the supporting information in the limit

of nK → ∞.

To generate noise-free training data, we solve Eqs. (23)–(26) with nK = 10 and

∆t = 1 × 10−4 for 0 ≤ t ≤ 100. n We apply the oscillatory shear flow with γ0 = 2 and

various ω values (ω ∈ {0.1, 0.2, . . . , 1}). From the computed stress data, we collect data

at the interval of ∆ttrain = 1× 10−2.

3.4. FENE dumbbell model

We finally address the FENE dumbbell model, where the spring strength is represented

by Eq. (17). Since the FENE dumbbell model does not use any simplification for

the spring strength (e.g., Peterlin approximation shown in Eq. (18)), its analytical

constitutive equation has not been obtained. We apply Rheo-SINDy to this case to

see if an approximate constitutive equation can be obtained. The obtained equations

are validated by comparing the data obtained by numerically solving them with the

data obtained by BD simulations.

The training data are generated by the BD simulations using Eqs. (12)–(15) and

(17) with nK = 10, Np = 104, and ∆t = 1 × 10−4 for 0 ≤ t ≤ 100. We apply the

oscillatory shear flows with the same parameters as those in the FENE-P dumbbell

model. The BD simulation results with five different random seeds are averaged for

each condition. Since we do not use any approximation for the spring strength, the

values of h(t) differ for each individual dumbbell. From the computed stress data, we

collected data at the interval of ∆ttrain = 1× 10−2.

4. Results and Discussions

In this section, we present the results of the case studies for the dumbbell models.

From the case studies on phenomenological constitutive equations shown in Sec. S3

in the supporting information, we have made the following two findings: (i) taking

shear rheological data by an oscillatory shear test is more appropriate than by a simple

(constant) shear test, and (ii) among the five optimization methods shown in Sec. 2,

the STRidge or a-Lasso is superior to the other three methods. Thus, in what follows,

we generate the training data using the oscillatory shear test, and employ the STRidge

and a-Lasso as optimization methods.
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Figure 3. (a) The number of total terms obtained by the STRidge (black) and a-

Lasso (red) for the training data generated by the Hookean dumbbell model, and

(b) the obtained constitutive equations. The exact equations are given in Eqs. (19)–

(21). The horizontal line in (a) indicates the correct number of terms. In (a), circle,

triangle, and square symbols indicate the total numbers of terms obtained by the data

for Np = 103, 104, and 105, respectively.

4.1. Hookean Dumbbell Model

We first explain the results for the Hookean dumbbell model. We here used the

polynomial library that includes up to 2nd order terms of τxx, τyy, τxy, and κxy. Thus,

the total number of candidate terms is NΘ = 15 for each component.

Figure 3 shows the Rheo-SINDy results for the Hookean dumbbell model with

the different numbers of dumbbells. We note that the standard deviation of τ in

the training data decreases proportionally with N−1/2
p . From Fig. 3(a), as the value

of Np increases, sparser solutions are obtained especially for Rheo-SINDy with the

STRidge. Unlike the case of the UCM model (cf. Fig. S1 in the supporting information),

which can be considered as the “noise-free” case of the Hookean dumbbell model, the

STRidge provides the correct number of terms only within a narrow range of α values.

Nevertheless, if we choose the appropriate α value, the (nearly) correct constitutive

equations can be found by the STRidge, as shown in the upper part of Fig. 3(b). We

note that the terms containing τyy appear in the time evolution equation for τxy obtained

by the STRidge. Although these terms do not affect the predictions because τyy = 0,

these terms do not appear in the correct equation. We speculate that the appearance

of these terms is due to the correlation effects of the noise in Rx and Ry on the stress

(cf. Eq. (15)). When comparing the STRidge and a-Lasso, it is evident that the a-Lasso

provides stable and sparse solutions across a broader range of α values, regardless of the

Np value. Furthermore, we confirm that the correct equations can be obtained using the

a-Lasso, as shown in the lower part of Fig. 3(b). This partially suggests the effectiveness

of the a-Lasso in discovering essential terms from noisy data.
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Figure 4. (a) The total number of terms and (b) the error rate for the conformation

tensor C of the FENE-P dumbbell model obtained by Rheo-SINDy with the STRidge

(black squares) and a-Lasso (red reverse triangles). The horizontal line in (a) indicates

the correct number of terms. The training data were generated by Eqs. (24)–(26) with

nK = 10.

4.2. FENE-P dumbbell Model

We next examine whether Rheo-SINDy can find more complex differential equations

(i.e., the FENE-P dumbbell model) than the UCM model and the Giesekus model. For

the Rheo-SINDy regressions of the differential equations for the conformation tensor C

of the FENE-P dumbbell model explained in Sec. 3.3, we prepare the following custom

library:

Θ =















1 Ω(t1) Ω2(t1) fFENE(t1)Ω(t1)

1 Ω(t2) Ω2(t2) fFENE(t2)Ω(t2)
...

...
...

...

1 Ω(tn) Ω2(tn) fFENE(tn)Ω(tn)















, (32)

where Ω includes non-zero components of C under shear flow (Cxx, Cyy, Czz, and Cxy)

and κxy, and Ω2 is the vector composed of all the multiplied combinations of the Ω

components. The total number of library functions is thus NΘ = 26.

Figure 4 indicates (a) the total number of predicted terms and (b) the error rate

as a function of the hyperparameter α for the STRidge and the a-Lasso. The error rate

is defined as the sum of the mean squared errors (MSEs) of ṫµν − Θξ̂µν . The MSEs

were scaled so that the maximum value of each method was 1. Similar to the results

for the phenomenological constitutive equations shown in Sec. S3 in the supporting

information, the a-Lasso provides sparser solutions than the STRidge, and the STRidge

gives lower error rates than the a-Lasso. Figure 5 presents the differential equations

obtained by the STRidge and a-Lasso for two α values that yield the nearly correct
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Figure 5. The differential equations for the conformation tensor C of the FENE-P

dumbbell model found by Rheo-SINDy with the STRidge and the a-Lasso. The exact

equations are given in Eqs. (24)–(26).

number of terms with a small error rate. From the lower part of Fig. 5, while the a-

Lasso can provide sparser solutions, it does not guarantee that these are correct (cf.

Eqs. (24)–(26)). Specifically, in all cases for τxx, τyy, and τzz, the a-Lasso has failed to

identify the constant term in Eqs. (24) and (25), which is a possible source of larger errors

compared to the STRidge. In the case of the STRidge, we confirmed that by choosing

the appropriate α (α = 1× 10−1), nearly correct differential equations can be obtained,

as shown in the upper part of Fig. 5. Since the yy-component and zz-component of the

stress are equivalent, the exact equations can be recovered by setting Cyy = Czz. Thus,

we found that the correct differential equations for the FENE-P dumbbell model can be

obtained if we can prepare the proper library functions and choose the appropriate value

of the hyperparameter. Figure 6 shows the test simulation results using the identified

differential equations for C in Fig. 5 and the dimensionless form of Eq. (23). Here, the

oscillatory shear flow with γ0 = 4 and ω = 1, which is outside of the training data,

was considered. From Fig. 6, the equations obtained by the STRidge can reproduce

the exact solutions even when the equations are not exactly correct (α = 1× 10−3). In

contrast, the test simulations with the differential equations obtained by the a-Lasso

show the deviations from the test data, especially for τxx. These results emphasize the

need to choose an appropriate optimization method to obtain reasonable solutions.

We then examine whether the stress expression of the constitutive equation for the

FENE-P dumbbell model (cf. Eqs. (29)–(31)) can be found by Rheo-SINDy. For such
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Figure 6. The test simulation results using the equations obtained by (a) the STRidge

and (b) a-Lasso. Here, the test simulations were conducted with γ0 = 4 and ω = 1.

The black, blue, and red lines show τxx, τyy, and τxy. The bold, thin dotted, and thin

solid lines indicate the exact solutions, predictions with smaller α values (α = 1×10−3

for the STRidge and α = 1 × 10−7 for the a-Lasso), and predictions with larger α

values (α = 1× 10−1 for the STRidge and α = 1× 10−4 for the a-Lasso).

a purpose, we prepared the following custom library:

Θ =















1 {tr τ (t1)}
pTs(t1) {tr τ (t1)}

2 {Ts(t1)}
pκxy(t1)

1 {tr τ (t2)}
pTs(t2) {tr τ (t2)}

2 {Ts(t2)}
pκxy(t2)

...
...

...
...

1 {tr τ (tn)}
pTs(tn) {tr τ (tn)}

2 {Ts(tn)}
pκxy(tn)















, (33)

where Ts includes {τxx, τyy, τzz, τxy} and p (= 0, 1, 2) is the polynomial order. Thus, the

total number of library functions is NΘ = 29. We prepared the library that includes at

least the terms present in Eqs. (29)–(31). Furthermore, we excluded terms that could

potentially become large, such as higher-order terms involving κxy. When such terms

are included in the solutions, the differential equations may be unstable, and in worse

cases, they may also diverge.

Figure 7 shows (a) the total number of terms and (b) the error rate obtained by

Rheo-SINDy with the STRidge and a-Lasso. Similar to what we noted previously, the

a-Lasso can yield sparser solutions than the STRidge. Based on the number of terms

shown in Fig. 7(a) and the error rates shown in Fig. 7(b), we chose several α values

with a small number of terms and a low error rate. Figure 8 presents the equations

obtained using the chosen α. From Fig. 8, the equations predicted by the STRidge with

α = 1 and the a-Lasso with α = 1× 10−4 are almost the same; conversely, the solutions

for small α values significantly differ between the two methods. For the STRidge with

α = 1× 10−2, the identified equations are close to the correct equations (cf. Eqs. (29)–

(31)). Furthermore, the coefficient values for the correctly obtained terms are close
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Figure 7. (a) The total number of terms and (b) the error rate for the constitutive

equation of the FENE-P dumbbell model obtained by the STRidge (black squares) and

the a-Lasso (red reverse triangles). The horizontal short-dashed line in (a) indicates

that the number of terms is zero.

Figure 8. The constitutive equations for the FENE-P dumbbell model obtained by

the STRidge and a-Lasso. The exact equations are given in Eqs. (29)–(31).

to the correct values. For the a-Lasso with α = 3 × 10−8, several coefficients for the

correctly obtained terms, such as τxx, τxy, and τxxτxyκxy in the equation for τ̇xx, are close

to the exact values, but for other several terms, such as tr τ τxx in the equation for τ̇xx,

the correct coefficient values are not obtained. Nevertheless, from Fig. 9, which shows
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Figure 9. Test simulation results under the oscillatory shear flow with γ0 = 4 and

ω = 1 for the constitutive equations of the FENE-P dumbbell model obtained by (a)

the STRidge and (b) a-Lasso. The black, blue, and red lines represent the xx-, yy-,

and xy-components of the stress tensor, respectively. The bold lines show the exact

solutions. The thin solid and short-dashed lines indicate the results with smaller α

values (α = 1 × 10−2 for the STRidge and α = 3 × 10−8 for the a-Lasso) and with

larger α values (α = 1 for the STRidge and α = 1× 10−4 for the a-Lasso).

Table 1. The mean squared error (MSE) between predicted and exact solutions for

the FENE-P dumbbell model.

method α MSE (τxx) MSE (τyy) MSE (τxy)

STRidge 1× 10−2 1.1× 10−1 5.0× 10−5 5.1× 10−3

STRidge 1 2.3 8.2× 10−3 8.9× 10−2

a-Lasso 3× 10−8 3.4× 10−1 3.0× 10−3 3.8× 10−2

a-Lasso 1× 10−4 2.3 8.2× 10−3 9.0× 10−2

the test simulation results, the equations obtained by the STRidge with α = 1 × 10−2

and the a-Lasso with α = 3 × 10−8 can well reproduce the exact solutions including

the small oscillation of τyy. Although the equations obtained by the STRidge and a-

Lasso demonstrate the similar performance in the test simulations shown in Fig. 9, the

difference in predictions is quantified by their MSEs shown in Table 1. When α is small,

the error in τxx is of the same order for both methods, but for predictions of τyy and

τxy, the STRidge outperforms the a-Lasso. The STRidge, however, provides a sparse

solution within a narrow range of α values, requiring careful selection of α.

4.3. FENE dumbbell Model

Finally, we address the FENE dumbbell model. As explained in Sec. 3.4, the FENE

dumbbell model does not have an analytical expression of the constitutive equation.
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Figure 10. (a) The total number of terms and (b) the error rate for the FENE

dumbbell model predicted by the STRidge (black squares) and the a-Lasso (red reverse

triangles). The horizontal short-dashed line in (a) indicates that the number of terms

is zero.

equations

Figure 11. The predicted constitutive equations for the FENE dumbbell model (left)

and the test simulation results (right). Here, the a-Lasso was utilized to obtain the

approximate constitutive equations. For test simulations, we solved the constitutive

equations under the oscillatory shear flows with γ0 = 3 and ω = 1 (right upper panel)

and γ0 = 4 and ω = 1 (right lower panel). The bold lines show the exact solutions,

and the thin solid and short-dashed lines show the results with the smaller α value

(α = 1× 10−6) and the larger α value (α = 3× 10−4).

Thus, we here develop an approximate constitutive equation using Rheo-SINDy.

To obtain dynamical equations by Rheo-SINDy, one first needs to design an

appropriate library Θ. To prepare Θ for the FENE dumbbell model, we utilize the

physical insights obtained from the analytical expression of the FENE-P dumbbell

model. We here assume the constitutive equation of the FENE-P dumbbell model

is similar to that of the FENE dumbbell model. Since the FENE-P dumbbell model is
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a simplified version of the FENE dumbbell model, we believe that this is a reasonable

assumption. Here, we note that the stress expression shown in Eq. (23) is no longer

applicable to the FENE dumbbell model since the values of h(t) differ for each individual

dumbbell. Thus, it is invalid to obtain stress through the conformation tensor C. Based

on the above considerations, we decided to use the custom library presented in Eq. (33),

which was also used in the constitutive equation of the FENE-P dumbbell model.

Figure 10 compares (a) the total number of terms and (b) the error rate predicted

by the STRidge and a-Lasso. Similar to the previous discussions, we can obtain sparse

solutions over a wide range of α values with the a-Lasso, whereas the STRidge gives

sparse solutions only within a limited range of α. The left table in Fig. 11 shows the

equations obtained by the a-Lasso with two α values chosen from the viewpoints of the

sparsity and error rate in the same way as Fig. 5. We note that the predictions obtained

by the STRidge are inferior to those obtained by the a-Lasso shown in Fig. 11, which

is discussed in Sec. S6 in the supporting information. From the left table in Fig. 11,

if α is appropriately chosen, the a-Lasso can give sparse equations with coefficients

of reasonable (not excessively large) magnitudes. Comparing the equations for the

FENE-P model obtained by the a-Lasso with α = 3 × 10−8 (Fig. 8) and those for

the FENE model obtained by the a-Lasso with α = 1 × 10−6 (Fig. 11), the appearing

terms are almost identical, which demonstrates the similarity between these models.

The difference in the coefficients thus represents the difference between these models.

The right panels in Fig. 11 show the test simulation results obtained by the equations

shown in the left table. We found that the equations obtained with α = 1 × 10−6 can

reproduce well the BD simulation results outside the range of the training data within

the investigated parameters, including the oscillatory behavior of τyy. (With the large α

(α = 3×10−4), the identified equation for τyy becomes τ̇yy = 0, which fails to reproduce

the oscillatory behavior of τyy.) This success suggests that Rheo-SINDy with the a-Lasso

is effective for discovering unknown constitutive equations. Nevertheless, we note that

the equations presented in Fig. 11 may fail to predict test data significantly outside the

range of the training data. Reproducing such highly nonlinear data would require the

nonlinear terms dropped in Fig. 11. In this sense, the constitutive equations for the

FENE dumbbell model obtained here are appropriately referred to as the approximate

constitutive equations.

Thanks to the equations obtained using Rheo-SINDy, it is possible to provide a

physical interpretation with the assistance of rheological knowledge. For example, from

the comparison of the equations obtained for the FENE-P dumbbell model (cf. Fig. 8)

and those for the FENE dumbbell model (cf. Fig. 11), the equations for larger α value

(α = 1 × 10−4 for the FENE-P dumbbell model and α = 3 × 10−4 for the FENE

dumbbell model) are similar except for the coefficient values. Furthermore, the terms

in these equations are the same as those for the UCM model (and thus the Hookean

dumbbell model). This indicates that all of these models share the same origin based on

the dumbbell model. The linear term of stress in the constitutive equation represents the

relaxation of stress (see Eq. (S5) in the supporting information). Since the relaxation



Manuscript for Machine Learning: Science and Technology 18

time at equilibrium (λ = ζ/4heq) is taken as the unit time in this study, the coefficient

of this term should be −1 at equilibrium (and thus for the UCM model, see Eqs. (S6)–

(S8)). From Figs. 8 and 11, the coefficient of the linear term of stress is smaller than

−1, which indicates λsf < λeq with the subscript “sf” and “eq” standing for “shear

flow” and “equiliblium”, respectively. This indicates that under shear flow, the values

of spring strength for the FENE-P and FENE dumbbell models become larger than heq,

which implies the appearance of the FENE effects under flow. From this discussion, it

is evident that Rheo-SINDy can provide physically interpretable constitutive equations.

5. Concluding Remarks

We tested that the sparse identification for nonlinear dynamics (SINDy) modified for

nonlinear rheological data, which we call Rheo-SINDy, is effective in finding constitutive

equations of complex fluids. We found that Rheo-SINDy can successfully identify correct

equations from training data generated from known constitutive equations, as well as

provide approximate constitutive equations (or reduced order models) from training data

generated by mesoscopic models when constitutive equations are analytically unknown.

Rheo-SINDy for two phenomenological constitutive equations (i.e., the upper

convected Maxwell model and Giesekus model) revealed the following two things. First,

compared to constant shear tests, oscillatory shear tests are appropriate for generating

training data. Second, the sequentially thresholded Ridge regression (STRidge) and

adaptive Lasso (a-Lasso) are effective in finding appropriate constitutive equations.

We then examined the commonly used mesoscopic model, namely the dumbbell model

with three different representations of spring strength: the Hookean, FENE-P, and

FENE springs. Although the Hookean and FENE-P dumbbell models have analytical

constitutive equations, for the FENE dumbbell model, there is no analytical expression

of the constitutive equation. We confirmed through the Hookean dumbbell model that

even in the presence of noise, the a-Lasso provides the correct solution over a wide range

of the hyperparameter α. Rheo-SINDy was also effective in discovering the complex

constitutive equations of the FENE-P dumbbell model. This case study revealed that

the identification of complex equations requires the preparation of an appropriate custom

library based on prior physical knowledge. Using physical insights obtained from the

Hookean and FENE-P dumbbell models, we attempted to find approximate constitutive

equations for the FENE dumbbell model. We found that the a-Lasso can successfully

give the approximate constitutive equations, which can be used in predictions beyond

the range of the training data.

From our investigation, Rheo-SINDy with the STRidge or a-Lasso is effective for

discovering constitutive equations from nonlinear rheological data. We found that the

STRidge is generally superior in terms of retaining correct terms, while the a-Lasso

is more robust to the selection of α than the STRidge. To obtain correct constitutive

equations, in addition to selecting the appropriate optimization method, we are required

to design an appropriate library by using physical insights, namely domain knowledge.



Manuscript for Machine Learning: Science and Technology 19

Designing such a proper library necessitates not only including necessary terms but also

excluding unnecessary terms.

This research is expected to have an impact on fields such as rheology and fluid

mechanics. From a rheological perspective, for several systems such as entangled

polymers [42, 43] and wormlike micellar solutions [44, 45], sophisticated mesoscopic

models suitable for numerical simulations under flow have been proposed. These

mesoscopic models can generate reasonable training data not only under shear flow but

also under extensional flow. Finding new approximate models from the data obtained

by these mesoscopic simulations would be an interesting research subject. Furthermore,

it would be desirable to conduct Rheo-SINDy for experimental data obtained by Large

Amplitude Oscillatory Shear (LAOS) experiments [46]. Since the LAOS measurements

do not provide all the major stress components under shear flow, exploring methods

for discovering the constitutive equations from experimental data would be a future

challenge. When approximate constitutive models are identified, those models can be

employed for predictions of complex flows, which would deepen our understanding of

complex fluids. We will continue our research in these directions.
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Table S1. The regularization term R(ξµν) for the sparse regression methods.

Method Regularization term R(ξµν)

STLSQ λ0||ξµν ||0
STRidge λ0||ξµν ||0 + λ2||ξµν ||

2
2

Lasso λ1||ξµν ||1
E-Net λ1||ξµν ||1 + λ2||ξµν ||

2
2

a-Lasso λ1||ξ
′
µν ||1

S1. Sparse Regression Methods

To solve the optimization problem in Eq. (9) in the main text, we used five sparse

regression methods: (i) the sequentially thresholded least squares (STLSQ), (ii)

sequentially thresholded Ridge regression (STRidge), (iii) least absolute shrinkage and

selection operator (Lasso), (iv) Elastic-Net (E-Net), and (v) adaptive Lasso (a-Lasso).

The differences among these methods lie in the regularization term R(ξµν) as shown

in Table S1. The hyperparameters of ℓi norm (i = 0, 1, 2) are denoted as λi (> 0). The

ℓ0 and ℓ1 norms are defined as

||ξµν||0 =
∑

j

δ(ξµν,j) (S1)

and

||ξµν||1 =
∑

j

|ξµν,j|, (S2)

where δ(ξµν,j) is the Kronecker delta function, which is equal to 1 if ξµν,j 6= 0 and 0

otherwise. The vector ξ′
µν in the a-Lasso is defined as ξ′

µν = wµν ⊗ ξµν , where ⊗ is

the element-wise product and wµν is the adaptive weight vector and its j-th element is

defined as wµν,j = |ξµν,j|
−δ with δ being the positive constant.

The STLSQ and STRidge were implemented by iteratively conducting the least

square regression and the Ridge regression, respectively, while setting the coefficients

with smaller absolute values than a certain threshold α (> 0) to zero based on the

original papers [S1, S2]. In the STRidge, the hyperparameter λ2 was set to 0.05. The

Lasso, E-Net, and a-Lasso were implemented using the scikit-learn library [S3]. In this

library, the loss functions for the Lasso and E-Net are respectively defined as

ξ̂µν = argmin
ξµν

1

2n
||ṫµν −Θξµν ||

2
2 + α||ξµν ||1, (S3)

and

ξ̂µν = argmin
ξµν

1

2n
||ṫµν −Θξµν ||

2
2 + αβ||ξµν||1 +

α(1− β)

2
||ξµν||

2
2, (S4)

where n is the number of data points, β is the ℓ1 ratio, and α and β are the

hyperparameters. The loss function for the Lasso is obtained by setting β = 1 in

Eq. (S4). In this study, β was set to 0.5 for the E-Net. According to the original paper
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of a-Lasso [S4], the a-Lasso can be implemented as the Lasso problem as the following

steps:

(i) Define ξ′µν,j = ξµν,j/wµν,j, j = 1, . . . , J .

(ii) Solve the Lasso problem for ξ′
µν using Eq. (S3).

(iii) Output ξ̂µν,j = ξ̂′µν,j/wµν,j, j = 1, . . . , J .

The adaptive weight wµν,j depends on the coefficients, and thereby the output coefficients

can be varied in each iteration. To obtain the converged solution, we initialized the

weights as unit vectors w = 1 and repeated the above steps until the coefficients ξ̂µν,j
no longer change [S5]. Here, the hyperparameter δ was set to 3 (see Sec. S4 for the

effect of δ).

S2. Case Studies for Phenomenological Constitutive Equations

S2.1. Upper Convected Maxwell (UCM) Model

The simplest constitutive equation for viscoelastic fluids is the upper convected Maxwell

(UCM) model [S6] shown as

dτ

dt
− τ · κ+ − κ · τ = −

1

λ
τ + 2GD. (S5)

Here, the left-hand side of Eq. (S5) is the upper-convected time derivative of τ , λ is

the relaxation time, G is the modulus, and D is the deformation rate tensor defined as

D = (κ+κ+)/2. Using λ as the unit time and G as the unit stress (i.e., λ = G = 1), we

can obtain dimensionless expressions for time t̃ = t/λ, velocity gradient tensor κ̃ = λκ,

and stress τ̃ = τ/G. In what follows, we omit the tilde in dimensionless variables for

simplicity. The dimensionless form of the UCM model under shear flow is thus written

as

τ̇xx = −τxx + 2τxyκxy, (S6)

τ̇yy/zz = τyy/zz = 0, (S7)

τ̇xy = −τxy + κxy + τyyκxy = −τxy + κxy. (S8)

Here, since the initial conditions for τ are set to the values of τ at equilibrium, namely

τ = 0, τyy/zz of the UCM model is zero under shear flow.

For the UCM model, we generate training data by numerically solving Eqs. (S6)–

(S8) under two shear flow scenarios: simple shear and oscillatory shear tests. For

the simple shear test, the shear rate is kept constant (κxy = γ̇) across various values

(γ̇ ∈ {1, 1.7, 2.8, 4.6, 7.7, 13, 22, 36, 60, 100}) with simulations running from t = 0 to

t = 10 using a time step of ∆t = 1.0 × 10−4. The oscillatory shear test introduces a

time-dependent oscillatory shear strain, γ(t) = γ0 sin(ωt), with γ0 = 2 and ω = 1, over

a period from t = 0 to t = 100, employing the same time step. In both tests, data are

collected at intervals of ∆ttrain = 1× 10−2, resulting in a total of 104 data points for the

training data.



Supporting Information for Machine Learning: Science and Technology S4

S2.2. Giesekus Model

The Giesekus model, which is one of the most popular phenomenological constitutive

equations [S7], shows typical shear rheological properties and is used to fit various

complex fluids, including polymer solutions and wormlike micellar solutions. The

tensorial form of the Giesekus constitutive equation can be written as

dτ

dt
− τ · κ+ − κ · τ = −

1

λ
τ −

αG

Gλ
τ · τ + 2GD, (S9)

where αG is the parameter governing the nonlinear response of the Giesekus model. The

Giesekus equation under shear flow is thus given by

τ̇xx = −τxx − αG(τ
2
xx + τ 2xy) + 2τxyκxy, (S10)

τ̇yy = −τyy − αG(τ
2
yy + τ 2xy), (S11)

τ̇zz = 0, (S12)

τ̇xy = −τxy − αG(τxx + τyy)τxy + τyyκxy + κxy. (S13)

Here, all quantities are non-dimensionalized by using λ as the unit time and G as the

unit stress. From Eqs. (S10)–(S13), the total number of collect terms in the Giesekus

model is 12.

We generate the training data by solving Eqs. (S10)–(S13) numerically with

αG = 0.5 and ∆t = 1 × 10−4. We note that the Giesekus model with αG = 0.5

gives sufficient nonlinear features under shear flow. We applied the oscillatory shear

flow with γ0 = 2 and various ω values (ω ∈ {0.1, 0.2, . . . , 1}) for 0 ≤ t ≤ 100. From the

computed stress data, we collected data at the interval of ∆ttrain = 1× 10−2.

S3. Rheo-SINDy Results for Phenomenological Constitutive Equations

S3.1. Upper Convected Maxwell Model

Through this case study, we first check the appropriate methods to take the shear

rheological data for Rheo-SINDy. Figure S1 shows the training data and results for the

UCM model. Figure S1(a) and (b) are the stress data under the simple shear flows with

the various shear rates and those under the oscillatory shear flow.

We conducted the Rheo-SINDy regressions by using the polynomial library that

includes up to third order terms of τxx, τyy, τxy, and κxy. Thus, there were 35 candidate

terms for each component of the constitutive equation. The terms related to τzz were

excluded because they do not contribute to the UCM dynamics. The correct number

of terms is four, as shown in Eqs. (S6)–(S8). Figures S1(c) and (d) present the number

of total terms varying with the hyperparameter α obtained by Rheo-SINDy using the

training data (a) and (b), respectively (for the detail of the hyperparameter α, see

Sec. S1). Figure S1(c) indicates that the sparse solutions can be obtained by the STLSQ,

STRidge, and a-Lasso, but not by the Lasso and E-Net. Moreover, regarding the number

of terms, the STLSQ and STRdge exhibit similar behavior. Specifically, we confirm

that the correct number of terms (cf. Eqs. (S6)–(S8)) are obtained by the STLSQ and
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(c)

(d)

from training data (a)

from training data (b)

data method equations

(a)

(a) a-Lasso

(b) STRidge

(b) a-Lasso

(e) SINDy results

STRidge

Figure S1. Training data obtained by the UCM model (a) under simple shear flow

(κxy = γ̇) and (b) under oscillatory shear flow (κxy = γ0ω cos(ωt)). The number of

total terms obtained by (c) the training data (a) (i.e., simple shear flow) and by (d) the

training data (b) (i.e., oscillatory shear flow). (e) The constitutive equations obtained

by Rheo-SINDy. Here, the exact equations for the UCM model under shear flow are

shown in Eqs. (S6)–(S8). The parameters for the applied shear flows to obtain the

training data are summarized in Sec. S2.1. In (b), xx-, yy-, and xy-components of the

stress tensor are plotted with the black solid, red dotted, and blue dash-dotted lines,

respectively. In (c) and (d), the number of total terms for five different optimization

methods is plotted against the hyperparameter α. The black horizontal lines in (c)

and (d) indicate the correct number of the terms in the UCM model.

STRidge with 3×10−3 ≤ α ≤ 3×10−1. Figure S1(d) indicates that the STLSQ, STRidge,

and a-Lasso yielded the correct number of terms, though all five methods gave sparse

solutions. In most of the cases where the number of terms obtained was correct, the

obtained coefficients were also correct for the UCM model. These results suggest that

the oscillatory shear test is more appropriate than the simple shear test to obtain the

correct constitutive equations for the UCM model. Figure S1(e) lists the constitutive

equations obtained by the STRidge and a-Lasso. We can see that the STRidge and

a-Lasso can give the correct constitutive equations, except for the a-Lasso in the simple

shear test. Furthermore, we confirmed that the correct equations were obtained even

for α values not shown in Fig. S1(e) in the case of the UCM model. These findings show

the basic validity of finding the constitutive equations from the rheological data by

Rheo-SINDy. Figure S1 indicates that the STLSQ, STRidge, and a-Lasso demonstrate

better performance in discovering the correct constitutive equations compared to the

Lasso and E-Net; thus, we use the former three methods in the following discussion.
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Figure S2. (a) The number of total terms and (b) the error rate obtained for

the Giesekus model. The optimization methods include the STLSQ (green squares),

STRidge (red reverse triangles), and a-Lasso (blue triangles). The filled and open

symbols indicate the results with the single data trajectory of κxy = γ0ω cos(ωt) with

γ0 = 2 and ω = 0.1 for 0 ≤ t ≤ 100 and those with the multiple (10) data trajectories

of κxy = γ0ω cos(ωt) with γ0 = 2 and ω ∈ {0.1, 0.2, . . . , 1} for 0 ≤ t ≤ 100, respectively.

S3.2. Giesekus Model

We here explain the results of Rheo-SINDy for the Giesekus model. This case used the

polynomial library consisting of up to second order terms of τxx, τyy, τxy, and κxy, which

is the sufficient candidate terms to obtain the exact equations. Figure S2 shows (a) the

total number of terms and (b) the error rate obtained by Rheo-SINDy for the training

data of the Giesekus model. The error rate is defined as the sum of the mean squared

errors (MSEs) of ṫµν − Θξ̂µν . The MSEs were scaled so that the maximum value of

each method was 1. We show results using a single data trajectory with ω = 0.1 and

multiple data trajectories with ω ∈ {0.1, 0.2, . . . , 1.0} as the training data. Figure S2(a)

indicates that the a-Lasso evidently provides a sparser solution compared to the other

two methods. Furthermore, Fig. S2(b) demonstrates that the regressions using the

multiple data trajectories give solutions with smaller errors than those using the single

data trajectory. We note that, similar to the number of terms obtained by Rheo-SINDy,

coefficient values generally depend on α.

Figures S3(a) and (b) show the constitutive equations found by Rheo-SINDy and the

test simulation results, respectively. Here, we used the training data of the multiple data

trajectories. The α value for each method was chosen considering the sparsity indicated

in Fig. S2(a) and the small loss indicated in Fig. S2(b). For test simulations shown

in Fig. S3(b), we employed the oscillatory shear flow with γ0 = 4 and ω = 0.5, which

is outside of the parameters in the training data described in Sec. S2.2. Figure S3(a)

reveals that the STRidge with α = 3×10−1 can give almost exact constitutive equations,
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(b) test simulations(a) SINDy results

Figure S3. (a) The obtained constitutive equations for three optimization methods

and (b) test simulation results under the oscillatory shear flow with γ0 = 4 and ω = 0.5

for (i) the STLSQ, (ii) STRidge, (iii) and a-Lasso. The training data are the same as

those in Fig. S2. The exact equations for Giesekus model under shear flow are shown

in Eqs. (S10)–(S13). In (a), the constitutive equations obtained by the multiple data

trajectories are shown. In (b), the xx-, yy-, and xy-components of the stress tensor are

shown with black, blue, and red lines, respectively. The dotted and solid lines in (b)

denote the predictions by the equations shown in (a) and those by the exact Giesekus

model, respectively.

including the value of αG (cf. Eqs. (S10)–(S13)). As inferred from this, the predictions

based on the constitutive equations obtained by the STRidge demonstrate a good

agreement with the test data as shown in Fig. S3(b-ii). In contrast to the success of the

STRidge, the STLSQ and a-Lasso failed to identify the correct solution, as indicated in

Fig. S3(a). The constitutive equation obtained by the STLSQ with α = 3× 10−1 has a

low error rate as shown in Fig. S2(b), but its predicted τxx significantly deviates from

the test data as seen in Fig. S3(b-i). In contrast, although the a-Lasso did not provide

the correct solution for τxx, the test simulations with the obtained constitutive equations

exhibit a good agreement with the test data. These test simulations demonstrate that

the STRidge and a-Lasso are promising approaches for Rheo-SINDy.

S4. Hyperparameter of the Adaptive Lasso

Here, we shortly note the effect of changing the hyperparameter δ of the a-Lasso, which

determines the adaptive weight. Figure S4 compares the total number of terms for the

Giesekus model obtained by the a-Lasso with three different δ values. The training

data include the multiple trajectories, which are the same as those in Fig. S3. Here,

the results for the STLSQ are also shown for comparison. As shown in Fig. S4, the

solutions obtained by the a-Lasso with δ = 1, 3, and 5 are sparser than those obtained

by the STLSQ. Due to the increased effects of weights, the solutions for δ = 3 and 5
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Figure S4. The total number of terms obtained by the STLSQ (black symbols) and

a-Lasso (red symbols) for the Giesekus model. Here, the circles, diamonds, and squares

in the red series indicate the results with δ = 1, 3, and 5 for the adaptive weight wµν,j ,

respectively.

are sparser compared to the solutions for δ = 1. Moreover, the results with δ = 3 are

almost the same as those with δ = 5, although the a-Lasso with δ = 5 provides slightly

sparser solutions. Thus, the hyperparameter δ = 3 can be considered sufficiently large

to obtain sparse solutions. We note, in general, that a sparser solution is superior

from the perspective of overfitting and helps prevent unexpected divergence during test

simulations. From these discussions, in this study, we used δ = 3 as the adaptive weight

in the a-Lasso.

S5. Stress Expressions for the FENE-P Dumbbell Model

As noted in Sec. 3.3 in the main text, the constitutive equation for the FENE-P dumbbell

model can be expressed in terms of the stress (cf. Eqs. (29)–(31)). We here show the

derivation of the constitutive equation for the FENE-P model [S8].

To improve clarity, let us rewrite the stress τ in Eq. (15) in the main text as follows:

τ (t) = ρheqZ
−1
eq Z〈R(t)R(t)〉 −GI, (S14)

where Z has already been defined in Eq. (28) in the main text and Zeq indicates Z at

equilibrium. In what follows, we express all variables in dimensionless forms by using

the unit time λ and the unit stress ρkBT . Additionally, for simplicity, we omit the tilde

representing dimensionless quantities. Taking the trace of both sides of Eq. (S14) and

using the relation 〈R2(t)〉 = R2
max(1− Z−1), we can rewrite Z as a function of τ :

Z = 1 +
1

3nKZ−1
eq

(trτ + 3). (S15)

Taking the convected derivative of τ/Z, the time evolution of stress can be expressed

as

dτ

dt
− τ · κ+ − κ · τ = −Z−1

eq Zτ + 2D +
D lnZ

Dt
(τ + I), (S16)
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Figure S5. Test simulation results obtained by Rheo-SINDy with the STRidge for the

library shown in Eq. (33) in the main text. The test simulations are conducted under

the oscillatory shear flows with (a) γ0 = 3 and ω = 1 and (b) γ0 = 4 and ω = 1. The

bold lines show the exact solutions, and the thin solid and short-dashed lines show the

results with the smaller α value (α = 1× 10−1) and the larger α value (α = 1).

which is the same as in Eq. (27) in the main text. Since we do not address the spatial

gradient in rheological calculations, D(· · ·)/Dt simply reduces d(· · ·)/dt. To obtain

Eq. (S16), we used the following relation that can be obtained by Eqs. (22) and (23) in

the main text:
dC

dt
−C · κ+ − κ ·C = −

nK

3
τ . (S17)

From Eq. (S15), the time evolution of lnZ can be expressed in terms of tr τ as

d

dt
trτ =

{

3nKZ
−1
eq + (trτ + 3)

} d lnZ

dt
. (S18)

Furthermore, taking trace of Eq. (S16) and using Eq. (S18), we can have

d lnZ

dt
=

1

3nKZ−1
eq

{

−Z−1
eq Ztrτ + 2trD + tr

(

τ · κ+ + κ · τ
)}

. (S19)

Combining Eqs. (S16) and (S19), we can express the time evolution of τ (i.e., τ̇ ) as a

function of τ and κ. Specifically, Eqs. (S16) and (S19) reduce to Eqs. (29)–(31) in the

main text under shear flow.

S6. STRidge Regressions for the FENE Dumbbell Model

Figures S5 and S6 show the test simulation results for the FENE dumbbell model using

the approximate constitutive equations obtained by Rheo-SINDy with the STRidge.

Here, in Fig. S5, we employed the custom library shown in Eq. (33) in the main text

(NΘ = 29), while in Fig. S6, we utilized a polynomial library including polynomial terms
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Figure S6. Test simulation results obtained by the STRidge for the library including

polynomial terms up to the third order of {τxx, τyy, τzz , τxy, κxy}. The flow parameters

for the test simulations are the same as those in Fig. S5. The bold lines show the exact

solutions, and the thin solid and short-dashed lines show the results with the smaller

α value (α = 3× 10−2) and the larger α value (α = 1).

up to the third order of {τxx, τyy, τzz, τxy, κxy} (NΘ = 56). From the thin solid lines in

Fig. S5, which show the results with the smaller α = 1 × 10−1, while the magnitudes

of the predicted stress components almost match the results of the BD simulation,

spike-like predictions are occasionally observed. When using the third order polynomial

library, the solutions for the small α, indicated by thin solid lines in Fig. S6, closely

resemble the results of the BD simulations. This is likely attributed to the fact that

the larger number of candidate terms included in the library improves the predictive

ability of the model. Nevertheless, we note that increasing the number of terms in the

library without careful consideration does not necessarily lead to an improvement in

the model performance. By increasing the number of terms in the library, overfitting

issues may arise. For example, when Rheo-SINDy chooses terms that are likely to be

significantly large under shear flow, such as τxxκ
2
xy, there is an increased possibility that

the differential equations may fail to be solved when conducting test simulations for the

parameters outside of the training data.
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