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Recent analyses combining advanced theoretical techniques and high-quality data from thousands
of simultaneously recorded neurons provide strong support for the hypothesis that neural dynamics
operate near the edge of instability across regions in the brain. However, these analyses, as well
as related studies, often fail to capture the intricate temporal structure of brain activity as they
primarily rely on time-integrated measurements across neurons. In this study, we present a novel
framework designed to explore signatures of criticality across diverse frequency bands and construct
a much more comprehensive description of brain activity. Additionally, we introduce a method for
projecting brain activity onto a basis of spatio-temporal patterns, facilitating time-dependent di-
mensionality reduction. Applying this framework to a magnetoencephalography dataset, we observe
significant differences in both criticality signatures and spatio-temporal activity patterns between
healthy subjects and individuals with Parkinson’s disease.

Nearly a century after H. Berger first recorded en-
dogenous brain activity, deciphering its origin and func-
tional significance remains a crucial challenge. Techno-
logical advances enabling the simultaneous recording of
the activity of thousands of individual neurons allowed
to shift the focus from the study of single neurons to
large neuronal ensembles and their collective dynamical
behavior, underscoring the need for developing a Sta-
tistical Mechanics framework for brain networks [1]. A
widely discussed conjecture in this context posits that
mathematical models of brain activity need to operate
near a critical point or “close to the edge of instabil-
ity” to generate activity patterns akin to those observed
experimentally, both at microscopic (e.g., electrophysi-
ology or calcium imaging) and macroscopic (functional
magnetic resonance imaging (fMRI) or magneto/electro-
encephalography (M/EEG)) scales [2–6]. Crucially, crit-
ical behavior has been linked to functional capabilities
related to the processing, storage, and transmission of in-
formation [5–8] and deviations from criticality have been
associated with pathology [9].

Recently, Hu and Sompolinsky (HS) achieved a signifi-
cant breakthrough in this regard, developing tools to ana-
lytically infer the actual dynamical regime from empirical
data. In particular, they computed the spectrum of the
(long-time integrated) covariance matrix in a model of
randomly coupled neurons as a function of its dynamical
regime [10]. Note that such a spectrum is the starting
point for dimensionality-reduction techniques like princi-
pal component analysis (PCA) [11, 12]. Their crucial ob-
servation is that the spectrum develops a power-law tail
as the overall coupling strength is increased and the sys-
tem approaches the edge of instability. In contrast, “sub-
critical” dynamics result in a narrower range of eigenval-
ues and a cutoff in the distribution. These results are
robust to modeling details –holding, e.g., for non-linear
and spiking neuron models— and sub-sampling effects

[10]. Consequently, it becomes possible to estimate the
proximity to the edge of instability from empirical time
series by fitting the measured covariance spectrum to the
theoretical one [10]. This strategy has been successfully
applied to data from the simultaneous recording of thou-
sands of neurons in different regions of the mouse brain
[13], showing that all recorded areas are, to varying de-
grees, close to the edge of instability [14]. The previous
analyses are limited, however, in that they only examine
time-integrated covariances, i.e.,∫ ∞

−∞
dτCij(τ) ≡

∫ ∞

−∞
dτ

∫ ∞

−∞
dt ⟨xi(t)xj(t+ τ)⟩ (1)

where i, j = 1...N label different neurons or recording
channels, xi(t) are their firing rates at time t, and ⟨·⟩
stands for average over independent measurements. In
other words, the temporal structure is averaged out.
However, whole-brain activity exhibits time-dependent
complex oscillations that occur at a broad range of fre-
quency bands (α, β, γ, ...) [15, 16] and coexists with a
background of non-periodic (1/f) noisy activity [17].
Such complex collective rhythms are characterized by
transient neuronal synchronization and are believed to
be essential for information transmission and integration
across regions [18–21]. Moreover, recent work has ana-
lyzed how effective neural communication protocols cru-
cially depend on the distance of the intrinsic dynamics
to the edge of oscillatory synchrony [22]. This under-
scores the need to extend the mentioned time-integrated
analyses [10] to investigate multi-frequency band as-
pects of criticality. We tackle this problem by analyz-
ing frequency-dependent covariance matrices, whose ele-
ments can be written using the Wiener-Kinchin theorem
[23] as a Fourier transform of Cij(τ) (see SI):

Sij(ω) =

∫ ∞

−∞
dτCij(τ)e

−iωτ , (2)

ar
X

iv
:2

40
3.

15
09

2v
1 

 [
q-

bi
o.

N
C

] 
 2

2 
M

ar
 2

02
4



2

so that Sij(ω = 0) coincides with Eq.(1). The result-
ing frequency-dependent covariance (FDC) matrix, S(ω),
has been employed to analyze EEG [24], MEG [25] and
fMRI [26] data. Here, we go beyond such analyses and
examine whether an approach akin to that in [10, 14] can
be expanded to deal with FDC matrices, with the idea
of evaluating the distance to a critical regime across fre-
quency bands while generating a basis to describe spatio-
temporal propagation patterns in healthy and patholog-
ical subjects.

Principal component analysis (PCA) is the best-known
dimensionality reduction method for the analysis of mul-
tidimensional data [11]. The leading eigenvalues of
the covariance matrix describe the directions of maxi-
mal variability in the data, allowing for effective low-
dimensional descriptions of complex data by projecting
onto a subset of leading eigenvectors. For instance, PCA
analyses of fMRI data in resting conditions enabled the
inference of a small set of co-activation patterns, called
resting state networks, offering insights into the default
functional connectivity in the brain [27, 28]. Likewise,
investigations of time-dependent activity under task per-
formance have also resorted successfully to PCA analyses
[29]. However, PCA analyses on correlated time series
can induce artifacts such as “phantom oscillations” [30].
Similarly, variants of PCA, such as time-lagged PCA,
involve non-Hermitian covariance matrices, resulting in
complex eigenvalues and interpretation challenges. Ul-
timately, a robust tool to investigate multidimensional
noisy time-structured data is not yet available. Here,
we fill this gap by introducing frequency-dependent PCA
(FD-PCA), which exploits the Hermitian FDC matrix
S(ω).
To gain intuition, let us first describe a simple discrete-

time dynamical process for two variables, x1(t) and x2(t):{
x1(t) = v1 cos(ω0t+ ε) + ξ1(t)

x2(t) = v2 cos(ω0t+ δ + ε) + ξ2(t)
, (3)

which includes a periodic signal ω0, relative delay δ, a
random phase ε, and coupling amplitudes denoted by
v = (v1, v2), along with zero-mean and unit variance
Gaussian noise terms ξi(t) (i = 1, 2), which exhibit
crossed-correlations ⟨ξ1(t)ξ2(t)⟩ = ρ and |ρ| ≤ 1. Thus,
the time-lagged correlation matrix C(τ) is given by

δ(τ)

(
1 ρ
ρ 1

)
+
1

2

(
v21 cos(ω0τ) v1v2 cos(ω0τ + δ)

v1v2 cos(ω0τ − δ) v22 cos(ω0τ)

)
,

(4)
needed for standard PCA analyses while, for FD-PCA,
using Eq.(2) (see SI)

S(ω) =

(
1 ρ
ρ 1

)
+
πδ(ω ± ω0)

2

(
v21 v1v2e

−iδ ω
ω0

v1v2e
iδ ω

ω0 v22

)
.

(5)
Fig.1 shows scatter plots for one realization of the above
process in two different cases: without delay (upper row,

Figure 1. PCA vs FD-PCA analysis of the toy model
described by Eq.(3) Upper row: no delay, δ = 0, and
v = (−1, 3). Lower row: delay δ = 2π/1.43, v = (−2, 4).
ρ = −0.8 in both. The blue ellipsoids mark the directions of
variability of the noisy component ξ(t), the red curves are the
trajectories of the periodic signal, η(t), as specified in Eq.(3),
and the black vectors denote the principal directions (PCA
in the first column, and FD-PCA in the second and third, at
ω = 0 and ω0, respectively). A1/B1: Scatter plot of the dy-
namical process. The principal direction from PCA mixes the
contributions from both noise and signal variability. A2/B2:
At ω = 0, the periodic signal contribution is filtered out (fad-
ing red color), so that the principal directions of S(0) coincide
with those of the noise term. A3/B3: At the characteristic
frequency ω0, noise is filtered out, leaving, in the case without
delay (A3), the principal direction of the signal process (only
one principal direction is shown). For non-vanishing delays,
since the principal eigenvector is complex, its projection onto
the real space parametrizes the whole trajectory of the ellipse
(black dotted line; the black arrow is the projection at one
specific time; see main text).

δ = 0) and with a non-vanishing delay (lower row, δ ̸= 0).
Blue ellipsoids represent the directions of noise variabil-
ity (eigenvectors of the first matrix in Eq.4)), the red
curves represent the signal trajectory. Observe that, as
illustrated in Fig.1A1/B1, a standard equal-time PCA
analysis, giving the direction of overall maximal variabil-
ity (black vectors), mixes up information from signal and
noise variance (i.e., the leading eigenvector is a combina-
tion of the principal directions of variability from sig-
nal and noise). Instead, FD-PCA evaluated at different
frequencies can decompose these two contributions. At
ω = 0, the periodic signal is filtered out, resulting in the
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principal eigenvectors of S(0) coinciding with those of
the noise covariance (see black arrows in Fig. 1A2/B2).
Conversely, at ω = ±ω0, the noise contribution is neg-
ligible, and S(ω0) becomes a Hermitian complex ma-
trix with eigenvalues λ1 = (π/2)δ(0)∥v∥2 and λ2 = 0.
Consequently, its associated eigenvectors (v1, v2e

iδ) and
(−v2, v1e

iδ) are real only if δ = 0, in which case the
principal direction aligns with the signal vector (v1, v2)
(Fig.1A3). On the other hand, in the presence of delays
(δ ̸= 0), both eigenvectors become complex and fixed
up to an arbitrary factor or “gauge”, eiφ, preserving the
modules and eigenvectors. Fixing the gauge to φ = ω0t
—which is equivalent to Fourier transforming back the
mode of frequency ω0 to the time domain— the time-
dependent projection of the first eigenvector describes
an elliptical trajectory, (v1 cos(ω0t), v2 cos(ω0t+ δ)) that
precisely reconstructs the input signal (Fig.1B3). This
simple observation is inspiring because it reveals that the
complex eigenvectors of the FDC matrix can be exploited
to uncover dynamical spatio-temporal patterns from em-
pirical data.

We now shift to a higher-dimensional neural network
model with N randomly coupled nodes whose dynamics
are described by [10, 31]:

ẋi(t) = −xi(t) + F

g

N∑
j=1

Wijxj(t)

+ ξi(t) , (6)

where xi(t), is a continuous variable representing the fir-
ing rate of the i-th neuron, the elements Wij describe
the synaptic weights (the matrix W will be specified
later), g controls the overall coupling strength, ξi(t) is a
zero-mean Gaussian white noise term, with ⟨ξi(t)ξj(s)⟩ =
σ2δijδ(t − s), and F (x) is a gain or response function,
which here we assume to be linear (i.e., F (x) = x; in
SI we show that the results remain robust regardless of
this choice). In this case, the dynamics are stable as long
as the eigenvalues λW,i of W are such that the largest
one, λW,max, obeys the condition gλW,max < 1, so that
λ∗
W,max = 1/g sets the threshold for the edge of instabil-

ity. The FDC matrix can be easily computed by defining
A = −(I − gW ) (where I is the identity matrix) and
Fourier transforming Eq.(6), yielding [32–34]:

S(ω) = (A+ iωI)
−1

(AT − iωI)
−1

. (7)

As a Hermitian matrix, S(ω) has real eigenvalues and a
set of orthogonal, generally complex eigenvectors. Let us
now consider two examples with different W matrices.
In the first example, W has independent i.i.d. random
entries extracted from a zero-mean Gaussian distribu-
tion with variance 1/

√
N so that its eigenvalues obey

the circle law for large N ’s, i.e. they are uniformly dis-
tributed within a circle in the complex plane (Fig.2A1)
[35]. Representative time series and averaged power spec-
tra are shown in Fig.2B1/C1. The eigenvalue distribu-
tion of S(ω = 0) in Eq.(5) has been explicitly computed

[10] (see also SI). Its most salient features are shown in
Fig.2D1: (i) the support of the distribution depends on
g and becomes unbounded from above, i.e. λmax → ∞
as g → 1 and (ii) it decays asymptotically as a power law
with exponent −5/3 as g → 1, while there are strong g-
dependent cutoffs for g < 1. Inspection of Eq.(7) readily
reveals that the same results apply to a generic S(ω) just
by replacing g by an effective frequency-dependent cou-
pling g(ω) = g/

√
1 + ω2 [10]. Thus, for the considered

connectivity matrix following the circle law, where the
first eigenvalues that become nearly unstable as g → 1 are
real-valued, the distribution of eigenvalues approaches
criticality more closely at frequency ω = 0 than at any
other frequency (see inset of Fig. 2D1). However, this is
not always the case, as we now illustrate.
In the second example, W is chosen as

W =

[
αJ −βJ
βJ αJ

]
(8)

where J is a symmetric random matrix with zero-mean
and 1/

√
N variance Gaussian entries. Its associated

eigenvalues are real-valued and follow the semicircle law
[35], with the largest eigenvalue λJ,max = 2. Note that,
Eq.(8), even if inspired in networks with excitatory and
inhibitory subpopulations, lacks specific significance as
an actual neural connectivity model; it has been designed
to ensure the presence of complex leading eigenvalues. In-
deed, each real eigenvalue of J , λJ is mapped into two
eigenvalues of W , λW = (α ± iβ)λJ , so that the eigen-
values with the largest real parts are λW,max = 2(α±βi)
(Fig.2A2). Thus, the edge of instability is approached as
g → 1/2α and corresponds to a Hopf bifurcation signal-
ing the onset of oscillations with frequency ωC = ±2gβ
(as illustrated in Fig.2B2/C2). Expressions for the eigen-
value distribution of S(ω) for any ω can be analytically
derived (see SI). Remarkably, only at characteristic fre-
quency ωC = ±2βg (see Fig.2D2) the resulting distri-
bution exhibits a power-law tail (with exponent −7/4)
as the edge of instability 2g − 1

α = 0 is approached.
Therefore, the FDC matrix, S(ω), allows us to observe
fingerprints of criticality in data sets with a non-trivial
temporal structure and unveil dynamical features that
could not be uncovered through standard analyses of the
integrated long-time covariance.
Next, we demonstrate the potential of this framework

by not only examining eigenvalues but also leveraging
eigenvectors for the analysis of an extensive dataset of
MEG recordings from both healthy controls and subjects
with Parkinson’s disease (see Fig.3A1/A2). For each sub-
ject, we computed the power-spectrum Sii(ω) averaging
over MEG recording channels. Two frequency bands con-
tribute the most to the spectral power: slow delta fre-
quencies (0.1−1 Hz) and faster alpha waves (8−13 Hz),
as shown in Fig.3A3. For each individual, we computed
S(ω) and the associated frequency-dependent eigenvalue
distributions, which we then used to infer the effective
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Figure 2. Near-critical dynamics at diverse frequency bands for two different connectivity matrices W : a
random matrix (upper panels) and one with the structure in Eq.(8). (lower panels). A. Eigenvalue distribution for
a random matrix gW , obeying the circle law in the complex plane, with radius g (A1) and for the matrix defined by Eq.(8)
(A2). The latter has eigenvalues of the form (α± iβ)λJ , where λJ is an eigenvalue of the matrix J –as shown in the inset. The
density at each of these lines follows Wigner’s semicircle law [35]. B. Representative time series as obtained from integration
of Eq.(6) in the linear case (N = 102 nodes, 104 time units, and integration step 0.1); observe the presence of noise-sustained
quasi-oscillations of characteristic frequency 2βg in B2. C. The network-averaged power spectrum exhibits a monotonous decay
in the upper case (C1) and a peak at a non-trivial frequency 2βg in the lower one (C2). D. Eigenvalue distribution of S(ω)
at three different frequencies (see legends; symbols stand for simulation results and lines for theoretical predictions). The inset
in D1 displays the effective coupling strength, g(ω), at each frequency, highlighting that the “most critical” dynamics occurs
at ω = 0. Power-law decay, signaling critical behavior, is observed at 0 frequency in D1 and for frequency 2βg in D2.

coupling g(ω) at each frequency (see SI for the fitting
procedure). Results for healthy (control) subjects are
shown in Fig.3B1, revealing that closest-to-critical be-
havior (g(ω) ≈ 1) is observed for very small frequencies
(delta band) and in the alpha band. Moreover, as il-
lustrated in the inset of Fig.3B1 for one individual, the
eigenvalue distribution in the alpha band decays as a
power-law (with the predicted exponent −5/3) and devi-
ates from the expectation for uncorrelated random time
series (i.e. from the Marchenko-Pastur distribution [36]).
Importantly, all these effects are lost if time series are
randomized, even if their power spectra are preserved
(see SI). Additionally, we determined the leading (com-
plex) eigenvectors in each band to decompose the overall
spatio-temporal activity patterns. In Fig.3B2, we illus-
trate this by showing the projection of the activity on the
first complex eigenvector in the alpha band (∼ 10 Hz),
revealing the presence of a travelling wave propagating
along the occipital-frontal axis (see Fig.3B3 for a brain
projection at two times separated by half a period). Sim-
ilar analyses can be performed for other eigenvectors and
frequencies, allowing for a full decomposition into a basis
of spatio-temporal patterns.

Remarkably, the study of subjects affected by Parkin-
son’s disease reveals that there is a significantly broader
interval of frequencies close to the edge of instability com-
pared to the control group (see Fig.3C1). Although the

corresponding eigenvalue distributions within the alpha
band are well-fitted by power laws with the same expo-
nent as observed in healthy patients (Fig.3C1 inset), the
associated complex eigenvectors exhibit significant dif-
ferences compared to those of the control group. As a
consequence, the spatio-temporal waves show a signifi-
cantly distinct structure in these patients: as illustrated
in Fig.3C2 and Fig.3C3 the level of simultaneous acti-
vation (i.e. synchrony) between nodes within the domi-
nant alpha wave is notably higher in Parkinson’s patients
compared to controls. Although we do not delve deeper
into this comparison, there is no doubt that decomposing
brain activity into spatio-temporal principal components
using a well-characterized basis presents promising av-
enues for future research in characterizing both healthy
and pathological states.

In summary, we (i) present and leverage a tool (FD-
PCA) to disentangle the sources of co-variability in high-
dimensional complex timeseries, (ii) show how to esti-
mate the effective dynamical regime at diverse frequency
bands, allowing us to extend the concept of critical be-
havior to multi-frequency analyses, and (iii) devise a
method to decompose spatio-temporal patterns of ac-
tivity on a basis of frequency-dependent spatial waves,
providing a dynamical generalization of resting state net-
works. We are confident that this framework will have
broad applications in neuroscience and beyond.
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Figure 3. Frequency-dependent covariance analyses reveal close-to-critical dynamics at different bands. A1.
Illustration of a subject with the MEG helmet recording the activity of 270 different channels distributed around the head.
A2. Representative time series at 5 arbitrary locations, exhibiting rich oscillatory behavior. A3. Typical power spectrum
for one subject, showing a clear peak in the alpha band (8 − 13 Hz). B. Analysis of the control group. B1. Main plot:
inferred value, g(ω), for different subjects (color-coded) and frequencies ω: the dynamics are closest to criticality at very small
frequencies and within the alpha band (the black curve stands for the group average). Inset: best fit of the empirical data to
the theoretical distribution [10] for one representative subject (dark-red), together with the best fit to the Marchenko-Pastur
distribution for residual correlations in random timeseries (green) both in linear and log-log scale. B2. Raster plot of the spatio-
temporal pattern associated with the leading eigenvector of S(ω) at the closest-to-critical frequency (alpha band). Channels
have been sorted according to their relative phases. B3. Spatio-temporal pattern of B2 represented at two different times t1
and t2, with the actual 3D locations of channels in the helmet (top view). Red (blue) colors stand for positive (negative) values.
C. Group with Parkinson’s disease: C1. As B1, but revealing a different organization of the distance to criticality across
frequency bands. The key feature is that the peak in the alpha band in B1 is replaced by a less pronounced but much broader
range of frequencies with close-to-critical behavior. C2/C3. As B2/B3 but with distorted spatio-temporal patterns.
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SUPPLEMENTAL INFORMATION

COVARIANCE MATRIX AND THE POWER SPECTRUM

Given a collection of time series, xi(t), where 1 ≤ i ≤ N , of a stochastic process that is weakly stationary, the
equal-time covariance matrix:

Cij = ⟨xi(t)xj(t)⟩, (S1)

measures to what extent the behavior of the dynamical unit, xj(t), might be inferred from knowledge of xi(t) using
simple linear regression. A typical technique of dimensionality reduction commonly used in data analysis involves
projecting the time series activity, xi(t), onto the eigenvectors (or principal components) of the matrix Cij [37]. These
principal components represent the directions in which the dataset exhibits maximum variance.

In multidimensional complex systems, like the brain, information that propagates from one dynamical unit to
another, carries a (small) delay, or time lag, τ , such that the behavior of xj(t+ τ) can be inferred from the behavior
of xi(t) (see, for instance, [16]). In this case, the mathematical object measuring this linear dependence between
timeseries is the time-lagged covariance matrix:

Cij(τ) = ⟨xi(t)xj(t+ τ)⟩ , (S2)

which, for weakly stationary stochastic processes, does not depend on t, but only on the time difference, τ . This
matrix is not generally symmetric (⟨xi(t)xj(t+ τ)⟩ ≠ ⟨xj(t)xi(t+ τ)⟩), which means that eigenvalues and eigenvectors
are both complex. This complexity makes them difficult to analyze.

We propose to use the Fourier transform of this time-lagged covariance matrix, also called the power-spectrum
matrix or simply the frequency-dependent covariance (FDC) matrix, which —by means of the Wiener-Kinchin theorem
[38, p. 17]— can be written as:

Sij(ω) = F [Cij(τ)](ω) = lim
T→∞

1

T
⟨X∗

i,T (ω)Xj,T (ω)⟩ , (S3)

where Xi,T (ω) represents the Fourier coefficient of the time series, xi(t), at the particular frequency, ω, in the time
window [0, T ], i.e.,

Xi,T (ω) =

∫ T

0

e−iωtxi(t)dt , (S4)

and (◦)∗ represents the complex conjugate of (◦). The FDC matrix has the advantage of having real eigenvalues
since it is a Hermitian matrix. However, its eigenvectors are generally complex, as discussed in the main text, which
leads to the emergence of spatio-temporal patterns. It’s worth noting that the FDC matrix quantifies how much
information from the Fourier transformed series Xi,T (ω) can be used to reconstruct the Fourier transformed series
Xj,T (ω) through a straightforward linear regression.

FREQUENCY-DEPENDENT COVARIANCE MATRIX FOR THE FIRING-RATE MODEL

Let us consider an ensemble of N neurons connected in a recurrent network with weights Wij . The firing-rate model
serves as a parsimonious representation of the activity within these interconnected units, and is defined by a system
of stochastic differential equations:

ẋi(t) = −xi(t) + g

N∑
j=1

WijF (xj(t)) + σξi(t) , (S5)

where xi(t) is the firing rate of neuron i, F (x) is a gain or saturation function, g is the so-called coupling strength
—which acts as an external parameter to control the phase at which the system is posed—, ξi(t) is a Gaussian white
noise with variance σ2 (that will be set to 1 for simplicity unless stated otherwise). The function F (x) is typically
assumed to be of the type tanh(x) [10]. If F (0) = 0, then the solution xi(t) = 0 is a fixed point of the deterministic
dynamics, representing a state of quiescence or fluctuating background activity with 0 mean. Linearizing around this
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fixed point and assuming the necessary conditions of differentiability of the gain function, allows us to approximate
the non-linear model by a simpler model of linearly-coupled units (the Ornstein-Uhlenbeck process):

ẋi(t) = −xi(t) +

=1︷ ︸︸ ︷
F ′(0) g

N∑
j=1

Wijxj(t) + σ2ξi(t) . (S6)

The Ornstein-Uhlenbeck process serves as an approximation for the behavior of the non-linear system defined by
equation (S5) in the quiescent phase. Indeed, let λmax denote the eigenvalue with largest real part of the matrix W.
Then, the condition of linear stability demands that gλmax < 1. The point g = 1/λmax marks the so-called “edge of
instability”, such that, beyond this point, the dynamics are no longer properly described by the linearized system.

The stationary solution of the linear model, Eq.(S6), can be computed as:

x(t) = e−At

∫ t

−∞
eAsξ(s)ds , (S7)

where A = −(I − gW) and I is the identity matrix. Using this expression, it is straightforward to prove that the
equal-time covariance matrix, C = ⟨x(t)xT (t)⟩, verifies a Lyapunov equation [39]:

AC+CAT =

∫ t

−∞
Ae−A(t−s)e−AT (t−s)ds+

∫ t

−∞
e−A(t−s)e−AT (t−s)AT ds =

∫ t

−∞

d

ds

[
e−A(t−s)e−AT(t−s)

]
= I . (S8)

On the other hand, the time-lagged covariance matrix can be computed as:

C(τ) = ⟨x(t)x(t+ τ)⟩ =
∫ t

−∞
e−A(t−s)e−AT (t+τ−s)ds =

{
Ce−AT τ , if τ > 0

eAτC, if τ < 0
(S9)

Hence, the frequency-dependent covariance matrix can be exxpressed as

S(ω) =

∫ ∞

−∞
C(τ)e−iωτdτ =

∫ ∞

0

Ce−AT τe−iωτdτ +

∫ 0

−∞
eAτCe−iωτdτ =

1

A+ iωI
C+C

1

AT − iωI
. (S10)

Finally, using the Lyapunov equation, we get to:

(A+ iωI)S(ω)(AT − iωI) = AC+CAT = I , (S11)

so that

S(ω) =
1

A+ iωI
× 1

AT − iωI
. (S12)

POWER-LAW BEHAVIOR IN THE EIGENVALUES OF THE FDC MATRIX

Consider again the linear firing-rate model defined by Eq.(S6). In [10], the authors derived an analytical expression
for the distribution of eigenvalues of the so-called “long-time window covariance matrix” (i.e., the FDC matrix at
frequency ω = 0) when the weights, Wij , are independently drawn at random from a normal distribution with 0 mean

and variance 1/
√
N :

f(x) =
3

1
6

2πg2x2

 ∑
ξ=1,−1

ξ

((
1 +

g2

2

)
x− 1

9
+ ξ

√
(1− g2)3x(x+ − x)(x− x−)

3

) 1
3

 . (S13)

where x ∈ [x−, x+] and the support limits are defined as:

x± =
2 + 5g2 − g4/4± 1

4g(8 + g2)3/2

2(1− g2)3
. (S14)
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Furthermore, it can also be easily proved from Eq.(S12) that the FDC matrix, S(ω), has a similar behavior for ω ̸= 0,
with the coupling strength g replaced by an effective coupling, g(ω), given by:

g(ω) =
g√

1 + ω2
, (S15)

which implies that critical behavior is always observed first at frequency ω = 0. Inspired by this idea, in this paper
we built a synaptic matrix W that induces oscillatory behavior, such that the first eigenvalues to become unstable
have nonzero imaginary part. In this way, the spectrum of eigenvalues of the FDC matrix becomes a power law (i.e.
shows the fingerprints of criticality) only at the particular frequency of oscillation. To pursue this idea, we looked for
a Wilson-Cowan-like model with two populations of neurons, E(t) and I(t), each of them consisting of N units. The
most general expression for a model of this type —assuming that the refractory period is 0— would be:

Ėk(t) = −Ek(t) + gαEE

∑N
j=1 J

EE
kj S(Ej(t)) + gαEI

∑N
j=1 J

EI
kj S(Ij(t)) + ξk(t)

İk(t) = −Ik(t) + gαIE

∑N
j=1 J

IE
kj S(Ej(t)) + gαII

∑N
j=1 J

II
kj S(Ij(t)) + ηk(t) ,

(S16)

where the scalars αAB , A,B ∈ {E, I}, denote the coupling strengths of the (directed) connections from population
B to population A, and JAB stands for the synaptic weight matrix mediating the interaction of each pair of neurons
from population B towards A. For simplicity, and in order to make the calculations feasible, we chose all the synaptic
weight matrices to be symmetric and identical, JAB = J, with random entries drawn from a Gaussian distribution
with 0 mean and variance 1/

√
N . On the other hand, we chose αEE = αII = α and αIE = β = −αEI , leading to

the matrix shown in the main text (see Eq.(8)). This choice of parameters will make calculations particularly simple.
However, notice that this model does not represent excitatory and inhibitory units because the inhibitory weights
(αIE and αII) should always have negative signs, while excitatory weights (αEE and αEI) should be positive. In any
case, it is worth noting that the qualitative behavior of this family of models, regardless of the choice of the synaptic
couplings, is very similar in the sense that they all exhibit power-law behavior in the distribution of eigenvalues of
the frequency-dependent covariance matrix only at the characteristic frequency at which the corresponding Hopf-
bifurcation happens. Let us then focus on the matrix with the shape proposed in the main text:

W =

[
αJ −βJ
βJ αJ

]
. (S17)

Observe that this case is simpler to solve because W and WT commute, meaning that they are both simultaneously
diagonalizable, thus making it easier to diagonalize S(ω), which involves terms of the type WWT . Indeed, let
w ∈ C2N be a vector of the type

w =

[
v
kv

]
(S18)

where v ∈ RN is an eigenvector of the matrix J with eigenvalue µ associated and k ∈ C is a scalar. We force w to be
an eigenvector of the matrix (A+ iω), with associated eigenvalue λ1, leading to a system of equations for both k and
λ1:

(A+ iω)w = λw ⇒

{
1 + iω − αµ+ βkµ = λ1

−βµ+ k(1 + iω − αµ) = kλ1.
(S19)

This system of equations leads to k = ±i and λ1 = (1 − αµ) + (ω ± βµ)i. On the other hand, since W and WT

are simultaneously diagonalizable, so are (A + iω) and (AT + iω), which means that the eigenvector w is also an
eigenvector of (AT − iω). Indeed, for this matrix, imposing that w is an eigenvector of (AT − iω) leads to a system of
equations similar to Eq.(S19) with ω → −ω and β → −β. Hence, we deduce that w is an eigenvector with eigenvalue
λ2 = (1− αµ)− (ω ± βµ)i. Since we are interested in the eigenvalues of the FDC matrix, we finally conclude that w
must be an eigenvector of S(ω) with the following eigenvalue λ±:

λ± =
1

(1− αµ)2 + (ω ± βµ)2
. (S20)

Thus, we have an explicit transformation from the set of N eigenvalues, µ, of the matrix J to the set of 2N eigenvalues,
λ±, of the matrix S(ω). Observe that the mapping has two branches, a positive one and a negative one, leading to
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a doubling of the number of eigenvalues. To get the density of the eigenvalues λ± it suffices to apply a change of
variables to the eigenvalues µ, which are distributed according to the semi-circle law [10] (due to the symmetry of the
matrix J). In our case, the transformation defined by Eq.(S20) is non-monotonic, so one needs to use the theorem
of change of variables in every subset where the transformation becomes a bijection. Inverting this transformation
yields:

µξ
η(λ) =

1

α2 + β2

[
(α− ξωβ) + η

√
1

λ
(α2 + β2)− (β + ξωα)2

]
, (S21)

with ξ, η ∈ {−1,+1}. The Jacobian of this local inverse is:

|Jξ(λ)| = 1

λ2

√
α2+β2

λ − (αω + ξβ)2
(S22)

so that the final density of eigenvalues λ of the FDC matrix S(ω) can be expressed as:

ρ(λ) =
k

2

 ∑
ξ,η=±

(√
4g2 − µξ

η(λ)2
)
|Jξ(λ)|

 , (S23)

where k = 1/2πg2 and the factor 1/2 arises as a normalization factor when summing the contribution of all the local
inverses (sum over the two branches ξ = ±1). The local inverses, on the other hand, are defined in the following set:

Dξ =

{
λ ∈ R : ∆ξ =

1

λ
(α2 + β2)− (β + ξωα)2 > 0

}
, (S24)

a condition imposed on the discriminant ∆ξ of the inverse transformation of Eq.(S21). This leads to a maximum
eigenvalue given by:

λ < λξ
max,1 =

(α2 + β2)

(β + ξωα)2
. (S25)

Alternatively, the expression in Eq.(S23) is only defined whenever 4g2 − µξ
η(λ)

2 > 0, which implies the following
bound:

λ < λξ
max,2 =

(α2 + β2)

(β + ξωα)2 + (α− ξωβ)− 2g(α2 + β2)
. (S26)

Observe that, in order to have a diverging support (a necessary condition to observe a power-law), one must have

that both of these bounds go to infinity, i.e., λξ
max,j → ∞ (j = 1, 2), which only occurs if β + ξωα = 0 (in order to

ensure that λmax,1 → ∞) and 1/α = 2g (in order to ensure that λmax,2 → ∞). The first condition proves that there
are only two characteristic frequencies (positive and negative) where one can observe diverging eigenvalues:

ωC = ±β

α
, (S27)

which are precisely the imaginary part of the leading eigenvalues (complex conjugates of one another) of the coupling
matrix W. The second condition, on the other hand, ensures that the real part of the leading eigenvalue of the matrix
W is at the edge of instability. Hence, at the characteristic frequency, ωC , we observe oscillatory behavior arising
from a Hopf bifurcation and the FDC matrix has a density of eigenvalues that becomes unbounded from above. The
preceding arguments prove that the necessary conditions for the existence of a power law are precisely β + ξωα = 0
and 1/α = 2g. One of these conditions determines the characteristic frequency of oscillations, while the other sets the
edge of instability.

To prove that the eigenvalue distribution of the FDC matrix is a power-law we plug this conditions into the density
function described by Eq.(S23) and take the limit λ → ∞, which leads to:

ρ(λ) ∼ 1

λ2λ−1/2

√√√√( −2η2

λ(α2 + β2)
− 2η

α
√
λ(α2 + β2)

)
∼ λ−7/4. (S28)

This shows that the density of eigenvalues is scale-invariant with a power exponent of −7/4, which coincides with the
exponent of the eigenvalue distribution of the long-time window covariance (namely, the power spectrum at frequency
ω = 0) for the symmetric Gaussian ensemble [10].
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EFFECTS OF NON-LINEARITIES

Up to this point, we have solely examined signatures of criticality in the frequency-dependent covariance matrix
for the linear model, where the gain function in Eq.(S5) is defined as the identity function. Here, we delve into the
scenario where F (x) = tanh(x), a commonly employed saturation function [31] (see Fig.S4A). In the realm of nonlinear
dynamics, analytical calculations remain confined to the average behavior of a typical neuron in the thermodynamic
limit, often disregarding correlations [31, 40]. Hence, we have to resort to numerical examples. Following the approach
of [10] and [41], we assert that the effective coupling strength in the non-linear model, denoted as geff, is linked to the
average slope of the non-linearity function F (x) over the firing rates xi(t) as:

geff = g⟨F ′(xi(t))⟩ , (S29)

where averages are to be taken over time, nodes, and structural disorder. Using this expression, we were able to
compute numerically the value of geff as a function of the coupling strength g and the variance of the noise, σ2,
defined in Eq.(S5) (see Fig.S4B) in the case in which the synaptic weight matrix is set according to Eq.(S16). As
we can see, as one increases the noise intensity, σ, for a fixed value of g, there is a smaller effective coupling. For
two different values of sigma, σ = 0.2 and σ = 1, we repeated the same measurements as in Fig.2D2 (see main
text) to obtain the eigenvalue distribution of the frequency-dependent covariance matrix at different frequencies (see
Fig.S4C/D/E). We observed that, for σ = 1, even when the system is posed at the edge of linear instability —in
particular, for the simulations shown in subplots C/D, the largest eigenvalue of the matrix W has real part equal to
2βg = 1— there are no fingerprints of criticality, i.e. the system is away from criticality, as noise effectively “dampens”
this power-law tail. In other words, the combined presence of non-linearities and noise, shifts the transition point
–the edge of chaotic behavior– to larger effective values of geff .

Instead, to recover the scale-free behavior of the eigenvalues of the frequency-dependent covariance matrix, one
needs to go beyond the limit of linear instability, i.e., to the region in which 2βg > 1. In particular, in Fig.S4E we
observe how, when the coupling strength g is increased to 2βg = 1.5, one recovers the same scaling behavior and
power-laws predicted by the linear theory.

DATA ACQUISITION AND PROCESSING

The OMEGA dataset

The full OMEGA dataset consists of nearly 900 resting-state magnetoencephalography (MEG) recording sessions,
for a total of over 75 hours of data [43]. The recordings were taken with a 275-channel 2005 series CTF MEG system
at the McConnell Brain Imaging Center, at a time resolution of 2400Hz. The data is structured according to the
BIDS 1.7.0 standard and was pre-processed with the open-source software Brainstorm [44]. The access to the dataset
was granted for this project for 12 months, and reviewed and approved by the internal research ethics board. Out
of the total of 294 volunteering participants in the dataset, we selected 7 that were healthy controls and 8 that were
diagnosed with Parkinson’s disease. These were the subjects for which the timeseries were longest (in particular, they
had a duration of 1200s), allowing a better estimate of the FDC matrix.

Following the recommended protocol in [44], we applied a Notch filter at frequencies of 60, 120, 180, 240 and 300Hz
to remove the noise due to the AC power line frequency in Canada, and a high-pass filter at 0.3Hz, 60dB. Moreover,
since the dataset contains simultaneous bipolar Electrocardiogram (ECG) and vertical and horizontal bipolar Electro-
oculogram (EOG) recordings, we cleaned the MEG data from the artifacts due to heartbeats and eye blinks. The
artifact cleaning procedure consists of detecting reproducible stereotyped and localized topographies, that correlate
with the signals of the EOG and ECG, through a Signal-Space Projection [44].

Measuring Frequency-Dependent Covariances

The frequency-dependent covariance matrix can be estimated from a sample of time series xi(t) (1 ≤ i ≤ N) using
two different procedures. The first one consists of measuring the time-lagged covariance between each pair of time
series and Fourier transforming it. The problem with this method is that, for a finite sampling of the time series, the
result will not, in general, be a Hermitian, positive-definite matrix as it should be. Only in the limit of infinite samples,
the covariance matrix measured using this method will converge to a matrix displaying the correct properties. The
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Figure S4. Non-linearities effectively shift the coupling strength at which critical behavior is observed. A. Scheme
of the recurrent neural network of firing-rate units with non-linear saturation given by F (x) = tanh(x): the input to each neuron
k is properly weighted by the synaptic strength Wik and transformed through the gain function F (x) before arriving at neuron
i. B. The effective coupling strength as a function of g and the noise intensity σ, calculated using the ansatz geff = g⟨F ′(xi)⟩.
As we can see, the larger the noise intensity, the larger the coupling strength g needed to observe an effective critical coupling
geff near to the inset of criticality. The squares mark the values of (2βg, σ) for each of the subplots: (2βg, σ) = (1, 0.2) (subplot
C), (2βg, σ) = (1, 1) (subplot D) and (2βg, σ) = (1.5, 1) (subplot E). The black dotted line marks the onset of instability in
the linear theory, occurring when the eigenvalue with the largest real part (in our case, this real part is precisely 2βg) is equal
to 1. C. Eigenvalue density of the frequency-dependent covariance matrix at three different frequencies, showing power-law
behavior at the characteristic frequency ω1. Dots are the results from simulations, while lines correspond to theory. D. Same
plot as in C, but for a noise intensity of σ = 1, showing how, at the characteristic frequency, the fingerprints of criticality
have vanished as noise effectively “dampens” them [42]. E. Same plot as in D, but for a value of 2βg = 1.5 (beyond the edge
of linear instability). For this value of the coupling strength, we recover a power-law in the distribution of eigenvalues of the
frequency-dependent covariance matrix with the same decaying exponent, since 2βgeff gets close to 1.

second method, on the other hand, relies on the Wiener-Khinchin theorem to write the frequency-dependent covariance
matrix S(ω) as:

Sij(ω) = lim
∆t→∞

1

∆t
⟨X∗

i,∆t(ω)Xj,∆t(ω)⟩ , (S30)

where:

Xi,∆t(ω) =

∫ ∆t

0

xi(t
′)e−iωt′dt′ . (S31)

From Eq.(S30) it is clear that S(ω) is a Hermitian matrix. To estimate Xi,∆t(ω) out of a time series xi(t) sampled a
number T of times (meaning that each data point can be written as xi(tk), where 0 ≤ k ≤ T − 1), what we do is to
split the whole series in a total of M “chunks” of length L (so that T = L ·M). For the sth chunk (0 ≤ s ≤ M − 1),
which consists of a sample of the time series xi(tk) for s · L ≤ k ≤ (s+ 1) · L, we can estimate Xi,∆t=L(ω) by means
of the discrete Fourier transform:

Xi,s(ω) =
1

L

(s+1)·L∑
k=s·L

xi(tk)e
iωtk . (S32)

If we denote as X(ω) the N ×M matrix whose elements correspond to the Fourier transform of the ith time series in
the sth chunk, we can abbreviate the FDC matrix as:

S(ω) =
1

M
X(ω)X(ω)H . (S33)
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Writing it this way, it is also clear that the FDC matrix that this procedure estimates is positive-definite. Determining
the optimal way to split the time series (i.e., to choose the length of the chunks) typically involves taking into account
several factors:

1. The samples-to-units ratio, N/M , which determines the number of non-zero eigenvalues (if M > N , the rank
of the matrix is, at most, N , meaning there will be, at most, N non-trivial eigenvalues) should be as big as
possible.

2. The duration of each chunk, L, is related to the smallest frequency that this method can resolve. If we denote
as ω0 the smallest frequency that can be resolved using a DFT, one then finds that:

ω0 =
1

2

fS
L

, (S34)

where fS = 1/(tk+1−tk) is the sampling frequency. Thus, L has to be big enough so that the smallest frequencies
can also be analyzed.

3. The duration of the chunks, ∆tC = L/fS , should be bigger than the correlation time of the time series in order
to reduce correlations among the measurements Xi,s and Xi,s′ . It is simple to prove that, if the correlation
of the time series decays exponentially with a correlation time τC , then the correlation between chunks decays
exponentially with a characteristic rate equal to ∆tC/τC , so we choose ∆tC ≥ τC .

In the case of the OMEGA dataset, the sampling frequency was fS = 2400 Hz, and we chose subjects with total
recording time of 1200 s (merging different recording sessions). We studied the correlation time for different patients
and different regions (see Fig.S5) and we systematically observed that the latter was below 1 s for both the control
and Parkinson’s groups. Since the number, N , of nodes was typically 270 channels, we split the time series in chunks
with a duration of 2.5 s (larger than the correlation time), giving us a total of M = 480 chunks (larger than the
number of nodes).

Figure S5. Correlation time of the time series for both the control and Parkinson’s group. A. Scheme of the
procedure used to calculate the self-correlation function using a sliding window. The time-lagged correlation is Cij(τ) =
⟨xi(t)xj(t + τ)⟩, where the average is performed over all the times t ∈ [0,∆T ], with ∆T denoting the width of the sliding
window. B. Plot of the self-correlation function Cii(τ) at each of the ROIs of the helmet, together with their group average
(in red) for a randomly chosen patient of the control group. We also show the result of exponentially fitting this average
self-correlation in order to get the correlation time. C. Correlation time τC for both the control group and the Parkinson’s
disease group. Error bars represent the standard deviation across patients.

Fitting data to theory

After estimating the FDC matrix, we calculated the effective coupling strength g(ω) by fitting the empirical dis-
tribution that we obtained to the analytical expression in Eq.(S13)[10]. More specifically, we looked for the value of
g that minimized the quadratic error in the L2 norm using the Cramer-von Mises statistics between the empirical
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cumulative distribution Fn(x) and the theoretical one, F (x) =
∫ x

−∞ f(x)dx (where f(x) is defined as in Eq.(S13) but
with the correction for the finite sample-to-units ratio α = N/M derived in [10]):

D2
CvM =

∫
(F (x)− Fn(x))

2dFn(x) =
1

12n2
+

1

n

n∑
i=1

(
F (xi)−

2i− 1

2n

)
, (S35)

where n is the total number of samples and xi are the eigenvalues of the empirical frequency-dependent covariance
matrix. We repeated this analysis for each subject and then calculated the average across subjects in each group.

Criticality analysis on surrogated data

As a sanity check, we performed the same analysis to measure the distance to criticality (i.e., the coupling strength
g(ω)) over surrogated data. To show that there is, in principle, no relation between g(ω) and the power spectrum,
we shuffled randomly each of the time series such that the temporal structure (i.e., the self-correlation function
Cii(τ) = ⟨Xi(t)Xi(t + τ)⟩) was preserved. This is achieved, for instance, by shifting the time series at each node
by a random amount: Xk(t) → Xk(t + δk) (where δk are random shifts, see Fig.S6A1/A2). This transformation
granted the conservation of the power spectrum (see Fig.S6A3), which is calculated as the Fourier transform of
the self-correlation function for each node, averaged across nodes. However, because the reshuffling is carried out
independently in each of the time series, we expect the frequency-dependent covariance matrix to reflect only noisy
behavior. Indeed, the distance to the edge of instability g(ω) for the randomized data clearly shows that the timeseries
become uncorrelated (see Fig.S6B1/C1), while the leading spatio-temporal waves in the alpha band do not reveal any
patterns of synchronized behavior (see Fig.S6B2/B3/C2/C3). The only frequency at which we still observe some
non-trivial correlations is at the long-time window (ω = 0, where g(ω) ≈ 0.5). This happens because, at frequency
0, we are just integrating the time series over the whole chunk, so that there might remain some structure in the
correlations even when the time series have been shifted.
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Figure S6. Signatures of criticality in the frequency-dependent covariance analyses disappear when the time
series are reshuffled. A1/A2. Illustration of the reshuffling procedure: each time series is shifted by a random amount
Xk(t) → Xk(t + δk). A3. This transformation preserves the self-correlation of each node, meaning that the power spectrum
remains untouched. B1/C1. Distance to the edge of instability g(ω) for the control group (B1) and the Parkinson’s group (C1)
showing how the reshuffling leads to an effective coupling strength which is approximately 0. The inset shows the distribution
of eigenvalues for a value of ω ≈ 10Hz (inside the alpha band) showing that the distribution is well captured by the Marchenko-
Pastur distribution for uncorrelated variables (green curve). B2/C2. Raster plot of the spatio-temporal pattern associated
with the leading eigenvector of the frequency-dependent covariance matrix S(ω) at the alpha band, where channels have been
sorted according to their phase difference. The pattern shows that, at each time, there are almost no nodes with the same
phase, reflecting the fact that this pattern is pure noise. B3/C3. The spatio-temporal pattern of (B2/C2) projected over the
actual 3d positions of the channels (top view). Red colours indicate positive values and blue colours indicate negative ones.
The pattern shows no spatio-temporal structure whatsoever.
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