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Classical magnets offer glimpses of quantum-like features like spin liquids, and fractionalization,
promising an analogous construction of superposition and projective symmetry in classical field
theory. While models based on system-specific spin-ice or soft-spin rules exist, a formal theory for
general classical magnets remains elusive. Here, we introduce a mutatis mutandis symmetry group
construction built from a vector field in a plaquette of classical spins, demonstrating how classical
spins superpose in irreducible representations (irreps) of the symmetry group. The corresponding
probability amplitudes serve as order parameters and local spins as fragmented excitations. The
formalism offers a many-body vector field representation of diverse ground states, including spin
liquids and fragmented phases described as degenerate ensembles of irreps. We apply the theory
specifically to a frustrated square Kagome lattice, where spin-ice or soft spin rules are inapt, to
describe spin liquids and fragmented phases, all validated through irreps ensembles and unbiased
Monte Carlo simulation. Our work sheds light on previously unknown aspects of spin-liquid phases

and fragmentation and broadens their applications to other branches of field theory.

Classical spin models can potentially capture exotic
phenomena like spin liquid [1-6], spin ice [7-9], and frag-
mentation [2, 10-13], order by disorder [14-18], prether-
mal discrete time crystals[19], and exciting progress
lies in designing novel frameworks that mimic quan-
tum principles [6, 20-26]. One approach, commonly
known as the spin-ice rule, utilizes a class of Hamil-
tonians expressed in a quadratic form of total spins
within a unit cell, enabling the depiction of a spin-zero
degenerate manifold for spin ice/liquid ground states
[2, 6, 11, 22, 23]. On the other hand, within a soft-spin
approximation, analyzing the eigenenergy spectrum in
the Fourier space of extended spin states enables con-
venient exploration of global symmetry and topology of
many-body spins, but local spin conservation is sacri-
ficed here[22-26]. Conversely, real-space studies of lo-
cal spins offer complementary advantages, accommodat-
ing local constraints, local symmetries, order parameters,
and monopole textures.[4, 6, 11, 27, 28] Both approaches
intertwine in capturing salient features of spin liquids:
dispersionless momentum-space energy mirrors extensive
real-space spin degeneracy. Furthermore, singular pinch-
point features in the correlation function[4, 6, 11, 28, 29|
corresponds to gapless points with singular wavefunction
in excitation energy dispersion.|[24, 25] Another approach
utilizes traditional Landau’s coarse-grained magnetiza-
tion fields, with or without enforcing local constraints,
which can be fragmented into components exhibiting dis-
tinct correlation properties [10, 11, 30, 31].

Extensive research on these paradigms has explored
frustrated lattices like pyrochlore [6, 28, 32-34], triangu-
lar [35-37], and Kagome [29, 38, 39|, with earlier work fo-
cussing on other lattices[4, 15, 18, 40]. Recent excitement
surrounds the square Kagome lattice (Fig. 1), spurred by
experimental hints of spin liquid phases [41-43] and sup-
ported by theoretical investigations using variants of the

Heisenberg model[44-48]. There are, however, indica-
tions of finite Dzyaloshinskii-Moriya (DM) interaction in
these materials [41-43] which cannot be adequately cap-
tured within the spin-ice or soft-spin models. Moreover,
a square Kagome lattice, boasting several sublattices,
presents a superior setting with an enlarged degenerate
manifold and increased fragmentation possibilities that
remained unexplored. We study a classical spin model
with XXZ and DM interactions on a two-dimensional
square-Kagome lattice. Our approach transcends a prior
approach[28, 29|, which initiates by defining the sym-
metry group of the classical spin vector within a trans-
lationally invariant plaquette. Consequently, irreps of
the symmetry group form the local basis states, enabling
the plaquette field to superpose between them, and lo-
cal spins emerge as their fragmented entities. Expan-
sion parameters, behaving as Landau-like order param-
eters, transform, however, under ‘discrete’ spatial rota-
tions. Interestingly, the order parameters serve as spin’s
‘probability amplitudes’ and ‘occupation densities’ to ir-
reps state and energy levels. Notably, the properties in-
deed echo quantum-like constructions. Through unbiased
classical Monte Carlo simulations, we observe that DM
interactions promote uniform or staggered ordering of ir-
reps containing vortex or anti-vortex, while CSL states
emerge near their critical phase boundaries. In the CSL
phase, local spins remain either fully disordered if the
ground state consists of a randomly distributed irrep en-
semble or are fragmented into extended and point-like
entities if the ground state scrambles order and disorder
irreps. Additionally, the spin-spin correlation function is
analyzed in each phase to distinguish between collective
and fragmented excitations with Bragg-like peaks in the
order phase, coexisting with pinch-point excitations in
the liquid phases.

Mathematical foundation: Analogous to the product
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FIG. 1. (a) A plaquette of a 2D square-Kagome lattice, be-
longing to the D4 group, is shown with sublattices enumerated
as i =0—"7. (b) Among five irreps with different multiplets,
we show a few representative irreps here, while others are
shown in SM. Each irrep consists of either S;- (horizontal
arrow) or S; (open and filled dots for up and down spins)
components, with the sizes of the arrows or dots dictate their
magnitudes.

basis for the quantum case, a many-body classical field
can be expressed as a direct sum of local vector spaces.
We construct the local vector space from the irreps of
a symmetry group defined on a local network of spins
within a plaquette p, invariant under a lattice point group

G:

S, =P s:. (1)

S

S; = (52 SY SH)T € 0;(3) at the i'h site, and S, €
0,(3n) where n is the number of sublattices in p. (0;(n),
O,(n) distinguish the orthogonal symmetry of the site
and plaquette fields, respectively). We denote the ir-
reps of G by m,, € R, and its vector representation by
M = @, dama, where o runs over distinct irreps, and
do. € 7 denotes their multiplets. The transformation
from the spin space to the irreps space involves an or-
thogonal matrix, whose column vectors V,, form the or-
thonormal basis of the irreps representation. Expressing
Sp in this irreps space yields

3n
Sp - Z mava' (2)
a=1

(The plaquette index is implicit in m, V.) Interestingly,
me conforms to Landau’s order parameter as the coarse-
grain average of local fields, except, here it is invariant
under discrete symmetry group in a plaquette and is in-
terpreted as the probability amplitude of vector field:
ma = VIS,. The local spins are the fragmented entities
in the irreps space, defined by a rectangular projection
matrix Picp as Sicp = PicpSp = Do, MaPicpVa-
Reformulating the order parameters in terms of the
irreps conveniently decouples them in a symmetry in-
variant Hamiltonian, albeit the irreps’ multiples can
mix among themselves. To account for the multi-

plets’ submanifold and emergent symmetry, it is conve-
nient to introduce an O,(d,) ‘spinor’-like field m, :=
(m((ll) m((ld“))T for the « irrep. Then, the eigenmodes
are obtained by orthogonal rotation 1, = e ®am,,
where £, are the corresponding generators for the angle
¢, ¢, lives on the Hamiltonian’s parameter space and
assumes fixed values for the energy eigenmodes. The
orthonormal basis states ensure the constraint |S,|*> =
> dalmal? = nS?, Vp, where |S;| = S, Vi is an addi-
tional hardcore constraint on the classical spins. Not all
irreps necessarily adhere to the local constraint, requiring
them to collaborate with others for existence. Such ir-
reps ensembles may lead to non-analyticity and fragmen-
tation into an order-disorder mixed phase. Additionally,
the collapse of the eigenmodes m, into its constituent
irrep m,, causes distinct fragmented excitation.

We have a 3nN-dimensional vector space S = @, Sy
for a generic N-unit cell lattice, commencing a 3nN X
3nN-matrix valued quadratic-in-spin Hamiltonian. How-
ever, thanks to nearest-neighbor interaction and discrete-
translation-invariance of the lattice, the Hamiltonian can
be brought to a block-diagonal form in terms of the pla-
quette Hamiltonian Hp:

1
H, = 535 HpSp. (3)

Here H, is an orthogonal matrix-valued Hamiltonian,
analogous to the second quantized Hamiltonian, whose
components consist of all possible interactions between
S; and S; for (ij) € p. However, lattice symmetries re-
strict the allowed finite components in H,,, which we now
consider for a square kagome lattice.

Realizations in a square-Kagome lattice: The square-
Kagome lattice belongs to the Dihedral Dy group with
n = 8 sublattice spins, giving a 24-dimensional vector
representation. Denoting the group element g € D, in the
Sp,—representation by the matrix-valued operators D(g),
we impose the symmetry criterion that under a local sym-
metry transformation S, — D(g)S,, the local Hamil-
tonian H, is invariant if [D(g),H,] = 0, Vp,g. Since
local O;(3) and sublattice symmetries are abandoned,
the plaquette symmetry allows us to have bond- and
spin-dependent interactions Ji”jl' with six exchange and
three DM interactions (see SM for the details), leading
to a bond-dependent XYZ-Heisenberg model with XY-
DM interaction. However, imposing bond-independent
interactions, we consider an XXZ model with DM inter-
action as more appropriate for realistic materials [41-43],
H = Z@j“w J“”SfSJl»’. This can, for future convenience,
be expressed as:

H=7 Y (Dfeiﬂ@ﬁ@ﬂsfsj + ASij) . @)
(ig), 7=+
Here J* = J0,, + JDey, for p = z,y, and J** = JA,

0, is the Kronecker delta and €, is the Levi-Civita ten-
sor. J is the exchange term, A is the z-axis anisotropy
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FIG. 2. Computed phase diagrams within the Monte Carlo
simulation are shown for (a) for AFM (J = +1) and (b)
for the FM (J = —1) couplings. We highlight spin tex-
tures in a randomly chosen four-plaquette setting for repre-
sentative phases. The displayed phases are (c) AFM CSL at
(J,A,D) = (1,1,0), (d) Anti-vortex order at (1,0,—3), (e)
Fragmented phase at (1,4, —1) where S} values are random
while S are ordered in a staggered AFM-anti-vortex texture,
(f) Fragmented phase at (—1,—2.5,0) where S} is disorder
while Si- exhibit collinear ordering.

ratio, and JD is the XY DM interaction strength. By
diagonalizing the tensor J*¥, we define two ‘circularly
polarized’ fields: ST = |Si[el™® € 0,(2) = U,(1), where
Si- = /5% — (S7)2 is the coplanar spin magnitude and
O, is the azimuthal angle in the spin space, which interact
via a complex (dimensionless) interaction D™ = 1+ irD.

Irreps in square-Kagome lattice: There are five con-
jugacy classes in this non-Abelian group, giving five ir-
reps: mey = Aﬁl;), Bgiig), and a two-dimensional E(de)
where the superscript denotes their multiplicity (d,) =
(2,4,3,3,06), respectively. Representative irreps configu-
rations are shown in Fig. 1(b).

We organize these irreps into an out-of-plane set
C

m, := {A;C’d)7 Bg, E¢H} and a coplanar set:m := m®.
Coplanar irreps A(l?éb), Bgeféb) are even and odd under Cy,
forcing S] to obey a homeomorphism O;cp = Qpbi + Vp,
where ©; and 6; are the (local) azimuthal angles in the
spin and position manifolds, respectively, v, € [0,7) is
the (global in p) helicity angle, and Q, € m (S!) = Z
is the topological charge. As shown in Fig. 1(b), this
leads to two concentric (anti-/) vortex substructures
in the outer and inner squares within each plaquette,
which are unrelated by symmetry and interact solely
through D7. A(la’b) consist of concentric vortices with the
same/opposite helicities (v, = +7/2), while Aéa’b), odd
under reflection, have ~, = %. B(li‘éb) irreps (odd under
C4) are similar, except they consist of anti-vortices. The
out-of-plane Agc’d) are colinear FM/AFM irreps, while

BgC% are colinear AFM irreps that do not satisfy the local
constraint. Finally, among the six-fold multiplets of E
irrep, E@=9 are co-planer FM/ nematic/AFMorder pa-
rameters, while E(©f) are out-of-plane irreps that violate
the local constraints.

Eigen energies: The final task is to diagonalize the

multiples of the irreps. In our case, the irreps’ multiplets
split as either O,(da) = 0,(2) B 0,(2) P ..., or Op(ds) =
0,(2)®Z2..., in which all O,(2) operators have the same
generator L, = ioy. ¢, depends only on arg(D7) in the
eigenstates of H,. The resultant diagonal Hamiltonian
per plaquette is

3n
Hy =Y E,m,[". (5)
v=1

Here |m, |? serves as an ‘occupation density’ to the '}

order parameter’s energy level E,. We, henceforth, omit
the tilde symbol for simplicity, and all irreps are taken to
be eigenmodes unless mentioned otherwise. Constrained
by symmetry, E,cm, depends solely on D7, while E,em,
are proportional to A [49]. One or more irrep (s) can form
a uniform (order) phase with a global energy minimum at
NE, if they satisfy the constraint and frustration; other-
wise, they blends with other irreps to form a degenerate
ensemble,; distributing randomly in the lattice.

Phase diagrams and correlation functions: Using clas-
sical Monte-Carlo simulations of Eq.(4) under the im-
posed local constraint, we generate the phase diagram
presented in Fig. 2. Notably, across all phases (ordered,
disordered, and fragmented), the spin texture within each
plaquette adheres to the irreps, which permits us to
construct a many-body ground state vector field for all
phases:

SGS = @ Z ml/pVVp' (6)

P {vp}

The ordered phase harbors a summated state of a fixed
irrep 7 € {vp} (with my = m, m,»y = 0, Vp); while the
staggered phase features two alternating but fixed irreps
v, and 7,4 in neighboring plaquettes. The CSL state, on
the other hand, combines a dynamic ensemble of irreps
{vp} within each plaquette p. Within this ensemble, the
probability amplitude m,,, may vary randomly, subject
to local constraints, for the same plaquette energy. The
random distribution of m,, differs between plaquettes,
resulting in an extensively degenerate ground state.

In addition to the consistency between the unbiased
Monte-Carlo simulation and the irreps constructions, we
also compare our results with a soft-spin approximation
in the Fourier space ([4, 6, 34, 50-52] and see SM).
Given that we have experimental access to the correla-
tion function of local spins S;c;,, we report its correla-
tion function. We project the structure factor x(k) =
1/N 32, ;(Si - Sj)exp (ik - (r; —r;)) to the irreps space
as

(Si-S;) = Z ml,pmyq<VZ;7DiTPjqu>a (7)

Vplq

with r; is the i*® spin’s position in p and j € ¢ plaquette.
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FIG. 3. Simulated static structure factors are plotted in the
momentum space for the four phases discussed in Fig. 2. (a)
AFM CSL at (J,A,D) = (1,1,0), where red dots are plot-
ted separately to signify additional strong Bragg-like peaks
that overwhelm the spectral density of the disordered pat-
tern. (b-c) Fragmented phase at (1,4, —1) where the plots for
the ordered S;+ and disordered S? components are separated
in (b) and (c), respectively. (d) Anti-vortex order at (1,0, —3)
showing Bragg peaks similar to S;- components in (b). (e-f)
Fragmented phase at (—1,—2.5,0) with FM ordered S;- and
disorder S} are separated in (e) and (f). Panels (a) and (f)
host pinch-points around (7, 37) and its equivalent points.

The phase diagram reveals a predominance of (uniform
or staggered) order phases in both J < 0 (frustration in-
active) and J > 0 (frustration active) regions, with a
CSL phase emerging at the critical line of D — 0, other-
wise, it turns into distinct mixed phases for 2|D|/A < 1.
For D — 0, J > 0, three distinct CSL phases emerge
with varying A. At D = 0, the coplanar irreps Afgb),

Bféb) become degenerate at —2.J, while E(©9 | satisfy-
ing the constraint but not frustration, have the low-
est energy at —4J. As A — 0, the Hamiltonian (first
term in Eq. 4) is constrained by a local O;(2) sym-
metry of the S7 fields, and the structure factor x(k)
receives only finite contribution from S and no allo-
cation to S?Z. Moreover, x(k) displays a characteris-
tic disorder pattern without any Bragg-like peak but
with a prominent pinch-point around k = (+m,+3m).
The pinch-point characterizes an algebraic correlation be-
tween the topological charge of the O,(2) multiplets. At
A = 1, the Hamiltonian is subject to a full O;(3) sym-
metry constraint per site, resulting in symmetry-allowed

access to the entire ensemble {m, } € m; Um.. For

example, {m,} € {A(l?éb’c’d),Bg?éb)} are degenerate at

E, = —2J and {m,} € {B{),ECV} at B, = —4J,
making a larger CSL ensemble degenerate at energy
E, = m2E, + mlz,,E,,/ = —4J for my, = v2m, . Con-
sequently, x(k) displays pinch-point correlations among
both S7 and S?. Finally, as A — oo, the Hamiltonian
(last term in Eq. 4) retains a residual local Zy symmetry
constraint, and the disorder ground state solely stems
from the {m,,} C m. ensemble. x(k) is contributed
solely by S7 with pinch-points at k = (+m, £37). Based

on their distinct local constraints, it is convenient to re-
fer to these phases as O(2), O(3), and Zy CSLs, respec-
tively, without implying a Landau-type phase boundary
between them.

Any finite D steers the CSL phase into either order
or fragmented (mixed) phases. For weak out-of-plane
anisotropy A < 2|D|, D™ (7 = sgn(D)) interaction uni-
formly selects a coplanar irrep mpg, /a, containing con-
centric (anti-/) vortices, respectively (red/magenta re-
gions in Fig. 2). Here, the (anti-/) vortices of the same
topological charge are staggered between the neighbor-
ing plaquettes with a 7, = 7 phase shift, with Bragg-
like peaks at k = (m,7) in x(k). However, for strong
A > 2|D| (and J > 0), the homogenous coplanar order
becomes scrambled with disordered out-of-plane irreps:
{mu, }mix € ma, /8, Um;, in Fig. 2(e). Their interplay
yields an interesting fragmentation feature in which the
outer vortex maintains coplanarity, while the inner vor-
tex mixes with the Bgc) € m, irrep in each plaquette.
The combination ma, = —mg, produces a novel AFM-
vortex/AFM-anti-vortex texture within the inner square
where neighboring spins possess opposite easy axes [53].
Consequently, O;(3) field fragments into its S7 compo-
nents becoming non-interacting and fail to order or ex-
hibit any significant correlation, while the ST fields ex-
hibit long-range order with Bragg-like peaks in the struc-
ture factor, see Fig. 3(b). In essence, this is a unique spin
liquid-crystal-like phase arising from a coordinated spa-
tial distribution of the probability amplitude (m,) of the
contributing irreps.

The interplay between the FM interaction, J = —1,
and strong AFM out-of-plane anisotropy A > 2|D| gener-
ates fragmented phases of distinct characteristics. Here,
the in-plane FM irrep E(®P) pairs with the out-of-plane
AFM E® counterpart. The latter violates the local con-
straint, leading to an intriguing fragmented structure in
x(k), showing a FM ordering in S7, but a pinch-point
disorder in S7?. This irreps ensemble satisfies mg@) =
Mg = Mew/ \/5, but an extensive degeneracy arises
from the possibilities of the four-fold orientations of the
E® irrep, see Fig. 1(b). The DM interaction disfavors
this mixed phase for D > 2A, leading to a transition
to similar in-plane orders of (anti-/) vortices observed in
the J = 1 phase diagram. The remaining two phases are
readily identifiable: a uniform coplanar FM order with
MGy irrep at A — 0, and an out-of-plane FM order
with mA;C>) for JA — oo.

Conclusions and outlook. We followed an analysis that
draws parallels between quantum and classical field the-
ories in the context of spin liquids and fractionalization.
While the distinction lies in the quantum statistics man-
ifesting as a direct product basis versus a direct sum-
mated field, the concept of superposition and symme-
try group representation remain central to both. This
shared concept underpins the emergence of fragmenta-



tion and spin liquid ground states. Discussions on their
excitations and phase transition are merited. Among
the ordered phases, the (anti-/) vortex order phases (red
and magenta) exhibit novel collective excitations. As
their descriptions are equivalent, we discuss the vortex
case here. Gapless collective excitations emerge from
the long-wavelength fluctuation of the helicity angle ~,
across the lattice, protected by the topology of the irreps
space through the charge @), € Z. These modes, termed
helicity phase modes or phasons, possess novel charac-
teristics. The two concentric vortices per plaquette are
coupled by interaction but not symmetry. Frustration
affects only the outer vortex, resulting in the fragmen-
tation of the excitation spectrum into a collective mode
for the ordered fields and local excitations for the dis-
ordered components. The Mermin-Wagner theorem dic-
tates the instability of ordered states to gapless magnons
or phason modes, while disorder phases tend to order via
thermal fluctuations according to the order-by-disorder
paradigm [14, 16-18]. Notably, the two ordered phases
of vortex and anti-vortices for +£D consists of different
irreps, i.e., distinct conjugacy classes that do not cou-
ple in the Hamiltonian. Hence their phase boundary at
D = 0 signifies a topological phase transition, associ-
ated with a spin liquid phase at the critical point, rem-
iniscence of the deconfined critical point [54]. The CSL
critical point can be extended by applying a magnetic
field in the z-direction (see SM). Moreover, transitions
between ordered and fragmented phases, or within frag-
mented phases, offer intriguing avenues for studying non-
Landau-type phase transitions.
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SUPPLEMENTARY MATERIAL

DETAILED DERIVATION OF THE SYMMETRY PROPERTIES

Here, we provide further details of the relevant mathematical constructions that are used in the main text. We start
with a system of N spins. Much like how one starts in the quantum case with a direct product state basis to construct
exotic entangled states, here we can also start with a many-body 3N -dimensional vector field as a direct sum basis:
S = @{v S;, where S;—; € O(3). Then, the most general two-spin interaction Hamiltonian is written as H = STHS,
where H is the 3A x 3N matrix-valued Hamiltonian. Short-range interaction and (discrete) translational symmetry
drastically simplifies this Hamiltonian, giving a block-diagonal one.

We assume that there exists a unit cell with sublattices that are invariant under a point group symmetry G. The
spins sitting at the cell coordinates interact with the spins from the neighboring cells. This interaction term is
translated back to a periodically equivalent interaction between the spins within the cell. This allows us to define
a plaquette containing n sublattices (counting the sites fully that are shared with the neighboring cells, and hence,
the number of sublattices in a plaquette is larger than that in a periodic cell). In this prescription, the Hamiltonian
‘H becomes block diagonal into a 3n x 3n plaquette Hamiltonian H,, and the many-body spin vector field splits as
S = @N =N/ "S,, where S, the vector field in the plaquette.

Here we fOCllb on the square Kagome lattice, which has n = 8 sites in a plaquette, giving a 24-dimensional
reducible representation S, as shown in Fig. X. Our first job is to find the irreducible representation of the Dihedral
group Dy group in this vector field representation. The group elements are denoted by Dy = {e, C4,C3,C3,0%, 0¥ =
Cylo?Cy, 02, 0" = C;1o?¥Cy}, where Cy is the four-fold rotation, o, are the reflection with respect to the verticle
plane passing through the x,y— axis, or diagonal (zy/yx), as shown in Fig. X. In this S,-representation, we can
split each of the Dy group elements as successive transformations on how the onsite spin S; € O(3) undergoes an
internal spin rotation, followed by how each component S, ¢ of the 8 sublattices reorders in the plaquette vector
Sp. Noticeably further, the inner and outer squares of the square kagome lattice are decoupled from each other in
terms of the D4 symmetries and give a trivial transformation between the two concentric squares of four sublattices.
In what follows, if we denote the S,-representation of the group elements g € Dy as D(g), then it can be decomposed
into a direct product of three symmetries: D(g) = R;(g) ® Rr(g) ® Rs(g), where Rg(g) are the 3 x 3 rotational
matrices of the local O;(3) spin, R (g) are the 4 x 4 rotational matrices of the four sublattices, and R;(g) is the 2 x 2
transformation between the inner and outer squares.

D(Cy) = [ @ RW(C) + 7 & R (c4)] ® Rs(Ca),
7 = Tz®ﬂ4x4®RS(C4)
D(CY) = [ro @R (Ca) + 7 @ RY(Ca)] @ Rs(CH),

D(oT) = :T @R (07) + 7 @ RY (00)] @ Rs(07),

pS]
Q

N
Il

T®R 05)+TI®R()( )}@Rs((f%),

d
Dot = [ @ RP(02) + 7 @ RP (07)] © Rs(037),
(

Doy = | RY (03) + 7 @ RY (05)] @ Rs(ol?). (8)

Here 79, 7, are Pauli matrices defining the internal symmetry Dy(g), and

0000 0010 0000 0010
(1) 10000 2) 0001 1), 0000 @, 2 {0100
RuCo=11000) R C=1go00|[ R @ =]o000| R =|1000]
0100 0000 0001 0000
1000 0000
W, ayy _ |0000 2 ayy 0001
RL(UU)_ 0000 7RL(UU)_ 0010
0000 0100
Under Cy4, the continuous O;(3) symmetry simply becomes a discrete angle of rotation by 27 /4 with L, being the



Ds do E 2Cy 2C% Cs 2C%

Ay 2 1T 1 1 1 1
A, 4 1T 1 -1 1 -1
B, 3 1 -1 1 1 -1
B 3 1 -1 -1 1 1
E6 2 0 0 -2 0
S, 24 0 -2 0 -2

TABLE S1. Character table of the group D4. The last row corresponds to the characters of the reducible representation S, for
each class. N;Cy notion is used in the first row. Ny is the number of elements in each conjugacy class, C.

angular momentum, while under the mirror, spin is rotated as an axial vector. This gives

0 —-10 1 0 0 0 -1 0
Rs(C)=(1 0 0], Rs(eH)={0-1 0], Rse)=[-1 0 0 |, 9)
0 0 1 0 0 -1 0o 0 -1

and Rs(C]) = (Rs(Ca))? Rs(Ch) = (Rs(Ca))?, Rs(0¥) = Rs(Ca) 'Rs(0f)Rs(Ca), and Rg(o¥*) =
Rs(C4)_1R5(Ugy)Rs(C4>.

Symmetry of the Hamiltonian

The generic plaquette Hamiltonian is expressed in the main text as H, = %Sg H,Sp, where H,, is the 24 x 24
symmetric matrix containing all possible nearest neighbor interactions. The symmetry constraints make many terms
vanish or be identical to other terms. Under a symmetry, the vector field transforms to S, = D(g)S, Vg € Dy, and if
the Hamiltonian to H,, is invariant, then the Hamiltonian matrix transforms as D (g)H,D(g) = Hp, Vp.

Under these conditions, we find that the interaction terms among the four triangles are related to each other by
symmetry, while those within a triangle are independent of each other; see Fig. 1 (a). Consider the one independent
triangle at sites ¢ = {0,1,2} in Fig. 1 (a), and we obtain three distinct 3 x 3 matrices between sites ¢ and j :

(Hp)Ol = Dy Jyy 0 s (Hp)IQ = —D*Y JYY 0 s and (Hp)QO = _D/xy J/y'y 0 . (10)
0 0 J*? 0 0 J?* 0 0 J*

Therefore, we have nine independent parameters: three exchange interactions J##, J'**. and three DM interactions
D*¥ DY and D'®Y. Due to in-plane inversion symmetry, no in-plane DM interaction is allowed. We take a simpler
XXZ + DM interaction model in which JH# = J'## J*@ = J¥¥ = J*2 /A = J, and D*¥ = —D¥® = D"*¥ = JD. This
gives us three independent parameters, among which the global energy scaling by J is removed, except its sign =+ is
considered in the main text.

Irreducible spin configurations

Finally, we find the irreducible representation of the S, vector. There are five classes in the group D4 denoted by
E = {e},Cy = {Cy,C3},Cy = {C3},Ch = {0%¥,0Y%},CY = {0%,0Y}. The character table for this symmetry group is
given in Table S1.

We have five irreps, which we denote by m, for « =1 — 5. Then the vector representation of the irreps is a direct
sum of the irreps M = @ dymo with d, giving the number of times the a-th irrep appears in the sum. d, is
calculated from orthogonality relation with the characters: X, (Ck), xm(Ck) of the 24-dimensional representations
ma(Ck), M(C}) respectively, for each conjugacy class Cj, where k runs over the five conjugacy classes:

da = 3 3 Nt (G T (1)

where h = 8 is the order of the group Dy, and Ny is the number of elements in C} conjugacy class. The values of d,,
are given in the second column in Table S1.



@ @ w@»
A® A®
o A A
Az(a) Az(b) Az(c) Az(d)
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FIG. S1. We plot all the irreps’ basis functions. The verticle dashed line demarcates the out-of-plane irreps m, on the right-
hand side, among which only the top row satisfies the local constraint while the others do not. The horizontal arrows dive the
spin direction for Si-, while the filled and open dots correspond to S7. The size of the dots corresponds to |S7|. For Aéc’d>, the
size of the dots is adjusted for |S7| = 1, while for B1 ), sites with symbols give |S7| = v/2, while sites without symbols have
|S;| = 1. Similar consideration is used for the E irreps that do not meet the local constraint.

The final task in this section is to find the basis functions V, of each irrep. We denote the basis vectors as [V¥),
where a = 1 for one-dimensional irreps, and p = 1,2 (which are relabelled as z,y in Fig. S1) for the two-dimensional
irrep E. The basis vectors follow a relation : D(g)|V*) = EM,(Ua(g))W/Wg,), Vg. (Ua(g))uu are the p x p-matrix
for the p-dimensional irrep a defined for the group element g. For the one-dimensional irreps A; 2 and By 2, Ua(g)
simply gives the character of the group, and then |V*) are the simultaneous eigenvectors of the group elements with
the character being the eigenvalue. They can be solved easily and the corresponding basis functions for the one-
dimensional irreps are shown in Fig. S1(a-d). For the two-dimensional E irrep, the orthogonal condition of the basis
vector simplifies the above equation to (Ua(g))uw = (VE|D(g)|VH'). We solve this matrix for the E irrep for each
group elements, which comes out to be Ug(e) = Iaxo, Ue(Cy) = —ity, Ue(C3) = —laxe, Ue(C}) = ity, Ue(o?) = 72,
Ue(0¥) = —tau,, Ue(o3Y) = 1y, Ug(0¥®) = —74. 7, are the 2 x 2 Pauli matrices.

We have the multiplets as d, = 2,4, 3,3 for the four one-dimensional irreps A1, As, By, Bo, giving 12 basis vectors,
while the two-dimensional irrep with multiplicity dg = 6 gives another 12 basis vectors, as shown in Fig. S1(e). Among
them, sixteen are in-plane, defined in the set m, , and eight are out-of-plane, defined in the set m, in the main text.
Among them, six out-of-plane irreps do not satisfy the local constraint of S = 1 per site.
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XXZ and DM interactions

In the plaquette Hamiltonian, after substituting S, = 23" 1 MaVa, we obtain a Hamiltonian that is block diagonal
between the irreps but contains cross-terms along the multiplicity within an irrep. So we define a d,-dimensional
spinor field for each irrep as m,, := (m((ll) m&d“))T € 0,(da), in which the plaquette Hamiltonian splits as

5
H, = Z mlH,m,, (12)

a=1

where we have suppressed the plaquette index on the right-hand side. H, is a do X do matrix. The Op(d,) symmetry
of each irrep breaks into O,(2) and Zs symmetry as follows.

For @ = 1, the Ay irrep with dq = 2 multiplets follows an O,(2) symmetry.

For a = 2, the Ay irrep with do = 4, we have an emergent 0,(2) x O,(2) symmetry among the multiplets, giving

Ha, = HA(a,b) ® 'HA<C,d). This is obvious because Aéa’b) consists of coplanar spins while Aéc’d)
2 2

are the two out-of-plane
spins.
For both a = 3,d, the By irreps with ds4 = 3, we have an emergent O,(2) X Zs symmetry with Hp,, =

H B, SH BLe)- Here, the Bgz ) multiplets are coplanar spins forming O(2) symmetry, while BgC% consists of out-of-

plane spins that do not obey local constraints.

For a = 5, the two-dimensional E irrep with ds = 6, each component of each multiplicity gives emergent O,(2)
rotation as Hg = Heev) @ Heea) © Heen .-

All the 0,(2) invariant 2 x 2 Hamiltonian matrices for all irreps have this general form

(Ha)kr = o + g, 4 A&kkl)%, (13)

where k, k' = 1,2 € (a,b) or (c,d) or (e,f), and &+ = [e,(lk) + e&k/)}/Z and € is the onsite energy for the kD

multiplet of the a-irrep, and /\Slkk) is the ‘hopping energy’ between the k and k' multiples. The onsite energies of

the two vortices with different helicities are €, = €, = 2v2 +2(v/2 - 1)D, Epth) = Exb) = —2v2 -2(v2+1)D
1 2 1 2

while the energy cost to change the helicity angle is A Al = A A = —4D. The same for the two anti-vortices are:
EBYL) = EBga) = 72\@4’2(\/54» I)D, EB(lb) = Eng) = 2\572(\@71)D, )\Bga,b) = )\Bga,b) = —4D. The out—of—plane irreps
with parallel and anti-parallel spins and spin-flip energies between them as €Al = 6A, EA[D = —2A, A Al = = 4A.
The two irreps with only inner and out-square out-of-plane spins have the onsite energy: €g() = €g) = —4A Each
two-dimensional irreps is degenerate. The in-plane FM E irreps have the energies eg.y = 6, €gwy = —2, and their
hopping energy €g@.ry = 4. The in-plane AFM E irreps have the energies ege) = 4D — 2, €g@y = —4D — 2, and

€gte.ay = —4. The two out-of-plane E irreps that do not mix have the energies gy = 2v/2, egwvy = —2v/2. All energies
are multiplied with J.
The explicit form of Hamiltonian in terms of the matrix elements in the basis of the irrep order parameter is

Hy, = Z Z JewrmEImE) + Z He)k k’m[(gk) m{") + Z (He)kk(mb)?. (14)

o= A1 2,81 2 k k’ k? k' O[:BLQJC:C

where k, k" =a,b for all irreps, and in addition, we have k, k' =c,d for Ay and k, &’ =c,d, and k, k¥’ =e,f for E.
Then, for all O,(2) order parameters, diagonalize the corresponding 2 x 2 #H, matrices by the orthogonal transfor-

mation:
=~ (k) , (k)
<§§/)> = [00 cos ¢(k ) _ oy sin ¢(ak’k )} <nﬂz§€/)>

where (b&k’k/) is a fixed angle of rotation that diagonalizes the corresponding irrep multiplets. Eventually, we obtain
a fully diagonal Hamiltonian as

Hy= Y B/ (15)

v=(ash=1,de)
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We have abandoned the « and k symbols for the irreps and multiplicity and combined them into a single symbol v

which runs from 1 to 3n in the eigenmodes, for simplicity. Here E, = el £ 1/(ea)? + A2 for each O,(2) multipltes of
a-irreps. Their explicit forms are

E,—12 = —2D+2/D?+ (1+ D)?, for a = Agavb)’
E,—34 = E,—1p, for o — A(;,b)’
E,—56 = 2A(1£V5), for a = ALY,
E,—7s = 2D +2,/D2?+2(1 — D)2, for a = B,
Eymy = —4A, for a = B§C),
E,—19-12 = E,—7_9 for o — Béa,b,c)’
E,_1314 = 2£2V5, for o = E@P)
Ey—i1516 = —2+2v/1+44D2, for o = E(©D
E, 1718 = +2v/2A for a = E(©0 (16)

All the energies are defined with respect to J. The values of the angle ¢ are:

R D B 1 (1
¢A(la,b) = §tan (M) , d)A;a,b) = ¢A(la.b), ¢A(lc,d) = _5 tan <2> 5

_1 . L _1 -1 i
P = pten (ﬁu_m)’ Pag =5 (ﬁu—D))’

1 1 1 1
¢E(a,b) = 75 tanfl <2) y ¢E(c,d) = 51]311171 (QD) . (17)

DETAILS OF CLASSICAL MONTE CARLO

In the classical Monte Carlo calculation, the final temperature is achieved by annealing from the high temperature
at each step with 8 x 10> Monte Carlo steps. The expectation values of the observables are calculated by taking the
average over the last 7 x 10° configurations of a total 8 x 10° Monte Carlo steps with system size N = 6L?, with L
number of unit cells. All the static structure factor averages are performed over system size, L = 20 at temperature
1073. The position vectors of each sublattice (denoted with indices 0,1, ... in Fig. 1(a) of main text) are taken as
considering the origin at the center of the square,

-1 -1 1 -1 11 -1 1 -1 1
50 = (4,4>, 51 = (4,4>, 52 = <474>7 53 = (474)» 54 = <01 2); 55 = (2,0> (18)

STRUCTURE FACTOR PLOTS

In this section, we list the real space spin configurations of all the phases and their respective structure factors. As
defined in the main text, the different structure factors are

x(k) = 1/N) (Si-8;)exp (ik - (r; —1;))

(k) = 1/Nz<sfsj>exp (ik - (r; — r;))
(k) = 1/ND (8787)exp (ik - (r; — 1)) (19)

,J
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FIG. S2. The real spin configurations (left panel) and the corresponding structure factor (right panel) are plotted for various
phases for the AFM coupling J = +1. (a) Order phase (red region in the phase diagram) with staggered anti-vortices between
the neighboring sites, showing Bragg-like peaks at a finite but preferential wavevector. (b) Mixed or fragmented phase where
the inner anti-vortices turn into an AFM-anti-vortex with opposite S; components, while S7 = 0 for the outer anti-vortex. The
S7 values, however, take random values and show disorder features in the corresponding structure factor without any pinch-
point correlation. This is expected as the inner vortices become decoupled from each other, lacking any significant correlation
between them. (¢) A CSL phase (close to the Z, CSL phase) showing larger spectral weight the S} correlation function with
pinch-points. (d) The mixed or fragmented phase for D < 0 which is similar to the mixed phase for D > 0 except here vortices
replace the anti-vortices. (e) Orderd phase for D<0, similar to the D > 0 case in (a), with vortices replacing anti-vortices. (f)
A collinear out-of-plane FM phase arising in the limit of strong our-of-plane anisotropy term A — —oo.
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FIG. S3. Similar to Fig. S2, but for the FM interaction J = —1. All three phases shown here are the fragmented phases at
different values of D, and A, showing pinch-point in the S} correlation function, but FM ordering in the in-plane component.
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SOFT-SPIN APPROXIMATION

In this section, we analyze the Hamiltonian in Eq. 4 with ’soft spin’ approximation i.e. spin length constraint
(|S;|* = 1) is softened from exact value of 1 per site to the global value of va |S;|> = NS. Because of the global
constraint, we have a uniform (fixed) chemical potential (Lagrangian multiplier) in the theory. Then, following Ref. 25,
we have diagonalized the Hamiltonian in the Fourier space of the spin. There, a spin vector is defined per unit cell, not
in the plaquette, which means we have six sublattices as S;=(S§, S§, S§, ST, ..., SZ). We Fourier transform the spin
vector as S(q) = \/iﬁ >, Sie” T where r = any + bny with integers a, b and unit vectors n; = (1,0),ny = (0, 1).

The Hamiltonian is then diagonal in the momentum space as

H=> 8"a)"H(@)S(q), (20)

where H(q) is a 18 x 18 matrix. We can now diagonalize the H(q) matrix, which gives the energy eigenvalues E,(q).
The lowest energy state is the ground state, and then we plot a few low-energy excited states in Fig. S4.

We note that the analysis on the Fourier basis leads to a violation of the local constraint and hence, inconsistency
is expected between the real-space model and the Fourier space one, especially in the spin liquid phase. In the CSL
phase, we find an extremely flat band as the lowest energy state, suggesting extensive degeneracy as expected here.
We see the flat band in all the mixed phases as well. In addition, the spectrum is gapless in both phases, with gapless
points present at (£m, +m), (&7, £37), and (+3m,) £ 37), as shown in Fig. S4. The band degeneracy, denoted with d
in the spectrum at each region is different: d=4(2) for A < 1(> 1), d=6 at A = 1 in the CSL phase where D=0; and
d=2 for mixed phases both for J = +1 and -1. Hence, there is no simple positive sum of the constrainer rule here;
the direct matching of singular /non-singular bands to emergent gauge fields/fragility is not possible.

-1.7 ‘ : :
(a) ()
-1.8¢ 1 7.8+
C)
Ww.-1.9¢ 1 7.9+
2 -8
d=6 d=2
-4.7
(©) d
-4.8¢ 1 7.8+
C)
w .49 1 7.9¢
-5 -8
| | d=2 | | d=2
(0,0) (m,7) (m,37) (37,37) (0,0) (m,7) (m,37) (3m,37)
(a,.a,) (a,.a,)

FIG. S4. Energy dispersion of the Hamiltonian H(q) at four with re)spective degeneracy of flat bands d, for (a) A = 1.0, D = 0.0
(CSL), (b) A =4.0,D = 1.0 (Mixed phase) for J = +1 and (¢) A = —-2.5,D = 0.0 (d) A =4.0,D = 1.0 (Mixed phases) for J

As discussed rigorously in the main text, the spin liquids (cyon(/black) colored phase for J=+1(/-1)) phase has
pinch points belonging to the algebraic class of CSLs with ’emergent’ low-energy gauge field excitations. The mixed
(black-colored phase for J=+1) phase has no pinch points and, hence, belongs to the fragile class of CSLs. All the
other ordered phase regions have dispersive bands.
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Finite Magnetic field
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FIG. S5. Phase diagram at D=0, as a function of h and A. For A < 1, the phase is a mixed phase and spin liquid for another
case. The mixed phase here is unstable for any finite value of D; the phase becomes ordered in and out-of-plane for non-zero
D value.

The external magnetic field is applied along the z-axis to the Hamiltonian, now written as

Hunag = Hxxz-pm —h'y_ S7. (21)
i

The phase diagram as a function of h and A is presented in Fig. S5 for D = 0. A mixed phase of disordered in-
plane spins with ordered out-of-plane components is observed at D = 0 for A < 1 with increasing h. The in-plane
disordered spins exhibit a coexisting Bragg-like leak at (0,47), and pinch points at (£m, £37). The ordering along
the z components is FM type. This phase is unstable for any finite value of D. A finite value of D gives an ordered
phase depending on the sign of the D value, where the in-plane spins form an ordered supercell structure and the
out-of-plane spins are ferromagnetically ordered. As A > 1, the spins become disordered both in in-plane and out-
of-plane components. This phase also has pinch-points in the correlation function, indicating power-law correlations.
This phase survives at finite values of D. Therefore, we conclude that, by applying the external magnetic field, the
spin liquid phase can be stabilized in these materials.



	Symmetry, Superposition and Fragmentation in Classical Spin Liquids: A General Framework and Applications to Square Kagome Magnets
	Abstract
	References
	Supplementary Material
	Detailed derivation of the Symmetry properties
	Symmetry of the Hamiltonian
	Irreducible spin configurations
	XXZ and DM interactions

	Details of Classical Monte Carlo
	Structure Factor Plots
	Soft-spin Approximation
	Finite Magnetic field



