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Bound states in the continuum (BICs) are exotic, localized states even though their energy lies in
the continuum spectra. Since its discovery in 1929, the quest to unveil these exotic states in charge
transport experiments remains an active pursuit in condensed matter physics. Here, we study
charge transport in InSb nanowire networks in the ballistic regime and subject to a perpendicular
magnetic field as ideal candidates to observe and control the appearance of BICs. We find that
BICs reveal themselves as distinctive resonances or antiresonances in the conductance by varying the
applied magnetic field and the Fermi energy. We systematically consider different lead connections
in hashtag-like nanowire networks, finding the optimal configuration that enhances the features
associated with the emergence of BICs. Finally, the investigation focuses on the effect of the Rashba
spin-orbit interaction of InSb on the occurrence of BICs in nanowire networks. While the interaction
generally plays a detrimental role in the signatures of the BICs in the conductance of the nanowire
networks, it opens the possibility to operate these nanostructures as spin filters for spintronics.
We believe that this work could pave the way for the unambiguous observation of BICs in charge
transport experiments and for the development of advanced spintronic devices.

I. INTRODUCTION

Bound states in the continuum (BICs) are spatially
localized states or waves whose energy or frequency lies
within a continuum spectrum of propagating modes. Von
Neumann and Wigner proposed the existence of these
exotic and counterintuitive states in the earlier days of
quantum mechanics [1]. They constructed a spatially os-
cillating attractive potential and solved the correspond-
ing Schrödinger equation, finding a truly localized state
above the potential barrier as a result of destructive in-
terference. Much later, Stillinger and Herrick reexam-
ined and extended these ideas in the context of atoms
and molecules [2].

The occurrence of BICs is related to the dynamics of
coherent waves, and therefore, they have been thoroughly
studied not only in atoms and molecules [2–4] but also in
areas of optics and photonics [5–10], plasmonics [11–13],
acoustics [14–17] and nanoelectronics [18–23], to name
a few (see Refs. [24–27] for comprehensive reviews on
BICs). Since the pioneering work by Plotnik et al. on the
symmetry-protected BICs in an array of parallel dielec-
tric single-mode waveguides fabricated of fused silica [5],
much progress have been achieved in the observation and
characterization of BICs in photonic structures [28–30].

However, signatures of BICs in charge transport exper-
iments remain elusive and less explored in the literature.
Recent advances in nanotechnology have made it possible
to conceive and fabricate quantum devices that support
BICs. In this context, Albo et al. made use of inter-
subband photocurrent spectroscopy to demonstrate that

a BIC exists above (Ga,In)(As,N) / (Al,Ga) as quan-
tum wells that arises from the hybridization of nitrogen-
related defect states and the extended states of the con-
duction band [31]. Nöckel investigated theoretically the
ballistic electron transport across a quantum dot in a
weak magnetic field [32]. Resonances in the transmission
were found to get narrower upon decreasing the mag-
netic field, signaling the occurrence of BICs as the mag-
netic field vanishes. Therefore, the external magnetic
field can control the coupling of the spatially localized
state with extended states of the continuum energy spec-
trum in nanostructures. In double or triple quantum
dots, the coupling between the BICs and the continuum
energy states can be controlled by detuning the energy
levels of each quantum dot using gate voltages [18, 20],
without the need of external magnetic fields. In this case,
the appearance of BICs is identified by the occurrence of
Fano resonances [33] in the transmission.

In this work, we investigate the impact of BICs on the
conductance of InSb nanowire networks in the ballistic
regime, aiming to provide new routes for their observa-
tion in charge transport experiments. These nanostruc-
tures present phase-coherence lengths exceeding several
micrometers with Aharonov–Bohm oscillations up to five
harmonics due to high crystalline quality [34]. In addi-
tion, InSb nanowires have been theorized to host Majo-
rana zero modes [35] and are regarded as suitable candi-
dates for topological quantum computing [36]. Inspired
by a study in which two interacting quantum dots ex-
hibited BICs [37], our investigation focuses on nanowire
networks forming a hashtag pattern. In this config-
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uration, the corners emulate the quantum dots, while
the branches correspond to tunneling processes between
them. Here, the dead-end chains connected to the cor-
ners allow us to control the interference among various
electron paths that help us to set the energy of the BICs.
The main goal of this research is to determine the opti-
mal configuration, including the placement of the leads
and whether and where to place the dead-end chains, to
enable the unambiguous observation of the BICs. Fi-
nally, the effect of the strong Rashba spin-orbit interac-
tion (SOI) of InSb nanowires on the BICs and the asso-
ciated spin currents is studied.

II. MODEL HAMILTONIAN AND METHOD

We consider six different arrangements of leads and
dead-end branches of the InSb nanowire network. All
of them will have a hashtag structure, but different
places where the leads are attached or the number of
dead-end chains and where they are placed (see fig-
ures 1 and 4). Since the cross-section of the nanowires
is small, the subbands are well separated in energy, and
hence, the nanowires can be regarded as one-dimensional.
By discretizing the Ben Daniel-Duke Hamiltonian, the
resulting equation of motion for the envelope func-
tion becomes equivalent to a tight-binding model with
nearest-neighbor coupling. The hopping energy is t =
ℏ2/(2m∗a2), where m∗ is the electron effective mass and
a is the grid spacing. In this framework, the single-
electron Hamiltonian can be cast in the form H =
Hleads +Hsys +Hc where

Hleads =tlσ0
∑

l,j

(
d†l+1,jdl,j + d†l,j+1dl,j

)
+ h.c. , (1a)

Hsys =
∑

n,m

(
ϵnmσ0 + gµBBσz

)
c†n,mcn,m

−
∑

n,m

(
te−imaBσ0 −

iα

2
σy

)
c†n+1,mcn,m

−
∑

n,m

(
tσ0 +

iα

2
σx

)
c†n,m+1cn,m + h.c. (1b)

Here, dl,j = (dl,j,↑, dl,j,↓)T is the annihilation op-
erator of the leads at site {l, j} of the lead while
cn,m = (cn,m,↑, cn,m,↓)T is the annihilation operator of
the nanowire networks at site {n,m} of the hashtag pat-
tern, t and tl are the hopping energy in the network and
the leads respectively, ϵij is the site energy of the net-
work taking the site energy of the leads as zero, α is the
Rashba spin-orbit coupling, σ0 is the 2×2 identity matrix
and σx,y,z are the Pauli matrices. The network is threat-
ened by a magnetic field tuned to add a complex phase
in hopping parameter along the x direction. Finally, Hc

describes the tunnel coupling between neighbor sites of
the lead and the hashtag network, with hopping energy
tl and a complex phase when the sites are aligned along
the x direction.

Since we are assuming that the phase coherence length
is larger than the system size, the conductance of the de-
vice is calculated within the Landauer-Büttiker formal-
ism in the ballistic regime as follows

G(E) =
e2

h
τ(E) , (2)

where τ(E) is the transmission coefficient at the Fermi
energy E and −e is the electron charge. Notice that we
are neglecting the broadening of the Fermi-Dirac distri-
bution function by taking T = 0K. The transmission
coefficient can be calculated straightforwardly with the
aid of the transfer-matrix approach or the Green’s func-
tions method (see Supplementary Material). Addition-
ally, when there is a spin-flip mechanism as Rashba SOI,
the conductance can be obtained as

Gs,s′(E) =
e2

h
τs,s′(E) , (3)

where s, s′ = ↑, ↓ stand for the spin projections of the in-
coming and outgoing electron states, respectively. There-
fore, we can define the spin polarization of the conduc-
tances as follows

PS(E) = G↑,↑ +G↓,↑ −G↑,↓ −G↓,↓ . (4)

The BICs are difficult to find because they are not cou-
pled to the continuum energy spectra until the symme-
try that allows them to exist is broken. For this reason,
we calculate the conductance by varying the magnetic
field and the Fermi energy. When the magnetic field is
switched on, the BICs can be uncovered as an emerging
resonance or antiresonance in the conductance. Once the
presumed BICs are found, their spatially localized nature
is assessed through the participation ratio (PR)

PR =

(∑

n,m

|Fnm(EBIC)|4
)−1

, (5)

where Fnm is the amplitude of the normalized envelope
function at site {n,m}. Notice that PR = 1 when the
state is fully localized at a single site whereas PR ≃ N
for an extended state.

III. RESULTS

We calculate the conductance numerically with the
Kwant toolkit [38]. The parameters considered for the
system and leads are the same as in the previous section.
Additionally, the length for the horizontal and vertical
dead-ends are lx = 8nm and ly = 10nm, respectively.
The InSb nanowires chosen for this study have an elec-
tron effective mass m∗

InSb = 0.014me [39] and gyromag-
netic factor gInSb ≈ 50 [40], where me is the free electron
mass. The leads are also assumed to be InSb. For the
simulations, the dimensions of the hashtag patterns was
L = 50nm for the length of the edges of the square. Fi-
nally, the grid spacing has been set to a = 2nm.
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A. Impact of the lead geometry

We will consider three configurationally different ways
to attach the leads. The first one connects the leads into
two opposite corners along the x direction. In the second
one, the leads are connected one in front of the other
along the x direction. In the third one, the leads are
connected at two opposite corners but in perpendicular
directions (see figure 1). The last geometry differs from
the first one due to the effect of the magnetic field, which
adds a phase difference between the two electron paths.

From figure 2(d), (e), and (f), we can see that all the
configurations show a clear difference in the density of
states when the magnetic field is applied for both spin
projections since marked peaks appear at energies EBIC.
This change is due to the interaction that exists between
the BICs and the continuum energy spectrum after ap-
plying the magnetic field. As anticipated, the presence
of the BICs can be noticed in figures 2(a), (b) and (c),
where the BIC at EBIC ≈ 0.58 eV is the more remarkable
one as it is shared among all the configurations, as res-
onances or antiresonances in the conductance plots. For
instance, the DOS around each BIC can be expressed as
the superposition of two Lorentzian line shapes centered
at energies ε±

ρ(E) ≈ 1

π

(
Γ+

(E − ε+)2 + Γ2
+

+
Γ−

(E − ε−)2 + Γ2
−

)
, (6)

where Γ+ and Γ− stand for the width of the states
strongly and weakly coupled to the continuum, respec-
tively. As Γ− → 0 the DOS can written as

ρ(E) ≈ 1

π

Γ+

(E − ε+)2 + Γ2
+

+ δ(E − ε−) . (7)

The Lorentzian line shapes centered at energy ε− be-
comes a Dirac-δ function, a signature of the BIC. On
the other hand, the conductance can be expressed as a
convolution of Breit-Wigner and Fano line shapes in the
following form

G(E) ≈ Γ2
+

(E − ε+ − Γ+)2
|(E − ε−)/Γ− + q|2
(E − ε−)2/Γ2

− + 1

+
η2

(E − ε−)2 + (Im(q)Γ−)2
, (8)

where the Fano parameter q is a complex number and
the parameter η is proportional to Γ−.

To confirm that these peaks correspond to BICs, we
have plotted the PR against the Fermi energy with and
without magnetic field [figure 2(g), (h), and (i)]. Here, we
can see that at the energy of the BICs, EBIC, the PR is
increased (decreased) when a resonance (anti-resonance)
occurs in the conductance. This behaviour is related with
a delocalization (localization) of the state, as we can see
in figure 3. In addition, this behavior is followed by a
higher increase of the PR in the vicinity of EBIC, pro-
voked by mixing the extended states with the BICs.

Although there are BICs in all the presented struc-
ture configurations, the first one will be the chosen lead’s
connection for the next section. This is because it have
resonant-like BICs, that will be better resolved by exper-
iments.

B. Impact of the system geometry

We will consider three different system geometries.
The first geometry will have no dead-end chains resem-
bling a square. In the second configuration, the scat-
tering region will have only horizontal dead-end chains
in each square corner. Finally, the last one will have
either horizontal and vertical dead-end chains in each
corner of the square (see figure 4). From the density
of states shown in figure 5, we realize that BICs emerge
in all the considered geometries, either as resonances or
anti-resonances. BICs are better revealed in an energy
window where the conductance is zero in the absence of
an applied magnetic field, and some resonances appear
after its application; these resonances will correspond to
the BICs. Therefore, the most favorable configuration to
detect the occurrence of BICs is the structure shown in
figure 4(b). Moreover, it is noticeable that the BIC at
EBIC ≈ 0.58 eV is again shared in all the structures. For
this reason, this will be the geometry and energy studied
in the following section.

C. Impact of the Rashba SOI

In previous calculations, we have neglected the Rashba
SOI (α = 0). In figure 6, we show the evolution of the
BICs against the magnitude of the Rashba SOI and the
Fermi energy when a magnetic field is applied. This
figure shows that the Rashba SOI smears out the res-
onances, making the BICs harder to identify. In addi-
tion, we can see an oscillatory behavior on increasing α,
associated with the Aharonov-Casher effect [41]. InSb
nanowires have a Rashba SOI of the order of αInSb =
0.1 eV [42], which is not the optimum value for observ-
ing the BICs. For this reason, an external electric field
might be necessary to change α, therefore facilitating the
observation of the BICs. Additionally, we can see that
the nanowire network can be used in spintronics because
it displays a non-zero spin conductance at some specific
energies. Also, with the applied electric field, we can con-
trol which spin projection will be dominant, allowing us
to use them as spin filters.

IV. CONCLUSIONS

In this article, we have proposed a setup that could be
used to search for BICs in electronic experiments. We
have shown that the hashtag nanowire networks will re-
veal the BICs as resonances or antiresonances of the con-
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ductance by varying the magnetic field and the Fermi en-
ergy. This statement is supported by calculating the den-
sity of states whose peaks associated with BICs broaden
upon rising the magnetic field, i.e., increasing the cou-
pling to the extended states of the continuum energy
spectrum. In addition, we have studied different differ-
ent configurations to elucidate the best one for uncover-
ing BICs. The study showed that the optimum geometry
is the one with horizontal dead-end chains connected to
each corner and the leads connected horizontally to op-
posite corners. Finally, we studied the impact of the
Rashba SOI on the BICs. We found that this interaction
blurs the BICs, making them harder to find. However,
it opens a way to use hashtag-like nanowire networks in

spintronics as spin filters while tuning the Rashba SOI
by strain or applied electric field.
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FIG. 1. Sketch of the configurationally different ways to attach the leads onto the nanowire network. S and D represents the
source and drain leads. All the structures are threaded by a perpendicular magnetic field.

FIG. 2. Conductance of the nanowire network against the magnetic field B and the Fermi energy E. Panels (a), (b) and (c)
correspond to the structures presented in figure 1(a), (b) and (c), respectively. The horizontal black line indicated the magnetic
field at which the density of states and participation ratio are calculated (B = 0.1T). Panels (d), (e) and (f) display the density
of states with (solid line) and without (dashed line) magnetic field. Red (blue) line corresponds to the density of states with
spin up (down). Panels (g), (h) and (i) represent the participation ratio with (solid line) and without (dashed line) magnetic
field for the up spin projection.
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FIG. 3. Probability density for the structure shown in figure 1(a). The first (second) row displays the probability density in
the absence (presence) of an external magnetic field. The first column shows the probability density at the energy where the
resonance in the conductance occurs, E ≈ 0.54 eV, while the second column is at E ≈ 0.58 eV when there is an anti-resonance
in the conductance.
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FIG. 4. Sketch of the configurationally different geometries of the nanowire network. S and D represents the source and drain
leads. All the structures are threaded by a perpendicular magnetic field.

FIG. 5. Conductance of the nanowire network against the magnetic field B and the Fermi energy E. Panels (a), (b) and (c)
correspond to the structures presented in figure 4(a), (b) and (c), respectively. The horizontal black line indicated the magnetic
field at which the density of states and participation ratio are calculated (B = 0.1T). Panels (d), (e) and (f) display the density
of states with (solid line) and without (dashed line) magnetic field. Red (blue) line corresponds to the density of states with
spin up (down). Panels (g), (h) and (i) represent the participation ratio with (solid line) and without (dashed line) magnetic
field for the up spin projection. Panels (c), (f) and (i) present the same data as in figure 2(a), (e) and (h) to facilitate the
comparison between the structures.
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FIG. 6. (a) Conductance and (b) spin-dependent conductance of the nanowire network shown in figure 4 (b) against the Rashba
SOI α and the Fermi energy E when a perpendicular magnetic field is applied (B = 0.1T). Here, positive values on the spin
conductances mean that the up spin projection dominates the conductance. The black horizontal line represents the Rashba
SOI estimated for InSb nanowires.



Suplementary material
Uncovering bound states in the continuum in InSb nanowire

networks

1. Surface Green’s function

In this section, an analytical expression of the surface Green’s function for the leads and chains
will be obtained by means of the Dyson equation

Ĝ = ĝ + ĝv̂Ĝ (1)

where ĝ are known Green’s functions and v̂ is the coupling matrix. For both the chains and leads,
ĝ = g0 will be taken as the Green’s function of a single quantum dot (QD).

1.1. Surface Green’s function of the lead

To find the surface Green’s function of one of the leads, we will consider it as a semi-infinite chain
where we add a new site

G00 = −g0vlG10, G10 = −glvlG00 .

Here, vl and gl are the hopping energy and surface Green’s function of the lead respectively. Since
the lead is semi-infinite, its surface Green’s function should not change with the addition of a single
site. Therefore G00 = gl and thus we find

gl =
1−

√
1− v2l g

2
0

2v2g0
=
e−ikl

vl
. (2)

1.2. Surface Green’s function of a finite chain

We will consider the chain as a finite array of N QDs coupled between them. Additionally, we will
consider that the hopping parameter includes a magnetic phase due to the presence of a magnetic
field. Using the Dyson equation we find

g11 = g0 − g0ve
−iϕg21, g21 = −g0v(eiϕg11 + e−iϕg31), · · · , gN1 = −g0veiϕgN−1 1 ,

where ϕ = eBy∆x/ℏ is the magnetic phase resulting from the Peierls substitution considering the
gauge A = (−By, 0, 0) and v is the hopping parameter of the chain. Solving this system of equations
we get

g11 =
1

v

DN−1

DN
, gN1 =

(−1)N−1

v

ei(N−1)ϕ

DN
, (3)

where DN = sin[(N + 1)θ]/ sin θ and θ = (vg0)
−1. These calculations have considered the chain in

the x direction.

2. Transmission coefficient in terms of the surface Green’s function

In this section, the transmission coefficient is calculated for the simplest structure considered in
the main text, namely the hashtag configuration without dead-end chains. The method we used is

1
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Figura 1: Sketch of the system. The red rectangles correspond to the left and right leads while the
blue region is the scattering region. The coupling between leads and the center region is considered
to be the same as in the lead and its represented by red arrows while the hopping in the center region
is represented by blue arrows.

named the surface Green’s functions matching formalism (see 10.1103/PhysRevB.60.7828). We split
the system into three parts: two semi-infinite chains acting as ideal leads and the scattering region,
which is described as four coupled QDs located at the corners (see figure 1). For simplicity, we will
neglect Zeeman splitting in the following calculations since the magnetic fields considered are weak.

First, we use the Lippmann-Schwinger equation for the coupling between the leads and the scat-
tering region

|ψ⟩ = |φ⟩+ ĜV̂ |φ⟩ , (4)

where |ψ⟩ and Ĝ are the wave function and Green’s function of the coupled system respectively,
|φ⟩ is the wave function of the source lead (L) and V̂ is the coupling matrix between the leads and
the scattering region (red arrows), which is zero everywhere except at the top-right and bottom-left
corners. The transmission coefficient reads

t = 2i sin(kl)e
−iklvlG̃RD ,

where kl is the crystal momentum in the leads.

Now we need to find the dressed Green’s function in terms of those of the scattering region. To
this end, we will use the Dyson equation considering the upper and lower parts of the structure
connecting the QDs as known magnitudes. Hence

G̃RD = −glvlG̃UD , G̃UD = −g0v(eiϕG̃NβD + G̃NγD)− g0vlG̃RD ,

G̃NβD = −G̃0
NβNβ

ve−iϕG̃UD − G̃0
NβNα

vG̃DD , G̃NγD = −G̃0
NγNγ

vG̃UD − G̃0
NγNδ

vG̃DD ,

G̃DD = g0 − g0v(G̃NδD + G̃NαD)− g0vlG̃LD ,

G̃NδD = −G̃0
NδNγ

vG̃UD − G̃0
NδNδ

vG̃DD , G̃NαD = −G̃0
NαNβ

vG̃UD − G̃0
NαNα

vG̃DD ,

2



After that, we need to find the Green’s function of the different branches (G̃0) connecting the
QD using the same method.

G̃0
NαNα

= gNαNα − gNα1αvG̃
0
1Nα

, G̃0
NβNβ

= gNβNβ
− gNβ1βve

iϕG̃0
1Nβ

,

G̃0
NγNγ

= gNγNγ − gNγ1γvG̃
0
2Nγ

, G̃0
NδNδ

= gNδNδ
− gNδ1δvG̃

0
2Nδ

,

G̃0
1Nα

= −g0v(e−iϕG̃0
1βNα

+ G̃0
1αNα

) , G̃0
1Nβ

= −g0v(e−iϕG̃0
1βNβ

+ G̃0
1αNβ

)

G̃0
2Nγ

= −g0v(G̃0
1γNγ

+ G̃0
1δNγ

) , G̃0
2Nδ

= −g0v(G̃0
1γNδ

+ G̃0
1δNδ

)

G̃0
1αNα

= g1αNα − g1α1αvG̃
0
1Nα

, G̃0
1βNβ

= g1βNβ
− g1β1βve

iϕG̃0
1Nβ

,

G̃0
1γNγ

= g1γNγ − g1γ1γvG̃
0
2Nγ

, G̃0
1δNδ

= g1δNδ
− g1δ1δvG̃

0
2Nδ

,

G̃0
1αNα

= −g1α1αvG̃0
1Nβ

, G̃0
1βNβ

= −g1β1βveiϕG̃0
1Nα

,

G̃0
1γNδ

= −g1γ1γvG̃0
2Nδ

, G̃0
1δNγ

= −g1δ1δvG̃0
2Nγ

,

G̃0
NαNβ

= −gNα1αvG̃
0
1Nβ

, G̃0
NβNα

= −gNβ1βve
iϕG̃0

1Nα
,

G̃0
NγNδ

= −gNγ1γvG̃
0
2Nδ

, G̃0
NδNγ

= −gNδ1δvG̃
0
2Nγ

.

Closing these equations and inserting the solution into the previous expressions, also considering that
all chains have the same number of sites N , we can find the transmission amplitude

t =
4i sin(kl)e

−iklglv
2
l v

2g20G̃Ne
i(N+1)ϕ/2 cos[(N + 1)ϕ/2]

1− 2g0(vt2G̃+ t2l gl) + g20[g
4
l v

2
l + 4v2v2l glG̃+ 2v4(2G̃− G̃2

N − G̃2
N cos[(N + 1)ϕ]]

, (5)

where G̃ = G̃0
NαNα

, G̃N = G̃0
NγNδ

, G̃0
NiNj

= (G̃0
NjNi

)∗ and G̃0
NαNβ

= G̃0
NγNδ

e−iNϕ. We can use this
expression to determine how the conductance will behave when a magnetic field is applied using the
Landauer-Büttiker formalism. Thus, the chosen parameters for the calculation are the same as the
ones in the paper i.e. m∗

InSb = 0,014me, a = 2nm and L = 50nm.

As we state in the paper, we can see from figure 2 that as long as the magnetic field is higher, the
resonance becomes broader. In this example, the BIC induces an antiresonance in the conductance,
but the same trend is expected if the BIC induces a resonance.
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Figura 2: Conductance of the system. The different line styles correspond to different magnetic applied

4


