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Abstract

This paper presents an innovative end-to-end workflow for mineral exploration, integrating ambient noise
tomography (ANT) and artificial intelligence (AI) to enhance the discovery and delineation of mineral resources
essential for the global transition to a low carbon economy. We focus on copper as a critical element, required in
significant quantities for renewable energy solutions. We show the benefits of utilising ANT, characterised by its
speed, scalability, depth penetration, resolution, and low environmental impact, alongside artificial intelligence (AI)
techniques to refine a continent-scale prospectivity model at the deposit scale by fine-tuning our model on local
high-resolution data. We show the promise of the method by first presenting a new data-driven AI prospectivity
model for copper within Australia, which serves as our foundation model for further fine-tuning. We then focus on
the Hillside IOCG deposit on the prospective Yorke Peninsula. We show that with relatively few local training
samples (orebody intercepts), we can fine tune the foundation model to provide a good estimate of the Hillside
orebody outline. Our methodology demonstrates how AI can augment geophysical data interpretation, providing a
novel approach to mineral exploration with improved decision-making capabilities for targeting mineralization,
thereby addressing the urgent need for increased mineral resource discovery.
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Introduction

The scale of the global challenge to transition to a low carbon economy is difficult to
understate. New technologies are required to accelerate all aspects of the transition,
including in the discovery and delineation of the mineral resources that underpin mass-scale
shifts to electric and renewable energy solutions. To take one example, world copper
production needs to double in the next decade in order to meet the expected demand
(Bonakdarpour & Bailey, 2022). This means more orebodies need to be found, as existing
orebodies will be unable to provide this level of production.

Searching for new orebodies is, however, a notoriously difficult activity and a high-risk, high
reward investment option. What are some of the key challenges that mineral explorers face?
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Geological systems are highly non-linear, with processes that operate across scales, from
molecules to cratons, and across a full range of psycho-chemical conditions (Ord et al.,
2012). For this reason, the clustering of metals into economic deposits requires a highly
specific set of circumstances. Even should those circumstances have arisen, the metal
accumulation needs to be preserved in the uppermost levels of the crust at explorable and
mineable depths (Occhipinti et al., 2016).

Furthermore many geological terranes that are exposed at the surface have already been
scoured for signs of mineralisation, consequently exploration has been increasingly shifting
to areas where the prospective rock packages are buried beneath post-mineralisation cover
materials. Exploration undercover is a major challenge that requires geophysical and
geochemical techniques to be able to ‘see though’ the cover to investigate the subsurface
geology. Geophysical techniques themselves vary greatly in their ability to image the
subsurface in 3D, since each relies on one physical property of rocks, such as magnetism,
gravity, conductivity or seismic velocity. Challenges in the application of these various
methods, whether fundamental, such as the fact that potential field data are vertically
integrated, or logistical, such as difficulty of deployment or long wait times for data return,
mean that application of these data to exploration also has its own challenges.

For all of these reasons, mineral exploration is generally information-poor, compared at least
to other environments such as financial market analysis, or social media profiling. Activities
and processes that improve the quality of exploration data in the most strategic locations are
therefore critical pathways to improve exploration success (Caers et al., 2022). As a result, a
methodology such as passive seismic ambient noise tomography (ANT) that is able to
produce depth-constrained images of the subsurface in 3D and which can be integrated with
drill hole-scale lithological information is highly valuable. ANT, characterised by its
cost-effectiveness, low environmental impact, scalability, and depth penetration, is emerging
as a pivotal tool in both regional and local-scale mineral exploration. Although other
geophysical methods, such as magnetotelluric (MT), induced polarisation (IP),
electromagnetic (EM), and active seismic reflection imaging all provide improved information
as a function of depth over their potential field counterparts, ANT stands out in terms of it’s
ease of deployment, low-impact and low cost making it a very scalable and versatile 3D
imaging method.

Geoscientists have taken to describing the formation of mineral deposits in terms of mineral
systems, which encompass the range of factors from the source of metals, the processes
that transport those metals through to those that trap and preserve those metals (Wyborn et
al., 1994; Hronsky and Groves, 2008; McCuaig et al., 2010). With a clear framework for a
given mineral system, the exploration search space can be refined, conceptually at least, to
provide at first large regions and later kilometre-scale tenements in which exploration can be
conducted. But the question then becomes, what techniques can we use to speed up the
decision making process by providing levels of confidence of ‘prospectivity’ for a given
commodity within a given volume? In this paper we seek to provide one solution to the many
challenges of exploration targeting by harnessing the new wave of computing power
encapsulated in artificial intelligence.
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Artificial intelligence (AI) stands as a transformative force across diverse industries,
demonstrating an unparalleled capacity to create, predict, and optimise with extraordinary
precision and efficiency. In the realm of mineral exploration, AI's ability to process and
interpret complex data sets opens new avenues for identifying mineral deposits with
enhanced accuracy. Through its adaptability and continuous learning, AI has begun to
redefine traditional exploration processes. While its application has been explored in isolated
instances of the exploration sequence—from prospectivity mapping to resource
estimation—its potential in a comprehensive end-to-end approach remains largely untapped.
By integrating AI with ambient noise tomography (ANT), we can significantly refine our
approach to mineral prospectivity analysis. This integration allows for the fine-tuning of AI
models to specific geological contexts, enhancing their predictive power for mineral deposit
localization. Such a novel application of AI in mineral exploration, from initial prospectivity
mapping to detailed resource estimation, heralds a new era in the sector. It promises a more
targeted, efficient, and informed exploration strategy, crucial for meeting the increasing
demand for minerals essential for the global transition to a sustainable energy future.

We show the promise of this method by first establishing a regional-scale picture of mineral
prospectivity, using copper as our example, based on large-scale regional datasets
referenced against the location of existing deposits. This approach is similar to many
previous regional prospectivity models (Kreuzer et al., 2015; Skirrow et al., 2019; Lawley et
al., 2021). We then utilise the scale-invariance of geophysical data to apply the same model
to prediction of mineralisation at the scale of a single ore deposit. Finally, we take this
deposit-scale model and re-integrate it at the district to province scale in our training data in
order to refine our ability to predict and target mineralisation. This provides us with an
end-to-end, probabilistic tool with which to make improved decisions for improving the
success rate of exploration applied to the search for commodities critical to the energy
transition.

Methods

In the realm of mineral exploration, understanding the intricate 3D processes that govern
mineral deposit formation is crucial. Deep-seated geological processes play a pivotal role in
the aggregation of minerals, making 3D data indispensable for accurate exploration.
However, historically, acquiring comprehensive 3D geophysical data has been a challenging
endeavour, primarily due to the high costs and significant environmental impacts associated
with traditional methods.

Enter ambient noise tomography (ANT), a geophysical imaging method that provides the first
scalable, low-cost, and low-impact technique capable of delivering 3D subsurface insights. Its
scale-invariance is particularly noteworthy, as it allows for its application across various
stages of exploration—from broad, regional-scale prospectivity analysis to more detailed,
high-resolution examinations at the deposit scale.
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The 3D models generated through ANT provide an ideal foundation for applying generative
AI methods, addressing a long-standing gap in the availability of suitable 3D data for such
advanced analytical techniques in mineral exploration. Our methodological vision entails
leveraging this synergy by training a foundational model using national-scale precompetitive
data, aiming to illuminate regions with high mineral prospectivity. This model serves as a
strategic tool during the tenement selection phase, subsequently fine-tuned at the prospect
scale using high-resolution ANT surveys to identify precise drill targets.

As new drilling information becomes available, the model undergoes further fine-tuning,
enhancing its predictive accuracy. This iterative process of local fine-tuning, and potentially
integration into the base model through federated learning, ensures continuous improvement,
enriching the regional prospectivity model over time.

By adopting this approach, we aim to transform the landscape of end-to-end mineral
exploration, enabling a more efficient, data-driven, and environmentally conscious pathway to
uncovering the mineral resources essential for our future.

Ambient seismic noise tomography (ANT)

By cross-correlating continuous seismic noise recordings between station pairs, ANT
reconstructs estimates of the surface wave component of the seismic Green's function. This
approach repurposes the seismic noise captured at various stations, enabling each station to
act as a virtual active source for detailed subsurface exploration (Shapiro and Campillo,
2004; Curtis et al., 2006).

Historically, ANT has been instrumental in mapping the Earth's upper crust on a crustal and
regional scale, primarily utilising low-frequency seismic waves originating from oceanic
interactions with coastal areas (Shapiro et al., 2005; Saygin and Kennett, 2010; Ritzwoller et
al., 2011; Chen et al., 2023). However, recent technological advancements in instrumentation
and computational capabilities have facilitated the application of ANT at finer scales (Hand,
2014). By tapping into high-frequency seismic noise generated by meteorological and
anthropogenic activities, the method has been adapted for more localised and detailed
geological investigations (Lin et al., 2013; Hollis et al., 2018; Ryberg et al., 2021; Li et al.,
2023; Jones et al., 2024).

In the realm of mineral exploration, ANT is increasingly recognized for its efficacy, especially
in imaging deep subsurface features and areas covered by barren overburden, where
traditional methods may falter. Fleet Space Technologies has pioneered the development of
the Geode, the world's first seismic node engineered explicitly for mineral exploration (Olivier
et al., 2022). Equipped with a lower-frequency geophone and edge processing capabilities,
the Geode minimises data transmission rates, enabling real-time data relay via low-power,
long-range, direct-to-satellite IoT communications. Subsequent cloud processing delivers 3D
subsurface models with unprecedented speed, allowing vast areas to be imaged with high
resolution in a matter of days (Jones et al., 2024). In mineral exploration, where the rate of
new discoveries is directly related to how fast we can traverse a large search space and
make effective decisions, rapid and dynamic imaging of the subsurface is a potentially
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transformative development that could provide the missing ingredient required to make the
discoveries required to transition to renewable energy.

Another consequence of the rapid nature of Fleet’s ANT surveys is the massive amounts of
3D data we are amassing. With over 300 surveys completed in less than two years, this
wealth of 3D data forms an ideal substrate for developing new generative AI methods for
mineral exploration. Since ANT is scale invariant, we can also incorporate local high
resolution surveys with regional-scale data, paving the way for a comprehensive, end-to-end
mineral exploration methodology that leverages the full potential of modern seismic imaging
and artificial intelligence.

Artificial intelligence

AI has caused a transformative shift across various industries, due to its ability to create,
predict, and optimise with unprecedented precision and efficiency. The current era of artificial
intelligence is characterised by its ability to generate new data that resembles the training
data, and has revolutionised fields ranging from healthcare, where it aids in drug discovery
and personalised medicine, to entertainment, where it crafts realistic digital content
(Fui-Hoon et al., 2023). Central to its utility is the concept of fine-tuning, where a pre-trained
AI model is adapted to specific tasks or datasets, enhancing its performance and applicability
to niche domains (e.g. Too et al., 2019).

This process allows for the customisation of AI models to address particular industry
challenges or opportunities, making the technology incredibly versatile and powerful.
Furthermore, continuous learning enables these AI systems to evolve and improve over time,
integrating new data and experiences to refine their predictions and outputs. This aspect of
generative AI ensures that its applications remain cutting-edge, adapting to changing
environments and accumulating knowledge, much like human learning.

In the context of mineral exploration, machine learning and generative AI has shown promise
in recent years during discrete steps in the exploration timeline: in early stage exploration for
prospectivity mapping (Rodriguez-Galiano et al., 2015; Albrecht et al., 2021; Woodhead &
Landry, 2021), for tackling geophysical inverse problems during target delineation (Olivier
and Smith, 2023) and at the end of the exploration process during resource estimation
(Dumakor-Dupey & Arya, 2021). However, a unified end-to-end approach, where a
foundation model is continuously improved and fine tuned on data from a specific region or
deposit as more data is collected has not yet been developed.

By harnessing the high-resolution, 3D subsurface models generated through ANT, generative
AI could significantly enhance the prediction and identification of mineral deposits.
Fine-tuning allows these AI models to be specifically adapted to the unique geological
signatures and features relevant to individual mineral deposits whilst still maintaining a
general understanding of mineral systems from its diverse training data. Continuous
federated learning will ensure that the models improve as they ingest more data from
subsequent surveys or drilling results.
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Figure 1. The scale reduction process in mineral exploration towards mineral resource
definition. Indicative cumulative expenditure increases along with concomitant decreases in
search space area and key decision points are shown in lower panels. The exploration,
discovery and delineation process for copper deposits take on average more than 12 years
(Manalo, 2023), however in some cases it can take decades, for instance the discovery of Oak
Dam West (King, 2019).

This symbiosis between generative AI and ANT offers a new approach to mineral
exploration, providing a powerful tool for identifying prospectivity and refining exploration
targets with a level of detail and accuracy previously unattainable. The integration of these
technologies could mark a new era in the search for critical minerals. In this study, we outline
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a proof-of-concept of this vision using a relatively simple end-to-end ML workflow coupled
with pre-competitive national scale & proprietary local scale data.

Results

Continent-wide prospectivity model

Our approach consists of building an Australia-wide base model to predict camp-scale
copper prospectivity. The input geophysical data layers for this model are the Geoscience
Australia compiled national magnetic, gravity and radiometric grids, along with 3D seismic
velocity models from ambient noise tomography and body wave coda correlation. In addition
to geophysical data, we also add the geographic coordinates (latitude, longitude) and the
SRTM 30m DEM as features. Table 1 contains details of the datasets used. The gravity and
magnetic data products include various pre-computed spatial filters that introduce a degree
of spatial regularization into the dataset.

The ‘true positive’ training labels are all known economic primary copper deposits, as
described in the S&P Capital IQ database. Defining cells that do not contain copper (‘true
negative’) is more challenging, as we don’t know definitively which cells do not contain
copper. Our solution to this challenge is to consider all deposits in the S&P Capital IQ
database that do not contain copper as either the primary or a secondary commodity as the
‘true negative’ labels. We argue that known deposits have undergone significant exploratory
drilling, and not having reportable quantities of copper is a good indication of the lack of
copper in such an area.

Given the challenge of defining accurate training labels in a given area, an effective machine
learning strategy to tackle this problem is a tabular data approach based on features and
labels of individual cells. Alternatively, one can use an image-based method, such as a
convolutional neural network, based on a raster of tiles surrounding known deposits coupled
with some rasterization strategy for the labels. For the illustrative purposes of this paper, we
implemented the tabular approach using a gradient boosted trees algorithm (Chen &
Guestrin 2016), with normalisation of data features and k-nearest-neighbours (KNN)
imputation of missing data performed as preprocessing steps. Training of models in this class
is computationally inexpensive for moderately sized datasets, and they scale well to
problems with high input dimension (as is the case here, with 159 input features). However,
tabular algorithms cannot take advantage of any spatial inductive bias that is not explicitly
encoded within the feature set.

We trained the model using an 80/20 train/test split, with hyperparameters determined by
10-fold cross validation using an 80/20 train/validation split. To avoid merely interpolating the
data geographically, we split both the train/test subsets and the hyperparameter
cross-validation folds of the train subset using grouped sampling of the three character
geohashes of the data. This process cuts out large contiguous geographic areas during both
the cross-validation and test stages, strengthening the regularisation of fitting and promoting
more geologically meaningful results.
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Figure 2. Continental scale copper prospectivity prediction model, plotted with the known
primary copper deposits as reported in the S&P Capital IQ database (2024). Note that the scale
of prospectivity prediction is arbitrary due to measures taken to account for imbalanced
classes during training.

As a continent-wide prospectivity model, trained on a relatively limited number of input
datasets, the consistent match between areas of high predicted prospectivity and known
copper deposits and occurrences is encouraging (Fig. 2). While this correspondence is to
some extent a natural outcome of the machine learning approach, it is further encouraging
that zones of high prospectivity occur in regions of vastly different geological settings and
despite coarse geographic partitioning of the training and test datasets. For example, while
the model has predicted enhanced prospectivity in the vicinity of the Olympic Dam and Mt Isa
deposits, which are themselves hydrothermal deposits within the broad iron oxide
copper-gold (IOCG) deposit class, the model is also indicating high prospectivity in several
regions around the West Musgraves region where magmatic nickel-copper sulphide deposits
such as Nebo-Babel are located. Similarly, the porphyry copper-gold systems of the
Macquarie Arc such as Northparkes are likewise indicated as high prospectivity.
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As expected in a data-driven prospectivity analysis, the model is agnostic to geological
processes. Petrophysical properties of dense, magnetic and sulphide-bearing rocks are
similar enough across IOCG or magmatic nickel sulphide deposit types as to make the
specific geological cause of those density or magnetic signatures and the absolute values of
those signatures, redundant in this analysis. In addition, deep crustal architectural controls on
ore deposit formation are also incorporated in this prospectivity modelling through the
teleseismic and ANT data sets, which contribute the strongest overall controls on the
prospectivity prediction (see Supplementary Fig.1). Location of major deposits adjacent to
seismic discontinuities is a common theme in the Australian setting, and indeed globally
(Begg et al., 2010; Hoggard et al., 2020; O’Donnell et al., 2023).

In terms of the broad tectonic elements of Australia, the model predicts that the North
Australian and South Australian elements are the most strongly endowed regions of the
continent in terms of copper prospectivity (Fig. 3a). These regions correspond to Proterozoic
crust, much of which is likely underlain by modified Archean lower crust and mantle (Fraser
et al., 2010; Hollis et al., 2010; Curtis and Thiel, 2019; Skirrow, 2022). Archean terranes of
Western Australia are mapped as less prospective for copper than the
Proterozoic-dominated terranes, while the Central Australian crustal element and Tasman
crustal element have highly variable prospectivity (Fig. 3a).

In terms of the major geological terranes within these broader crustal elements, the Mount
Isa Orogen, including the Cloncurry district, is a region that is highlighted as having very high
prospectivity. The region is host to extensive alteration systems that encompass
Mesoproterozoic IOCG and iron sulphide copper gold (ISGC) deposit styles (Williams, 1998;
Williams and Pollard, 2001). The Warramunga Province has significant copper and
gold-copper deposits in the Tennant Creek area (Skirrow and Walshe, 2002), and this is
likewise highlighted in the prospectivity model. Interestingly, the Georgina Basin is identified
as highly prospective, yet this region is perhaps the least well endowed with known
mineralisation in the North Australian crustal element. Sediment-hosted replacement style
base metal mineralisation in the Georgina Basin is predominantly Pb-Zn, however, copper
systems may well be indicated as permissive in this analysis. Alternatively, it may be that the
elevated prospectivity in this region is responding to the presence of copper deposits such as
the Jervois deposit (McGloin et al., 2023), in the eastern Aileron Province (Arunta Region) as
this province is in part overlain by the southern Georgina Basin.

Within the West Australian element, copper prospectivity is centred on the Paleoproterozoic
Capricorn Orogen, which contains VMS-style base metal deposits including the DeGrussa
and Red Bore (Pirajno et al., 2016; Agangi et al., 2018). Similarly, the Paterson Orogen, host
to the Nifty, Telfer and Winu-Ngapakarra gold-copper and copper-gold deposits is also shown
as a region of significant prospectivity. These deposits are replacement-style and
intrusion-related, with possible causative magmatism being emplaced into host
metasedimentary rocks during the Neoproterozoic (Anderson et al., 2001; Dalstra et al.,
2023). Finally, we note the region of the western Yilgarn Craton also shows a corridor of
enhanced prospectivity that trends north-south in a corridor that is near to the Jullimar Ni-Cu
deposit hosted within Archean (2670 Ma) mafic-ultramafic intrusions (Lu et al., 2021). It is
worth noting that Archean volcanic-massive sulphide deposits of the Yilgarn such as Gossan
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Valley and Copper Bore (Hollis et al., 2015) are also highlighted, however the prospectivity in
the central Yilgarn region is indicated as relatively limited beyond the known deposits.

The two major terranes of the South Australian element, the Gawler Craton and Curnamona
Province have widespread prospectivity. Mesoproterozoic IOCG deposits of the eastern
Gawler Craton including Olympic Dam (Ehrig et al., 2012) and replacement-style copper-gold
deposits of the Curnamona Province such as Kalkaroo (Teale, 2006) are the main example
deposit types in this region. Significantly, the model identifies copper prospectivity to be
largely confined to the eastern Gawler Craton.

Much of the Central Australian crustal element has low to moderate prospectivity in this
analysis. Exceptions are the regions around the central-western Musgraves where magmatic
nickel-copper(-PGE) sulphide deposits are present, associated with the Warrakurna Large
Igneous Province (Howard et al., 2015). Portions of the Albany Fraser Orogen is highlighted
in the prospectivity model and is host to the mafic-ultramafic intrusions such as at the
Ni-Cu-Co Nova-Bollinger deposit (Barnes et al., 2020) and similar rock packages across the
Fraser Zone of the orogen (Spaggiari et al., 2015).

Finally, the Tasman element has three main regions of prospectivity highlighted. In the
southwest, the Kanmantoo Province has prospectivity, extending from the Kanmantoo
deposit itself (Oliver et al., 1998) into southwestern Victoria, and also the north-east to
correlative rocks in New South Wales centred around the Koonenberry Belt (Greenfield et al.,
2011). Prospectivity is also indicated in the Hodgkinson and Ertheridge provinces, north
Queensland, and extending along the coastal hinterland of the The main centre of
prospectivity for the Tasman Element is focussed on the region around the porphyry deposits
of the Macquarie Arc, such as Northparkes (Pacey et al., 2019).
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Figure 3. Copper prospectivity model relative to the major crustal elements of Australia as
mapped by Geoscience Australia (Shaw et al., 1996; Korsch and Doublier, 2016). a. Largest
scale crustal elements of Australia. b. Selected terranes of Australia in areas of high model
prospectivity.

11



Muir et al. | End-to-end mineral exploration with AI and ANT | 2024

District-scale observations from prospectivity model

The model has been generated using an 80/20 geographical test/train split of the S&P
Capital IQ mineral properties database. While the training dataset has its limitations, and
some of the smaller prospects may be omitted that might otherwise be found in geological
survey mineral occurrence databases, to a first order the ML prediction defines many areas
with known copper deposits as having high prospectivity. We highlight four examples of the
regional-scale prospectivity analysis to showcase how the different input datasets influence
the texture of the prospectivity output.

In the Yilgarn Craton, several VMS-style deposits are known, however, overall the
prospectivity for copper as a target commodity is relatively low. VMS systems are a product
of the basin architecture during formation of the volcanic systems, with extensional faults and
focussed fluid flow required to form deposits, and those deposits often having a strong
strataform control, being localised at the stratigraphic group level (Hollis et al., 2015). The
geophysical expression of such systems is however complicated by the overprinting events
that have affected the craton, including cratonisation process itself. The orogenic events may
have dissected stratigraphic units, meaning the magnetic signature of prospective units may
be quite limited, at least to the resolution of a national-scale magnetic grid on which the
algorithm way trained. Likewise, the geophysical expression of early fault systems that
formed these deposits may have been impacted by broader-scale homogenisation of the
lower and mid crust that has occurred during the late granite ‘bloom’ (Czarnota et al., 2010).
These crustal-scale melting events have implications for the seismic velocity structure of the
craton, which in turn means that larger-scale geophysical data such as the ANT may be
indicating lower prospectivity given, for example, the higher wave speeds across a larger
region.
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Figure 4. Detail of the interface between the Paleoproterozoic Aileron Province and the
overlying Neoproterozoic to Cambrian southern portion of the Georgina Basin and a
comparison with different input datasets and the copper prospectivity model. Inset shows the
location of the mapped area with respect to the Northern Territory. a. Prospectivity model with
the outlines of the Aileron Province and Georgina Basin. b. National scale total magnetic
intensity image, Geoscience Australia. c. National scale Bouger gravity image, Geoscience
Australia. d. Example of one of many seismic data inputs to the prospectivity model, the ANT
Vs model at 70km (Chen et al., 2021).
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In the case of the southern Georgina Basin and underlying Aileron Province, a large region
appears prospective in the model, and this region is comparatively devoid of known deposits
(Fig. 4). The training data includes the Jervois and Bonya deposits, which are stratabound
copper deposits hosted within calc-silicate rocks with mineralogy including magnetite, garnet
and pyroxene (McGloin et al., 2023). Such deposits train the algorithm to see dense,
magnetic rocks as prospective. The continental-scale magnetic intensity data are however
relatively low resolution to the immediate north of the northern Aileron Province around the
Jervois and Bonya deposits, in part because the basement becomes deeper in this region
due to burial by the southern Georgina Basin. Several gravity high ‘ridges’ extend in the
region north of the deposits which likewise suggest prospectivity to the model. In terms of the
seismic data inputs, there are many layers at many depths that are incorporated into the
model. Nevertheless, for illustration we highlight the ANT velocity model at a depth of 70km,
which has a relatively steep gradient in this region from a high Vs zone to the north to a lower
Vs zone in the south, with this gradient zone being where the known copper deposits are
located.

The texture of the prospectivity model in the Macquarie Arc in the Lachlan Orogen (Fig. 5)
shows somewhat greater granularity than the Aileron Province/Georgina Basin example. This
region is host to porphyry-style copper and copper-gold-molybdenum deposits, which are
typically associated with magnetic anomalies caused by magnetite-bearing granites. The
gravity signal is similarly textured in this region, related to the relatively shallow basement
and complex relationships between stratigraphy and intrusive rocks. In addition, in this
region, shallow datasets such as radiometrics may also be influencing the prospectivity
significantly, with areas of outcrop that are devoid of copper deposits in the training data
appearing as relatively low prospectivity zones. Finally, it is worth noting that although the
Cadia hydrothermal, intrusion-related gold-copper deposit (Holliday et al., 2002) was not
used as a training point, the region around Cadia ranks as relatively high prospectivity for
copper in the prospectivity model. In this region, it appears the host volcanic rocks and
monzonite-diorite porphyry stocks of Cadia are geophysically similar to porphyry copper-gold
deposits such as Northparkes, so as to be highlighted as prospective in this model.
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Figure 5. Detail of prospectivity model and training datasets in the vicinity of Dubbo. Inset
shows location. Cadia deposit is shown for reference, but was not utilised as part of the
training dataset. a. Prospectivity model. b. National scale total magnetic intensity image,
Geoscience Australia. c. National scale Bouger gravity image, Geoscience Australia. d. Ternary
radiometrics image, Geoscience Australia.

Finally, we note that the area of the Yorke Peninsula, in the southeastern Gawler Craton
appears as one of the highest zones of prospectivity in the model (Fig. 6). This high
prospectivity may relate to the overall strong magnetic response of the metasedimentary
rocks (Wallaroo Group) and Mesoproterozoic intrusions that host copper-gold mineralisation
in this region (Conor et al., 2010). The gravity signature of the region is similarly broad,
although the north-western area of Yorke Peninsula has more texture than the central region.
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Figure 6. Detail of prospectivity model and training datasets in the vicinity of the Yorke
Peninsula, South Australia. Inset shows location. a. Prospectivity model. b. National scale total
magnetic intensity image, Geoscience Australia. c. National scale Bouger gravity image,
Geoscience Australia. d. Example of one of many seismic data inputs to the prospectivity
model, the ANT Vs model at 30km (Chen et al., 2021).

In addition, seismic data in this region is dominated by long wavelength features having little
texture. Each of these elements mean that the overall prospectivity is ‘high’, however, this
may reflect the nature of the available input data more than the true prospectivity of the
region. This is an excellent example of a region where further refinement of the prospectivity
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model using more localised, high-resolution and site-specific datasets would be expected to
improve the model resolution.

Figure 7. Slice through ANT velocity model at −400 mRL (sea-level) shown against the hanging
wall, footwall, and 0.20% copper mineralisation shells taken from the geological model for
Hillside, Rex Minerals. (b) Slice from (a) shown against major faults mapped by Rex minerals
interpreted to have a control on mineralisation. (c) Cross-sectional view of ANT velocity
anomaly model (defined in text) along latitude 6175030 (MGA Zone 53 (GDA94)), showing a
package of modelled skarn occupying the moderate-to-low velocity domain that defines the
PPSC. Figure and caption from (Jones et al., 2024).

Local fine-tuning: Hillside IOCG deposit

Given the scale invariance of geological features in mineral systems, along with the scale
invariance of ANT, one can fine tune the base model by training on local data. This approach
will preserve the learned geological and geophysical features and knowledge from the base
model to improve performance of the predictions on the local prospectivity model. The power
of this approach is that we are able to construct a local prospectivity model from sparse local
data by leveraging the learnings from the base model. We investigate this approach by
considering the Hillside IOCG deposit, situated on the Yorke peninsula which was one of the
highest zones of prospectivity in the continent-scale model. This deposit was also the
location of a recent ANT survey (Jones et al., 2024), making it the ideal location for
demonstrating the potential of fine-tuning the base model.
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The Hillside copper-gold deposit is an example of a transitional magnetite-hematite style iron
oxide copper-gold (IOCG) deposit (Conor et al., 2010). The deposit contains a published ore
reserve estimate of 186Mt @ 0.53% Cu and 0.14g/t Au, containing 989kt of copper and
834koz of gold (Rex Minerals, 2022). Copper sulphide is dominated by chalcopyrite with
subordinate bornite and chalcocite. Alteration mineralogy is dominated by early K-feldspar,
garnet, pyroxene and magnetite-dominated assemblages that are variably overprinted by
sulphide-bearing amphibole, chlorite, white mica and hematite-dominated assemblages, that
formed within a steeply dipping shear zone and fault network (Conor et al., 2010; Ismail et
al., 2014). Gabbroic and granitic intrusions were also part of the thermal driver for
mineralisation and are themselves variably overprinted by the alteration minerals.

Hillside deposit sits within the Olympic Cu-Au Province, a metallogenic province along the
eastern margin of the Gawler Craton (Skirrow et al., 2007; Reid, 2019). The Olympic Cu-Au
Province links Cu-Au(+U) deposits that span a spectrum of physical and chemical deposit
types, with the largest deposits being hematite breccia systems such as Olympic Dam,
Prominent Hill and Carrapateena (Ehrig et al., 2012). The spectrum of IOCG deposit types
across the eastern Gawler Craton, and indeed across other IOCG terranes (Corriveau et al.,
2016), mean the exploration search space for IOCG deposits is complex and from a
geophysical perspective encompasses both potential field methods looking for either
magnetic highs, gravity highs, or more typically some combination of both. Seismic velocity
information from the Hillside deposit suggests copper mineralisation occupies regions of
moderate shear wave velocity (2600 - 2900 m/s) that appears to sit in a transitional zone
between high and low velocity domains (Jones et al., 2024).

To construct a database of true positive labels, we use a section of the resource estimate
model for the Hillside deposit. Similar to the base model, we consider each cell in the model
that intersects the deposit as prospective. The difference here is that the prospective cells
here represent small segments of the total deposits, whereas the prospective cells in the
base model correspond to entire deposits. As more information is gathered about the deposit
the model is further fine tuned. In the process the model transitions from drill targeting and
optimisation, to a resource estimation model. By following these steps, details from the
national model are retained, allowing for fine-tuning and adaptation to local datasets while
benefiting from the strengths of both approaches. Reference predictions using the national
model only are shown in Supplementary Fig. 2, and show some agreement with the
distribution of mineralization, however it is clear that local training is required to reach the
level of spatial accuracy needed for drill campaign planning.

To continue our proof-of-concept hierarchical modelling to the local scale, we specifically
investigate the potential for combining regional and local features to predict the surface
projections of the 0.2% Cu ore shells (as supplied by Rex Minerals). The local feature set
comprises the leaf-index encoded national-scale data as categorical features (He et al.,
2014), local gravity and total magnetic intensity grids (https://map.sarig.sa.gov.au/), and an
ANT derived seismic shear-wave velocity model spanning the range from 1053 m below sea
level to the surface.
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Figure 8. Locally trained ore shell prediction models for the “prospect extension” setting, with
a. showing results including both geophysical and geometric features, and b. geophysical
features only. Ore shells are shown by grey contours, and the region used for training data is
shown by red shading (the southern 50% of the study area).

Using the same workflow as the national-scale prospectivity grid (normalisation of
non-categorical features, KNN imputation of missing data, gradient boosted tree
classification), we investigated two data settings within the same geological case study: a
“prospect extension” setting, where we assume detailed knowledge of a part of the study
area and wish to predict further mineralization proximate to the well known part; and a
“greenfield” setting, where we assume sparse scattered measurements and wish to provide
the best mineralization estimate between them to facilitate efficient planning of a delineating
drill campaign. In the first case, we assume knowledge of the target within the southern 50%
of the study area as training data; in the second case, we divide the study area into 100 x
100 m squares and use 20% as training data. In both cases, we then employ 10-fold grouped
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cross-validation using a 25/75 training/validation split for hyperparameter tuning. We further
investigated adding geometric features to the data to promote continuity of the recovered ore
shells.

Figure 9. Locally trained ore shell prediction models for the “greenfield” setting, with a.
showing results including both geophysical and geometric features, and b. geophysical
features only. Ore shells are shown by grey contours, and the region used for training data is
shown by red shading (random 100 x 100m patches comprising 20% of the study area).

Figure 8 shows the results for the prospect extension setting, with 8a. showing the prediction
results for all features (including geometric ones) and 8b. showing predictions using
geophysical features only. The predictions have F1 scores of 0.60 and 0.55 respectively for
this case. We can see that the inclusion of geometrical features allows for predictions that
capture the general N/S trend of the mineralization well, but result in spurious predictions at
the extreme north of the study area where no training data is available to terminate the
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prospective region. Results from geophysical features only generally decay in accuracy away
from the training data but also conform to the mineralization region.

Figure 9 similarly shows the results for the greenfield exploration setting. As expected, the
performance of predictions is better in this setting (F1 scores of 0.77 and 0.68 respectively),
due to more even distribution of training data, despite the overall volume of training data
being only 40% of that in the prospect extension setting. The limitations associated with
explicit geometrical features are apparent from Fig. 9a. where spurious sharp edges are
generated even in the interpolation context. Further work could investigate image-based
incremental learning strategies to incorporate hierarchical context within a more powerful
model class than decision tree based models (e.g. Roy et al. 2020).

Both cases highlight the potential of hierarchical modelling, combining the continental scale
background information with local geophysical features to take preliminary or area-limited drill
results and make predictions for the distribution of unseen mineralization. Utilisation of this
information to improve the efficiency of a drill-planning campaign promises to substantially
reduce the overall cost of exploration. Given the relatively limited availability of training labels
for multiscale mineral prospectivity modelling (known deposits and their geometries)
compared to the large quantities of available unlabeled geophysical data, substantial
performance improvements to the AI modelling framework are in particular likely to arise from
self-supervised or contrastive pre-training (Radford et al. 2021, Ravula et al. 2021) of
multivariate geophysical datasets before fine-tuning on prospectivity prediction tasks.

Conclusions

The novel integration of ambient noise tomography (ANT) and artificial intelligence (AI)
demonstrated in this study represents a significant advancement in the field of mineral
exploration. By employing this integrated approach, we have successfully enhanced the
precision and efficiency of identifying and delineating mineral resources, which are pivotal for
the transition to a sustainable, low-carbon economy.

Our results underscore the power of combining advanced geophysical imaging with modern
AI. We show a new continent-wide data-driven prospectivity model for copper that aligns with
known copper deposits and showcases the potential in various geological settings across
Australia.

We then show that this model can be fine-tuned by focusing on the Hillside IOCG deposit,
where the use of localised high-resolution ANT data to fine-tune the continent-wide
prospectivity model substantially improved the accuracy of orebody delineation. This
end-to-end methodology not only expedites the exploration process but also fosters a more
sustainable and informed approach to mineral resource development.

The success of this integrated method paves the way for future exploration endeavours. It
suggests a scalable model that could be adapted to various mineral types and geological
contexts, enhancing our ability to meet the growing demand for essential minerals.
Continuous improvement and expansion of our AI models, incorporating evolving geological
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and geophysical data, will remain a focal point, ensuring that our exploration strategies
remain at the forefront of technological advancement. This study not only contributes to the
field of geosciences but also offers a tangible pathway toward the responsible and efficient
utilisation of our planet's mineral resources.
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Data Availability

Data for the national prospectivity model is available from the permanent identifiers
associated with their references, detailed below in Table 1. The geophysical data used for the
Hillside case study is available at SARIG (https://map.sarig.sa.gov.au/).

Dataset Layers Resolution Source

GA Australian National Gravity Grid 2019 10 400m Lane et al. 2020

GA Australian National Magnetics Grid 2019 &
enhanced products

22 80m Poudjom Djomani et al. 2020

Morse 2020

GA Australian National Radiometrics Grid 2019 12 100m Poudjom Djomani et al. 2020

AuSeis teleseismic coda autocorrelation model 80 0.5° Qashqai et al. 2019

CSIRO Ambient Noise Cross-Correlation model
of Australia

31 0.75° Chen et al. 2021

GA Shuttle Radar Topography Mission digital
elevation model of Australia

2 30m Gallant et al. 2011

Table 1: Datasets used in the generation of the national-scale prospectivity model (additionally
using latitude and longitude as geometric constraints).
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Supplementary Figures

Supplementary Figure 1: Permutation importances of the image patch central values of
representative features chosen by hierarchical clustering analysis. The chen_ and auseis_
features represent large-scale crustal structure imaged using ambient-noise cross-correlation
tomography (ANT) and teleseismic coda correlations respectively, and have the largest overall
impact on mineral prospectivity at continental scale.
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Supplementary Figure 2: Reference “untrained” prospectivity prediction obtained by applying
the national prospectivity model directly to local geophysical data at Hillside. To obtain
relevant seismic velocity scalings, the local ANT model is stretched to the mean Australian
crustal thickness (40km) and applied as perturbations to the Chen 2024 model.

31


