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We use the nonequilibrium Green’s function formalism to investigate the radiative heat transfer
(RHT) between coplanar two-dimensional (2D) metals via a tight-binding square lattice model and
the Drude model. Our results reveal that the RHT between coplanar 2D metals is significantly
larger than black-body radiation in both the near and far fields, leading to a global super-Planckian
RHT. As the separation distance increases, the heat flux density exhibits a rapid decrease in the near
field, followed by a slower decrease and eventual 1/d dependence in the far field, while maintaining
a much higher magnitude than black-body radiation. Evanescent waves dominate the heat transfer
in the near field, while propagating waves dominate the far field. Surprisingly, the propagating heat
flux remains almost constant over a wide range of distances, resulting in a super-Planckian behavior
in the far field. The dispersion relation of the spectrum function reveals distinct contributions from
propagating and evanescent waves, with possible origins from surface plasmon resonance. These
findings provide insights into the unique characteristics of RHT between coplanar 2D metals and
highlight the potential for achieving enhanced heat transfer beyond the black-body limit, with
implications for thermal management and energy conversion applications.

I. INTRODUCTION

In electrodynamics, the upper limit of energy gener-
ated by thermal motion is governed by black-body ra-
diation, with the characteristic frequency spectrum de-
termined solely by the temperature of the body, as per
Planck’s law. However, recent investigations into new
tunneling channels of electromagnetic waves have re-
vealed that radiative heat transfer (RHT) between bod-
ies can exceed the black-body limit, resulting in a phe-
nomenon known as super-Planckian RHT [1–3]. The
most extensively studied super-Planckian RHT is the
well-known near-field RHT [4–7], where the separation
distance between two bodies is less than Wien’s wave-
length. Through tunneling evanescent waves, the heat
flux between bodies in the near field can significantly
surpass the black-body limit by several orders of magni-
tude. Owing to its potential applications in a wide range
of innovative technologies, such as nanoscale energy har-
vesting [8] and thermal management [9], super-Planckian
energy transport has generated tremendous research in-
terest [10–12].

Initially, super-Planckian RHT was considered present
only in the near field, where new tunneling channels such
as evanescent waves can exist. In contrast, propagating
waves dominate far-field RHT, and Kirchhoff’s law gov-
erns the heat emission, thus bounded by the black-body
limit [13]. However, recent studies have revealed that
far-field super-Planckian RHT can be achieved between
sub-wavelength objects [14–16]. When the dimensions
of the bodies are smaller than the thermal wavelength,
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the heat flux between them in the far field can also ex-
ceed the black-body limit with a defined view factor. For
instance, experimental work by Thompson et al. demon-
strates that far-field RHT between planar membranes
with sub-wavelength dimensions can exceed the black-
body limit by more than two orders of magnitude [15].
Fernández-Hurtado et al. performed further theoretical
investigations to explore the limits of super-Planckian
far-field RHT using 2D materials. Their results show that
the exchanged thermal radiation between two coplanar
graphene flakes can be more than seven orders of magni-
tude larger than the black-body limit, with the enhance-
ment of RHT in the far-field dominated by TE-polarized
guiding modes [16].

Theoretical works on RHT have generally been based
on the fluctuational electrodynamics (FE) theory of
Polder and van Hove [17], using Rytov’s formulation
of fluctuating electromagnetic fields [18]. However, the
macroscopic response functions used in FE theory are
often insufficient to describe RHT in the extreme near
field (distances approaching atomic lattice constants),
especially for inhomogeneous materials in which local
field effects play a significant role [19]. This limitation
may hinder further application of the theory to sub-
wavelength objects, which are indispensable for achieving
far-field super-Planckian RHT. Recently, a general mi-
croscopic nonequilibrium Green’s function (NEGF) ap-
proach to study photon transport, including RHT, has
been developed [20–23]. The microscopic NEGF formal-
ism for RHT is equivalent to FE theory in local ther-
mal equilibrium while maintaining the ability to deal
with completely nonequilibrium situations in which the
fluctuation-dissipation theorem is inapplicable [23–26].
Despite the promising applications of the NEGF method
in RHT, its wide implementation remains nascent.
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In this work, we employ the NEGF formalism to build
a microscopic theoretical framework for studying RHT
between coplanar objects and apply it to 2D common
metals. To obtain the electronic and response properties
of the media, we start from a general tight-binding model
with a square lattice and subsequently employ the Drude
model. Our results show that the RHT between coplanar
2D metals exhibits a super-Planckian behavior in both
near-field and far-field scenarios, dominated by evanes-
cent and propagating waves, respectively. The heat flux
is approximately four orders of magnitude larger than the
black-body limit in the near-field and can reach a million-
fold enhancement in the far-field. This work proposes a
practical microscopic framework to study RHT between
coplanar 2D objects, offering a model extendable to var-
ious metals with appropriate parameters.

II. NEGF FORMALISM FOR RHT BETWEEN
COPLANAR 2D LATTICES

We consider two semi-infinite 2D square lattices placed
in the x–z plane, as shown in Fig. 1. Both lattices have
the same lattice constant a and are separated by a vac-
uum gap of size d. For each lattice, we assume electrons
are located at the lattice sites labeled by l = (lx, lz) and
can only hop to the nearest-neighbor sites within their
own lattice, i.e., no electrons can hop from one lattice to
another. If the temperatures T1 and T2 of the two lat-
tices are different, radiative heat transfer occurs, and we
aim to calculate the net heat flux density between them.

In both the FE and NEGF formalisms of RHT, the en-
ergy current between two bodies is given by a Landauer-
like formula [27]:

J =

∫ ∞

0

dω

2π
ℏω

[
N1(ω)−N2(ω)

]
T (ω), (1)

where Nα(ω) =
[
eℏω/(kBTα) − 1

]−1
is the Bose distribu-

tion function at the temperature Tα for object α. The
transmission function T (ω) characterizes the coupling be-
tween objects mediated by fluctuating electromagnetic
fields, which can be expressed using different terminolo-
gies in the FE and NEGF methods.

In this work, we adopt the microscopic NEGF formal-
ism. Under the local equilibrium approximation, Eq.(1)
can be derived from the Meir-Wingreen formula [28, 29],
and the transmission coefficient T (ω) is given by the Car-
oli formula [30, 31]:

T (ω) = Tr
[
Dr

21Γ1D
a
12Γ2

]
, (2)

where the superscripts r and a denote the retarded and
advanced components, respectively. The central quan-
tities for calculations in Eq.(2) are the photon Green’s
function D and the spectrum function Γ, which is de-
fined as Γ = i(Πr − Πa), where the photon self-energy
Π describes electron-photon interactions within each ob-
ject. Given that the advanced components are the con-
jugate transpose of the retarded ones, i.e., Da = (Dr)†

FIG. 1. Model of two coplanar 2D objects with a lattice con-
stant a separated by a vacuum gap of d. Each lattice is in its
internal thermal equilibrium state; lattice 1 is at temperature
T1, and lattice 2 is at temperature T2. The x-direction is pe-
riodic, and the z-direction is semi-infinite.

and Πa = (Πr)†, we can calculate the heat flux between
the two objects using the equations above once the re-
tarded photon Green’s function Dr and self-energy Πr of
the system are obtained.
To obtain the retarded photon Green’s functionDr and

self-energy Πr, we consider a vector potential A and its
interaction with electrons within a tight-binding model
framework [32]. As gauge invariance uniquely determines
the form of interactions between electrons and fields, by
adopting the temporal gauge (where the scalar potential
ϕ = 0), the Hamiltonian of the interacting system can be
written as [20]:

Ĥ =
ϵ0
2

∫
dV

[(
∂A

∂t

)2

+ c2(∇×A)2
]

+
∑

l,l′

c†lHl,l′cl′exp

(
e

iℏ

∫ l

l′
A · dl

)
, (3)

where l denotes the electron sites in the 2D lattice, Hl,l′

is the single-electron Hamiltonian matrix element, ϵ0 is
the vacuum permittivity, and c is the speed of light. The
integral in the exponential function is a line integral from
site l′ to site l following a straight path.
We now invoke the NEGF machinery, in which the

contour-ordered photon Green’s function D and photon
self-energy Π are defined as [26, 33]:

Dµν(rτ ; r
′τ ′) =

1

iℏ
〈
TcAµ(r, τ)Aν(r

′, τ ′)
〉
, (4)

Πlµ;l′ν(τ ; τ
′) =

1

iℏ
〈
TcIlµ(τ)Il′ν(τ

′)
〉
, (5)

where τ and τ ′ are Keldysh contour times, Tc is the time-
ordering operator on the contour, µ and ν represent the x
or z directions, and the average is taken over a nonequi-
librium steady state. Here, D is defined in the entire
space, while Π is restricted to the discrete lattice sites,
and the current operator I describes the hopping of elec-
trons between different sites.
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For the 2D lattice configuration illustrated in Fig.1,
with periodicity only in the x-direction and no electron
sites in the y-direction, we can perform a Fourier trans-
form of the vector potential Aµ or electron annihila-
tion operator cl along the x direction, while maintaining
the real space representation in the z direction. Due
to this periodicity, the electron Hamiltonian becomes
block-diagonal after the Fourier transformation, and the
fermion operators defined on lattice sites can be repre-
sented in the mixed space as follows:

clx,lz =
1√
L

∑

qx

eiqxlxac(qx, lz), (6)

where L is the number of discrete wavevectors in the x-
direction and the transverse wavevector qx takes on the
values qx = 2πm/(aL) for m = 0, 1, ..., L − 1. Conse-
quently, the Fourier-transformed version of the photon
Green’s function in our system is expressed by

Dµν(qx, z, τ ; z
′, τ ′) =

1

iℏ
〈
TcAµ(qx, z, τ)Aν(−qx, z

′, τ ′)
〉
.

(7)
The self-energies of the photons are determined by ex-

panding the exponential term in the interaction part of
the Hamiltonian in Eq. (3) to the second order in Aµ.
The linear term leads to the current-vector potential
interaction, and after applying standard diagrammatic
techniques, the linear term self-energy in contour time is

found to be

Πµν(qx, lz, τ ; l
′
z, τ

′) =
1

iℏL
〈
TcIµ(qx, lz, τ)Iν(−qx, l

′
z, τ

′)
〉
.

(8)
Here, the self-energy Πµν is dependent on the transverse
wavevector qx as well as the lattice positions lz and l′z
in the z-direction. The expectation is taken over the
equilibrium state, with the current operators Iµ and Iν
describing the electron hopping processes.
As the x direction is periodic, electrons in lx can hop

to lx ± 1. We define the “velocity” of the electron in the
x direction as

v(px, p
′
x) =

at

ℏ
(
sin(pxa) + sin(p′xa)

)
, (9)

where a is the lattice constant, t is the hopping param-
eter, and p′x and px are the initial and final momenta of
the electron, respectively. The current operator in the
x-direction is then given by

Ix(qx, lz, τ) = − e
∑

px,px′

v(px, p
′
x)c

†(px, lz, τ)

× c(p′x, lz, τ)δ(p
′
x − px − qx), (10)

where (−e) is the electron charge, c† and c are the cre-
ation and annihilation operators for electrons, and δ is
the Kronecker delta function since our momentum labels
are discrete, ensuring momentum conservation.

The situation differs in the z direction as electrons at the boundary site can only hop to inner sites. A central
difference operator, ∆c(†)(p′x, lz, τ) = c(†)(px, lz + 1, τ)− c(†)(px, lz − 1, τ), is defined to handle this situation, leading
to the expression for the z-component of the current operators:

Iz(qx, lz, τ) =
ieat

2ℏ
∑

px,px′

[
c†(px, lz, τ)∆c(p′x, lz, τ)−∆c†(px, lz, τ)c(p

′
x, lz, τ)

]
δ(p′x − px − qx). (11)

Using the notation GAB(τ, τ
′) = ( 1

iℏ )⟨TcA(τ)B(τ ′)⟩ for the electron Green’s function G and applying the Wick
theorem [33], we can obtain the photon self-energies in the following matrix sectors:

Π(1)
xx (qx, lz, τ ; l

′
z, τ

′) =
ℏe2

iL

∑

px,p′
x

v2(px, p
′
x)G(px, lz, τ ; l

′
z, τ

′)G(p′x, l
′
z, τ

′; lz, τ)δ(p
′
x − px − qx), (12)

Π(1)
xz (qx, lz, τ ; l

′
z, τ

′) =
e2at

2L

∑

px,p′
x

v(px, p
′
x)
[
Gc∆c†(px, lz, τ ; l

′
z, τ

′)G(p′x, l
′
z, τ

′; lz, τ) (13)

−G(px, lz, τ ; l
′
z, τ

′)G∆cc†(p
′
x, l

′
z, τ

′; lz, τ)
]
δ(p′x − px − qx),

Π(1)
zx (qx, lz, τ ; l

′
z, τ

′) =
e2at

2L

∑

px,p′
x

v(px, p
′
x)
[
G(px, lz, τ ; l

′
z, τ

′)Gc∆c†(p
′
x, l

′
z, τ

′; lz, τ) (14)

−G∆cc†(px, lz, τ ; l
′
z, τ

′)G(p′x, l
′
z, τ

′; lz, τ)
]
δ(p′x − px − qx).

The most complex zz component is given by

Π(1)
zz (qx, lz, τ ; l

′
z, τ

′) =
i(eat)2

4ℏL
∑

px,p′
x

[
G∆cc†(px, lz, τ ; l

′
z, τ

′)G∆cc†(p
′
x, l

′
z, τ

′; lz, τ) (15)

−G(px, lz, τ ; l
′
z, τ

′)G∆c∆c†(p
′
x, l

′
z, τ

′; lz, τ)−G∆c∆c†(px, lz, τ ; l
′
z, τ

′)G(p′x, l
′
z, τ

′; lz, τ)

+Gc∆c†(px, lz, τ ; l
′
z, τ

′)Gc∆c†(p
′
x, l

′
z, τ

′; lz, τ)
]
δ(p′x − px − qx).
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In the above formulas, if the site index lz appears to be outside the lattice due to the central difference operator ∆,
the correponding term is understood to be zero. Equations (12)-(15) give the photon self-energy Π in contour time.
To apply Eq. (2), we need to transform the contour time formulas to real-time, which is achieved in the frequency
domain for the retarded component by the Langreth rule [34] as

G1(τ, τ
′)G2(τ

′, τ) →
∫ +∞

−∞

dE

2πℏ

[
Gr

1(E)G<
2 (E − ℏω) +G<

1 (E)Ga
2(E − ℏω)

]
, (16)

where G< denotes the lesser Green’s function.
Next, we consider the quadratic term (A2

µ) in the expansion, which gives a plasmon or diamagnetic contribution.
This term is important to maintain gauge invariance. After tedious derivations, the results are diagonal in direction
and site indices. The xx component of the plasmon contribution to the retard photon self-energy in energy space is
given by:

Πr(2)
xx (qx, ω, lz, l

′
z) =

e2

imL
δlz,l′z

∑

px

∫ +∞

−∞

dE′

2π
cos(pxa)G

<(px, E
′, lz, lz), (17)

where the effective mass is defined by the relation t = ℏ2

2ma2 . The zz component is expressed as:

Πr(2)
zz (qx, ω, lz, l

′
z) =

e2

2imL
δlz,l′z

∑

px

∫ +∞

−∞

dE′

2π

[
G<(px, E

′, lz, lz + 1) +G<(px, E
′, lz + 1, lz)

+G<(px, E
′, lz, lz − 1) +G<(px, E

′, lz − 1, lz)
]
. (18)

The total retarded photon self-energy is then given by the sum of the linear and quadratic contributions, Πr =
Πr(1) + Πr(2). The above expressions for Πr are known as random phase approximation, as higher-order electron-
photon couplings are ignored.

In the scenario where the system is in local ther-
mal equilibrium, meaning that the temperature is well-
defined, we can employ the fluctuation-dissipation theo-
rem [35, 36]. This theorem allows us to relate the lesser
Green’s function G< to the retarded (Gr) and advanced
(Ga) Green’s functions as follows:

G< = −f(Gr −Ga), (19)

where f =
[
e(E−µ)/(kBT ) + 1

]−1
is the Fermi-Dirac dis-

tribution function at temperature T and chemical poten-
tial µ.

To derive the retarded electron Green’s function Gr,
we can focus on the right side of the system. Denote
c(qx) as the semi-infinite vector of annihilation operators
for layers 1, 2, ..., lz, .... The Hamiltonian for the right
system, which is block-diagonal with hopping parameter
t and electron dispersion ϵ1D = −2t cos(qxa), allows us
to express the free electron Green’s function in terms of
the inverse of the Hamiltonian:

Gr(qx, E) =
[
E + iη −H(qx)

]−1
, (20)

where H(qx) is the single-particle Hamiltonian as a ma-
trix indexed by the position lz, and η is a small damping
factor that accounts for electron relaxation processes. An
explicit expression for the electron Green’s function is:

Gr(qx, E, lz, l
′
z) =

λlz+l′z − λ|lz−l′z|

t
(
1
λ − λ

) , (21)

where λ is a complex number with |λ| < 1 that satisfies
the quadratic equation:

t+ (E + iη − ϵ1D)λ+ tλ2 = 0. (22)

The subsequent objective is to compute the retarded
photon Green’s function Dr. By Utilizing the standard
diagrammatic expansion in the interacting picture, the
Dyson equation for the retarded photon Green’s function
Dr is [20, 37]:

Dr
µν (qx, ω, z, z

′) =

drµν(qx, ω, z, z
′) +

∑

lz,l′z,α,β

[
drµα(qx, ω, z, alz)

×Πr
αβ(qx, ω, lz, l

′
z)D

r
βν(qx, ω, al

′
z, z

′)
]
, (23)

where dr represents the free photon Green’s function. We
only need the solution when z = alz or z′ = al′z on the
electron lattice sites. We can obtain the expression in the
frequency domain from the second quantization represen-
tation of the vector potential or, alternatively, we can use
the equation of motion method. The free retarded pho-
ton Green’s function is given by [20, 23]:

dr(q, ω) =
U− qq/(ω/c)2

ϵ0
[
(ω + iη)2 − c2q2

] , (24)

withU representing the identity matrix. This is the same
as the usual dyadic Green’s function up to a constant
[38, 39].
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To obtain the free photon Green’s function suitable for
our geometry, we inverse Fourier transform y and z back
to real space and keep qx as it is. In our context, the free
Green’s function is a 2× 2 matrix since the y component
is never needed. The explicit expression for the (x, z)
block in atomic units (4πϵ0 = 1) is:

dr(qx, ω, z, z
′) =




(
1− c2q2x

ω2

)
g iqxc

2k
ω2 g1

iqxc
2k

ω2 g1 g + c2k2

ω2 g2


 , (25)

where k =
√

|ω2/c2 − q2x| is the wavevector component
perpendicular to the x direction, and g, g1, and g2 are
functions involving modified Bessel functions J , Y , and
K [40]. Specifically, if we define X = kr and r = |z− z′|,
these functions are given by:

- For propagating waves:

g =
π

c2
[
Y0(X)− iJ0(X)

]
, (26)

g1 =
π

c2
[
−Y1(X) + iJ1(X)

]
, (27)

g2 = −g − g1
X

. (28)

- For evanescent waves:

g = −2K0(X)

c2
, (29)

g1 =
2K1(X)

c2
, (30)

g2 = g − g1
X

. (31)

The expressions for g(1,2) depend on whether the waves

are propagating (ω2/c2 > q2x) or evanescent (ω2/c2 <
q2x). The modified Bessel functions J0, J1, Y0, Y1, K0,
and K1 are used to describe the spatial dependence of
the free photon Green’s function in the z direction. By
substituting the appropriate expressions for g, g1, and g2
into the matrix for dr(qx, ω, z, z

′), we can handle both
propagating and evanescent wave contributions to the
photon Green’s function within the system.

III. RADIATIVE HEAT TRANSFER BETWEEN
COPLANAR 2D METALS

In the last section, we derived general formulas to
calculate the RHT between coplanar 2D objects with
a square lattice. However, the obtained tight-binding
formulas Eqs. (12)-(18) for the retarded photon self-
energy Πr are complicated and time-consuming, neces-
sitating further approximations for efficient calculations.
First, because the thermal wavelengths of photons are
much longer than those of electrons, we can neglect the
wavevector dependence of the photon self-energy, i.e., we
use the long-wavelength approximation (qx = 0), which
can significantly reduce the computational effort. This

approximation is valid and widely adapted in study-
ing RHT, especially for homogeneous materials [41, 42].
Moreover, we assume that the two lattices are semi-
infinite in the z direction. With an increase in the sepa-
ration distance d, a larger lattice cutoff Lz value in the z
direction is needed to ensure convergence. As the value
of Lz determines the size of the self-energy matrices, the
computational complexity grows rapidly, which becomes
the major obstacle for actual calculations.

For pure metals, however, the electron behavior is well-
characterized by the Drude model [43, 44], which simpli-
fies the expression for the retarded photon self-energy Πr

as follows:

Πr
µν(ω, lz, l

′
z) = δµνδlz,l′z

a2e2ℏω
ℏω + 2iη

∫
dq

4π2
v2x

(
−df

dϵ

)
.

(32)
Here, vx = 2at sin(qxa)/ℏ, and ϵ = −2t

[
cos(qxa) +

cos(qza)
]
. It is diagonal in direction and local in sites.

By applying Eq. (32), not only can we circumvent the
complex tight-binding formulas, but we can also handle
a much larger effective lattice depth of s × aLz by in-
troducing a scale factor s. This is because the Drude
model, lacking a characteristic length scale, renders the
actual lattice constant a irrelevant. Consequently, the
converged value of Lz can be significantly reduced for
which the detailed comparison of these simplifications is
provided in the supplementary materials [45].

We applied the derived formulas to investigate the
RHT between 2D metals using the following parameters
and computational details. The hopping parameter t is
set to 0.85 eV, and the damping parameter η is 27.2meV,
which are typical values for simulating common metals
[46]. The lattice dimensions are Lz×L = 640×640, with
a lattice constant a of 4 a0 (4 times the Bohr radius),
which is also the assumed thickness of the metal flake.
For calculating photon self-energies, we used both the
tight-binding method and the Drude model, with scale
factor s optimized to ensure convergence across various
separation distances. To circumvent the divergence of the
free photon Green’s function when two electrons are at
the same location (r = 0), we impose a minimum distance
cutoff rcut = 1.6 a0. The temperatures are maintained at
T1 = 1000K and T2 = 300K with a null chemical po-
tential. For comparison with black-body radiation, the
heat transfer rate per unit length is also calculated us-
ing the Stefan-Boltzmann law: Jbb = aF12σ (T 4

1 − T 4
2 ),

where F12 = a
2d is the geometrical view factor, and

σ ≈ 5.67×10−8 Wm−2 K−4 is the Stefan-Boltzmann con-
stant [14, 16].

In Fig. 2, we present the calculated heat flux density
between two coplanar 2D metal sheets as a function of the
gap size. Results obtained from the tight-binding method
with the long-wavelength approximation represented by
a short dashed line with symbols, are only converged
for separation distances up to 0.1 µm. For larger gaps,
Lz = 640 proves insufficient, and extending it further
exceeds our computational limits. The results from the
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FIG. 2. The distance dependence of radiative heat flux den-
sity between two coplanar metal sheets with temperatures
T1 = 1000K and T2 = 300K. The dashed curve with sym-
bols corresponds to results from the tight-binding method,
while the colored solid curve represents results from the Drude
model. The black solid lines depict the heat flux density of
black-body radiation calculated by the Stefan-Boltzmann law,
factoring in the geometrical view factor F12 = a

2d
.

tight-binding method and the Drude model display good
agreement, with only minor deviations in the extreme
near-field regime at nearly contacting distances. With
the same parameters used (such as Lz ×L = 640× 640),
the agreement concurs in both near-field and far-field
regimes, which is further detailed in the supplementary
materials [45]. Therefore, subsequent discussions will fo-
cus on results from the Drude model.

As depicted in Fig. 2, the RHT between coplanar
2D metals decreases monotonically with increasing dis-
tance. Nonetheless, it is substantially larger than the
black-body radiation at all measured distances, indicat-
ing a global super-Planckian RHT. Unlike a constant
black-body radiation for face-to-face planar geometry,
the black-body heat flux in coplanar geometry has a 1/d
dependence due to the geometrical view factor F12 = a

2d
[16]. In the extreme near field, around 1 nm, the total
heat flux density can reach up to 0.01W/m, nearly four
orders of magnitude greater than that of black-body radi-
ation, which is a typical characteristic of near-field RHT.
Interestingly, a 1/d dependence is observed at short sep-
arations due to the long-wavelength approximation used
in the calculations [42]. Accounting for the full spatial
dispersion would likely reveal a saturation trend in the
extreme near field [12, 24]. The heat flux density de-
creases rapidly within the near field and then more grad-
ually from 1 µm to 1mm. Beyond d = 1mm, the heat
flux begins to mirror the 1/d dependence of black-body
radiation yet remains several orders of magnitude larger,
in agreement with previous studies [16].

FIG. 3. The spectrum of transmission function between two
coplanar metal sheets with the gap size of 1 µm. The horizon-
tal coordinate is the frequency, and the vertical coordinate is
qx×a. The temperature is fixed at T1 = 1000 K and T2 = 300
K. The red dashed lines represent the light line q2 = ω2/c2,
the boundary between evanescent and propagating modes.

In Fig. 2, we also separated the contributions from
evanescent and propagating waves to identify the tun-
neling channels. The varying decreasing trend in heat
flux at different distances is attributed to the transition
from evanescent to propagating waves. For d < 1 µm,
evanescent waves dominate the heat transfer, exhibiting
rapid decay with distance, which is typical for near-field
RHT. As the distance exceeds 1 µm, evanescent waves
diminish and propagating waves gradually become the
primary contributors. It should be noted that, in con-
trast to the face-to-face planar geometry, black-body ra-
diation between coplanar objects decays as 1/d due to
the view factor. However, the heat flux between copla-
nar 2D metals from propagating waves in the extreme
near field is comparable to that of black-body radiation.
It remains nearly constant up to d = 100µm, resulting
in super-Planckian behavior even in the far field. No-
tably, for d > 1mm, the propagating heat flux again
follows a 1/d dependence similar to black-body radiation
but maintains a magnitude millions of times larger, con-
sistent with prior observations. This suggests that the
RHT facilitated by propagating waves in coplanar con-
figurations exhibits characteristics similar to traditional
face-to-face geometry, where propagating heat flux re-
mains constant over distance [47].
The dimensionless spectrum transmission function

T (qx, ω) between coplanar 2D metals was analyzed and
is presented in Fig. 3. The gap size was fixed at 1 µm,
a distance at which both evanescent and propagating
waves significantly contribute to RHT. The heatmap de-
picted in Fig. 3 is distinctly divided into two regions.
The central region, or the “body” of the heatmap, cor-
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responds to the spectrum of propagating waves, which
are confined by the relation q2 < ω2/c2. Most notable is
that the majority of contributions within this region are
from low-frequency modes (< 0.1 eV) which align with
the thermal energy range defined by the temperatures
of the bodies involved (1000 K and 300 K). Moreover,
we observe contributions from evanescent waves on the
“wings” of the heatmap. These contributions are pre-
dominantly concentrated within a narrow band with a
dispersion relation close to ±ω/c. This suggests that the
evanescent waves may stem from the coupling of surface
plasmon resonance, which typically occurs at these higher
frequency multiples relative to the light line (q2 = ω2/c2)
[48]. The suspected significant role of surface plasmons
in near-field RHT highlights the unique mechanisms of
heat transfer at the nanoscale, distinguishing it from the
classical radiative heat transfer observed at larger scales.

IV. CONCLUSION

In summary, we have systematically explored the ra-
diative heat transfer between coplanar two-dimensional
metal configurations by employing both tight-binding
and Drude models within the NEGF formalism. Our
investigations confirm that the radiative heat transfer in
these sub-wavelength systems significantly exceeds that
of black body radiation across all distances, establishing
a regime of global super-Planckian RHT. The distance
dependence of the heat flux density is characterized by
a rapid attenuation in the near field, transitioning to a
more gradual reduction in the far field, and ultimately
conforming to a 1/d behavior, while maintaining a sub-
stantially higher magnitude than that predicted by black-

body radiation.
The analysis of the tunneling channel and dispersion

relation of the spectral function has elucidated the dis-
tinct contributions from both evanescent and propagat-
ing waves to the RHT. Evanescent waves are identified
as the primary heat transfer mechanism at shorter sepa-
rations, whereas propagating waves dominate as the sep-
aration increases. Remarkably, the heat flux associated
with propagating waves exhibits an almost invariant be-
havior over an extended range of distances up to 100µm,
indicative of the super-Planckian transport in the far
field. The dispersion relation of the spectrum function
between coplanar 2D metals reveals the distinct contri-
butions from propagating and evanescent waves. Most
of the propagating wave contributions coming from low
frequencies and wavevectors while evanescent wave con-
tributions being limited to a narrow range close to the
light cone, possibly originating from surface plasmon res-
onance. This work contributes to the fundamental under-
standing of radiative heat transfer in nanostructured sys-
tems, particularly highlighting the potential of coplanar
2D metals to facilitate heat transfer exceeding classical
limits. Future work could extend this study to different
materials and geometric configurations, paving the way
for optimized thermal transport in cutting-edge techno-
logical applications.
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381 (2008).

[22] J.-S. Wang, B. K. Agarwalla, H. Li, and J. Thingna,
Front. Phys. 9, 673 (2014).

[23] Y.-M. Zhang, T. Zhu, Z.-Q. Zhang, and J.-S. Wang, Phys.
Rev. B 105, 205421 (2022).

[24] T. Zhu and J.-S. Wang, Phys. Rev. B 104, L121409
(2021).

[25] G. Tang and J.-S. Wang, Phys. Rev. B 109, 085428
(2024).

[26] J.-S. Wang and M. Antezza, Phys. Rev. B 109, 125105
(2024).

[27] G. Bimonte, T. Emig, M. Kardar, and M. Krüger, Annu.
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We show in Fig. S1 the comparison between heat flux calculated from the tight-binding model, the Drude model,
and the Drude model with a scale factor. As pointed out in the main text, although Lz = 640 is insufficient to ensure
a full convergence, it can be seen that results from the tight-binding model and the Drude model agree at all distances
with the same parameter. On the other hand, by adopting the lattice scale factor s, we can use a smaller value of
Lz = 160 with s = 4 to obtain the same results as not scaled Drude model with Lz = 640, which significantly saved
the computational efforts. This agreement indicates that our approximations used in the main text is valid.

FIG. S1. The distance dependence of radiative heat flux density between two coplanar metal sheets with temperatures
T1 = 1000K and T2 = 300K. The “eva” and “prp” represent contributions from evanescent waves and propagating waves,
respectively. The solid lines correspond to results from the tight-binding method with Lz = 640, the circle symbol represents
results from the Drude model with Lz = 640, and the star symbols are results from the Drude model with Lz = 160 but the
lattice in z direction is scaled by a factor s = 4.
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