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Superconducting transition, defined as vanishing of the resistivity, under a magnetic field in

a clean bulk type II superconductor with weak sample disorder is believed to be a reflection

of freezing of the vortex liquid to a kind of vortex solids. This fundamental issue on super-

conductivity is examined in detail. Based on the Ginzburg-Landau fluctuation theory for a

three-dimensional (3D) system and through a supplementary study in 2D case, we find that

the resistivity in the weakly disordered 3D case vanishes in a nearly discontinuous way, re-

flecting growth of the Bragg peaks on approaching the vortex lattice melting transition. In

contrast, such a sharp decrease of the resistivity does not clearly appear in the corresponding

2D case. The consequences of this difference in the vanishing behavior of the resistivity be-

tween the 2D and 3D systems are discussed in relation to available experimental facts.

1. Introduction

When a three-dimensional (3D) bulk type II superconductor is perfectly clean, the resis-

tivity ρ⊥ in a finite magnetic field and under a current perpendicular to the field remains finite

even in the low temperature limit because of the vortex flow.1) Therefore, a small but nonva-

nishing amount of disorder is inevitably assumed to be present in real clean superconducting

(SC) materials showing vanishing of ρ⊥ at a finite temperature Tρ. A nearly discontinuous

vanishing of ρ⊥, observed in high quality samples of such materials under much lower mag-

netic fields than the zero temperature depairing field Hc2(0), is regarded as a consequence of a

glass transition.2, 3) As the ground state of the field-induced vortices in lower fields, the Bragg-

glass or the elastic glass was proposed.2, 4) It is believed that, on cooling to enter this glass

phase, the resistivity will vanish discontinuously reflecting the first order freezing transition

from the vortex liquid to the vortex solid in the perfectly clean limit. However, the realization

of a vortex glass (VG) in moderately clean cases, where large bundles of positionally corre-

lated vortices are formed, has also been proposed earlier.3, 5) In this picture, the vanishing of
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ρ⊥ does not have to discontinuously occur. Experimentally, situations6, 7) in which a nearly

discontinuous decrease of ρ⊥ does not directly reach complete superconductivity have been

seen repeatedly in clean samples. Therefore, an established theory on the nearly discontinu-

ous vanishing of ρ⊥ in moderately clean 3D type II superconductors still remains unavailable.

Similarly, a confirmed picture remains unavailable on the temperature dependences of ρ⊥

in relatively clean 2D systems of field-induced point vortices. In such 2D systems, a nearly

discontinuous vanishing of ρ⊥ is rarely seen even in relatively clean materials.8) It is unclear

at present whether this fact implies that the 2D vortex lattice melting in clean limit consists

of two-step continuous transitions.9)

In this work, the effects of freezing of the 2D and 3D vortex liquids on ρ⊥ are studied

in detail based on the high field Ginzburg-Landau (GL) fluctuation theory for a supercon-

ductor with weak point-like disorder included. It is well known that, in high fields, the SC

fluctuation contributing to thermodynamics is dominated by its lowest Landau level (LLL)

modes.10–15) On the Gaussian level, the VG fluctuation formulated in a form including effects

of the vortex solidification was discussed16) in the case with weak enough disorder, and a sud-

den enhancement of the VG fluctuation accompanying the first order vortex lattice melting in

clean limit was argued to be the origin of the nearly discontinuous vanishing of ρ⊥ observed

in high quality samples of high Tc cuprates.17) However, no calculation results on ρ⊥ based

on a detailed analysis including the interplay between the disorder and the mutual interaction

among the SC fluctuations have been presented previously.

In the present analysis, the parquet resummation technique18, 19) is used to evaluate the in-

terplay between the fluctuation-interaction and the disorder and to compute the renormalized

vertex correction to the impurity strength which forms the backbone of the VG correlation

function. This treatment can be fully performed in 2D, while the corresponding 3D results

will be approximately derived by utilizing the 2D results. It is shown that, in 3D case, the

resistivity shows a clear sudden drop, reflecting a sharp growth of the Bragg peak of the

vortex structural factor upon cooling,16) although the assumed VG transition is a continuous

one. In contrast, such a sharp drop of the resistivity is not clearly seen in 2D case: There,

it appears only faintly close to the end of the vanishing resistivity curves. Both in 2D and

3D cases with quite weak disorder, however, the temperature at which the resistivity shows

a sharp reduction is in good agreement with the vortex lattice melting temperature estimated

previously21, 22) based on experimental results and the numerical simulation in clean limit per-

formed in the LLL approximation.23, 24) These calculation results will be discussed through

comparison with available experimental results.25)
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The present paper is organized as follows. In sec.2, we introduce the GL model and ex-

plain how the mass renormalization is performed in the model by focusing on the 2D case.

The parquet analysis in 2D case is explained in sec.3, and the content in sec.2 and 3 is ex-

tended to the 3D case in sec.4. The VG fluctuation in clean enough systems is discussed in

sec.5, and the conductivity arising from the VG fluctuation is calculated in sec.6. In sec.7,

theoretical pictures following from numerical results on the resistivity are presented, and

comments relevant to experimental data are given in sec.8. Some details on theoretical anal-

ysis are given in Appendices A and B.

2. Model

The original model in studying a superconducting transition is conventionally the

Ginzburg-Landau (GL) Hamiltonian for the order parameter field ∆(r). In the case of a thin

film with thickness d shorter than the zero temperature coherence length ξ0, i.e., in 2D case,

the GL Hamiltonian is given by

HGL = dN(0)

∫

d2r

[

(t − 1)|∆|2 + u(r)|∆|2 + g0

2
|∆|4 + ξ2

0

∣

∣

∣

∣

∣

(

−i∇ + 2π

φ0

A

)

∆

∣

∣

∣

∣

∣

2]

, (1)

where t = T/Tc0 is the normalized temperature expressed by the zero field SC transition

temperature Tc0, φ0 is the flux quantum, and N(0) is the density of states of the normal elec-

tron system. Further, a random potential u(r) expressing a spatial variation of Tc0 has been

introduced for later convenience. By noting that the Boltzmann factor is exp(−HGL/kBT ),

however, we will choose to start from the normalized form

H[ψ] = HGL/(kBT ) = ξ−2
0

∫

d2r

[

(t−1)ρ(r)+u(r)ρ(r)+πtb
(2)

G
|ρ(r)|2+ξ2

0

∣

∣

∣

∣

∣

(

−i∇+2π

φ0

A(r)

)

ψ(r)

∣

∣

∣

∣

∣

2]

(2)

where ψ = ∆

√

dξ2
0
N(0)/kBT , ρ = |ψ|2, and b

(2)

G
= g0kBTc0/(2πξ

2
0
dN(0)). The randomness

with respect to u(r) is defined by u(r) = 0 and

u(r)u(r′) = ξ2
0∆

(2)δ(2)(r − r′), (3)

where the overbar implies that the random average was taken. Hereafter, all the length scales

will be normalized by ξ0.

Consistently with the Abrikosov mean field theory,26) the order parameter will be ex-

panded in terms of the ortho-normalized LLL eigenfunctions Up(r). In the Landau gauge

A = Hxey (4)
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with the unit vector ey in the y-direction, they are expressed as

ψ(r) =
∑

p

ϕpUp(r),

Up(r) =

(

h

πL̃2

)1/4

exp

(

ipy − h

2

(

x +
p

h

)2)

, (5)

where ϕp is the LLL fluctuation field with the index p expressing the degree of freedom of

the guiding center and counting the degeneracy in LLL, L̃ is the system size normalized by

ξ0, 2πr2
H = φ0/H is the area per vortex, and h = H/Hc2(0) = 2πξ2

0H/φ0 is the dimensionless

strength of the magnetic field. Here, the number Nv of degeneracy in LLL is given by

Nv =
∑

p

=
HS

φ0

=
S̃ h

2π
, (6)

where S̃ is the system area divided by ξ2
0. Then, using the Fourier transform of ρ, i.e.,

ρ(k) =
1

S̃ 1/2

∑

p

exp(ipk1/h)ϕ∗
p− k2

2

ϕ
p+

k2
2

, (7)

H[ψ] becomes

H[ψ] =
∑

p

µ0|ϕp|2 + tπb
(2)

G

∑

k

vk ρ(k)ρ(−k) +
∑

k

u−kv
1/2

k
ρ(k), (8)

where k = (k1, k2), µ0 = −1+ t + h is the bare mass, i.e., the mass of the unrenormalized LLL

fluctuation, and

vk = exp

(

−k2

2h

)

. (9)

Further, eq.(3) is rewritten as

uku−k′ = ∆
(2)δk1 ,k

′
1
δk2 ,k

′
2
. (10)

Since, more or less, the disordered phase of a random system is treated in this work, the

replica trick27) will be introduced for the free energy F in the manner

− F

kBT
= logZ = lim

n→+0

Zn − 1

n
, (11)

where

Zn =

∫ n
∏

a=1

D(ϕ∗a, ϕa) exp(−S 0 − S I),

S 0 =

n
∑

a=1

∑

p

µ0 |ϕa
p|2,

S I =
tπb

(2)

G

2S̃

n
∑

a,b,c,d=1

∑

p,p′,k

exp(i(p − p′)k1/h)[δa,cδb,dhbare,ab(k)
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+ δa,dδb,cĥbare,ab(k)]ϕ∗ap−ϕ
∗b
p′+
ϕc

p+
ϕd

p′−
, (12)

where the indices a, b, c, and d denote the replica indices, p± = p ± k2/2, p′± = p′ ± k2/2,

hbare,ab(k) = vk (δa,b − θ(t)),

θ(t) =
∆(2)

2πtb
(2)

G

, (13)

and

ĥbare,ab(k) =
1

Nv

∑

k′

exp(i(k′ × k)z/h) hbare,ab(k′). (14)

Here, for later convenience, ĥbare,ab (= hbare,ab) was introduced to clarify the symmetry be-

tween the two ”particle-hole” channels. In fact, it is found by examining28) the perturbation

series for the four-point vertex function that this symmetric form is preserved in any order of

the perturbation series. That is, in the corresponding form to the bare interaction action S I,

the fully renormalized interaction action takes the form

S R,I =
tπb

(2)

G

S̃

n
∑

a,b,c,d=1

∑

p,p′,k

exp(i(p − p′)k1/h) Γab,cd(k)ϕ∗ap−ϕ
∗b
p′+
ϕc

p+
ϕd

p′−
, (15)

where

Γab,cd(k) =
1

2
[δa,cδb,dhR,ab(k) + δa,dδb,cĥR,ab(k)],

ĥR,ab(k) =
1

Nv

∑

k′

exp(i(k′ × k)z/h) hR,ab(k′), (16)

and hR,ab(k) is a quantity to be derived self-consistently and takes the form

hR,ab(k) = δa,b f (k) − θ(t) w(k). (17)

We note that f (k) and w(k) are also dependent on θ(t).

Next, we explain how the physical quantities directly reflecting the positional correla-

tions between the vortices are defined in the present replica formalism. First, let us consider

the four-body correlation function 〈ϕ∗1ϕ∗2ϕ3ϕ4〉 which can be defined in clean limit with no

randomness. To directly see the positional correlation between the vortices, it is often conve-

nient to focus on the connected part of this correlation function in the manner

〈ϕ∗1ϕ∗2ϕ3ϕ4〉c ≡ 〈ϕ∗1ϕ∗2ϕ3ϕ4〉 − 〈ϕ∗1ϕ3〉〈ϕ∗2ϕ4〉 − 〈ϕ∗1ϕ4〉〈ϕ∗2ϕ3〉. (18)

On the other hand, this quantity is replica-diagonal in the replica formalism and is expressed

in the form

〈ϕ∗
1
ϕ∗

2
ϕ3ϕ4〉 = lim

n→+0

1

n

n
∑

a=1

〈ϕa∗
1 ϕ

a∗
2 ϕ

a
3ϕ

a
4〉. (19)
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Further, in the case of focusing on the fully renormalized vertex function Γ(k), it is convenient

to use the relation between the connected part of the correlation function and Γ(k)

〈ϕ∗p−ϕ∗p′+ϕp+ϕp′−〉c = −
4πtb

(2)

G

S̃ µ4

∑

k1

exp(i(p − p′)k2/h) Γ(k), (20)

where µ = 1/〈|ϕp|2〉, and Γ(k) = Γaa,aa(k).

2.1 Structural Factor

The quantity measuring the vortex positional order is the two-body correlation function

on the density ρ = |ψ|2 defined in the manner

f (R) ≡ [〈(ρ(r) − ρ0)(ρ(r + R) − ρ0)〉]r

ρ2
0

= ρ−2
0 [〈ρ(r)ρ(r + R)〉]r − 1, (21)

where ρ0 = 〈ρ(k = 0)〉, and, in LLL, it takes the form

f (R) = ρ−2
0

∑

k

eik·R vk 〈ρ(k)ρ(−k)〉 − 1. (22)

Further, using eqs.(7), (18), and (20), we find

〈ρ(k)ρ(−k)〉 = S̃
∑

p,p′

exp(i(p − p′)k1/h) 〈ϕ∗p−ϕ∗p′+ϕp+ϕp′−〉

= ρ2
0[δk1 ,0δk2,0 + 1 − 2xΓ(k)], (23)

where ρ0 = S̃ −1/2Nvµ
−1, and

x =
t h b

(2)

G

µ2
. (24)

In this way, we choose

f (k) = 1 − 2xΓ(k) (25)

as the quantity corresponding to the structural factor, because the original correlation function

is given by

f (R) =
∑

k

eik·Rvk f (k). (26)

2.2 Renormalized Mass

Next, the diagrams expressing the mass renormalization will be examined. Since these

diagrams shown in Figs.1 and 2 are diagonal in the replica indices, their expressions may be

written in terms only of the notation used for the clean limit.

As usual, the mass renormalization is expressed in terms of the self-energy terms Σ
(2)

1
+Σ

(2)

2

6/33



J. Phys. Soc. Jpn.

Fig. 1. Diagrams expressing the self-energy of the SC fluctuation in LLL. Each line with an arrow indicates

a LLL fluctuation propagator, the solid dot denotes the bare interaction vertex, the open circle indicated as Γ

denotes the fully renormalized vertex, and the dashed curve is the pair-wised random potential occurring after

the random average. The hatched semicircle is a vertex correction to the bare random potential, and its definition

is explained by Fig.2.

Fig. 2. Details of the hatched semicircle which includes the vertex correction to the bare random potential.

in the form

µ = t + h − 1 + Σ
(2)

1
+ Σ

(2)

2
. (27)

The self-energy contribution Σ
(2)

1
appearing even in clean limit is given by

Σ
(2)

1
= 2µx[ 1 − N−1

v x
∑

k

vkΓ(k) ]. (28)

The first term corresponds to Fig.1 (a) which is the Hartree-Fock term. The vertex correction

(shaded hemisphere region) in Fig.1 (c) is given by Fig.2 and the vertex Λ(p, p′) expressing

Fig.2 is

Λ(p, p′) = 〈ϕpϕ
∗
p′

∑

k

u−kv
1/2

k
ρ(k)〉 − πtb

(2)

G
〈ϕpϕ

∗
p′

∑

k′

Γ(k′)ρ(k′)ρ(−k′)
∑

k

u−kv
1/2

k
ρ(k)〉

= S̃ −1/2µ−2
∑

k

δp′,p+k2
u−k v

1/2

k
exp(ik1(p + p′)/2h)

×
[

1 − 2x

Nv

∑

k′

Γ(k′) exp(i(k′1(p′ − p) − k′2k1)/h)

]

. (29)

Using this expression, Σ
(2)

2
corresponding to Fig.1 (c) is simply expressed as

Σ
(2)

2
= −µxθ(t)

Nv

∑

k

vk

(

1 − 2x

Nv

∑

k′

Γ(k′) exp(i(k′ × k)z/h)

)
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Fig. 3. Examples of the nonparquet diagrams. The solid dots represent the bare vertices. For simplicity, the

arrows of the fluctuation propagators are not drawn.

Fig. 4. Figure defining the parquet diagrams. The top row consisting of the figures on Π1 defines the particle-

particle channel, while the remaining two rows represent the two particle-hole channels.

= − µxθ(t)

Nv

∑

k

vk(1 − 2xΓ(k)). (30)

Using the fact that, since the bare interaction vertex vk is isotropic in k and a function of k2,

Γ(k) is also a function of k2 as far as no transition occurs, the mass renormalization is finally

defined by the self-consistent relation

µ = t − 1 + h + (2 − θ)µx − 1 − θ
h

µx2

∫ ∞

0

d(p2)vpΓ(p). (31)
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3. Parquet Diagram Resummation

To obtain an expression of Γ(k) as accurately as possible, the parquet resummation tech-

nique will be used hereafter following Ref.18. In this approach,18, 19) the nonparquet diagrams

illustrated in Fig.3 and any higher order ones composed of them are neglected. Just like the

diagrammatic analysis for the Fermi liquid theory,29) the remaining diagrams, i.e., the bare

vertex carrying vk and the parquet diagrams belonging to Fig.4, will be taken into account to

obtain a fully-renormalized interaction vertex function Γ as accurately as possible. It will be

shown below how the formal results derived in Ref.18 are reproduced in the present analysis

using the Landau gauge (4).

First, the clean limit with no disorder will be considered. As sketched in Fig.4, the parquet

diagrams are composed of one particle-particle channelΠ1 and the two particle-hole channels

Π j ( j = 2 and 3).

The interaction term of the Hamiltonian expressed by the vertex Π j takes the form

∑

k1

∑

p1 ,p2,p3

exp(i(p2 − p3)k1/h)Π j(k1, p1 − p3)ϕ∗p1
ϕ∗p2

ϕp3
ϕp1+p2−p3

. (32)

According to this parametrization, the first row of Fig.4 expressing the relation that Π1 satis-

fies is expressed as

∑

k′
1

exp

(

i
(p2 − p3)k′

1

h

)

Π1(k′1, p1 − p3) =
x

Nv

∑

k′
1
,k
′′
1
,p′

exp(i(p2 − p′)k′1)/h)Λ1(k′1, p1 − p′)

× exp

(

i
(p1 + p2 − p3 − p′)k′′1

h

)

Γ(k′′1 , p′ − p3), (33)

where

Γ(k) = vk +
∑

j=1,2,3

Π j(k),

Λi(k) = vk +
∑

j,i

Π j(k). (34)

To change eq.(33) to a simpler form, the wave numbers p1 − p3, p2 − p3, and p′ − p3 are

rewritten as k2, p, and k′
2
, respectively, and the resulting eq.(33) will be multiplied by the

factor exp(−ipk1/h). Further, by summing over p, one obtains

Π1(k) = − x

Nv

∑

k′

Λ1(k − k′)Γ(k′) exp(i(k × k′)z/h) ≡ −x(Λ1 • Γ)(k). (35)

It is much easier to obtain the corresponding expressions to be satisfied by Π2 and Π3.

Consequently, the second and third rows of Fig.4 are expressed in the form

Π2(k) = −2xΛ2(k)Γ(k),

9/33
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Π3(k) = −2x

Nv

∑

k′

Λ3(k − k′)Γ(k′)

≡ −2x(Λ3 ∗ Γ)(k). (36)

The formulation explained above is straightforwardly extended to the disordered case.

For instance, one has only to assign replica indices a, b, c, and d to the external propagators

1, 2, 3, and 4 in Fig.4, respectively. Then, we find

Π1,ab,cd(k) = −x

n
∑

e, f=1

(Λ1,ab,e f • Γe f ,cd)(k),

Π2,ab,cd(k) = −2x

n
∑

e, f=1

Λ2,ae,c f (k)Γ f b,ed(k),

Π3,ab,cd(k) = −2x

n
∑

e, f=1

(Λ3,ae, f d ∗ Γ f b,ce)(k),

Γab,cd(k) = δacδbd(δab − θ(t))vk +

3
∑

i=1

Πi,ab,cd(k),

Λi,ab,cd(k) = Γab,cd(k) − Πi,ab,cd(k). (37)

Further, using symmetrical relations to be satisfied between Πi,ab,cd and Λi,ab,cd (see Appendix

A), these vertex functions are represented in the form

Π1,abcd(k) =
1

2
δacδbd[δabΓ1(k) − θΞ1(k)]

+
1

2
δadδbc[δabΓ̂1(k) − θΞ̂1(k)],

Π2,abcd(k) = Π̂3,abdc(k) =
1

2
δacδbd[δabΓ2(k) − θΞ2(k)]

+
1

2
δadδbc[δabΓ̂3(k) − θΞ̂3(k)],

Λ1,abcd(k) =
1

2
δacδbd[δabI1(k) − θJ1(k)]

+
1

2
δadδbc[δab Î1(k) − θĴ1(k)],

Λ2,abcd(k) = Λ̂3,abdc(k) =
1

2
δacδbd[δabI2(k)

− θJ2(k)] +
1

2
δadδbc[δab Î3(k) − θĴ3(k)]. (38)

Then, these representations will be substituted into eq.(37). By performing the summations on

the replica indices and by taking the n→ 0 limit, we obtain the following forms independent

10/33
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of the replica indices:

Γ1(k) = −x(I1 • fR − θI1 • vR − θJ1 • fR)(k),

Γ2(k) = −x(I2(k) fR(k) + I2(k)ĥR(k)

+ [Î3(k) − θĴ3(k)] fR(k)),

Γ3(k) = −x(I2 ∗ fR − θI3 ∗ vR − θJ3 ∗ fR)(k), (39)

and

Ξ1(k) = xθ(J1 • vR)(k),

Ξ2(k) = −x(I2(k)vR(k) + J2(k)[ fR(k) + ĥR(k)]

+ [Î3(k) − θĴ3(k)]vR(k)),

Ξ3(k) = xθ(J3 ∗ vR)(k), (40)

where

fR(k) = vk +

3
∑

j=1

Γ j(k),

vR(k) = vk +

3
∑

j=1

Ξ j(k),

Ii(k) = vk +
∑

j,i

Γ j(k),

Ji(k) = vk +
∑

j,i

Ξ j(k). (41)

4. Approximate treatment of 3D case

The analysis in sec.2 and 3 holds only in the 2D SC films. It is quite hard to directly

extend the approach in the preceding sections to the 3D case in a numerically tractable way

because of the additional appearance of the component parallel to the magnetic field of the

wavevector of the SC fluctuation. Nevertheless, by assuming that the nature of freezing to

the vortex lattice is essentially the same as each other in both dimensions, it is not difficult to

give an approximate expression of the fluctuation conductivity in 3D case. In this section, the

method we have used to obtain the 3D conductivity will be explained.

The simplest extension of the 2D GL Hamiltonian (1) is

H (3)[ψ] = ξ−3
0

∫

d3r

[

(t−1)ρ(r)+u(r)ρ(r)+πt

√

b
(3)

G
|ρ(r)|2+ξ2

0

∣

∣

∣

∣

∣

(

−i∇+ 2π

φ0

A(r)

)

ψ(r)

∣

∣

∣

∣

∣

2]

, (42)
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where ψ = ∆

√

ξ3
0
N(0)/kBT , ρ = |ψ|2, and b

(3)

G
= [g0kBTc0/(2πξ

3
0
N(0))]2. In place of eq.(3),

the random-average is defined by u(r) = 0 and

u(r)u(r′) = ξ3
0∆

(3)δ(3)(r − r′). (43)

The order parameter field ψ in 3D case is expanded via the product of the LLL eigenfunction

Up and the plain wave propagating along the field in the manner

ψ(r) = L̃−1/2
z

∑

p,q

ϕp,qeiqzUp(x, y), (44)

where L̃z = Lz/ξ0. Then, the expression corresponding to eq.(8) is

H (3)[ψ] =
∑

p,q

(µ0 + q2)|ϕp,q|2 +
tπ

√

b
(3)

G

S̃ L̃z

∑

K

∑

p,p′,q,q′

exp(i(p − p′)k1/h) vk ϕ
∗
p−,q−ϕ

∗
p′+,q

′
+
ϕp+,q+ϕp′−,q

′
−

+
1
√

S̃ L̃z

∑

p,q,K

u−Kv
1/2

k
exp(ipk1/h)ϕ∗p−,q−ϕp+,q+ , (45)

where q± = q ± k3/2. and K = k + k3 ẑ. In contrast to the 2D case, however, the coefficient

of the quadratic term of the renormalized Hamiltonian corresponding to the bare one eq.(45)

is a q-dependent function µ(q), and the renormalized vertex Γ corresponding to the bare one

vk should also become dependent on q and q′. It is not easy to follow such q-dependences

entangled with the k-dependences. For this reason, a general analysis for the 3D case becomes

numerically formidable.

Here, as a numerically tractable approximation, the fully renormalized vertex Γ will be

assumed hereafter not to be changed from the 2D result obtained in the manner mentioned in

the preceding section. This physically means that the fluctuation effect on the vortex lattice

formation is overestimated in the present approximation for 3D systems. In this approxima-

tion, eq.(35) is simply replaced by

Π
(3)

1
(k) = −x(3)(Λ

(3)

1
• Γ(3))(k), (46)

where x(3) = t h

√

b
(3)

G

∑

q[G(q)]2/L̃z, and G(q) is the SC fluctuation propagator in LLL. Here

and below, the quantity C(3) implies the corresponding expression in 3D case of the quantity

C in 2D case. Within the present approximation, other relations associated with the parquet

diagrams in 3D case are also obtained in the same way, i.e., simply by replacing x and θ in

the corresponding ones in 2D case with x(3) and θ(3), respectively, where

θ(3) =
∆(3)

2πt

√

b
(3)

G

. (47)

Further, the q-dependence inG(q) will also be assumed not to be renormalized in a consis-
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tent way with the above procedure for Γ. A similar treatment for the SC fluctuation propagator

G was used previously.28) Then, we have [G(q)]−1 = µ(3) + q2 with

µ(3) = t − 1 + h + Σ(3). (48)

Then, the q-integrals appearing in the 3D counterpart of Fig.1 are easily performed, and the

self-energy Σ(3) becomes

Σ(3) = 2µ(3)x(3)(2 − θ(3)) − 4µ(3)(x(3))2(1 − θ(3))

3h

∫ ∞

0

d(k2)vkΓ
(3)(k), (49)

where

x(3) =
t h

√

b
(3)

G

4(µ(3))3/2
, (50)

and Γ(3) is the fully-renormalized vertex function corresponding to Γ in 2D case and is de-

termined from the parquet equations including eq.(46) constructed in the manner explained

above.

As already mentioned, it is anticipated that the present approximation underestimates the

3D SC ordering, i.e., the growth of the lateral correlation on the vortex position, compared

with that to be obtained from a more realistic method for 3D case. Nevertheless, it will be

seen in sec.4 that the resistivity in 3D case obtained numerically is strongly affected by the

growth of the positional correlation length and consequently that our view on the vanishing

of the resistivity in 3D case becomes clear.

5. Vortex Glass Correlation Function

In order to derive the VG correlation function Gvg and the resulting term of the conductiv-

ity accompanied by Gvg, the starting GL model in sec.2 will be rewritten as a quantum action

by giving a purely dissipative dynamics to the order parameter. In the unit ~ = 1, the partition

function Z in D-dimensional case is expressed as Z = Tr exp(−SGL) using the quantum GL

action13, 20, 30)

SGL = ξ
−D
0

∫

dDr
∑

ω

γ|ω|ψ∗(r, ω)ψ(r, ω) + T

∫ 1/T

0

dτH[ψ(τ)], (51)

whereH[ψ] in D = 2 case was given as eq.(2), ω is the Matsubara frequency for bosons, τ is

the imaginary time, γ > 0, and the Fourier transform ψω of ψ(τ) is defined by

ψ(τ) =
∑

ω

ψωe−iωτ. (52)

It is expected, close to the VG transition, that the dominant frequency dependence determin-

ing the time scale of the conductivity is carried by the VG critical fluctuation and that detailed
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Fig. 5. Structure of the vortex-glass correlation function Gvg which is represented in the ladder approximation

valid at weak disorder. Figure (a) is the four-point vertex constructed based on the hatched semicircles of Fig.2

after the random average. Here, the connected dashed line denotes a pair-wised random potential occurring after

the random-average and carrying ∆(2) in 2D case. As shown in (b), the VG correlation function is expressed as

a series of the figure (a).

frequency dependences of the self-energy of the noncritical SC fluctuation will play less im-

portant roles. For this reason, the frequency dependence of the fully renormalized vertex part

Γ representing the positional correlation between the vortices is assumed to be negligible.

This assumption should be valid in clean enough cases of our interest. Next, the frequency

dependence of the SC fluctuation propagator G will be kept the bare one. That is, the bare

form G = 1/(µ + γ|ω|) will be always used in 2D case.

The VG correlation function is given by

Gvg(R; τ1, τ2) ∝
∫

dDr |〈ψ∗(r, τ1)ψ(r + R, τ2)〉|2. (53)

For a while, we focus on the 2D (D = 2) case. The genuine VG transition, i.e., the 2D

SC transition, does not occur in real systems at finite temperatures in a field perpendicular

to the plane.5, 31) Nevertheless, the VG fluctuation in 2D case will be considered here in the

Gaussian approximation where the VG transition line inevitably appears, in order to make

a comparison between the 2D and 3D cases useful. The Fourier transform of eq.(53) with

D = 2 becomes

Gvg(k;ω1, ω2) =
1

Nv

[G(ω1)G(ω2)]−1
∑

p,p′

exp(i(p − p′)k1/h)Gp′,p(ω1)Gp+k2 ,p
′+k2

(ω2) (54)

in a form normalized properly, where Gp,p′(ω) = 〈ϕp(ω)ϕ∗p′(ω)〉 is the LLL fluctuation prop-

agator defined prior to taking the random average, and G(ω) = Gp,p′(ω) = 1/(µ + γ|ω|) is the

random-averaged LLL fluctuation propagator. First, the irreducible disorder vertex forming

Gp,p′(ω) will be explained. As far as the limit of weak disorder is concerned, it is sufficient

to regard the diagram with a hatched semicircle of Fig.2 as the irreducible one for Gp,p′(ω).

By incorporating the frequency dependences in the SC fluctuation propagators of Fig.2, the
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corresponding expression to eq.(29) becomes

Λ(p, p′;ω1) = S̃ −1/2[G(ω1)]2
∑

k

δp,p′+k2
u−k v

1/2

k
exp(ik1(p + p′)/2h)

×
[

1 − 2xµ2

Nv

∑

k′,ω1
′

[G(ω′1)]2 Γ(k′) exp(i(k′1(p′ − p) − k′2k1)/h)

]

. (55)

Since the dependences on the internal frequency ω′
1

are unnecessary in obtaining the con-

ductivity in the regime where the quantum SC fluctuation is negligible, however, only the

ω′1 = 0 term will be kept hereafter. Then, the expression in the square bracket of eq.(55)

simply becomes

f (p − p′, k1) = 1 − 2 xΓ(k1, p − p′), (56)

and the diagram of Fig.5 (a) arising after random -averaging takes the form

∆(2)

S̃
[G(ω1)G(ω2)]2

∑

p̃

δp̃2,p−p′ vp̃ exp(−ik2 p̃1/h) [ f (p − p′, p̃1)]2, (57)

where p̃ = (p̃1, p̃2). Note that eq.(56) is the same expression as eq.(25). Taking account of the

fact that the VG correlation function Gvg is expressed as a ladder series Fig.5 (b) by regarding

the expression (57) as its unit, it is found that

Gvg(k;ω,ω + Ω) =
1

1 − X(k)G(ω)G(ω + Ω)
, (58)

where

X(k) ≡ µ
2xθ

Nv

∑

p

vp| f (p)|2 exp(ik · p/h). (59)

Based on this expression of Gvg, the VG correlation length ξvg just above the VG transition is

expressed by

ξvg =
1

2

√

c2

(1 − c0)h
, (60)

where

c0 =
xθ

Nv

∑

p

vp| f (p)|2,

c2 =
xθ

hNv

∑

p

p2vp| f (p)|2, (61)

and ξ0 is the unit of the length scales. Of course, eq.(60) is valid when c0 < 1 and diverges on

approaching the VG transition point at which c0 = 1.
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5.1 3D case

As in 2D case, the 3D VG transition will be described below in the Gaussian fluctuation.

First, let us start from determining the Fourier transform of eq.(53) properly. By choosing the

prefactor of eq.(53) in a consistent manner with eq.(54), the expression in 3D corresponding

to eq.(54) is given by

Gvg(K;ω1, ω2) =
1

Nv

(

∑

q

G(q, ω1)G(q + k3, ω2)

)−1 ∑

p,p′;q,q′

[ exp(i(p − p′)k1/h)

× 〈ϕ∗p,q(ω1)ϕp′,q′(ω1)〉〈ϕp+k2 ,q+k3
(ω2)ϕ∗

p′+k2 ,q′+k3
(ω2)〉 ], (62)

where K = k+ k3ẑ, k = (k1, k2), and G(q, ω) is the random averaged fluctuation propagator in

3D case. The expression in 3D case corresponding to eq.(51) is

Λ(p, p′; q, q′;ω1) = (S̃ L̃z)
−1/2[G(q, ω1)G(q′, ω1)]

∑

P̃

δp,p′+p̃2
δq,q′+p̃3

u−P̃ v
1/2

p̃
exp(i(p + p′)p1/2h)

×
[

1 − 8(µ(3))3/2x(3)

L̃zNv

∑

K′,ω′
1

[G(q + k′3, ω
′
1)G(q′ + k′3, ω

′
1)]

× Γ(3)(k′) exp(i[(p′ − p)k′1 − p̃1k′2]/h)

]

, (63)

where P̃ = p̃ + p3ẑ, and p̃ = (p̃1, p̃2). By neglecting the dependences on the internal fre-

quency ω′
1

in Λ(p, q; p′, q′;ω1), the vertex correction corresponding to f (p − p′, p̃1) in 2D

case becomes

f (3)(p − p′, p̃1; q − q′) ≡ 1 − 8x(3)µ(3)

4µ(3) + (q − q′)2
Γ(3)(p − p′, p̃1), (64)

and the expression representing the counterpart of Fig.5 (a) is

∆(3)

S̃ L̃z

∑

K′

δk′
2
,p−p′δk′

3
,q−q′vk′[ f (3)(k′1, p−p′; q−q′)]2e−i

k2k′
1

h G(q, ω1)G(q′, ω1)G(q+k3, ω2)G(q′+k3, ω2).

(65)

Here, consistently with the approximation for Σ(3), the q − q′-dependence in eq.(64) will be

neglected. Then, it is straightforward to derive the expression on the Fourier transform of the

VG correlation function in 3D, and we have

G(3)
vg (K;ω,ω + Ω) =

[

1 − X(3)(k)

L̃z

∑

q

G(q, ω)G(q + k3, ω + Ω)

]−1

, (66)

where

X(3)(k) =
4(µ(3))3/2x(3)θ(3)

Nv

∑

k′

vk′[ f (3)(k′; 0)]2 exp(i(k × k′)z/h). (67)

As in 2D case, the vanishing behavior of the resistivity, which will be discussed in the

next section, is expected to be determined by the time scale not of the SC fluctuation but of

16/33



J. Phys. Soc. Jpn.

the VG correlation function. For this reason, the frequency term of G−1
ω as well as the wave

number dependence in 3D case will be assumed to be unrenormalized by the randomness.

Thus, the expression

G(q, ω) =
1

µ(3) + q2 + γ|ω| (68)

for the SC fluctuation propagator with the wave number q will be used hereafter in 3D case.

However, it will be discussed later that, in dirty cases, this assumption has an unfavorable

effect on the vanishing of the resistivity.

Then, by focusing on the vanishing behavior of the r.h.s. of eq.(66), the VG correlation

lengths are defined in a similar manner to that in 2D case. The VG correlation length ξvg,⊥ in

perpendicular directions to the magnetic field is given by

ξvg,⊥ =
1

2

√

√

c
(3)

2

(1 − c
(3)

0
)h
, (69)

while the corresponding correlation length in the direction of the magnetic field is

ξvg,‖ =

√

h

c
(3)

2
µ(3)

ξvg,⊥, (70)

where

c
(3)

0
=

x(3)θ(3)

Nv

∑

p

vp| f (3)(p; 0)|2,

c
(3)

2
=

x(3)θ(3)

hNv

∑

p

p2vp| f (3)(p; 0)|2. (71)

6. Vortex Glass Contribution to Conductivity

In general, the vortex pinning effect is formulated according to the two types of mod-

ellings. One is the so-called random Tc model corresponding to the inclusion of the scalar

potential u(r) in eq.(1), and what is pinned in this case is a spatial variation of the amplitude

|ψ| = √ρ associated with the vortex core. However, this model is not useful in an approach

based on the London, or a phase-only model where ρ is a constant. The other model useful

even in the phase-only approach is the following one expressed in terms of a random gauge

potential model: In 2D case, the term

δSg = T

∫ 1/T

0

dτ

∫

d2r j(r, τ) · ar(r), (72)

should be added to eq.(51), where j = ψ∗(−i∇ + 2πA/φ0)ψ + c.c. is the supercurrent density.

Using the fact that, due to the continuity equation ∇ · j = 0 to be satisfied in equilibrium, ar

may be rewritten as ∇×w(r)ẑ by introducing a scalar function w(r), the total random potential

17/33



J. Phys. Soc. Jpn.

term Sr may be reexpressed as

δSr =

∫ 1/T

0

dτ

∫

d2r [w(r)[∇ × j(r, τ)]z + ξ
−2
0 u(r) ρ(r, τ)]. (73)

The random potential w is assumed to yield w(r)=0, and

w(r)w(r′) = ∆Φξ
2
0δ

(2)(r − r′) (74)

in 2D case. Since, under a fixed ρ, w(r)(∇ × j)z is −2πρw(r)ξ2
0
(nv(r) − H/φ0), w(r) can be

regarded as the pinning potential for vortex cores,2, 4) where nv(r) is the vortex density. As in

the previous works16, 32, 33) based on the GL approach, the randomness on Tc, i.e., ∆(2) or ∆(3),

is assumed to be much larger than ∆Φ.

To derive the conductivity terms associated with the current due to the SC fluctuations,

we follow the method12, 22, 31–34) based on the use of the Kubo formula. In the case under

an applied current perpendicular to the magnetic field, the second (or, n = 1) LL modes are

needed12) in addition to the LLL modes to obtain the fluctuation conductivity under a uniform

current. By keeping only the 0th and 1st order terms with respect to the SC fluctuation ϕ1

belonging to the n = 1 LL, the action (73) is written as

Sr = S̃ −1
∑

ω,p,k

v
1/2

k
exp(ipk1/h)

[

(u−k − k2w−k)ϕ∗0,p−(ω)ϕ0,p+(ω)

− i
√

2h
[u−k + (2h − k2)w−k](k+ϕ

∗
0,p−(ω)ϕ1,p+(ω) + k−ϕ

∗
1,p−(ω)ϕ0,p+(ω))

]

, (75)

where p± = p ± k2/2, and k± = k1 ± ik2. For simplicity, we focus on a high field range in

which the n = 1 LL mode is so heavy and hence, assume that the mass µ1 of the n = 1 LL

fluctuation remains its renormalized value22) 2h and that its dynamics is negligible.

The Kubo formula of the SC part of the dc conductivity under a current in the x-direction

is expressed in the form

σs,xx = −kBT lim
Ω→+0

∂

∂Ω

δ2log〈exp(−Stot(A′))〉
δA′x(0, iΩ)δA′x(0,−iΩ)

∣

∣

∣

∣

∣

A′=0

, (76)

where Stot = SGL + δS g, and the gauge substitution A → A + A′ was performed to induce

the current vertices. By keeping only the terms consisting of the n = 0 and 1 LLs, the AL and

VG terms of the SC part σs,xx of the conductivity in 2D case arise from the expression

dRqσs,xx

4h2
= −kBT

Nv

lim
T→∞

lim
Ω→+0

∂

∂Ω

∑

ω,ω′

∑

p,p′

Re〈ϕ0,p(ω)ϕ∗
0,p′(ω

′)ϕ∗
1,p

(ω + Ω)ϕ1,p′(ω′ + Ω)〉, (77)

where Rq = π~/(2e2) = 6.45 (kΩ) is the quantum of resistance, and, to simplify our analysis

on σs,xx, the formal T → ∞ limit is taken to neglect the quantum SC fluctuations. In the

present high field approximation, the VG fluctuation is formed by the LLL SC fluctuation,
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Fig. 6. Diagram expressing σ
(2)

1,vg,xx
. The two double lines with the frequencyω+Ω are the fluctuation propa-

gators in the second LL. This conductivity term is accompanied by a single outer random potential line forming

an interaction between the LLL and the next lowest LL fluctuations.

while the spatially averaged current vertex is inevitably accompanied by the n = 1 LL fluc-

tuation. The VG fluctuation term σvg,xx of the conductivity is accompanied by vertices due to

random potentials unrelated to the VG correlation function (see Fig.6). Below, such a random

potential vertex will be called an outer random potential.

The lowest (i.e., the first) order term in the outer random potential in 2D case, σ
(2)

1,vg,xx
, is

described by Fig.6.16) Its concrete expression is

dRqσ
(2)

1,vg,xx
=
∆(2)kBT

4πNv

∑

k

k2vk J
(2)

1
(k), (78)

where

J
(2)

1
(k) = lim

T→∞

(

− ∂

∂Ω

)

∑

ω

G(ω)G(ω + Ω)

× Gvg(k;ω,ω + Ω)

∣

∣

∣

∣

∣

Ω→+0

. (79)

In obtaining eq.(78), the inequality ∆Φ ≪ ∆(2) was assumed because the main vortex pinning

effect in the GL approach should be due to the variation of the amplitude |ψ| of the SC order

parameter. Using the relation

J
(2)

1
(k) ≃ [Gvg(k; 0, 0)]2 lim

T→∞

(

− ∂

∂Ω

)

∑

ω

G(ω)G(ω + Ω)

∣

∣

∣

∣

∣

Ω→+0

(80)

of which the validity is easily checked, it is found that J
(2)

1
(k) ≃ γ[Gvg(k; 0, 0)]2/(2µ3) (see

Appendix B). Thus, we obtain

dRqσ
(2)

1,vg,xx
≃ ∆

(2)γkBT

4hµ3

∫

k

k2vk[Gvg(k; 0, 0)]2. (81)

Or, by using ξvg defined previously, σ
(2)

1,vg,xx
finally becomes

dRqσ
(2)

1,vg,xx
=
∆(2)hγkBT

16πµ2c2
2

[

log

(1 + ξ2
vg

e

)

+
1

1 + ξ2
vg

]

, (82)

where
√

h was chosen as the cutoff of the wave number |k|.
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Fig. 7. Eight diagrams expressing σ
(D)

2,vg,xx
with D = 2 and 3. Here, the dashed curves are linear combinations

of ∆(D) and ∆Φ .

The next lowest (i.e., the second) order term in the outer random potential, σ
(2)

2,vg,xx
, is

more divergent close to the VG transition point than σ
(2)

1,vg,xx
.32, 33) This second order term is

composed of the contributions of the eight diagrams in Fig.7. As an example, let us examine
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Fig.7 (a) and (b) which are expressed as

dRqσ
(2)

2,vg,xx
|a+b =

kBT

S̃ Nv

∑

k,k′

vkvk′ lim
T→∞

(

− ∂

∂Ω

)

∑

ω

[G(ω + Ω)]2G(ω)G(ω + Ω)Gvg(k − k′;ω,ω + Ω)

×
[

[∆(2) + ∆Φ(2h − k2)2][∆(2) + ∆Φk′4]k2 − [∆(2) + ∆Φk2(k2 − 2h)]

× [∆(2) + ∆Φk′2(k′2 − 2h)]k−k
′
+ exp(i(k × k′)z/h)

]

∣

∣

∣

∣

∣

Ω→+0

. (83)

Contributions of the remaining six diagrams can be expressed in a similar manner.33) Close to

the VG transition, however, it is sufficient to keep contributions of the lowest order in k − k′

in the coefficient corresponding to the second and third lines of eq.(83). By summing these

contributions of the eight diagrams in this way, the full expression of σ
(2)

2,vg,xx
becomes

dRqσ
(2)

2,vg,xx
= 4∆(2)∆ΦhkBT

∫

k

∫

k′

k2

2
(vk)2J

(2)

2
(k − k′) ≃ ∆

(2)∆Φ

2π
h3kBT

∫

k

J
(2)

2
(k), (84)

where

J
(2)

2
(q) = lim

T→∞

(

− ∂

∂Ω

)

∑

ω

[G(ω) + G(ω + Ω)]2G(ω)G(ω + Ω)Gvg(q;ω,ω + Ω)

∣

∣

∣

∣

∣

Ω→+0

. (85)

Just like the procedure for J
(2)

1
, we have evaluated J

(2)

2
in terms of the series expansion of

the VG correlation function (see Appendix B). As the leading term of J
(2)

2
(q), we obtain

J
(2)

2
(q) ≃ 43γ

8µ5
[Gvg(q; 0, 0)]2. (86)

Using this and the result on ξvg, σ
(2)

2,vg,xx
in 2D case becomes

dRqσ
(2)

2,vg,xx
=

43∆(2)∆ΦγkBTh5

4π2c2
2
µ5

ξ2
vg. (87)

6.1 3D case

As already mentioned, the fully renormalized vertex part in 3D case is assumed to have

the same structure as that in 2D case. Under this simplification, it is straightforward to extend

the derivation on the conductivity in 2D case explained above to that in 3D case.

First, the corresponding lowest order term to eq.(78) simply becomes

ξ0Rqσ
(3)

1,vg,xx
=
∆(3)kBT

4πNv

∫

k

k2 vk

∫

k3

J(3)(K), (88)

where K = k + k3ẑ, and

J(3)(K) = lim
T→∞

(

− ∂

∂Ω

)

∑

ω

∫

q

G(q, ω)G(q + k3, ω + Ω)G(3)
vg (K;ω,ω + Ω)

∣

∣

∣

∣

∣

Ω→+0

. (89)
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As in 2D case, J3 can be rewritten in the form proportional to [G
(3)
vg (K; 0, 0)]2 :

J(3)(K) ≃ 3γ

32(µ(3))5/2
[G(3)

vg (K; 0, 0)]2 4µ(3)

4µ(3) + k2
3

. (90)

In 3D case, however, the resulting σ
(3)

1,vg,xx
remains nondivergent on approaching the VG tran-

sition from above and thus, will be neglected hereafter.

The 3D conductivity term of the next order in the outer random potential can also be easily

found because the wavevector dependences accompanying the outer random potential lines

are decoupled to the dependences on the wavevector component parallel to the field in the

fluctuation propagators. The corresponding expression in 3D case to eq.(84) simply becomes

ξ0Rqσ
(3)

2,vg,xx
≃ ∆

(3)∆Φ

2π
h3kBT

∫

k

J
(3)

2
(k), (91)

where

J
(3)

2
(k) = lim

T→∞

(

− ∂

∂Ω

)

∑

ω

A(k;ω,Ω), (92)

with

A(k;ω,Ω) =

∫

k3

∫

k3
′

∫

q

G(q, ω)G(q + k3 − k′3, ω + Ω)G(q − k′3, ω)

[

G(q − k′3, ω)

+ G(3)
vg (k + (k3 − k′3)ẑ;ω,ω + Ω) X(3)(k)

∫

q′
G(q′, ω)

× G(q′ + k3 − k′3, ω + Ω)G(q′ − k′3, ω)

]

. (93)

Here, by noting the fact that the wave numbers q and q′ appearing in the ladder of the VG

correlation function are small as well as k3−k′3, we may replace G(q−k′3, ω) and G(q′−k′3, ω)

by G(−k′3, 0). Then, we have

J
(3)

2
(K) ≃

∫

k′
3

[G(k′3, 0)]2

∫

k3

J(3)(K) =
1

4µ3/2

∫

k3

J(3)(K). (94)

By substituting eq.(90) into the above expression, σ
(3)

2,vg,xx
becomes

ξ0Rqσ
(3)

2,vg,xx
=

3∆(3)∆ΦγkBTh5

128π2(c
(3)

2
)2(µ(3))4

ξ2
vg,⊥

ξvg,‖
. (95)

7. Numerical results of resistivity curves

Using the formula on the vortex-glass (VG) contributions σvg,xx to the conductivity ob-

tained in sec.6, eq.(95) in 3D and eqs.(82) and (87) in 2D cases, the resulting resistivity curves

will be examined in this section. The total conductivity σtot in each dimension consists of the

normal conductivity σN , the so-called Aslamasov-Larkin (AL) term σ
(D)

AL,xx
which is essen-

tially the SC part of the conductivity in the disorder-free case, and the VG terms. In 2D case,
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Fig. 8. R/RN vs h = H/Hc2(0) curves in 2D case at t = T/Tc0 = 0.637 (red), 0.531, 0.455, 0.398, 0.354, and

0.318 (violet) from left to right. The used values of the material parameters b
(2)

G
and ∆(2) = 10∆Φ are 0.01 and

0.002, respectively.

we set σtot = σN + σ
(2)

AL,xx
+ σ

(2)

1vg,xx
+ σ

(2)

2vg,xx
, while we set σtot = σN + σ

(3)

AL,xx
+ σ

(3)

2vg,xx
in 3D

case.

Regarding the normal term σN of the conductivity, we simply assume that dRqσN = 1 in

2D case, and ξ0RqσN = 1 in 3D case, respectively.

In 2D case, the AL term σ
(2)

AL,xx
is given by

dRqσ
(2)

AL,xx
= −4Th2

(

∂

∂Ω

)

∑

ω

G(ω)
1

2h + γ|ω + Ω|

∣

∣

∣

∣

∣

Ω→+0

≃ 2γkBTh

µ(µ + 2h)
, (96)

where the quantum fluctuation terms were neglected in obtaining the second line. The corre-

sponding expression in 3D case is

ξ0Rqσ
(3)

AL,xx
≃ γkBT

2
√

µ(3)
. (97)

Equation (31) is used for the renormalized mass µ in 2D case, while eq.(48) is used for the

renormalized mass µ(3) in 3D case.

Below, examples of the normalized resistivity curves obtained numerically will be dis-

cussed in a manner of comparing results in 2D case with those in 3D case, where the normal-

ized resistivity is given by R/RN = σN/σtot. First of all, the normalized resistivity vs magnetic
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Fig. 9. Normalized resistivity curves in 3D case corresponding to those in Fig.8 taken at t = 0.637 (red),

0.531, 0.455, 0.398, 0.354, and 0.318 (violet) from left to right. The values

√

b
(3)

G
= 0.01 and ∆(3) = 10∆Φ =

0.002 are used here.

field curves taken at various fixed temperatures are examined. We note here that, throughout

this work, the field dependences of R/RN at a fixed temperature are presented for convenience

of numerical computations rather than its temperature dependences at a fixed field. Typical

curves in 2D case obtained under the fixed values of the fluctuation strength b
(2)

G
= 0.01 and

the disorder strength ∆(2) = 10∆Φ = 0.002 are shown in Fig.8. There, since θ(t) ≃ 0.1 even

at the lowest temperature t = 0.318, the curves in Fig.8 can be regarded as belonging to the

category of moderately clean systems. Over most of the field range with nonzero resistance,

the normalized resistivity just smoothly decreases with decreasing field. However, close to

the end of the smoothly vanishing resistance, a sign of a slight drop of the resistance is seen

at each temperature.

Here, we will show that this position of the faint sudden drop seen on each curve in Fig.8

essentially corresponds to the vortex lattice melting field hm in 2D case in clean limit obtained

in the LLL approximation. According to Refs.23 and 24, hm in clean limit satisfies

1 − t − hm = c−1
2

√

hm t b
(2)

G
(98)

with c2 ≃ 0.0988. By assuming ∆(2) to be negligibly small and substituting the values of b
(2)

G

and t into eq.(98), the obtained value hm ≃ 0.10 for t = 0.637 coincides with the field at which
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the red (left) curve reduces to zero in Fig.8. Since, with decreasing t, the θ-value increases

and the normalized resistivity value is slightly lowered from that expected in clean limit, the

hm value at lower t-values becomes slightly lower than the field at which the corresponding

resistivity curve reduces to zero. Therefore, it is understood that, at least at weak enough

disorder, the 2D VG transition in the Gaussian approximation occurs at the corresponding

vortex lattice melting transition point. Although, of course, the 2D VG transition is believed

not to occur in a sophisticated approach beyond the Gaussian approximation,5, 35) this result

in the 2D Gaussian approximation plays a valuable role in understanding the corresponding

result in 3D case. Hereafter, the field at which the resistivity at weak enough disorder shows

a sudden drop will be called hg.

Figure 9 presents the normalized resistivity vs field curves in 3D case at the same set of

temperatures obtained using the comparable values of the material parameters

√

b
(3)

G
= 0.01

and ∆(3) = 0.002 with those in Fig.8. Since the effective disorder strength θ(3) increases with

decreasing t, the right (violet) curve corresponds to a case with stronger disorder. In contrast

to the curves in 2D case, each of the resistance curves in Fig.9 shows a clear and nearly

discontinuous drop at a field hg of the type seen in experiments.7, 17) As in 2D case, hg will

be compared with the melting field hm expected in clean limit. Evaluation of hm has been

performed based on the thermodynamic data36) in optimally-doped cuprates and on the LLL

fluctuation theory. According to Refs.21 and 22, the melting field hm in clean limit is given

by

1 − t − hm = c−1
3 (hm t)2/3 (b

(3)

G
)1/3 (99)

with c3 ≃ 0.27. By assuming the disorder strength ∆(3) to be negligibly small, we find that

the hm-value obtained by choosing the value c3 = 0.22 in eq.(99) coincides with the hg-

value of the curve at the highest temperature t = 0.637 in Fig.9. This implies that the SC

transition field in Fig.9 is slightly lower than the melting field expected based on eq.(99), or

equivalently that the fluctuation effect in 3D case is slightly overestimated in our calculation.

As already suggested in sec.4, this is a consistent result with our approximation used for the

fully-renormalized vertex and the self-energy in 3D case. Therefore, we can expect5, 16) that,

in 3D systems with weak enough disorder, the freezing from the vortex liquid to the vortex

solid triggers a sudden vanishing of the resistivity, i.e., the VG ordering.

In Fig.10 (a), the normalized 3D resistivity curve at the high temperature t = 0.637 in

Fig.9 is compared with structure factor data taken close to hg and at hc2 = Hc2(t)/Hc2(0). The

already-mentioned fact that the field hg at which the resistivity suddenly vanishes coincides
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f
f

f

Fig. 10. (a1) Full: 3D normalized resistivity (red solid) curve at t = 0.637 in Fig.9. AL: Corresponding (blue

dashed) curve obtained by deleting the σvg,xx term from σtot. The dashed vertical line denotes the position of the

Hc2-line, and h = H/Hc2(0) = ξ2
0
/r2

H
. (a2) Data of the structure factor f (K⊥) (see eq.(25)) taken at Hc2 (black),

at the SC transition field hg (red), and at hma (blue) slightly above hg indicated on the Full curve of (a1). Here,

K⊥ = |k|/
√

h denotes the magnitude of the component perpendicular to the field of the wavevector measured

in the unit of r−1
H
=
√

2πH/φ0. (b1) Full: 2D normalized resistivity (red solid) curve at t = 0.637 in Fig.8.

AL: Corresponding (blue dashed) curve obtained by deleting the two σvg,xx terms from σtot. (b2) Data of f (K⊥)

at Hc2 (black) and at the field hg = 0.103 (red) corresponding to the 2D VG transition field in the Gaussian

approximation. (c1) Full: 3D normalized resistivity (blue solid) curve at t = 0.637 in the case with the larger

disorder strength ∆(3) = 0.016 and the same value of b
(3)

G
as in (a1). AL: Corresponding resistivity (blue dashed)

obtained by deleting the σvg,xx term from σtot. Explanation on the red dotted curve is given in the text. (c2) Data

of f (K⊥) at the SC transition field hg = 0.328 (blue) for the Full curve in (c1). This depressed structure factor

implies that the sharp vanishing of the resistivity in (c1) is not due to the growth of the positional correlation of

the vortices. Further details are explained in the text. For comparison, the red curve shown in the figure (a2) is

also presented here.
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with the melting field in clean limit implies that the t = 0.637 case in Fig.9 is a situation quite

close to the clean limit. Therefore, the sudden vanishing of the resistivity in the figure (a1) is

a consequence of the growth of the correlation on the vortex positions, as argued previously

in Ref.16. It is found in (a2) that, in this case with weak enough disorder, the Bragg peaks

just at hg and at a slightly higher field hma than hg are almost the same as each other. It

suggests that there is another origin of the sudden drop of the resistivity other than the growth

of the positional correlation. Judging from the fact that the melting field hm yields the LLL

scaling,10, 12, 15, 37) eq.(99), on the SC fluctuation in magnetic fields, we argue that, after all, the

nature of the SC fluctuation below Hc2 plays essential roles, together with the growth of the

correlation on the vortex position, in determining the vanishing behavior of the resistance at

the SC transition point hg. In fact, as seen in the figures (a1) and (b1), there are differences in

the vortex flow behavior of the resistance in the fluctuation-induced vortex liquid between the

2D and 3D cases. The feature in the figure (b1) that an, if any, sharp drop of the resistance in

2D case merely appears at the end of the vanishing resistivity curve is in contrast to the clear

sudden drop of the 3D normalized resistivity in the figures (a1) and (c1). This dimensionality

dependence of the vanishing behavior at hg of the resistivity is a consequence of the difference

in the resistivity curve in the vortex liquid, i.e., in the nature of the SC fluctuation properties,

between the 2D and 3D cases.

When compared with resistivity data in cuprates,7, 13, 17) one might feel that the normalized

values of the resistance R/RN in the vortex liquid regime in Figs.9 and 10 (a1) are too small

compared with those in the typical resistance curves. In relation to this, we note that the value

1/(Rqξ0) we have assumed here for the normal part σN of the conductivity is too small com-

pared with the typical values of σN seen in cuprates. To understand the consistency between

the result in the figure (a1) and experimental data in clean samples of cuprates, we point out

that the jump value of the resistance in (a1) at h = hg is comparable with the corresponding

ones seen in cuprates. In fact, the resistivity curve in (a1) indicates that the SC part of the

conductivity, σtot − σN, at h = hg is about seven times larger than the corresponding value at

hc2 = Hc2/Hc2(0). One can verify that this ratio is almost the same as the corresponding value

estimated from experimental data on YBCO.7, 13, 17)

As can be seen by comparing the figures (a1), (c1), and (c2) with one another, an increase

of the disorder leads to an increase of hg and a shrinkage of the Bragg peak near hg. Ac-

companying this, the normalized resistivity vs field curve changed from the concave vortex

flow behavior like in (a1) to a nearly straight one. The reasonable reduction of the Bragg

peak due to the enhanced disorder would imply that the manner of including the disorder ef-
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fect in the parquet approximation for the vertex function Γ is satisfactory. On the other hand,

the nearly sharp vanishing of the resistance at hg in the figure (c1) is a feature disagreeing

with experimental data. In fact, it is empirically known that the resistance in the cases with

strong disorder, where, as seen in (c2), the vortex positional correlation remains short-ranged,

vanishes continuously, i.e., accompanied by a vanishing slope dR/dT .5, 31) One origin of this

discrepancy seems to consist in the use of eq.(68) for the dynamical SC fluctuation prop-

agator even in dirty cases. As a consequence of the use of eq.(68), the dynamical critical

exponent zvg for the 3D VG transition is two, and the resistivity in 3D case inevitably van-

ishes like ∼ (h−hg)1/2, i.e., with a divergent slope of dR/dh, irrespective of the magnitude ∆(3)

of the sample disorder. However, it is usually expected that, for a continuous VG transition

in strongly disordered cases, the vanishing behavior of the resistance is characterized by a

dynamical critical exponent zvg larger than four.5) In the Hartree approximation31, 34) neglect-

ing the vertex correction due to the vortex positional ordering to the random potential, the

relation zvg = 4 follows, and a qualitatively reasonable vanishing behavior of the resistivity

in a strongly disordered case on approaching the VG transition from above is obtained. At

present, it is unclear to us how the results in the Hartree approximation can be approached

by starting from the present approach including the effect of the vortex positional ordering

on the random potential. For a reference, another resistivity (red dotted) curve is added in the

figure (c1). This dotted curve is obtained by assuming zvg = 5 and replacing the dimension-

less quantity (1 − c
(3)

0
)−1/2 in the expressions (69) and (70) of the VG correlation lengths ξvg,⊥

and ξvg,‖ by (1− c
(3)

0
)−2. Another origin of the discrepancy in the strong disorder case seems to

consist in our assumption of weak disorder in forming the VG correlation function in Fig.5:

As the disorder is increased, the irreducible vertex shown in Fig.5 (a) should be formed by

not a single disorder line but multiple ones. If this treatment in Fig.5 is to be improved, the

resistivity value of the solid curve (indicated as Full) in the figure (c1) should be lowered

further in the vortex liquid regime. In any case, if a reasonable interpolation between the

clean and dirty cases becomes possible, the disorder dependence of the resistivity curves of

the type found in Ref.38 and consequently, the resistive behavior suggesting the presence of

the vortex slush regime6, 7) below the melting temperature in clean limit could be explained

theoretically.

8. Summary and Discussion

In the present paper, the resistive behavior in type II superconductors with weak enough

disorder under a magnetic field was studied for both 2D and 3D systems. Empirically, a nearly
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discontinuous (sharp) vanishing of the resistivity upon cooling is often observed in bulk clean

materials and is usually interpreted as an evidence of the first order freezing transition to a

vortex solid,7, 17) while the resistivity in 2D case decreases smoothly even in relatively clean

materials.8) Further, no theory explaining the presence of the vortex slush region found in

moderately clean 3D materials6, 7) was available. To try to resolve these issues, we have stud-

ied the vortex-glass (VG) ordering in type II superconductors with weak enough disorder and

have shown that the presence in 3D case of a sharp vanishing of the resistivity and its absence

in 2D case are consequences of an interplay of the proximity to the vortex solidification and

the nature of the SC fluctuation in the vortex liquid regime. To the best of our knowledge, this

is the first theoretical study of realizing the nearly discontinuous vanishing of the resistivity

in moderately clean 3D case through detailed calculations.

On the other hand, the resistive behavior characteristic of the vortex slush region, i.e., a

sharp drop of the resistivity signaling the vortex solidification followed by its continuous van-

ishing, cannot be explained within the present approach because of our use of the Gaussian

approximation for the VG fluctuation. Our theory predicts that, in clean enough 3D systems,

the vortex lattice melting temperature in clean limit becomes the onset of the VG fluctua-

tion16) upon sweeping the temperature. However, the use of the Gaussian VG fluctuation with

the exponent 0.5 of the conductivity does not lead to a tail of the resistivity following its

sharp vanishing. Such a tail becomes more visible in a dirtier system with a wider VG critical

region. Thus, a visible vortex slush region would be created by renormalizing the VG fluctu-

ation. Further, in 2D case, such renormalized VG fluctuations should delete any vanishing of

the resistivity5) and would clarify the validity of the picture16, 39) that the vortex lattice melting

would not be reflected in the resistivity in relatively clean 2D systems.40)

It should be stressed that developing a theory on the vortex phase diagram in a high field

region is important in relation to the recent observation of new fluctuation regions associated

with the paramagnetic pair-breaking41) and the quantum fluctuation42) in iron-based supercon-

ductors,43, 44) because the approaches constructed based on the phase-only model,2–4) devel-

oped in relation to the study on the vortex states in cuprates, are not applicable to the vortex

states in such a high field regime. In fact, a sharp vanishing of the resistance accompanied by

a broad vortex liquid regime has appeared even in the high field regime in FeSe.43)
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*

Appendix A

To clarify symmetries in the relations of eq.(36), we note that the following relations,

Γ̂abcd(k) = Γabdc(k), (A·1)

and

Ĉ(k) = Â(k)B̂(k) (A·2)

for C(k) = (A ∗ B)(k), are satisfied together with the last equation of (37). These two relations

follow from their definitions. By applying them to the relations of eq.(36), we find

Π2,abcd(k) = Π̂3,abdc(k),

Λ2,abcd(k) = Λ̂3,abdc(k). (A·3)

It is straightforward to find

Π1,abcd(k) = Π̂1,abdc(k),

Λ1,abcd(k) = Λ̂1,abdc(k) (A·4)

in a similar manner.

Appendix B

To evaluate the expressions J
(2)

1
and J

(2)

2
appearing in the conductivities, the expression on

a pair of the propagators

pµ1,µ2
=

(

− ∂

∂Ω

)

∑

ω

G1(ω)G2(ω + Ω)

∣

∣

∣

∣

∣

Ω→+0

=
γ

2

∑

ω

(

G1(ω)G2(ω)[G1(ω) + G2(ω)]

− [(G1(ω))2 + (G2(ω))2]
G1(0)G2(0)

G1(0) + G2(0)

)

(B.1)

becomes useful, where Gn(ω) = 1/(µn + γ|ω|). Using eq.(B.1), one obtains

J
(2)

1
≃ [Gvg(k; 0, 0)]2 lim

T→∞
pµ,µ =

γ

2
[G(0)]3[Gvg(k; 0, 0)]2, (B.2)
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where the quantum fluctuations with nonzero ω were neglected by taking the limit T → ∞.

This result on J
(2)

1
can also be found by expanding Gvg(k; 0, 0) in a power series in X(k)[G(0)]2

and using the relation

p(mn)
µ,µ |cl ≡ lim

T→∞

(

− ∂

∂Ω

)

∑

ω

Gm(ω)Gn(ω + Ω)

∣

∣

∣

∣

∣

Ω→+0

= γ(m + 1)Gm+n+3(0)

×
[

1 − 1

2m+n+1

(

(2m + 1)(m + n)!

n!(m + 1)!
− m − n

m + 1

m−1
∑

r=0

1

2r

(n + r)!

n!r!

)]

(B.3)

as the main term of an expression following from resumming up the power series.

In a similar way, J
(2)

2
is evaluated using eq.(B.3).
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