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We study the spread complexity in two-mode Bose-Einstein condensations and unveil that the
long-time average of the spread complexity CK can probe the dynamical transition from self-trapping
to Josephson oscillation. When the parameter ω increases over a critical value ωc, we reveal that
the spread complexity exhibits a sharp transition from lower to higher value, with the corresponding
phase space trajectory changing from self-trapping to Josephson oscillation. Moreover, we scrutinize
the eigen-spectrum and uncover the relation between the dynamical transition and the excited state
quantum phase transition, which is characterized by the emergence of singularity in the density of
states at critical energy Ec. In the thermodynamical limit, the cross point of Ec(ω) and the initial
energy E0(ω) determines the dynamical transition point ωc. Finally, we show that the different
dynamical behavior for the initial state at a fixed point can be distinguished by the long-time
average of the spread complexity, when the fixed point changes from unstable to stable.

I. INTRODUCTION

As a paradigmatic platform for investigating intrigu-
ing dynamical phenomena, the two-mode Bose-Einstein
condensations (BECs) have attracted intensive studies in
past decades1–10. In a two-mode approximation, a two-
component BEC or a BEC trapped in a double-well po-
tential can be effectively described by a two-mode or two-
site Bose-Hubbard model2–4,11–17, which is equivalently
represented by a large spin model, known as Lipkin-
Meshkov-Glick (LMG) model18,19 in a different param-
eter region. The two-mode BECs exhibit rich dynami-
cal behaviors, such as Jospheson oscillation2,3 and self-
trapping20–23, which have been studied in the scheme
of nonlinear Schröinger equation and the Bose-Hubbard
model. On the other hand, the LMG model is a proto-
typical model for studying quantum phase transition and
excited state phase transition24–30. It has been widely ap-
plied to study equilibrium and nonequilibrium properties
of quantum many-body systems31–34.

In past years, quenching a quantum system far from
equilibrium was used to unveil the exotic dynamical phe-
nomenon, e.g., the long time average of order param-
eter changes nonanalytically at a dynamical transition
point35–40, and a series of non-analytical zero points at
critical times present in the Loschmidt echo during time
evolution41–47. Both two non-analytical behaviours re-
late to the intrinsic property of the system and belong
to the class of dynamical phase transition. Usually, fully
understanding dynamical properties of a many-body sys-
tem need to be diagnosed by various quantities from dif-
ferent perspectives. The concept of complexity is such a
quantity that has been used to characterize the speed of
the quantum evolution48–50. In terms of complexity, the
universal properties of operator growth can be seen in
the Lanczos coefficients after expanding the operator in
Krylov basis51. Furthermore, the property of a quantum
phase also roots in the complexity of a state during the
unitary evolution52–58 which can be obtained from the
quantity named spread complexity. Motivated by these

progresses, it is interesting to explore whether complexity
can be used as an efficient probe to distinguish different
dynamical behaviors in many-body systems.

In this work, we utilize the spread complexity CK in
the Krylov basis to characterize the dynamical transition
occurring in two-mode BECs. Usually, this dynamical
transition is characterized by the non-analyticity of the
long time average of the order parameters in quench dy-
namics. Here we find that the long-time average of the
spread complexity CK can characterize the dynamical
transition in two-mode BECs, consistent with the result
obtained from the analysis of dynamical order parameter.
It exhibits a transition from the lower complexity to the
higher complexity as the phase space trajectory changes
from self-trapping to Josephson oscillations. Although
the semiclassical phase space dynamics59 provides in-
structive understanding of the dependence of dynamical
transition on the choice of initial state, it is still elusive
to understand the role of eigen-spectrum of the underly-
ing Hamiltonian which governs the dynamical evolution.
By examining the overlap between the initial state and
the eigenstates of the Hamiltonian, we demonstrate that
the dynamical behaviour of the quantum system is dom-
inated by small portion of the eigenstates whose energy
near the initial state energy. To deepen our understand-
ing, we analyze the structure of spectrum and uncover
the relation of dynamical transition with the excited state
quantum phase transition60,61, which is characterized by
the emergence of singularity in the density of states at
critical energy Ec

25–27,60,61. Under semiclassical approxi-
mation, the critical energy corresponds to the energy of a
saddle point, which separates the degenerate region and
non-degenerate region. When the parameter ω increases
over a threshold ωth, the saddle point becomes a maxi-
mum, and the corresponding dynamics changes dramat-
ically. By studying the dynamics with the initial state
at this fixed point, we show that the spread complex-
ity CK(t) exhibits quite different behavior in the region
above or below ωth, and the transition can be character-
ized by the long-time average of the spread complexity.

ar
X

iv
:2

40
3.

15
15

4v
1 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 2

2 
M

ar
 2

02
4



2

The rest of the paper is organized as follows. In sec-
tion II, we briefly introduce the spread complexity and
derive the expression of long-time average of the spread
complexity. In section III, we study the dynamical transi-
tion in two-mode BECs and demonstrate that the differ-
ent dynamical behaviors in the self-trapping regime and
Josephson oscillation regime can be characterized by the
sharp change of the long-time average of spreading com-
plexity. In section IV, we unveil the relation of dynamical
transition with the spectrum structure of the underlying
Hamiltonian. In section V, we study the dynamical be-
havior of spreading complexity around a fixed point and
demonstrate that different behavior in the region above
or below ωth can be characterized by the long-time av-
erage of the spread complexity. A summary is given in
section VI.

II. LONG-TIME AVERAGE OF THE SPREAD
COMPLEXITY

Consider a quantum system with a time-independent
Hamiltonian H. For convenience, we set ℏ = 1. Then the
time evolution of a state |ψ(t)⟩ is governed by |ψ(t)⟩ =
e−iHt|ψ(0)⟩. Expanding the right hand side in power
series, we get

|ψ(t)⟩ =
∞∑
k=0

(−it)k

k!
|ψk⟩, (1)

where |ψk⟩ = Hk|ψ(0)⟩. Then applying the Gram–
Schmidt process to the set of vectors {|ψ0⟩, |ψ1⟩...|ψk⟩},
it generates an orthogonal basis K .

= {|K0⟩, |K1⟩...|Kk⟩}
with |K0⟩ ≡ |ψ0⟩. The basis K is called Krylov basis53,56.
In this paper, we consider the complete orthonormal ba-
sis of the Hillbert space with the maximal value of k being
D − 1, where D is the dimension of the Hamiltonian H.
The full algorithm is described as following: After choos-
ing the initial state |K0⟩, the subsequent Krylov bases
can be obtained recursively by following algorithm:

|ψ̃n⟩ = |ψn⟩ −
n−1∑
k=0

⟨Kk|ψn⟩|Kk⟩,

bn =

√
⟨ψ̃n|ψ̃n⟩, (2)

|Kn⟩ =
1

bn
|ψ̃n⟩.

Then the Hamiltonian becomes a tridiagonal form in the
Krylov basis K:

HK =


a0 b1 0 0

b1 a1
. . . 0

0
. . . . . . bk

0 0 bk ak

 , (3)

where ak ≡ ⟨Kk|H|Kk⟩ and bk are also called Lanczos
coefficients62. In our numerical calculation, we use the

MPLAPACK63 library to perform the arbitrary precision
computation.

Using the Krylov basis, we can define the spread com-
plexity as53

CK(t) =

D−1∑
k=0

k |⟨Kk|ψ(t)⟩|2 . (4)

The spread complexity quantifies the degree of complex
of the initial state |ψ(0)⟩ during the time evolution. It
can be observed that the return probability is defined
as L(t) = |⟨K0|ψ(t)⟩|2. The return probability is also
known as Loschmidt echo and has been widely studied in
the non-equilibrium system41–43,64–66. In this paper, we
focus on the long time average of the spread complexity

CK ≡ lim
T→∞

1

T

∫ T

0

CK(t)dt. (5)

Inserting the complete set of energy eigenstates, we get

CK =

D−1∑
k=0

k

D∑
n=1

|αkn|2 |α0n|2 , (6)

where the coefficients are given by αkn = ⟨Kk|ϕn⟩ with
H|ϕn⟩ = En|ϕn⟩.

III. DYNAMICAL TRANSITION IN
TWO-MODE BOSE-EINSTEIN CONDENSATES

Now, we consider a two-mode Bose-Einstein conden-
sates with the Hamiltonian described by4,5,67–69:

H =
2χ

N
Ŝ2
z + ωŜx, (7)

where χ is atom-atom interaction and ω is the Rabi fre-
quency of the external field interacting with the conden-
sate. For the sake of convenience, we set χ = 1 as the
unit of energy. The angular-momentum operators Ŝx, Ŝy

and Ŝz are the Schwinger pseudospin operators:
Ŝx = 1

2

(
â†1â2 + â†2â1

)
Ŝy = i

2

(
â†2â1 − â†1â2

)
Ŝz = 1

2

(
â†1â1 − â†2â2

) (8)

where â† and â is bosonic creation and annihilation op-
erator, respectively. This many-particle Hamiltonian is
closely related to the original LMG model18, for which
however the parameter χ is negative.

Under the semi-classical approximation with N ≫ 1,
angular-momentum operators S⃗ can be replaced by S⃗ →
N
2 (sin θ cosϕ, sin θ sinϕ, cos θ) . Then we can obtain the
equations of motion via the Heisenberg equations of mo-
tion:

θ̇ = −ω sinϕ, (9)

ϕ̇ = 2χ cos θ − ω cot θ cosϕ. (10)
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The classical dynamics has been studied in the previ-
ous works which showed the dynamical transition be-
tween self-trapped trajectory and Josephson oscillation
trajectory. Here, we demonstrate the classical trajecto-
ries in Figs. 1(a1)∼(a4), in which we consider three ini-
tial values with ϕ0 = 0.05π and θ0 = 0.05π, 0.1π, 0.15π.
The four figures corresponding to four different ω and
their trajectories form closed orbits. It can be found
that three trajectories show the self-trapped behaviour
for small ω. As ω increases, the trajectories for different
initial state sequentially become Josephson oscillation.
Such as in Figs. 1(a2) for ω = 1.2, only the trajectory
with (θ0 = 0.05π, ϕ0 = 0.05π) transition to the Joseph-
son oscillation and others remain self-trapped behaviour.
However, in Figs. 1(a3) for ω = 1.4, only the trajec-
tory with (θ0 = 0.15π, ϕ0 = 0.05π) remains in the self-
trapped regime. The dynamical transition of the classi-
cal trajectory can be captured by the order parameter
z̄ = 1

t

∫ t

0
z(τ)dτ which is the time average of the canon-

ical coordinate z ≡ cos θ. In Fig. 1(c), we demonstrate
the value of z̄ with respect to ω for three different initial
values. Here we carry out the time average from 0 to
1000. It can be found that z̄ has a non-zero value for
self-trapped trajectories but approaches zero for Joseph-
son oscillation trajectories.

For quantum dynamics, we choose the coherent spin
states (CSS) as the initial state5,70. These states are
given by

|θ0, ϕ0⟩ = e−iSzϕ0e−iSyθ0 |N
2
,
N

2
⟩, (11)

where |N2 ,
N
2 ⟩ is the highest-weight state of SU(2) group

with spin N
2 and ⟨Sz⟩ = N

2 . The CSS takes its maxi-
mum polarization in the direction (θ0, ϕ0). Such a choice
of the initial state is relevant to analyze the classical-
quantum correspondence. For quantum trajectory, we
calculate the time evolved state |ψ(t)⟩ = e−iHt|ψ0⟩
with |ψ0⟩ ≡ |θ0, ϕ0⟩ and corresponding time dependent
expectation value ⟨Sx(t)⟩, ⟨Sy(t)⟩ and ⟨Sz(t)⟩. Then
we transform (⟨Sx(t)⟩, ⟨Sy(t)⟩, ⟨Sz(t)⟩) into sphere co-
ordinate (R sin θ cosϕ,R sin θ sinϕ,R cos θ) where R2 =
⟨Sx(t)⟩2 + ⟨Sy(t)⟩2 + ⟨Sz(t)⟩2. Similar to the classical
trajectory, we present the quantum trajectories in the
θ − ϕ plane, as shown in Figs. 1(b1)∼(b4). The pa-
rameters are the same as in Figs. 1(a1)∼(a4). It can
be observed that the areas of the quantum trajectories
are related to the classical trajectories. Particularly, the
initial state dependent dynamics transition can also be
observed in the quantum trajectory. Similar to the or-
der parameter z̄, we can choose the order parameter
S̄z = lim

t→∞
1
t

∫ t

0
⟨ψ0|Sz(t)|ψ0⟩dτ in quantum dynamics. In

Fig. 1(c), we show the values of z̄ ≡ 2
N S̄z by dashed

lines and they are similar to the semi-classical ones ex-
cept that the transition points are smoothen by the finite
size effect.

Figure 1. (a) Classical trajectories of the semi-classical model
and (b) Quantum trajectories for different initial states in the
θ−ϕ plane. The parameter is (a1)(b1) ω = 0.9; (a2)(b2) ω =
1.2; (a3)(b3) ω = 1.4; (a4)(b4) ω = 1.5. (c) z versus ω. The
corresponding dashed lines are obtained via the calculation of
2S̄z/N for N = 600. (d) CK versus ω with ϕ0 = 0.05π for
N = 600. The dashed lines in (d) are summing over within
the energy window ϵ ∈ [E0−2δE,E0+2δE]. Red-bolded line
corresponds to the maximally delocalized state for N = 600.
Three dash-dotted lines are corresponding to three transition
points in (c).
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(c)

Numerical results
eff
c (N) = 39.98

N + 1.147
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(b)
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(d)

Numerical results
eff
c (N) = 54.78

N + 1.433

Figure 2. (a)(b) CK versus ω for different system sizes. (c)(d)
Finite size scaling for the effective transition point ωeff

c . The
initial state is (a)(c) θ0 = 0.05π, ϕ0 = 0.05π; (b)(d) θ0 =
0.15π, ϕ0 = 0.05π .

The different distribution of the quantum trajectories
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(b) (c) (d)

|θ0 = 0.5π, ϕ0 = 0⟩
|θ0 = 0.15π, ϕ0 = 0.05π⟩
|θ0 = 0.1π, ϕ0 = 0.05π⟩
|θ0 = 0.05π, ϕ0 = 0.05π⟩

(a)

Figure 3. (a) The energy spectrum with respect to ω. The dashed black lines are the initial energy E0 corresponding to different
initial states. For clarity we have used a small system N = 600. In the region of ω < ωth (ωth = 2), there exists excited state
quantum phase transition. In this region, the eigenstates are separated by the critical energy Ec, at which the density of state
is divergent in the thermodynamical limit. The inset of (a) demonstrates that states above Ec are doubly degenerate, whereas
states below Ec are non-degenerate. Density of states for (b) ω = 0.4, (c) ω = 0.8 and (d) ω = 1.2 with N = 2000. The red
dashed lines guide the value of critical energy Ec ≈ N

2
ω for N → ∞.

can be characterized by the long time average of the
spread complexity CK which is displayed in Fig. 1(d).
It can be found that the larger accessible area of trajec-
tory corresponds to the larger value of the spread com-
plexity and vice verse. The connection between quan-
tum trajectories and the spread complexity is intuitive.
For the self-trapped trajectories, the time-evolved state
is constrained in a small area of the phase space. In
the perspective of Krylov space, the self-trapped tra-
jectory is dynamically localized near the space of the
initial Krylov state |K0⟩. For the extremely localized
case, the dynamics is frozen at initial state and we have
|⟨Kk|ψ(t)⟩|2 ≈ δk0 and CK(t) ≈ 0. However, for the
Josephson oscillation trajectories, the time-evolved state
extends in the phase space and widely distributes in the
Krylov space. Considering the maximally delocalized
state |ψd⟩ in Krylov space, we have |⟨Kk|ψd⟩|2 → 1

D and
CK ≈ D−1

2 = N
2 . The value N

2 is drawn by the red-
bolded line for N = 600 in Fig. 1(d). It can be seen
that CK is closer to the value N

2 for the larger area of
quantum trajectory.

Next we carry out the finite size analyse on the transi-
tion point. To determine the transition point, we differ-
entiate the function CK with respect to ω and label the

location of the maximum of ∂CK

∂ω as ωeff
c , which is size

dependent. We show ωeff
c for different size in Fig.2(c)

and Fig.2 (d). Further linear fitting the results of ωeff
c

indicate the transition point at large N limit is ωeff
c (N →

∞) ≈ 1.147 for θ0 = 0.05π and ωeff
c (N → ∞) ≈ 1.433

for θ0 = 0.15π. These converged values are close to the
transition point ωc ≈ 1.167 and ωc ≈ 1.439 present in
the order parameter z̄ in Fig. 1(c).

IV. RELATION TO THE SPECTRUM
STRUCTURE

To unveil the relation of dynamical transition to the
spectrum structure, we examine the eigen-spectrum of
two-mode BEC with respect of ω. Here, we sort the
eigenvalues in such a way that E1 ≤ E2 ≤ · · · ≤ ED
and divide the set {En} into two subsets {En∈even}
and {En∈odd}. In Fig. (3)(a), we display the values
of {En∈even} and {En∈odd}, corresponding to the blue
dashed lines and red solid lines, respectively. Further
considering the initial energy E0(ω) ≡ ⟨ψ0|H(ω)|ψ0⟩, it
can be found the initial energies E0(ω) corresponding to
three initial states discussed previously go from the dou-
bly degenerate regime to the non-degenerate regime as ω
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increases. The critical energy Ec(ω) separates the doubly
degenerate regime from the non-degenerate regime in the
thermodynamic limit. As depicted in Figs. 3(b)(c)(d),
the critical energy Ec(ω) can be evidenced by the local
divergence in the density of states27. While states below
Ec are non-degenerate, the states above Ec are degener-
ate in the thermodynamic limit. For a finite size system,
it should be noted that the gap of the doubly degenerate
energy is exponentially small. With the increasing of ω,
the region of doubly degenerate shrinks and eventually
vanishes at ωth = 2. The critical energy Ec(ω) for ω < 2
is equal to the initial energy E0(ω) with the initial state
|θ0 = π

2 , ϕ0 = 0⟩, marked by the black dashed line in Fig.
(3)(a). For a quantum system, Ec(ω) = χ + N

2 ω and
Ec(ω)/N = 1

2ω as N → ∞ for ω ∈ (0, 2). Meanwhile,
under the semi-classical approximation, we can obtain
Ec(ω) =

N
2 ω, consistent with the result of the quantum

system in the thermodynamic limit.
Now we introduce the energy uncertainty of the initial

state |ψ0⟩, which is calculated by

(δE(ω))
2
= ⟨ψ0|H2(ω)|ψ0⟩ − (⟨ψ0|H(ω)|ψ0⟩)2 . (12)

Then we construct the Gaussian function from E0 and
δE:

fn =
1

N
e
− [En(ω)−E0(ω)]2

2[δE(ω)]2 , (13)

where N is normalized coefficient. The quantity fn gives
the information of how the initial state distributes within
eigenstates of the underlying HamiltonianH(ω). We plot
the function

√
fn and the coefficients |α0n| = |⟨ψ0|ϕn⟩|

versus n in Fig. 4. It can be found that
√
fn almost

recovers the distribution of |α0n|, indicating that the dis-
tribution of |α0n| is similar to the Gaussian function with
the center located at E0(ω). Also, we calculate the Eq.
(6) within the energy window ϵ ∈ [E0 − 2δE,E0 + 2δE]
and present the results in Fig. 1(d) by dashed lines.
The results fit very well with the original data and cap-
ture the behaviour of the transition. The normal dis-
tribution structure of the probability density function
|α0j |2 means the behaviour of CK is dominated by a
small portion of eigenstates with eigenvalues near the ini-
tial energy. Focusing on the part of spectrum near the
initial energy E0(ω), we consider the shifted spectrum
∆En0(ω) = En(ω) − E0(ω) with the unit of δE(ω) and
display it in Figs. 5. It can be observed that the structure
of energy spectrum changes from two-fold degenerate re-
gion to non-degenerate region within the energy window
as ω increases. The transition point ωc indicated by the
dashed line is around the cross point of E0(ω) and Ec(ω).
Since E0(ω) is dependent on the initial state, its cross
point with Ec(ω) depends on the initial state too (see
Fig.3 (a)). This gives an explanation why the dynamical
phase transition point ωc is initial-state-dependent from
the perspective of spectrum structure.

0 100 200 300 400 500 6000
0.2
0.4
0.6

(a) | 0| n |
fn

0 100 200 300 400 500 6000
0.2
0.4
0.6 (b)

0 100 200 300 400 500 600
n

0
0.2
0.4 (c)

0 100 200 300 400 500 6000

0.1

0.2
(d)

0 100 200 300 400 500 6000

0.1

0.2
(e)

0 100 200 300 400 500 600
n

0
0.1
0.2

(f)

Figure 4. Distribution of |⟨ψ0|ϕn⟩| for N = 600. The pa-
rameters are ω = 0.5 for (a)(b)(c) and ω = 2 for (d)(e)(f).
The initial state is (a)(d) |θ0 = 0.05π, ϕ0 = 0.05π⟩; (b)(e)
|θ0 = 0.1π, ϕ0 = 0.05π⟩; (c)(f) |θ0 = 0.15π, ϕ0 = 0.05π⟩.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.003 E
2 E

E
0
E

2 E
3 E

E n
0(

)
E(

)

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.003 E
2 E

E
0
E

2 E
3 E

E n
0(

)
E(

)
(b)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.003 E
2 E

E
0
E

2 E
3 E

E n
0(

)
E(

)

(c)

Figure 5. ∆En0/δE versus ω for N = 600. The initial state
is (a) |θ0 = 0.05π, ϕ0 = 0.05π⟩; (b) |θ0 = 0.1π, ϕ0 = 0.05π⟩;
(c) |θ0 = 0.15π, ϕ0 = 0.05π⟩. The horizontal solid lines guide
the value of ∆En0 = 0. The vertical dashed lines guide the
value of ωc obtained from the order parameter z.

Similar to the case of LMG model, a symmetry-
breaking transition of eigenstates in the two-mode BECs
can be triggered by the excited state quantum phase
transitions. For the doubly degenerate eigenstate |ϕn⟩,
we can adopt the notion of the partial symmetry intro-
duced in the study of the excited state quantum phase
transition31,32, with the partial symmetry operator de-
fined as Π̂ = sign(Sz). The partial symmetry operator is
a Z2 operator, which fulfills Π̂|ϕn⟩ = ±|ϕn⟩.

The time evolved state can be expanded in the eigen-
states of the Hamiltonian:

|ψ(t)⟩ =
D∑

n=1

e−iEntα∗
0n|ϕn⟩. (14)

Since our initial state satisfies ⟨ψ0|Π̂|ψ0⟩ = 1, when ω <
ωc, the time evolved state is restricted in the one of two
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symmetry subspaces, and thus ⟨Π̂⟩ is conserved. On the
contrary, as the parameter ω cross the transition point,
⟨Π̂⟩ is not conserved. To see it clearly, we numerically
calculate the long-time average of the operator Π̂:

Π =

D∑
n=1

|α0n|2 ⟨ϕn|Π̂|ϕn⟩,

and the average value of
∣∣∣⟨ϕn|Π̂|ϕn⟩

∣∣∣ within the energy
window ϵ ∈ [E0 − δE,E0 + δE], which can be expressed
as

Πϵ =
1

Nϵ

∑
En∈ϵ

∣∣∣⟨ϕn|Π̂|ϕn⟩
∣∣∣ (15)

where Nϵ is the number of eigenstates in the energy win-
dow ϵ. The values of Π and Πϵ with respect to ω are
shown in Fig. 6. The transition behaviour presented in
Π and Πϵ is consistent with the results of Fig.1(c) and
Fig.1(d). For ω < ωc, both Π and Πϵ equal to 1 as |α0n|
populates within the broken symmetry state. On the
other hand, they approach zero for ω > ωc.

0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0
0.2
0.4
0.6
0.8
1.0 (a)

0 = 0.05
0 = 0.1
0 = 0.15

0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0
0.2
0.4
0.6
0.8
1.0

|
|

(b)

0 = 0.05
0 = 0.1
0 = 0.15

Figure 6. (a) Π and (b) Πϵ versus ω with ϕ0 = 0.05π for
N = 2000. The arrows denote the transition points obtained
from the dynamical order parameter z.

V. DYNAMICAL BEHAVIOUR OF CK(t)
AROUND A FIXED POINT

Now we study the dynamics around the fixed point(
θ = π

2 , ϕ = 0
)
. In the regime of ω < 2,

(
θ = π

2 , ϕ = 0
)

is
a saddle point from the perspective of energy surface, de-
noted by the square symbol in Fig. 7 (a). Besides, there
are two degenerate maximums:

(
θ = arcsin ω

2 , ϕ = 0
)

and(
θ = π − arcsin ω

2 , ϕ = 0
)
, denoted by the star symbol

and the triangular symbol in Fig. 7 (a) for ω = 1.4,
respectively. These two maximums merge into one point(
θ = π

2 , ϕ = 0
)

at ω = 2. For ω > 2, there is only a
maximum at

(
θ = π

2 , ϕ = 0
)
, as demonstrated in Fig. 7

(b) for ω = 2.5. When ω increases over the threshold
ωth = 2, the trajectory is also dramatically changed, and
the corresponding dynamics changes from the Josephson
oscillation to the Rabi oscillation4,68. This transition can
be characterized by the fixed point

(
θ = π

2 , ϕ = 0
)

whose
the Jacobian matrix is

J =

[
0 2− ω
ω 0

]
. (16)

The two eigenvalues of the matrix J are ±
√
ω(2− ω).

For ω ∈ (0, 2), two eigenvalues are real number and mu-
tually opposite. So this fixed point is the unstable saddle
point. As shown in Fig. 7(a) for ω = 1.4, the tangent
vector is away from the fixed point. For ω ∈ [2,+∞), two
eigenvalues are imaginary number. So the fixed point is
stable and called center71 whose nearby trajectories are
neither attracted to nor repelled from the fixed point,
as illustrated in Fig. 7(b). The threshold point ωth = 2
splits two qualitatively different dynamical behavior, i.e.,
Josephson-type versus Rabi-type oscillation.

For the quantum system, it has been revealed the exis-
tence of exotic dynamical behavior around unstable fixed
points72–76, which is refereed to the scrambling character-
ized by the exponential growth of the out-of-time order
correlators. Setting the initial state as |θ0 = π

2 , ϕ0 = 0⟩,
we study how the spread complexity changes with ω.
Here, we show the value of the spread complexity CK(t)
and its long-time average value CK in Fig. 8(a) and
Fig. 8(b), respectively. The dynamics of the CK(t) sug-
gests that the initial state would evolve to states far away
from |K0⟩ for ω < 2, but stays near the initial state for
ω > 2. The dramatically distinct behaviour presented in
the CK(t) is also evidenced by the long time average CK .
When ω > 2, CK approaches to zero, as shown in Fig.
8(b).

0.5 0.0 0.5
/

0.0

0.2

0.4

0.6

0.8

1.0

/

(a)
0.5 0.0 0.5

/
0.0

0.2

0.4

0.6

0.8

1.0

/
(b)

Figure 7. Tangent vector field of the equation of mo-
tion of semi-classical model for (a) ω = 1.4 and (b)
ω = 2.5. Three symbols denote the three fixed
points: star symbol

(
θ = arcsin ω

2
, ϕ = 0

)
, triangular symbol(

θ = π − arcsin ω
2
, ϕ = 0

)
and square symbol

(
θ = π

2
, ϕ = 0

)
.

From the view of the shifted spectrum ∆En0/δE (Figs.
8(d)) and the overlap |α0n| (Figs. 8(e)(f)), it can be ob-
served that |α0n| is highly concentrated on the highest
eigenstate for ω > 2. For the limit case with ω → ∞, the
Hamiltonian can be simplified as Hω→∞ = Sx, and the
initial state |θ0 = π

2 , ϕ0 = 0⟩ is the eigenstate of Hω→∞.
After dropping a global phase, |ψ(t)⟩ ∝ |θ0 = π

2 , ϕ0 = 0⟩
is time independent in the large ω limit and the spread
complexity maintains zero during the time evolution. For
ω < 2, the initial energy E0(ω) for the initial state
|θ0 = π

2 , ϕ0 = 0⟩ equals to the critical energy Ec(ω) which
separates the self-trapped trajectory and Josephson-type
trajectory. The distribution of |α0n| suggests that eigen-
states in both the doubly degenerate and non-degenerate
regions contribute to CK , which takes a nonzero value.
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Additional, the derivative of the CK with respect to ω
displays oscillation for ω < 2. The oscillation origin from
the quantum fluctuation near the critical energy as the
density of state exhibits local divergence.

Figure 8. (a) Time evolution of CK(t) starting from the initial
state |θ0 = π

2
, ϕ0 = 0⟩ with respect to ω. (b) CK with respect

to ω. (c) Derivative of the CK with respect to ω. (d) Shifted
spectrum ∆En0/δE versus ω. Shifted spectrum

∣∣∆En0

∣∣ and
|α0n| for (e) ω = 1.5 and (f) ω = 2.5. The system size is
N = 800.

For the trajectory starting from the fixed point |θ0 =
π
2 , ϕ0 = 0⟩, the dynamics of a classical state is frozen on
the θ−ϕ plane. However, the remaining radial coordinate
R of a quantum trajectory is not conserved during the
time evolution. Then, we can define the distance of the
time evolved state away from the initial state in the phase
space R as

d(t) =
2

N
|R(t)−R(0)| . (17)

It can be expected that the distance d(t) connects to the
state complexity CK(t) because they both measure the
distance between time evolved state and the initial state.
To see it clearly, we display the short-time dynamics of
d(t) with respect to the parameter ω in the Fig. 9(a)
and its long-time average value d in Fig. 9(b). Compar-
ing Figs. 8(a)(b) and Fig. 9(a)(b), it can be seen that
the dynamical behaviour of d(t) is very similar to the
dynamical behaviour of CK(t). The derivative of the d
with respect to ω also shows oscillation for ω < 2. The
similarity between d(t) and CK(t) results from that both
of them quantify the distance between time evolved state
and the initial state. Here, we can label the location of
the minimum of ∂d

∂ω near ω = 2 as an effective transition
point ωeff

th , which is guided by the black dashed lines in
the insert of Fig. 9(c). It can be seen that ωeff

th separates

the oscillation and non-oscillation regime of ∂d
∂ω . From

the result of finite size scaling shown in Fig. 9(d), we can
obtain ωeff

th (N → ∞) ≈ 1.996, which is approximately
equal to the threshold point ωth = 2. The transition
point in CK is the same as d because they share the
same physical origin.

ω
ef

f
th

Figure 9. (a) Time evolution of d(t) starting from the initial
state |θ0 = π

2
, ϕ0 = 0⟩ with respect to ω. (b) Long-time

averaged values d with respect to ω. (c) Derivative of the d
with respect to ω. The black dashed lines guide the minimal
values near ω = 2 which are used in finite-size scaling. (d)
Finite size scaling for the transition point. The system size is
N = 800 for (a)(b)(c).

VI. SUMMARY

In summary, we have studied the spread complexity
CK and its long-time average value CK in the two-mode
BECs. Our results demonstrate that the long-time aver-
age of the spread complexity CK can probe the dynam-
ical transition in the two-mode BECs. By choosing spin
coherent state as the initial state, we find that CK ex-
hibits a sharp transition as the phase space trajectory of
the time evolved state changes from the self-trapping to
Josephson oscillation. By examining the eigen-spectrum
of the underlying Hamiltonian, we identified the existence
of an excited state quantum phase transition in the region
of ω < 2, characterized by the emergence of singularity
in the density of states at critical energy Ec. In the ther-
modynamical limit, the critical energy separates doubly
degenerate eigenstates from non-degenerate eigenstates.
We unraveled that the dynamical transition point is de-
termined by the cross point of the initial energy E0(ω)
and Ec(ω). When ω exceeds a threshold 2, the fixed
point

(
θ = π

2 , ϕ = 0
)

changes from a saddle point to a
stable fixed point. By studying the dynamics for the ini-
tial state at this fixed point, we unveiled that the different
dynamical behavior in the region of ω < 2 and ω > 2 can
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be distinguished by the long-time average of the spread
complexity.
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