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The quantum valley Hall effect (QVHE) is characterized by the valley Chern number (VCN) in a way that
one-dimensional (1D) chiral metallic states are guaranteed to appear at the domain walls (DW) between two
domains with opposite VCN for a given valley. Although in the case of QVHE, the total BC of the system
is zero, the BC distributed locally around each valley makes the VCN well-defined as long as inter-valley
scattering is negligible. Here, we propose a new type of valley-dependent topological phenomenon that occurs
when the BC is strictly zero at each momentum. Such zero Berry curvature (ZBC) QVHE is characterized by the
valley Euler number (VEN) which is computed by integrating the Euler curvature around a given valley in two-
dimensional (2D) systems with space-time inversion symmetry. 1D helical metallic states can be topologically
protected at the DW between two domains with the opposite VENs when the DW configuration preserves either
the mirror symmetry with respect to the DW or the combination of the DW space-time inversion , and chiral
symmetries. We establish the fundamental origin of ZBC-QVHE. Also, by combining tight-binding model study
and first-principles calculations, we propose stacked hexagonal bilayer lattices including h-BX (X=As, P) and
large-angle twisted bilayer graphenes as candidate systems with robust helical DW states protected by VEN.

Introduction.— Quantum valley Hall effect (QVHE) is a
topological phenomenon arising from nonzero Berry curva-
ture (BC) around two valleys in time-reversal T symmetric
systems with broken inversion P symmetry [1]. The val-
ley Chern number (VCN) is defined as the integration of
Berry curvature (BC) for a given valley, and its change over
a domain counts the number of one-dimensional (1D) chiral
metallic states at the domain wall (DW) [2–4]. Although the
total BC of the system is zero due to T -symmetry, if the BC is
well-localized near each valley and the intervally scattering is
negligible, QVHE is robust. Bernal-stacked bilayer graphene
is a representative system that exhibits QVHE under vertical
electric field breaking P symmetry [5–17]. Many interesting
ideas have been proposed to realize QVHE not only in solid
state systems [18–20] but also in classical wave systems [21–
26]. These QVHE setups have potential application for val-
leytronics [27, 28].

The BC is an essential ingredient in various topological
phenomena including the QVHE [29–31]. However, the re-
cent studies of symmetry-protected topological states have un-
covered various intriguing topological states that exist even
in the absence of the BC [32–43]. One notable example is
the topological states in two-dimensional (2D) systems with
space-time inversion (IST) symmetry, which appears in the
form of either the combination of T and P in the absence
of spin-orbit coupling or the combination of T and two-fold
rotation about the z-axis normal to the 2D plane (C2z), ir-
respective of the presence or absence of spin-orbit coupling
[44]. Although IST symmetry forces the BC to vanish at ev-
ery momentum, two isolated bands in 2D IST symmetric sys-
tems can be characterized by an integer Euler number χ [45],
which induces various intriguing physical properties [46]. For
instance, two bands with an Euler number χ always possess
2χ number of Dirac points between them [45]. Moreover, a
topological phase transition changing the Euler number ac-
companies pair-creation and pair-annihilation of nodal points

[45] which can be characterized by non-Abelian braiding pro-
cesses [46–54]. Also, the Euler number is a fragile topological
index characterizing the band topology of nearly flat bands
in twisted bilayer graphene [45, 55–57], which reduces to a
Z2 second Stiefel-Whitney number when additional bands are
included [44]. However, contrary to the case of stable topo-
logical states, the topological Euler bands cannot host bound-
ary in-gap modes unless additional symmetries are imposed
to the system [58], as is common in crystalline topological
states [59].

In this work, we propose a new type of valley-dependent
topological phenomenon appearing in the absence of the BC,
dubbed a zero Berry curvature (ZBC) QVHE. The ZBC-
QVHE is protected by the change of valley Euler number
(VEN), similar to the conventional QVHE where the VCN
changes over the domain wall. A nonzero change of VEN
can protect one-dimensional (1D) helical metallic states along
the DW between two domains when the DW configuration
(DWC) satisfies either a mirror symmetry about the DW or
C2z together with a chiral symmetry. Here, the DWC indi-
cates the structure composed of two domains having the op-
posite VEN with a DW in between. As a simple model to re-
alize the ZBC-QVHE, we propose 2D bilayer structures such
that each layer hosts QVHE in layer decoupled limit and the
VCNs of the upper and lower layers have the opposite sign,
thus the total system has zero BC at every momentum and no
QVHE is expected.

Model.— To illustrate the idea, let us consider the AA’-
stacked bilayer honeycomb lattice shown in Fig. 1(a) with
the nearest-neighbor hopping within each layer as well as be-
tween layers, and a staggered sublattice potential. The low
energy Hamiltonian at a valley (either K or K’ as shown in
Fig. 1(a)) can be written as

Hη(kx, ky) = vηkxσxτ0+vkyσyτ0+mσzτz+t⊥σ0τx, (1)
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FIG. 1. (a) Lattice structure of the AA’-stacked honeycomb bilayers
and the relevant Brillouin zone with two valleys at K and K′. (b)
Schematic band structure evolution for zero Berry curvature quan-
tum valley Hall effect (ZBC-QVHE). (b1, b2) Two degenerate Dirac
cones (DCs) are gapped out by oppositely signed masses, which
gives oppositely signed Berry curvature (BC) (represented by blue
and red colors, respectively) for the occupied bands. (b3) Simple su-
perposition of two decoupled gapped Dirac cones. (b4) Coupling of
two gapped Dirac cones, respecting space-time inversion symmetry.
The BC vanishes but the Euler curvature (EC) is well-defined and
nonzero.

where v = 2
3 t1 is the Fermi velocity, m is the staggered sub-

lattice potential, and t1, t⊥ are the nearest neighbor intralayer
and interlayer coupling, respectively. η = 1,−1 indicates K
and K ′ valleys, respectively. σi and τi (i = x, y, z) are the
Pauli matrices for the sublattice and layer degrees of freedom,
respectively, and σ0 and τ0 are corresponding 2 × 2 identity
matrices.

We note that both P and T are symmetries of the full
system but the Hamiltonian Hη for each valley is invari-
ant only under their combination PT ≡ IST, dubbed the
space-time inversion symmetry, which can be represented by
IST = σxτxK with complex conjugation operator K because
P interchanges the layers and sublattices. We note that m is
the only mass term allowed under IST. When m = 0, Hη is
invariant under two mirrors My : y → −y and Mz : z → −z
represented by My = σx and Mz = τx, as well as two chi-
ral symmetries Π0 = σzτz and Π = σzτy . Here Π0 is the
bipartite chiral symmetry interchanging sublattices in the bi-
layer while Π ∝ MzΠ0. On the other hand, when m ̸= 0,
{Π, Hη} = 0 still holds while My , Mz , Π0 symmetries are
all broken.

Fig. 1(b) describes the band structure evolution of Hη

around a valley. When m = t⊥ = 0, two degenerate Dirac
cones, one from the top and the other from the bottom lay-
ers, appear at the Fermi energy (EF = 0) [see Fig. 1(b1)].
Turning on nonzero m generates oppositely signed masses
at two Dirac cones, which results in opposite Berry curva-
ture between them [see Fig. 1(b2)]. Nonzero t⊥ couples two

gapped Dirac cones, which makes the BC vanishing at ev-
ery momentum [see Fig. 1(b3, b4)]. However, both the upper
and lower bands carry a half-integral Euler number, leading to
ZBC-QVHE. Note that the presence of a single Dirac point in
both the upper and lower bands (the blue dots in Fig. 1(b4)) is
also consistent with their half-integral Euler number [47].

Topological invariant.— When interlayer coupling is ne-
glected with t⊥ = 0, each layer carries a quantized VCN with
the opposite sign between two layers. Explicitly, the valley
Chern number Cτ,η for the valley η in the layer τ is Cτ,η =
1
2 sgn(mητ) where τ = +1,−1 indicate the top and bottom
layers, respectively. The change of VCN for each layer (and
valley) over the domain wall ∆Cv

τ,η ≡ 2Cτ,η = sgn(mητ)
supports gapless DW modes between two domains for the
given valley. Since the VCNs of two decoupled layers have
the opposite signs, the DW of the bilayer shown in Fig. 2(a)
hosts two anti-propagating (helical) in-gap states per valley.
The existence of these helical in-gap states at the DW is noth-
ing but the manifestation of the QVHE in each layer [2, 7–
16]. Interestingly, the helical DW modes survive even when
t⊥ ̸= 0 and thus the total VCN vanishes. Below, we show that
the helical DW states are protected by the valley Euler number
(VEN) of the bilayer.

In IST-symmetric systems, one can always find a basis such
that both the Hamiltonian and wave functions becomes real
[32, 45, 46]. In two-dimensions, two real bands

∣∣u1(k)
〉

and∣∣u2(k)
〉

can have an integer topological invariant, called the
Euler number, defined as

χ = 1
2π

∫

BZ

Ec(k)dkxdky, (2)

where Ec(k) =
〈
∇u1(k)

∣∣×
∣∣∇u2(k)

〉
is the Euler curvature

and BZ indicates the two-dimensional Brillouin zone [45].
We note that the above integral can also be performed on a
disk D which is equal to the patch Euler number if we neglect
1D integration along the boarder of D [46, 47]. We choose the
size of D large enough to suppress the Euler curvature along
the boundary, then the half-integer value of χD can be deter-
mined by integrating the Euler curvature, similar to the valley
Chern number calculation by integrating the BC around a val-
ley. For the coupled bilayer Hamiltonian in Eq. (1), the valley
Euler number for a valley becomes χη = 1

2 sgn(mη), and the
change of VEN over a DW is ∆χv

η ≡ 2χη = sgn(mη). The
DW between two domains with opposite VENs can host he-
lical DW states when the system satisfies certain symmetry
conditions, as discussed below.

Note that by superposing two real bases, one can define the
Chern bases |ψ±(k)⟩ ≡ (

∣∣u1(k)
〉
± i
∣∣u2(k)

〉
)/
√
2 such that

the Chern number of |ψ+(k)⟩ (|ψ−(k)⟩) is equal (opposite)
to the Euler number of real bases [46, 60]. When two layers
are decoupled with t⊥ = 0, the Chern bases are eigenstates of
the Hamiltonian, which give the VCN of each layer. On the
other hand, when t⊥ ̸= 0, the Chern bases are not eigenstates
anymore, and thus only the VEN is well-defined.

The relation between VCN and VEN is similar to that
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FIG. 2. Realization of ZBC-QVHE in AA’ stacked bilayer h-BX (X=
As, P, N). (a) Domain wall configuration (DWC) with My and C2z

symmetries. The blue dashed line and red disc represent the My :
y → −y mirror and C2z rotation centre respectively. (b,c,d) Bulk
band structure (top) and Euler curvature distribution (bottom) for (b)
h-BAs, (c) h-BP, and (d) h-BN. PT symmetry-protected Dirac cones
below the EF are indicated by the purple dots at K and K′ . (e,f,g)
DW modes (green lines) for h-BAs, h-BP, and h-BN, respectively,
where ± indicate My mirror eigenvalues. As the bulk band gap and
on-site potential change at the DW increase from (b) to (d), the Euler
curvature spreads wider and the helical DW state pair gets closer and
pair-annihilate.

between the Chern number and Z2 invariant in quantum
spin Hall systems. When two spin channels with the op-
posite Chern numbers are superposed, the Chern number of
each spin channel is ill-defined if the spin-orbit coupling
is present [61–63] while their Chern number difference is
well-defined modulo two when time-reversal symmetry ex-
ists [64, 65]. Similarly, in our case, the VCN of each layer is
ill-defined when interlayer coupling presents, while the VEN
is well-defined when IST symmetry exists

Stability of helical DW states.— The helical DW states re-
lated to the VEN can be protected when the DWC satisfies
either My symmetry or the combination of chiral symmetry
Π and DW space-time inversion I ′

ST ≡ C2zT (see Fig. 2(a)).
Using the Hamiltonian in Eq. (1), the DWC can be constructed
by taking m → m(y), where lim|y|→∞m(y) = sign(y)m0

and m0 > 0. Accordingly, the DW is located along the x-
direction. The Hamiltonian for DWC can be obtained from
Eq. (1) by substituting ky → −i∂y as

HDW
η (kx, y) = vηkxσxτ0− iv∂yσyτ0+m(y)σzτz + t⊥σ0τx.

(3)
In the following, we show how My = σx symmetry can

protect the helical DW states. When the DWC satisfies My ,

the DW becomes a My-invariant 1D space. Moreover, since
My changes the sign of m in Hη , two domains related by
My should have the opposite Euler number. Similarly, when
interlayer coupling is neglected, two domains in each layer
related by My should have the opposite Chern number.

For convenience, let us neglect interlayer coupling. Since
each layer supports QVHE and the VCN of two layers have
opposite signs, helical DW states should appear from each
valley in the bilayer. The effective Hamiltonian for the helical
DW states from one valley can be written as HDW

0 = v′kxτz
where τz gives a good quantum number when interlayer cou-
pling is neglected. Since the DW is My invariant, each DW
state should also carry a My eigenvalue. To have the My

eigenvalue and the layer quantum number simultaneously,My

should be represented by either M̃y = τ0 or M̃y = τz where
the tilde symbol indicates the symmetry representation in the
space spanned by helical DW states. M̃y = τz prohibits the
mass terms in the form of HDW

m = m1τx +m2τy even when
interlayer coupling is turned on.

The representation M̃y = τz in the DW can be confirmed
as follows. For simplicity, let us consider HDW(y, τ) =
−iv∂yσy + τmσz corresponding to Eq. (3) with kx = 0
and t⊥ = 0, where τ = ±1 indicate the upper and
lower layers, respectively. Because of the chiral symmetry
{HDW(y, τ), σx} = 0, if ψ(y) is a zero mode solution satis-
fying HDW(y, τ)ψ(y) = 0, σxψ(y) is also a zero mode solu-
tion. Since there is only one zero mode per layer, two solu-
tions should be proportional to each other as σxψ(y) = λψ(y)
where λ is a constant. Namely, ψ(y) is an eigenstate of
the chiral symmetry operator σx. Moreover, the mass term
in HDW(y, τ) has the opposite signs in two layers, the DW
Hamiltonians for two layers are related as σyHDW(y, τ =
+1)σy = HDW(y, τ = −1). Thus, if ψ(y) is a zero mode
solution for one layer, σyψ(y) is the zero mode solution of
the other layer. Since ψ(y) and σyψ(y) have the opposite σx
eigenvalues and ψ(−y) = ψ(y), M̃y = τz can be confirmed
(see Supplemental Materials (SM) [66] for additional discus-
sion). This symmetry representation is not affected by inter-
layer coupling if it is small enough to maintain the band gap.
Therefore, the DWC with My symmetry can support helical
DW states originating from VENs. Since the helical states
have the opposite My eigenvalues, their crossing is stable.

The helical DW states can also be symmetry-protected
when Π and I ′

ST = C2zT satisfying [Π, I ′
ST] = 0 exist si-

multaneously. As noted above, Π is a combination of the bi-
partite chiral symmetry and Mz mirror. Also, if the DWC
has C2z symmetry, I ′

ST = C2zT exists and takes the form
of I ′ST = σxK in Eq. (3). Since I ′

ST changes the sign of
m in Eq. (1), two domains related by I ′

ST have the oppo-
site VENs. Since C2z does not mix layers, in the DW I ′

ST
can be represented by Ĩ ′

ST = K and forces m2 = 0 in
HDW

m = m1τx +m2τy . The remaining mass m1τx can be an-
nihilated by imposing Π̃ = τx that satisfies [Π̃, Ĩ ′

ST] = 0 [67–
69].

Hexagonal bilayer materials.— As an example of AA’
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FIG. 3. The evolution of the helical DW dispersion under an external
vertical electric field which can restore the helical DW states. DW
dispersion (a) without and (b) with electric field.

stacked hexagonal bilayers, we consider h-BX (B=Boron and
X= As, P, N) as shown in Fig. 2. Fig.2(a) describes the DWC
with My and C2z symmetries composed of two domains with
opposite VENs. The band structures of h-BX single domains
and the corresponding Euler curvature distribution around two
valleys are shown in Fig.2(b,c,d) where we also identify the
presence of a Dirac point between the two highest occupied
bands at K and K ′ (purple dot in Fig.2(b,c,d)), respectively,
demonstrating their half-integral valley Euler number [47].
Our DFT simulation (see SM for detail about the computa-
tion method) of the DWC confirms the existence of helical
DW modes in h-BAs, and hBP as shown in Fig.2(e), and (f),
respectively. Consistent with our prediction, the helical DW
modes have opposite My eigenvalues.

In the case of h-BN, although the system respects all
symmetry conditions to realize ZBC-QVHE, the helical DW
modes are absent (see Fig.2 (g)). There are two reasons for
this. One is because, as the band gap increases (see Fig. 2
(b,c,d)), the wavefunctions at K and K’ are mixed more, which
makes VEN ill-defined. To confirm it, we have computed the
Euler curvature distribution near two valleys for these sys-
tems shown in the bottom panels of Fig. 2 (b,c,d). One can
clearly see that the Euler curvature spreads wider as the band
gap increases. In h-BN with the largest band gap, the helical
DW states from two valleys are pair-annihilated, leading to
the gapped DW modes (see Fig. 2 (g)).

The other reason is due to the abrupt change of the on-site
potential at the DW, roughly proportional to the sublattice po-
tential, occurring due to the atomic configuration change as
shown in Fig. 2 (a). As h-BN with largest sublattice potential
feels stronger potential variation at the DW, the helical DW
modes from two valleys can be pair-annihilated. We note that
as long as the DWC keeps theMy mirror, the crossing of heli-
cal DW states from each valley is stable even if such potential
variation happens. Interestingly, this on-site potential varia-
tion at the DW can be compensated by applying an external
electric field to the domain. As shown in Fig. 3(a, b), the heli-
cal DW states can be recovered by applying an external elec-
tric field, which is obtained by using a tight-binding model
relevant to h-BN with an additional out-of-plane electric field
as described in detail in the SM.

Discussion.— We have proposed a new type of valley de-
pendent topological phenomena, dubbed the ZBC-QVHE, in-
duced by the VEN. Although the Euler number is a topolog-

ical invariant of two bands, the helical DW states are stable
even in the presence of additional bulk bands as long as they
do not disturb the half-integral Euler number of Euler bands
at each valley. This is because the crossing between helical
DW states from each valley is further protected by My sym-
metry of the DWC, which is well-defined even in multi-band
systems. In the case of the helical DW states protected by Ĩ ′

ST
and Π̃ symmetries, the stability of the helical DW state cross-
ing is guaranteed by the fact that HDW has non-zero Z2 0-
dimensional charge when commuting Ĩ ′

ST and Π̃ symmetries
are present [67].

In addition to h-BX materials, we have identified various
candidate systems where ZBC-QVHE can be realized such as
large-angle twisted bilayer graphene [29, 70–75], and hexago-
nal bilayer spin systems [76–81] as described in detail in SM.
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SUPPLEMENTAL MATERIAL: Quantum Valley Hall effect without Berry curvature

Rasoul Ghadimi, Chiranjit Mondal, Sunje Kim, and Bohm-Jung Yang
(Dated: March 25, 2024)

S1. TIGHT BINDING AND EDGE THEORY

The simple tight-binding Hamiltonian of AA’-stacked bilayer graphene can be read as [see Fig. S1(a, b)]

H =
∑

α,α′,l,l′,i,j

(tα,l;α
′,l′

i,j +mα,lδl,l′δα, α
′δi,j) |α, l, i⟩ ⟨α′, l′, j| , (S.1)

where |α, l, i⟩, and ⟨α, l, i| are ket and bra states of electron at given sublattice α = A,B, layer l = 1, 2, and site i index. In
Eq. (S.1) tα,l;α

′,l′

i,j , and mα,l indicate hoping energy and onsite potential of electrons. In the following, we consider t1, and t2
as the nearest-neighbor and next-nearest-neighbor coupling inside each layer, while the vertical hopping is given by t⊥. The
staggered sublattice potential is considered as m = mA,1 = −mB,1 = −mA,2 = mB,2, mimicking bilayer h-BX systems.
By applying the Fourier transformation, |α, l, i⟩ =

∑
k exp(ik.ri) |α, l,k⟩, one can block diagonalize the Hamiltonian in the

momentum space as H =
∑

k,α,α′,l,l′ Hα,l;α′,l′(k) |α, l,k⟩ ⟨|α′, l′,k⟩|, where H(k) is a matrix given by

H(k) = ϵ(k)σ0τ0 + hx(k)σxτ0 + hy(k)σyτ0 +mσzτz + t⊥σ0τx. (S.2)

σi and τi (i = x, y, z) represent the Pauli matrices for the sublattice and layer degrees of freedom, respectively, and σ0 and τ0
are corresponding 2× 2 identity matrices. Here, ϵ(k), hx(k), and hy(k) are function of momenta and given explicitly as

ϵ(k) = 2t2

(
2 cos

(√
3kx
2

)
cos

(
3ky
2

)
+ cos

(√
3kx

))
, (S.3)

hx(k) = t1

(
2 cos

(√
3kx
2

)
cos

(
kx
2

)
+ cos(ky)

)
, (S.4)

hy(k) = t1

(
sin(ky)− 2 cos

(√
3kx
2

)
sin

(
ky
2

))
. (S.5)

In the absence of m, t⊥, Eq. (S.2) results in two degenerated Dirac cones at each valley η = ±1, located at Kη = η( 4π
3
√
3
, 0).

It is clear from Fig. S1(e), that the domain wall is My symmetric. We plot the band structure for a ribbon that is periodic along
the x-direction as shown in Fig. S1(f). The mirror eigenvalue +1 and −1 of each band in Fig. S1(f) are indicated by red and
blue colors. We can see the helical states obtain opposite mirror eigenvalues, and therefore their crossing is stable. To prove
this analytically, further, we derive domain wall states wave-function explicitly. To start we first obtain the low energy model of
Eq. (S.2) by assuming small m and t⊥ at Kη at a valley Kη

H = −3t2σ0τ0 +
3
2kxηt1σxτ0 +

3
2kyt1σyτ0 +mσzτz + t⊥σ0τx. (S.6)

Note that nonzero t2 only trivially shifts energy dispersion along the energy axis and therefore in the following discussion we
set t2 = 0. The domain is constructed by assuming m → m(y), where lim|y|→∞m(y) = sign(y)m0. Accordingly, the
domain is located along the x direction. The domain wall wave function is obtained by substituting ky → −i∂y . To proceed we
furthermore assume kx = 0, t⊥ = 0 and later treat them perturbatively. Therefore we need to solve

−i 32 t1σyτ0∂y |ψ(y)⟩+m(y)σzτz |ψ(y)⟩ = 0 (S.7)

where |ψ(y)⟩ is a spinor wave function that depends on y and we assume that at kx = 0, the energy of domain modes is zero (see
Fig. S1(f) that crossing is located at Dirac points). To solve this equation we can express |ψ(y)⟩ in a way that Eq. S.7 convert to
a non-spinor equation. This equation can be more simplified if we express it as |ψ(y)⟩ = σz |ψ′(y)⟩,

3
2 t1σxτ0∂y |ψ′(y)⟩+m(y)τz |ψ′(y)⟩ = 0 (S.8)
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FIG. S1. (a, b) Lattice structure and hopping parameter of AA’ stack of bilayer h-BX. (c) The energy dispersion of Eq. (S.1). (d) The magnified
view of the (c) around a valley. The black dashed loop represents the boundary that we calculate the valley Euler number. (e) Domain wall
structure, where the domain wall is represented by the dashed green line. The x direction is periodic. The red and blue disks show sites with
opposite signs of onsite potential. (f) Energy dispersion of domain wall of (e) is plotted [we set t⊥/t1 = 0.3, t2 = 0, and m/t1 = 0.1]. The
red and blue colors in (f) indicated the given band’s mirror eigenvalues (±1).

By applying τz on both sides of equation we arrived at

3
2 t1σxτz∂y |ψ′(y)⟩+m(y) |ψ′(y)⟩ = 0 (S.9)

It is obvious that the |ψ′(y)⟩ should be eigenstate of τz and σx or equivalently |ψ′(y)⟩ = f(y) |τz = τ, σx = σ⟩, where σ = ±1
and τ = ±1. Here f(y) is a y-dependent function that should be localized at the domain and can obtain by putting |ψ′(y)⟩ in
S.9,

( 32 t1στ∂yf(y) +m(y)f(y)) |τz = τ, σx = σ⟩ = 0. (S.10)

Therefore to satisfying Eq. S.10, f(y) should solve

3
2 t1στ∂yf(y) +m(y)f(y) = 0. (S.11)

Now solving this equation is very easy and we obtain

f(y) = f(y0) exp

[
−στ

∫ y

y0

2
3t1
m(y′)dy′

]
(S.12)

Note that to describe the domain wall f(y) should decay very fast to zero when |y| increases. Note that lim|y|→∞m(y) =
sign(y)m0. Therefore for large |y| ≫ 0, we can obtain f(y) as

f(y) ∝ exp
[
− 2

3t1
στsign(y)m0y

]
(S.13)

or equivalently

f(y) ∝ exp
[
− 2

3t1
στm0|y|

]
(S.14)

It is easy to see that f(|y| ≫ 0) → 0 if −στ 2m0

3t1
< 0 or equivalently στ = sign(t1m0). This means that σ and τ are not

independent and therefore only two combinations of σ = ±1, τ = ±1 can give localized domain wall states. Combining the
previous calculation, the following ansatz gives a zero energy state at the domain wall

|ψτ
DW(y)⟩ ≡ 1

N e
−sign(m0)

∫ y
0

2
3|t1|m(y′)dy′

σz |τz = τ, σx = sign(τm0t1)⟩ , (S.15)



3

where we introduce N for normalization.
The mirror symmetry is given by My = σx(y → −y). Note that two domain wall states have opposite eigenvalues of σx.

Therefore
∣∣ψ±

DW(y)
〉

are eigenstates of mirror symmetry and have opposite mirror eigenvalues. Note that mirror symmetry keeps
y dependent function invariant, which can be proven as follows

e
−sign(m0)

∫ −y
0

2
3|t1|m(y′)dy′

=
y′→−y′

e
−sign(m0)

∫ y
0

2
3|t1|m(−y′)d(−y′)

=
m(−y′)=−m(y′)

e
−sign(m0)

∫ y
0

2
3|t1|m(y′)d(y′)

. (S.16)

To obtain domain wall Hamiltonian, we have to project other terms like 3
2kxηt1σxτ0 + t⊥σ0τx into zero energy domain wall

modes. The first term gives

HDW ≡
∫ ∞

∞
dy ⟨ψτ

DW(y)| 3
2kxηt1σxτ0

∣∣∣ψτ ′
DW(y)

〉
∝ 3

2 |t1|sign(ηm0)kx(τz)τ,τ ′ .

But the second term t⊥σ0τx changes τ while keeping σ intact. But as we saw before σ and τ are locked and therefore this term
gives zero if we project it to the domain wall states, equivalently

∫ ∞

∞
dy ⟨ψτ

DW(y)| t⊥σ0τx
∣∣∣ψτ ′

DW(y)
〉
= 0.

This means that the domain wall crossing is protected even after coupling two layers.
To calculate the valley Euler number, we first assume the sublattice potential m is small and then choose a patch around the

Dirac point between two lower bands with a large radius to neglect the effect of m on the border of the patch. Then we fixed
the wave function on the boundary of the patch (black lines in Fig. S1(d)) and found that the sign of the valley Euler number
changes with the change of the sign of sublattice potential m.

S2. DFT COMPUTATIONAL DETAILS:

First principle calculations were carried out using projector augmented wave (PAW)[1] formalism based on Density Functional
Theory (DFT) as implemented in the Vienna ab-initio Simulation Package (VASP).[2, 3] The generalized-gradient approximation
by Perdew-Burke- Ernzerhof (PBE)[3] was employed to describe the exchange and correlation. An energy cut-off of 400 eV is
used to truncate the plane-wave basis sets. DFT-D3 method has been applied for Van der Waals forces correction. We construct
the domain of length around 180Å with at least 15Å vacuum size along the non-periodic directions to avoid any interactions
between the periodic images. The Brillouin zone (BZ) for the 1D ribbon is integrated using 1×5×1 Γ−centered k-mesh. We
relax the bilayer systems and then use the optimized lattice constants and layer separation distances to construct the 1D ribbon
systems for h-BX (X=N, P, and As). Due to the large size of the 1D ribbon, we only used the relaxed bulk parameters. To
calculate the Eular curvature of the h-BX, we construct a tight-binding Hamiltonian for the compounds using pz orbitals. With
appropriate sublattice potential, we reproduce the band gap of the DFT results. Then we calculate the Eular curvature using the
fitted Hamiltonian.
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FIG. S2. Realization of the ZBC QVHE in Twisted Bilayer Graphene (TBG). (a) The SEE configuration of TBG at θ = 38.21. (b) The domain
wall modes of ZBC QVHE can be achieved by symmetrically attaching two SEE configurations with opposite rotation angles +θ and −θ. (c)
Energy dispersion of the domain wall and its magnified versions around two valleys (we only show a few eigenvalues near the energy gap). In
Plots, the red plus and minus indicate opposite mirror eigenvalues for the given domain modes wave functions.

S3. TWISTED BILAYER GRAPHENE

In Ref. 4, we investigated the QVHE in a large-angle TBG in its sublattice odd configuration [5, 6]. In the presence of a
perpendicular electric field, this configuration acquires a non-zero valley Chern number and shows the QVHE. However, the
energy band dispersion of the sublattice even (SEE) configuration is the same as AA graphene but nodal lines are gapped out.
The SEE configuration possesses IST as the combination of two-fold rotation and time reversal symmetry i.e., C2zT (Fig. S2(a))
which leads to the absence of valley Chern number. It has been shown that the SEE configuration has a nontrivial Stiefel Whitney
index, exhibiting corner modes [7]. Therefore, two occupied bands around the Fermi energy host non-trivial Euler class.

The Hamiltonian of SEE configuration was derived by Mele in Ref.[8] and is given by [9]

H = ν(kxησx + kyσy) + γeiϕητzσzτxe
−iϕητzσz , (S.17)

where σ, τ , and η are defined as sublattice, layer and valley degree of freedom. Here γ and ϕ are the parameters which depend
on the rotation angle. Here C2zT = σxK. This Hamiltonian can be represented by

H = ν(kxησx + kyσy) + γ cos 2ϕτx − ηγ sin 2ϕτyσz. (S.18)

By transferring basis using a unitary matrix U = eiπ/4τx we obtain

U†HU = ν(ηkxσx + kyσy) + γ cos 2ϕτx + γη sin 2ϕσzτz (S.19)

which is same as the Hamiltonian for ZBC QVHE in the main text (Eq. (1)), where mass and inter-layer coupling are replaced
by γη sin 2ϕ, and γ cos 2ϕ, respectively. Therefore, changing the sign of ϕ changes the valley Euler number. Therefore the sign
of the gap can be determined by the sign of ϕ. As we can see easily from Eq. S.17, we can flip the sign of ϕ by τxHτx. Such
operation is equivalent to the changing of layers, which is equivalent to twisting with the opposite angle. Furthermore sign of ϕ
can be exchange using a mirror operator M = σx(ky → −ky). Also the sign of the ϕ can be exchange using a PT operation,
PT = σxτxK.

To achieve the boundary modes related to ZBC QVHE, we designed a setup, that involves the joining of two twisted bilayers
with opposite commensurate twisting angles and preparing the interface to respect the domain wall mirror symmetry (and/or
domain wall space-time symmetry I ′ST = PT ) as shown in Fig. S2(b). We found that the energy dispersion of the system shows
gapless helical states for each valley and it unequivocally confirms the ZBC QVHE in the SEE configuration of large-angle
TBG (see Fig. S2(c)). Furthermore, we anticipate the existence of such a ZBC QVHE in various other twisted bilayer systems,
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including α-graphyne as α-graphyne possess exactly similar band dispersion and contain the same symmetries [10]. Note that
although in h-BX (X=N, P, and As) type stacked bilayer system, the ZBC QVHE can be linked easily to the existence of two
physical QVHE, in twisted bilayer graphene it is difficult to obtain such a simplified but physical picture.
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FIG. S3. Realization of the ZBC QVHE in the anti-ferromagnetic and canted anti-ferromagnetic system. Degenerate magnetic moments with
canted ground states are shown in (a) and (b). (c) Proximity-induced canted anti-ferromagnetic states in buckled honeycomb layer and domain
wall construction by controlling the magnetic proximity. (d) Buckled SiMn monolayer. (e) Band structure of SiMn with canted magnetic
ordering for Mn atoms. (f) The energy dispersion of electrons coupled to the canted magnetic domain structure shows ZBC QVHE.

S4. MAGNETIC SYSTEMS

The layer degrees of freedom can be replicated using the spin sector of the magnetic system. The spin configurations in
Fig. S3(a,b) produce a similar Hamiltonian as the gapped bilayer AA graphene. However, the layer degree of freedom is replaced
by the spin degree of freedom. The canted magnetic configuration (see Fig. S3(a,b)) leads to the following Hamiltonian:

Hmagnetic = kxησxs0 + kyσys0 +MAFM σzsz +MFMσ0sx (S.20)

where MAFM is the antiferromagnetic part and MFM is the ferromagnetic part (which may arise due to an in-plane magnetic
Zeeman field.). σi, and si act on sublattice and spin degree of freedoms. The local symmetry and chiral symmetry are given
by IST = σxsxK and Π = σzsx. Here, IST is coming as a combination of spin-full time-reversal τ = syK(k → −k) and
C2z = σxsz(k → −k) symmetries. We construct a domain by flipping the sign of the MAFM over the two sides of the domain
wall as shown in Fig. S3 (c). The domain have a mirror symmetry M = σx(ky → −ky) which interchange domains. Such a
domain also respect the domain wall space-time inversion symmetry which is expressed as I ′

ST = σxK. Two sides of the domain
wall possess magnetic configurations similar to Fig. S3 (a) and (b) respectively. For MFM = 0, the system becomes purely anti-
ferromagnetic which leads to quantum spin-valley Hall effects. Assuming that the system hosts these two degenerate magnetic
solutions, one can naturally expect similar to the Ising model the emergence of magnetic domains due to temporal fluctuations.
Furthermore, to achieve a more controllable setup, one can harness desired magnetic states in a buckled honeycomb-like lattice
such as silicene by proper magnetic ad-atoms adsorption (Fig. S3(d)) or magnetic proximity effect (Fig. S3(c)). We found that
a canted magnetic order on buckled silicene potentially leads to the realization of ZBC QVHE. To confirm such a scenario
we artificially construct SiMn lattice structure and assume canted magnetic order on Mn atom (Fig. S3(d)). In Fig. S3(e), we
present the band structure of SiMn, where we observe that the d-orbitals of the magnetic Mn atoms, situated around the Fermi
energy, induce an effective ZBC QVHE phase for the s-orbitals of silicene well below the Fermi energy (see the magnified
view of Fig. S3(e)). Fig. S3(f) confirms the existence of Helical domain states at the interface of two systems with magnetic
configurations shown in Fig. S3(a) and Fig. S3(b), respectively.
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