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Multiquark systems appear less frequently than mesons and baryons despite the enormous world-
wide experimental effort that has been made during the last two decades. In this work, we will
propose a possible explanation for that fact, restricting ourselves to the case of sets including only
c and c̄ quarks. We will show that those multiquarks can be thought as different combinations of
smaller units that associate together to produce colorless assemblies with a definite value of the
total spin. For instance, for the cccccc hexaquark with S = 0, we have three possibilities: a set of
six undistinguishable c quarks, an association of two ccc baryons, or a set of three cc diquarks close
together. This means we can have three different values for the mass of an open-charm hexaquark
with S = 0. Using the diffusion Monte Carlo method, we calculate all possible combinations
compatible with tetraquark ccc̄c̄, pentaquark ccccc̄, open-charm cccccc and hidden-charm cccc̄c̄c̄
hexaquark structures with the minimum value of total spin (S = 0 or S = 1/2). We consider
compact structures with radial wave functions including interactions between all the quarks in the
cluster. We find that, in all cases, the mass of the multiquark decreases with the number of small
units that conform the set of quarks. For instance, an open charm hexaquark made up of three
diquarks has a smaller mass than a set of six of c undistinguishable units. When the pieces that
conform the multiquark are themselves colorless with a definite value of the total spin, the cluster
splits into those smaller units that separate infinitely from each other.

1.- Introduction.— A century of fundamental research
in atomic physics has demonstrated that ordinary mat-
ter is corpuscular, with the atoms themselves contain-
ing a dense nuclear core composed of protons and neu-
trons, collectively named as nucleons, which are mem-
bers of a broader class of femtometre-scale particles,
called hadrons. In working towards an understanding
of hadrons, it has been discovered that they are bound-
states of quarks and gluons whose strong nuclear inter-
actions are described by a Poincaré invariant quantum
non-Abelian gauge field theory; namely, Quantum Chro-
modynamics (QCD).
Solving QCD exhibits a fundamental problem, never

before have we been confronted by a theory whose ele-
mentary color excitations (quarks and gluons) are not
those degrees-of-freedom readily accessible via experi-
ment, i.e. they always appear confined inside colorless
systems (hadrons). This complexity makes hadron spec-
troscopy, the collection of readily accessible states con-
stituted from quarks and gluons, the starting point for
all further investigations. A very successful classification
scheme for hadrons in terms of their valence quarks and
antiquarks was independently proposed by Murray Gell-
Mann [1] and George Zweig [2] in 1964. It basically sep-
arates hadrons in mesons and baryons which are, respec-
tively, quark-antiquark and three-quark bound-states lo-
cated at the multiplets of the flavor symmetry. The
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so-called quark model classification received experimen-
tal verification in the late 1960s and, despite extensive
experimental searches, no unambiguous candidates for
other exotic quark-gluon configurations were identified
until the beginning of the third millennium.

The Belle collaboration reported in 2003 [3] an anoma-
lous signal, named X(3872), in the invariant mass spec-
trum of π+π−J/ψ produced in B± → K±X(3872) →

K±(π+π−J/ψ) decays. The X(3872) was later stud-
ied by the CDF, D0, and BaBar collaborations con-
firming that its quantum numbers, mass and decay pat-
terns make it an unlikely conventional charm–anti-charm
(charmonium) candidate. Therefore, the simplest quark
model picture that had been so successful for around 40
years was challenged leading to an explosion of related
experimental and theoretical activity since then. Nowa-
days, the number of exotic so-called XYZ states has in-
creased dramatically, in both light- and heavy-quark sec-
tors but also with respect to the meson and baryon cate-
gories. For extensive recent presentations about the sta-
tus of exotic hadrons, the reader is referred to several
reviews [4–24].

The ultimate aim of theory is to describe the proper-
ties of the XYZ states from QCD’s first principles. Since
the strong coupling constant becomes large in the energy
regime where hadrons live, perturbative methods are of
limited use in QCD. The two most promising ab-initio

approaches are effective field theories [25–28] and lattice
gauge theories [29–32]. In fact, they have recently played
a major role in reproducing the observed mass spectrum
of stable, long-lived, conventional hadrons but, unfortu-
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nately, they have also appeared as very limited methods
when treating excitations, states close to hadron-hadron
thresholds and multiquark structures [33–36]. Therefore,
a more modest goal is the development of QCD moti-
vated phenomenological models that specify the colored
constituents, how they are clustered and the forces be-
tween them. In that line, simultaneously to the experi-
mental measurements, theorists have been proposing for
the XYZ states different kinds of color-singlet clusters,
made by quarks and gluons, which go beyond conven-
tional mesons and baryons such as glueballs, quark-gluon
hybrids and multiquark systems (for a graphic picture of
these kinds of hadrons see, for example, Figs. 1, 6, and 7
of Ref. [9]).
Concerning the multiquark systems, the very first

quark model proposals already speculated with their
existence [37–39]. In fact, QCD does not forbid
to construct more complex colorless arrangements of
valence quarks than mesons and baryons, and pro-
vides simple mechanisms to construct multiquark struc-
tures. For instance, since a diquark (anti-diquark) in
a color antisymmetric (symmetric) combination acts as
if it were a single antiquark (quark), (anti-)diquarks
could thus become the building blocks of compact
tetraquarks, [(qq)(q̄q̄)], pentaquarks, [(qq)(qq)q̄], and
even hexaquarks, [(qq)(qq)(qq)], whose size is of the or-
der of the confining scale. A further QCD mechanism
for the creation of multiquark structures is inspired by
the residual strong interaction that binds nucleons in nu-
clei, i.e. the nuclear binding is effective in meson-meson,
baryon-meson and baryon-baryon combinations so as to
produce loosely bound and extended molecular-type of
multiquark systems. These various quark binding mech-
anisms could lead to different exotic families, or even to
systems with mixed features.
One important observation related with multiquark

systems is that they appear much less frequently than
usual mesons and baryons despite the enormous world-
wide experimental effort that has been made since mid
1960s but specially in the last two decades. The goal of
the present theoretical study is to shed some light about
this fact performing stability assessments of exotic mul-
tiquark structures such as tetraquarks, pentaquarks and
hexaquarks assuming all possible clusters between quarks
and antiquarks as building blocks. This should yield a
hierarchy among the different organizations/families and
potentially an explanation of why mesons and baryons
have been the only hadron states discovered for decades
and are still overwhelming abundant nowadays.
In order to comply with our aim, we use a diffusion

Monte Carlo method (DMC) to solve the many-body
Schrödinger equation that describes the fully-heavy mul-
tiquark systems1. This approach allows us to reduce
the uncertainty of the numerical calculation, accounts

1 Fully-heavy multiquark systems are going to be considered here

because non-relativistic phenomenological Hamiltonians are nat-

for multi-particle correlations in the physical observables,
and generalizes the quark-clustering picture. The quark
model we use [40, 41] has a pairwise interaction which is
the most general and accepted one: Coulomb+ linear-
confining+hyperfine spin-spin; therefore, our analysis
should provide some rigorous statements about the mass
location of the all-heavy multiquark ground states with
different clustering assumptions. Note, too, that the
model parameters were constrained by a simultaneous fit
of 36 mesons and 53 baryons, with a range of agreement
between theory and experiment around 10− 20%, which
can be taken as an estimation of our predictions shown
here.
2.- Theoretical framework.— Fully-heavy ground state
systems can be described by the following Hamiltonian:

H =

n-part.
∑

i=1

(

mi +
~p 2
i

2mi

)

− TCM +

n-part.
∑

j>i=1

V (~rij) , (1)

where mi is the quark mass, ~pi is the momentum of
the quark, and TCM is the center-of-mass kinetic energy.
Since chiral symmetry is explicitly broken in the heavy
quark sector, the two-body potential, V (~rij), can be de-
duced from the one-gluon exchange and confining inter-
actions; i.e.

V (~rij) = VOGE(~rij) + VCON(~rij) . (2)

The one-gluon exchange potential is given by

VOGE(~rij) =
1

4
αs(~λi · ~λj)

[

1

rij

−
2π

3mimj
δ(3)(~rij)(~σi · ~σj)

]

, (3)

where αs is the strong coupling constant, ~λ are the
SU(3)-color Gell-Mann matrices, ~σ denote the Pauli spin
matrices and the δ(3)(~rij) is replaced by a smeared func-
tion that reads as

δ(3)(~rij) → κ
e−r2ij/r

2

0

π3/2r30
, (4)

with κ a quark model parameter, and r0 = A
(

2mimj

mi+mj

)B

a regulator which depends on the reduced mass of the
quark–(anti-)quark pair.
Lattice-QCD has demonstrated that multi-gluon ex-

changes produce an attractive linearly rising potential,

urally accepted to describe the dynamics of heavy hadrons; more-

over, we are pursuing general statements about the stability hier-

archy of the different multiquark arrangements allowed by QCD

and, since this has not done before, we consider heavy quark sec-

tors the correct environment to begin with leaving light quark

dynamics for future work.
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TABLE I. Quark model parameters used herein and taken
from AL1 potential in Refs. [40, 41].

Quark masses mc (GeV) 1.836

OGE αs 0.3802

κ 3.6711

A (GeV)B−1 1.6553

B 0.2204

CON b (GeV2) 0.1653

∆ (GeV) -0.8321

which is proportional to the interquark distance [42].
This is usually modeled as

VCON(~rij) = (b rij +∆)(~λi · ~λj) , (5)

where b is the confinement strength and ∆ is a global
constant fixing the origin of energies.
Table I shows the quark model parameters relevant

for this work. Note here that we are using the so-called
AL1 potential proposed by Silvestre-Brac and Semay in
Ref. [40], and applied extensively to the baryon sector in
Ref. [41].
The application of Quantum Monte Carlo (QMC)

methods to hadron physics has been scarce, basically be-
cause most known hadrons consisted on bound states of
just two and three quarks. However, many of the re-
cently discovered XYZ particles are candidates to be 4-,
5- and even 6-quark bound or resonance states and thus
QMC algorithms can become a competitive tool to shed
some light into the spectroscopy and structure of multi-
quark systems. In fact, after the seminal works studying
the fully-heavy tetraquark systems [43, 44], ourselves and
other colleagues have been applying the same technique
to other conventional and exotic hadron systems [45–51].
The central idea behind the Diffusion Monte Carlo

method (DMC) is to write the Schrödinger equation for
n-particles in imaginary time (~ = c = 1):

−
∂Ψα′(R, t)

∂t
= (Hα′α − Es)Ψα(R, t) , (6)

where Es is the usual energy shift used in DMC methods,
R ≡ (~r1, . . . , ~rn) stands for the position of n particles and
α denotes each possible spin-color channel, with given
quantum numbers, for the n-particles system. The func-
tion Ψα(R, t) can be expanded in terms of a complete set
of the Hamiltonian’s eigenfunctions as

Ψα(R, t) =
∑

i

ci,α e
−(Ei−Es)t Φi,α(R) , (7)

where the Ei are the eigenvalues of the system’s Hamilto-
nian operator. The ground state wave function, φ0,α(R),
is obtained as the asymptotic solution of Eq. (6) when
t→ ∞, as long as there is overlap between Ψα(R, t = 0)
and φ0,α(R), for any α-channel. This shall also provide

us the ground-state mass of the different set of quarks
given a particular set of quantum numbers α.
From the paragraph above, one can deduce that the

DMC method needs an initial approximation to the
many-body wave function of the cluster, the so-called
trial function, that should include all the information
known a priori about the hadron system. We chose the
expression

Φi,α(R) ≡ Φi(~r1, . . . , ~rn; s1, . . . , sn; c1, . . . , cn)

= φi(~r1, . . . , ~rn)

×
[

χs(s1, . . . , sn)⊗ χc(c1, . . . , cn)
]

, (8)

where, explicitly, ~rj , sj and cj stand for the position,
spin and color of the j-quark which is inside the n-quark
cluster.
In this work, we are going to consider hadron states

that are eigenvectors of the angular momentum operator
L2 with eigenvalue equals to zero. This means that φ
depends on the distance between pairs of quarks:

φ(~r1, . . . , ~rn) =
n
∏

j>i=1

exp(−aijrij) . (9)

Other alternatives to the radial part of the trial func-
tion are not considered in this work since, in principle,
the DMC algorithm is able to correct its possible short-
comings and produce the exact masses of the arrange-
ments [44]. Moreover, aij are determined by the so-called
cusp conditions, viz. aij are initially fixed in accordance
to the boundary conditions of the problem.
The spin and color terms, χs and χc, of the total wave

function are written as linear combinations of the eigen-
vectors of the spin and color operators defined by:

F 2 =





Nq
∑

i=1

λi
2





2

, S2 =





Nq
∑

i=1

σi
2





2

. (10)

with eigenvalues F 2 = 0 (colorless functions) and S = 0
or 1/2, depending on whether the number of quarks in
the multiquark system is even or odd, respectively. Those
are the lowest possible eigenvalues for the spin operator
and the only ones considered in this work.
Since Eq. (9) is symmetric with respect to the exchange

of any two identical quarks, we have to produce spin-color
combinations which are antisymmetric with respect to
those exchanges in order to fulfill Pauli statistics. To do
so, we apply the antisymmetry operator,

A =
1

N

N
∑

α=1

(−1)PPα , (11)

to the complete set of spin-color functions. In Eq. (11),
N is the number of possible permutations of the set of
quark indexes, P is the order of the permutation, and Pα

represents the matrices that define those permutations.
Once constructed the matrix derived from the operator
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in Eq. 11, we have to check if we can find any eigen-
vector with eigenvalue equal to one. If this is so, those
combinations shall be the input of the DMC calculation.

3.- Results.— Three multiquark structures: tetra-,
penta- and hexa-quark systems, shall be under scrutiny in
order to stablish the stable configurations for each exotic
hadron. We will concern ourselves only with arrange-
ments made up of c and c̄ quarks.

Let us then begin with the fully-charmed tetraquark
system, [ccc̄c̄] ≡ [(cc)(c̄c̄)]; that is to say, we have two
pairs of indistinguishable quarks and antiquarks, respec-
tively. For this cluster, we have 2 color and 2 spin S=0
eigenfunctions, to be combined to give 2 totally antisym-
metric color-spin functions. Those are then introduced in
the DMC algorithm to get the binding energy, total mass
and relevant mean-square radii shown in the first row of
Table II, section tetraquarks. We obtain a bound state in
which the distances between all quarks are quite similar,
indicating that it is a compact object. Our next step is to
consider the [(cc̄)(cc̄)] tetraquark, in which the cc and c̄c̄
units are not considered to be undistinguishable, but they
keep the tetraquark identity as a whole. In this case, we
have the same 2 color and 2 spin eigenfunctions, but this
time combined to produce 4 channels. The binding en-
ergy, total mass and mean-square radii produced by the
DMC algorithm with those functions are shown in the
second row of Table II, section tetraquarks. Attending
to the binding energy, this hadron is more bounded and
then more stable than the former case; with respect to
the interquark distances, one may conclude that mesons
can be distinguished clearly but the quarks in different
mesons are further apart from each other. In any case, we
have a compact structure with finite distances between
all quarks. The third row in Table II, section tetraquarks,
shows our results for the case in which the aij coefficients
in Eq. 9 are different from zero only for the c-c̄ in the
same meson. The color-spin functions are the same as
in the previous [(cc̄)(cc̄)] case. The total mass is exactly
the same as twice the meson mass in Ref. [44], and the
mean-square radii are also the same as for an isolated cc̄.
This situation is compatible with the infinite separation
between quarks in different mesons. All this means that,
even tough the ground state of a tetraquark corresponds
to two mesons located infinitely apart, we can have two
associated mesons close together forming a multiquark
with a slightly larger mass. Above those, we will have a
third possibility, a compact tetraquark.

Concerning the fully-charmed pentaquark system,
[ccccc̄], we have the following possible arrangements of
quarks: [(cccc)c̄], [(cc)(cc)c̄], [(ccc)(cc̄)]. In all cases, we
have 3 colorless color eigenfunctions to be combined with
5 S = 1/2 spin functions to produce 15 color-spin func-
tions. For the first arrangement, in which we have four
undistinguishable c quarks, we found that there is only
one possible antisymmetric combination of those 15 wave
functions if we consider all equal quarks undistinguish-
able. In the diquark-diquark-antiquark system, we have
4 antisymmetric combinations that kept the antisymme-

try of the quarks within each of the diquarks. In the
baryon-meson cluster, we have 3 combinations with the
adequate symmetry. Their respective masses and quark-
quark distances are in Table II, section pentaquarks. One
can see that the [(cccc)c̄] configuration produces the high-
est energy with a clear compact structure among all in-
volved quarks. This can be deduced from the equal values
of the distances between particles. The following case,
(cc)(cc)c̄, has a mass lower than the first one in the spec-
trum and it is also a compact structure. Then, we con-
sider the [(ccc)(cc̄)] arrangement with a baryon-meson
structure inside a pentaquark. In this case, the mass
decreases again; moreover, the baryon+meson structure
can be deduced from the separation between two quarks,
one in the baryon and another in the meson, ∼ 0.78 fm.
Finally, the lowest energy state, and thus the more sta-
ble one, corresponds to the non-interacting baryon-meson
system. Those results are the same as those obtained in
Ref. [44]. It is worth mentioning that that 7899MeV
mass listed in Table II corresponds to the masses of a ccc
baryon with S = 3/2 and a J/Ψ meson due to the restric-
tions imposed by the S = 1/2 of the whole pentaquark
function. This reinforces the idea of having mesons and
baryons as the most stable hadrons in nature. However,
as in the tetraquark case, we can, in principle, have a
compact baryon-meson system slightly above the sepa-
rated structure.

Focusing now on the fully-charmed hexaquark sys-
tem, we must consider two big families: the open-charm
hexaquark, [cccccc], and the hidden one, [cccc̄c̄c̄]. The
number of their (color,spin)-eigenfunctions are (5, 5) and
(6, 5), respectively. However, the final antisymmetric
functions are just 1, 2 and 5 for [cccccc], [(cc)(cc)(cc)] and
[(ccc)(ccc)] open-charm hexaquarks whereas, for hidden-
charm hexaquarks, one finds 2 antisymmetric functions
for [(ccc)(c̄c̄c̄)] and 8 for [(ccc̄c̄)(cc̄)]. As for the open-
charm hexaquark system, the possible quark configura-
tions are shown in Table II, section open-charm hex-
aquarks. One can see the pattern repeating itself, the
binding energy becomes larger as we go from config-
uration [cccccc] to configuration [(cc)(cc)(cc)], passing
through [(ccc)(ccc)] and then (ccc) − (ccc); therefore,
the most stable situation is again having two ccc non-
interacting baryons. Besides, as shown by the interquark
distances, configurations [(cc)(cc)(cc)] and [(ccc)(ccc)]
are compact objects. As for the hidden-charm hex-
aquark family, it is remarkable to observe that the
tetraquark+meson configuration has a larger binding en-
ergy than baryon-antibaryon case. As all the cases stud-
ied before, either tetraquark-meson or baryon-antibaryon
systems without interaction among them are more sta-
ble than their partner configurations within a compact
hexaquark.

4.- Summary.— We have used a diffusion Monte Carlo
method to solve a many-body Schrödinger equation
that contains the most general and accepted pairwise
Coulomb+ linear-confining+hyperfine spin-spin interac-
tion between heavy quarks and antiquarks. We have
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TABLE II. Binding energies and Masses, in MeV, of the studied fully-charmed multiquark systems. We also provide relevant
interquark mean-square radii, in fm2. The subindexes in 〈r2ij〉 represent i-quark and j-quark (or antiquark) within the [1234]-
tetraquark, [12345]-pentaquark and [123456]-hexaquark.

Tetraquarks Configuration EB M 〈r212〉 〈r213〉 〈r214〉 〈r234〉

[(cc)(c̄c̄)] −994 6350 0.26 0.23 · · · 0.26

[(cc̄)(cc̄)] −1312 6032 0.25 0.49 0.38 0.25

(cc̄)− (cc̄) −1334 6010 0.13 ∞ · · · · · ·

Pentaquarks Configuration EB M 〈r212〉 〈r214〉 〈r215〉 〈r245〉

[(cccc)c̄] −986 8194 0.31 · · · 0.31 · · ·

[(cc)(cc)c̄] −1159 8021 0.25 0.27 0.25 0.26

[(ccc)(cc̄)] −1257 7923 0.23 0.61 · · · 0.17

(ccc)− (cc̄) −1281 7899 0.21 ∞ · · · 0.16

Open-charm Configuration EB M 〈r212〉 〈r213〉 〈r215〉 〈r245〉

hexaquarks

[cccccc] −1114 9902 0.33 · · · · · · · · ·

[(cc)(cc)(cc)] −1345 9671 0.25 0.28 0.28 · · ·

[(ccc)(ccc)] −1400 9616 0.23 · · · 0.65 0.23

(ccc) − (ccc) −1420 9596 0.21 · · · ∞ 0.21

Hidden-charm Configuration EB M 〈r212〉 〈r213〉 〈r215〉 〈r245〉

hexaquarks

[(ccc)(c̄c̄c̄)] −1403 9613 0.23 · · · 0.70 0.23

(ccc) − (c̄c̄c̄) −1420 9596 0.21 · · · ∞ 0.21

[(ccc̄c̄)(cc̄)] −1624 9392 0.24 0.22 0.37 0.15

(ccc̄c̄)− (cc̄) −1661 9355 0.26 0.23 ∞ 0.13

found that for each colorless combination of c and c̄
quarks, we can have several compact clusters with differ-
ent masses, that can, in principle, be detected separately.
We also have shown that if the internal structure of the
multiquark is made of pieces that are themselves individ-
ually colorless and with a definite value of the spin wave
function, they separate to form smaller units.
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