
Transition Graph Properties of Target Class
Classification⋆

Levon Aslanyan1[0000−0002−5354−2730] and Hasmik
Sahakyan2[0000−0002−8449−6845]

1 National Academy of Sciences of Republic of Armenia (NAS RA), Yerevan 0019,
Armenia

lasl@sci.am

http://www.sci.am
2 Institute for Informatics and Automation Problems of NAS RA, Yerevan 0014,

Armenia
hsahakyan@sci.am

http://www.iiap.sci.am

Abstract. Target class classification is a mixed classification and tran-
sition model whose integrated goal is to assign objects to a certain, so
called target or normal class. The classification process is iterative, and
in each step an object in a certain class undergoes an action attached
to that class, initiating the transition of the object to one of the classes.
The sequence of transitions, which we call class transitions, must be
designed to provide the final assignment of objects to the target class.
The transition process can be described in the form of a directed graph,
and the success of the final classification is mainly due to the proper-
ties of this graph. In our previous research we showed that the desirable
structure of the transition graph is an oriented rooted tree with orien-
tation towards the root vertex, which corresponds to the normal class.
It is clear that the transition graph of an arbitrary algorithm (policy)
may not have this property. In this paper we study the structure of re-
alistic transition graphs, which makes it possible to find classification
inconsistencies, helping to transfer it into the desired form. The medical
interpretation of ”dynamic treatment regime” considered in the article
further clarifies the investigated framework.

Keywords: Dynamic treatment regime · Target class classification ·
Transition graph.

1 Introduction

This paper considers a new mathematical formulation of a classification or pat-
tern recognition problem, which differs from the traditional formulation of this
problem [9,23,32] by its ideology. The classical classification problem from the
theory of machine learning assumes the existence of a number of classes, which

⋆ Supported by grant №21T-1B314 of the Science Committee of MESCS RA.

ar
X

iv
:2

40
3.

15
16

7v
1 

 [
cs

.L
G

] 
 2

2 
M

ar
 2

02
4

http://www.sci.am
http://www.iiap.sci.am


2 L. Aslanyan, H. Sahakyan

are known only at the level of some subsets of class elements [1,12,32]. Additional
properties of these classes are assumed, for example - geometric compactness,
smoothness or convexity etc. [2-5,10,33], or Occam’s razor, and it is required
to construct universal procedures capable of correctly classifying new objects
by their classes [12,33]. The training stage of the algorithm by the set of avail-
able examples is basically a one-step process [1,32]. This step is followed by the
testing and classification stages. In our application, which addresses a medical
problem of treatment regimen adaptation [11] (and other similar problems), we
pursue a different goal: - to put all objects into the same predefined class [6,7].
Depending on the state/class of the object, a certain action of this class is per-
formed on it, and as a result, the object will move to another class. Transitions
are not arbitrary and are limited by the state and action associated with it. In
sequential action-transition steps, an object can transition between states, cre-
ating cycles and downtime, but can also transition to a target class in which no
action is applied and no transition is performed. Our objective is to investigate
conditions of models for successful (accurate) assignment of objects to the tar-
get class. This is in fact the study of the graph of transitions between classes.
When actions are compound or transition graphs are weighted [31], optimization
problems arise about the best integrated policy. Our basic objective is to analyse
the structure of graphs with one or more deterministic class actions, and we will
analyze the properties of these graphs to transform the model into a suitable
design. In some sense this paper addresses a specific classification problem that
does not fit into any of the known basic scenarios of supervised, unsupervised, or
reinforced learning. However, being different from the traditional approach, Tar-
get Class Classification TCC remains strongly associated with certain models
of machine learning. The first association is with the concept of machine learn-
ing with reinforcement [28], which operates on a set of classes/states, and these
classes and their elements make up the reinforcement learning environment. The
agent (algorithm, recognizer) learns to move efficiently between classes in such
a way as to optimize the target function about the final assignment of objects
to a special target class (to achieve the goal). In this model, we are dealing
with a dynamic, predictive rather than one-step classification problem. Further,
there are similarities with the classification of so-called unbalanced classes [21],
where the need for overall accuracy of classification requires an emphasis on the
classification of small classes (attention to the unseen). In contrast to this ap-
proach we are considering one regular class - the so-called target class [20,22],
and seek for a procedure for assigning all objects to this target class (attention
to the dominant class). The unbalanced classification itself has no algorithmic
constraints and only appeals to the correct use of the whole training set. In
contrast, our classification has algorithmic constraints that come from the sub-
ject domain (otherwise we would apply an action that transfers all objects into
the target class in one step). It is to mention one more association that arises
with sequential learning algorithms [13,17]. Sequential learning aims at narrow-
ing the composition of classes, step by step, until the correct class for the object
is found. In the case of our problem, sequential classification seeks to approx-



Transition Graph Properties of Target Class Classification 3

imate the object being classified step by step to a single predetermined target
class, and if the composition of classes is narrowed, it is only towards the target
class. Here also the structure of classification is limited [34,35], it is based on
the set of available data and rules of the subject domain [36,37], and it is re-
quired to optimize the strategy/algorithm of successful assignment of the object
to the target class. We should note that the considered problem can be viewed
from a different perspective - as a problem from the field of control theory or
business process management theory. These theories, from our point of view,
are effective in other circumstances, when functional environments are studied
or when stochastic analysis is used. These theories, as a branch of mathemat-
ics use calculus, linear algebra, differential equations, linear programming and
nonlinear optimization to analyze and design effective control systems. So we
will use discrete mathematical instruments and we will stay in frame of terms of
classification problems, because of our repetitive actions/transitions are linked
to classes and because of the final objective is to classify to the target class.

An applied prototype of the TCC concept is the well-known medical problem
about the effective policy of treatment of chronic diseases [24,30]. The objectives
of this group of medical approaches belong to the field of personalized (precision)
medicine and are well known in terms of dynamic treatment regime (or adaptive
treatment strategies) problems [24]. Known studies of this task focus on the
statistical processing of treatment data from databases, databases that can be
found also on the global web [11].

Section 1 brings Introduction to the research topic of the article. All the initial
information necessary for the research in this paper is given in Section 2, where
in Subsection 2.1 the research problem is defined, and in Subsections 2.2 and
2.3 the necessary concepts and definitions of the graph theory and supporting
statements P1 − P5 (by [14,19]) are given. Section 3 starts with mentioning
two theorems from [7] on the strongly simplified version of the TCC problem,
and then presents two new results of this paper, Theorem 1 and Theorem 2,
shedding light on the structure of the transition TCC graph for the case where
the transition graph is more realistic - with loops and with many outgoing links.
The discussion and comments mention a way of using the results to identify and
correct unnecessary defects in TCC processes.

2 TCC concept and the related technique

Target Class Classification, basically, is a data-driven procedure [18,24]. Suppose
we need to make at most k local sequential classifications, a1, a2, ..., ak per object
(a patient, in the medical treatment problem). S1 denotes the initial class (pre-
treatment information) whereas Sj , 1 < j ≤ k denotes the intermediate outcome
information available after decision a(j−1) and prior to decision aj . Thus the
time order of states and actions is S1, a1, S2, a2, ..., Sk, ak. This is an individual
track, and the set of tracks over the population of individuals compose a trellis.
Let S̄j = {S1; . . . ;Sj} denote the past and present information at time j. The
primary outcome is Y = u(S̄k+1; āk) where u is a known integrative function.



4 L. Aslanyan, H. Sahakyan

Let us apply to an example from [24]. In the addiction management study, in
medicine, Y may be the main percent of days abstinent so u counts the number
of days abstinent and divides by treatment length in days. An adaptive treat-
ment strategy is a sequence of decision rules, one per each individual decision
point. Thus we denote an adaptive treatment strategy by the decision rules tuple
{d1, d2, ..., dk} where the decision rule dj takes the information available at time
j. S̄j = {S1, S2, ..., Sj} and past treatment ā(j−1) = {a2, ..., a(j − 1)} outputs
a treatment type/level, aj . For example in the addiction management study,
k = 2 and the possible treatments, values for a1 at the first decision time point
are med (drug) and cbt (cognitive behavioral therapy) [24]. The information
available for making the second decision includes pre-treatment information de-
noted by S1, the first treatment, and the first intermediate outcomes denoted by
S2. A simple example of a decision rule, d2, is: if the individual responds to initial
treatment assign telephone monitoring with counselling or if the individual does
not respond to initial treatment assign em (enhanced motivational program) +
med+cbt. The structure of the trellis can be very different. The initial states
(classes) may be different, but in that case, it is possible to group tracks with
the same initial state, which will simplify the preliminary analysis. The problem
is also in tracks having different lengths, they may end in different states. Prac-
tical data of this type, subject to the structure of transitions and tracks, may be
available only partially or in aggregate format [18] due to privacy circumstances.
Sometimes only the initial and final states of tracks and their lengths are given.
Sometimes only transitions, - the previous state and the next state, or the num-
ber of these transitions are published from the data [26,27]. The available data,
in turn, characterize the applied algorithms of state classification. Sequence pro-
file type algorithms use state frequencies, while HMM profile class algorithms
can use both first-order and higher-order transition frequencies, which is similar
to the reinforcement learning and MDP approaches [25,28]. The algorithm we
consider below is the simplest for the simplest case of the problem. It considers
first-order transitions, not chains, - and the result of the transition is defined
by a single deterministic value. The problem is to understand the constraints
for assigning objects to the target class. And if the practical information do not
satisfy the constraints identified in the study, this indicates the need to verify,
check data, and revise the decision-making strategy, or require the adoption of
a new hypothesis about the processes and data. Our objective is to optimize
adaptive treatment strategies, that is, to create a treatment strategy that pro-
duces the best mean outcome value. A number of trials have been and are being
conducted. In order to name the main goals of the TCC, let us define the points
of objectives [7]:

– Validation Given a transition graph, it is necessary to determine whether
the corresponding process actually assigns all or most of the objects to the
target class.

– Superiority Two policies are given, it is necessary to clarify which of them
determines the process of the best (accurate) classification of objects into
the target class.



Transition Graph Properties of Target Class Classification 5

– Optimization This is the main procedure of TCC. It looks tor a better
composite policy by analysing the set of input policies or input data sets.
Usually, the means of analyses is discrete mathematical analysis, the matrix
analysis, Markov chains and HMM, etc.

In most cases, the goal of these trials is to develop adaptive treatment strate-
gies (treatment sequences for a particular person in a corresponding baseline)
that are not ideal in principle. That is, the goal does not include confirma-
tion that one adaptive treatment strategy is better than all others or standard
treatment. Such trials should be followed by confirmatory trials comparing the
optimized adaptive treatment strategy with an appropriate control experiment
or standard treatment.

2.1 Transition graphs, definitions, properties

Transition Graphs A transition graph G = (V,E), abbreviated TG, is a
collection of the following parts [16,31]:

1. A finite set V of states (vertices), that may be partitioned in three categories,
among which there are initial states and final states. For the initial states,
an activation procedure in envisioned.

2. A set A of possible actions that may be applied to these states.
3. A finite set E of transitions (edges) that show how to transition from some

states to some others.

A normalized weight (probability) distribution over a finite set, U , is a function
F : U → [0, 1] such that

∑
u∈U F (u) = 1. The support of this distribution F

is the set support(F ) := {u ∈ U |F (u) > 0}. For ∀v ∈ V normalized weight
distribution Fv is defined on the set N(v) = support(Fv) of neighbor vertices of
v. An example of graphical and algebraic presentations of a simple TG is given
in Fig. 1.

TGs were invented in 50’s. Today a plethora of TGs are defined and used
in theories of Automata, in Markov chains and MDP, in Reinforcement learning
and Control theory [16,25]. Problems addressing in this theories are related to
the description and analysis of sequences of actions and time series (path ana-
lytics, recognition of languages); study of specific events, when they may happen
and when not, with estimation of their chances; study of limit behavior of sys-
tems; likelihood estimates and satisfiability statistics; complexity type, and other
issues. Historically, the automata theory developed entirely separately from the
theory of stochastic processes and stochastic optimal control, with each devel-
oped by a separate mathematical community having distinct motives. It turns
out, however, that there are fruitful connections between these fields. In par-
ticular, a number of classic infinite-state automata theoretic models, such as
one-counter automata, context-free grammars, and pushdown automata, are in
fact closely related to corresponding classic and well-studied countably infinite-
state stochastic processes. Roughly speaking, such automata-theoretic models



6 L. Aslanyan, H. Sahakyan

Fig. 1. An example TG in graphical form a) and in its algebraic form b). Rows in b)
correspond to vertices of TG, and these rows sum to 1. A successful path through a
transition graph is a series of edges forming a path beginning at some start state and
ending at a final state. Concatenating the edges visited will yield the path string.

share the same (or, a closely related) underlying state transition system with
corresponding classic stochastic processes.

Upon reflection, it should not be entirely surprising that this is the case. After
all, Markov chains are nothing other than probabilistic state transition systems.
In order for a class of infinite-state Markov chains to be considered important,
it should not only model interesting real-world phenomena, but it should also
hopefully be “analyzable” in some sense. Better yet, its analyses should have rea-
sonable computational complexity. But these same criteria also apply to infinite-
state automata-theoretic models: their relevance is at least partly dictated by
whether we have efficient algorithms for analyzing them.

Clearly, we cannot devise effective algorithms for analyzing arbitrary finitely-
presented countably infinite-state transition systems. For example, Turing ma-
chines are clearly finitely presented, but we cannot decide whether a Turing
machine halts, i.e., whether we can reach the halting configuration from the
start configuration. Furthermore, if we consider probabilistic Turing machines
(PTMs), we easily see that there cannot exist any algorithm that computes any
non-trivial approximation of the probability that a given probabilistic Turing
machine halts.

Directed Graphs When parallel edges and loops are admissible in an extension
to the simple graph definition, we say that undirected pseudographs are given;
pseudographs with no loops are multigraphs [8,15,19]. For a pair u, v of vertices
in a pseudograph G, µG(u, v) denotes the number of edges between u and v. In
particular, µG(u, v) is symmetric, and µG(u, u) is the number of loops at u. A
directed graph (or just digraph) D consists of a non-empty finite set V (D) of
vertices, and a finite set A(D) of arcs – ordered pairs of adjacent vertices. In



Transition Graph Properties of Target Class Classification 7

case of multiple arrows the entity is usually addressed as directed multigraph.
µG(u, v) is extended easily to the digraphs. Simple directed graphs are directed
graphs that have no loops (arrows that directly connect vertices to themselves),
and no multiple arrows with the same source and target nodes. Some authors
describe digraphs with loops as loop-digraphs. Directed acyclic graphs (DAGs)
are directed graphs with no directed cycles. Rooted trees are oriented trees in
which all edges of the underlying undirected tree are directed either away from
or towards the root. Some basic results about the digraphs may be found in
[14,19], among them are:

P1. Every acyclic digraph has an acyclic ordering of its vertices; in this case
vertices can be labelled v1, v2, · · · , vn in a way that there is no arc from vi to vj
unless i < j.

P2. Every acyclic digraph has a vertex of in-degree zero, as well as a vertex
of out-degree zero.

A strong component of a digraph D is a maximal induced subgraph of D
which is strong (strongly connected). If D1, D2, · · · , Dt are the strong compo-
nents ofD, then clearly and disjointly V (D1)∪V (D2)∪· · ·∪V (Dt) = V (D) (recall
that a digraph with only one vertex is strong). The strong component digraph
SC(D) of D is obtained by contracting the strong components of D and deleting
any parallel arcs obtained in this process. In other words, if D1, D2, · · · , Dt are
the strong components of D, then V (SC(D)) = {vi|i ∈ [t]} and A(SC(D)) =
{vivj |(V (Di), V (Dj))D = ∅}.

P3. The subgraph of D induced by the vertices of a dicycle in D is strong,
and hence is contained in a strong component of D.

P4. SC(D) is acyclic, the vertices of SC(D) have an acyclic ordering.

An orientation of a simple graph G is an oriented graph H obtained from
G by replacing every edge xy by either the arc (x, y) or the arc (y, x). The
underlying graph UG(D) of digraph D is an undirected graph obtained from D
by replacing the set of arcs between x and y with one undirected edge xy. A
digraph is connected if its underlying graph is connected.

A digraphD is an oriented tree, ifD is an orientation of a tree. A digraph T is
an out-tree (an in-tree) if T is an oriented tree with just one vertex s of in-degree
zero (out-degree zero). The vertex s is the root of T . If an out-tree (in-tree) T
is a spanning subgraph of D, T is called an out-branching (an in-branching).

P5. A connected digraph D contains an out-branching (in-branching) if and
only if D has only one initial (terminal) strong component.

In the graph theory, a cactus is a connected graph in which any two simple
cycles have at most one vertex in common. Equivalently, it is a connected graph
in which every edge belongs to at most one simple cycle. Similarly, a directed
cactus is a strongly connected digraph in which each arc is contained in exactly
one cycle. The construction we will consider below is composed of a set of oriented
cycles, thus, being a strongly connected component of some initial graph, plus a
number of branches directed towards the cycles.



8 L. Aslanyan, H. Sahakyan

3 TCC Graph Properties

TCC graphs are transition graphs, which in general are digraphs. Depending on
the type of transitions in TCC - deterministic or stochastic, one or many actions,
transition branching, - the structure of this graphs obtain additional properties
becoming a narrower subclass of transition digraphs. Simple deterministic TCC
(sdTCC) is when transition from any class-action pair is to a unique class:
(ci, a(ci)) → cj . In such TCC graph, all but one vertex have exactly one outgoing
arc (in simple digraph this can’t be a loop). Vertex v0, corresponding to the target
class, have out-degree 0. Initial properties of sdTCC graphs (given in [7]) are as
follows:

T1. If graph G of a sdTCC model is connected (semi-connected digraph),
then G is a tree with the root at vertex v0 and with edges oriented from the
terminal/leaf, as well as internal vertices of the tree towards the direction of the
vertex v0.

T2. Arbitrary graph G of a sdTCC consists of one in-branching tree, rooted
at v0, and several other connected components structured as one cycle cactus
graph. The cactus cycle is oriented, and the tree-like components are connected
to cycle vertices having orientation to the cycle.

In this paper, we consider extension of these assertions to other classes of
TCC graphs. The first case is that of TCC with loops. In terms of the application
problem, a loop is the case of classification-transition to the same class. We
differentiate three types of oriented graphs: graph of type v0, graph of type
”loop”, and graph of type ”cactus”, as shown in Fig.2.

Theorem 1. The structure of a graph sdTCC with loops allowed includes one
connected component of type v0, and possibly, several components of types ”loop”,
and ”cactus”.

Proof. Proof of this theorem is similar to the proof of T1 and T2 given in [6,7].
TCC objective is satisfied when the graph consists of only one component of
type v0 (no more vertices or components outside of this component). Fig. 2
clearly indicates the possible defects when there are more than one component.
The root cause of all defects is disconnectedness. Oriented cycles and loops cause
unnecessary or unimportant transitions between classes.

Special mention should be made of the role of loops at the vertices of the
graph under the assumption that they are admissible. It is necessary to distin-
guish between isolated and non-isolated loops. The former stand apart and do
not affect the overall structure of the graph. The second group of loops also do
not introduce additional difficulties, they just behave similar to the vertex v0.

For Theorem 1 we just prefer to bring the sketch of the proof. Consider an
arbitrary vertex u and follow by its outgoing edge eu to the end point v of
this edge. Continue the path by the edge ev from v and so on, and in this way
valid oriented path u, eu, v, ev, ... will be constructed. The number of vertices
and edges is finite so that at some step we will come back to some vertex of the
path. At this point we obtain one oriented cycle and, may be, that an oriented



Transition Graph Properties of Target Class Classification 9

Fig. 2. Graph types that may appear as components of general sdTCC (loops allowed).
Graph of type v0 is an in-branching tree to the vertex v0 that corresponds to the target
class. Graph “loop” is similar to case a) and their number in sdTCC is equal to the
number of “loop” vertices. The reminder components of sdTCC have structure of
simple cactus graphs with one oriented cycle with incoming tree-type fragments like
one given in c). Number of vertices and structural particularities at components can
be diverse.

path, that goes to the vertex that formed the cycle. This means that there may
be several oriented paths that arrive into the vertices of the cycle. Paths that
enter into the same vertex of cycle may intersect with each other forming a tree
like fragment (point c) of the Fig. 2).

This process of forming cycles may be interrupted in two cases. These are
when the path considered above arrives to one of the loop vertices, or, when it
enters into the vertex v0. Again, the paths that enter to v0 or to a particular loop
vertex, may intersect forming an oriented tree to these special vertices (points
a) and b) of the Fig. 2). This is the whole sketch of the proof of this theorem. □

TCC graph as a digraph may have more of the properties of general digraphs.
We outline specific properties that are related to the graph of our applied medical
TCC problem.

Thus we need to study the structure of TCC graphs in supposition that it
is a digraph with: - no multiple edges, but loops, and one or more outgoing arcs
from vertices except the v0. By this, clearly, we consider the case of TCC with
several classifiers. The role of this model is twofold. Imagine several separate
classifiers A1, A2, · · · , Am. From the point of view of the applied task, this is
a group of medical institutions, each of which operates according to its own
standard (policy) for prescribing procedures and with the practice of transition
to other states. From the point of view of the TCC graph, in this case one or
more edges emanate from a vertex to other classes (mcTCC). The problem in
this case is the following: which of these strategies is the best one, or is it possible
to combine the available strategies into one single and optimal strategy.

The same mcTCC graph also arises within the framework of the stochastic
model of TCC (which we do not consider in the paper), as follows. Suppose



10 L. Aslanyan, H. Sahakyan

that actions in classes are assigned based on probabilities (full probabilities), or
transitions are made according to some probabilities. This leads to a graph, with
probability-weighted edges coming out of its vertices. Eliminating edges of zero
probability, and considering the simple graph with all other edges, we arrive to
the same mcTCC graph which models the logical level structure of the possible
transitions.

Theorem 2. The structure of TCC graph with many classifiers (mcTCC) obeys
the structural characterisations given in points α) − ϵ) below, summarised in
Fig.3.

Proof. α) Let us took the vertex v0 of the target class, and similar to the rea-
soning of T1 and Theorem 1, construct the component G0 of graph G, where
v0 ∈ G0. It is asserted that some structure like in Fig. 2 a). is contained in graph
G0. The first layer of this structure (vertices with indexes 11, 12, · · · , 1k1 in the
Fig. 3), contains all vertices from which there exists a transition to v0, i.e. from
the reminder part of the graph the transition to v0 is already excluded. In this
step and in further steps, all top-down transitions except those that are used in
the constructed tree are excluded. Let us call these (already used) connections
real.

However, in contrast to T1., in this new case of mcTCC bottom-up transi-
tions are also possible, for example, from layer 1 to layer 3 (see Fig. 3), which
can make cycles. Two cases are possible: one when link goes from a lower layer
vertex u to a higher layer vertex v, so that the oriented path from v to v0 passes
through u and an oriented cycle is formed, and the opposite case, when the form-
ing of cycle is not immediate, and it depends on the structure of down-up edges
concerned to the vertex v. Any such transition creates a problem of assigning
the object to the normal class. With an oriented cycle, transitions can become
an infinite process without reaching v0.

Another also new and important group of transitions can lead from vertices of
G0 different from v0, to vertices of graph G−G0 that are outside the component
of G0. These two groups of connections, which are possible but not necessary,
we call virtual ones – when they exist.

β) First, let us distinguish all vertices with loop, that are isolated from other
vertices of the graph. Obviously, such vertices represent dangling components of
connectivity and are as if outside the main structure of the graph. Further, let
us distinguish the class of loops in vertices from which no regular (no loop) edges
come out. These vertices, as we can easily check, initiate components similar to
component G0 of v0. Let us denote their united graph by Gl. It is important to
note that the components of type a) and b) from Fig. 2 which also arise in this
case are not strongly connected components. This is explained by the fact that
no edges outgo from the roots of such trees and no edges enter into the terminal
vertices. At the same time, these components are not isolated, and connections
with other components can come from them. As for other vertices, that are with
loops, they behave like other usual (non-loop) vertices in the structure of the



Transition Graph Properties of Target Class Classification 11

Fig. 3. The core part of target class classification graph structure and its relation to
the complementary part of the structure.

whole graph.

γ) Now consider an arbitrary vertex x of the graph G − G0 − Gl. At least
one edge originates from x, let it be an edge e that leads to some vertex y.
Vertex y can belong only to G−G0 −Gl. Continuing the started chain step by
step, as before, and we will reach an intersection with the path at some point
z, forming an oriented cycle. We are talking about a nondegenerate cycle, i.e.,
not a cycle consisting of a single vertex (loop vertex). This is true, because at
this stage there is always an outgoing regular edge from a vertex z and we are
talking about closing the path of this edge. The segment from x to z if x ̸= z
remains outside the cycle and forms a branch to it, being oriented towards the
cycle. This holds for all vertices x belonging to G−G0 −Gl. Here too, we refer
to the entire chain structure as real, and the branches outside the chain as virtual.

δ) Consider all nondegenerate cycles that are composed in the constructions
of point γ) over all vertices x ∈ G − G0 − Gl. Some pairs of these cycles may
intersect. Intersection means existence of a common vertex but even more inter-
section does not prevent further reasoning that we do. Note that our cycles are
oriented (dicycle) and that an oriented cycle is a strongly connected subgraph
(see P3.). Two cycles with a common vertex also constitute a strongly connected
structure. This construction could be extended by new dicycles when they have
intersection with at least one of the initial two cycles. If we define the equivalence
relation over pairs of cycles (p, q) as the fact of existence of chain of pairwise
intersecting cycles from the first cycle p to the second cycle q, then this equiva-
lence relation will partition the set of all cycles of step γ) into non-intersecting



12 L. Aslanyan, H. Sahakyan

clusters. These clusters θ1, θ2, . . . , θk are part of the so-called strong component
digraph SC(G−G0−Gl) inside the graph G−G0−Gl. SC(G−G0−Gl) is con-
structed by contracting the clusters θi into vertices ti, and deleting any parallel
arcs obtained in this process. Other components are 1-vertex strong connections.

ϵ) It is known (see P1. and P4.) that each strong component digraph SC(G−
G0 − Gl) has acyclic ordering of its vertices. This implies that the strong com-
ponents included in G − G0 − Gl can be labelled as θ1, θ2, . . . , θl, θ1, θ2, . . . , θk
in a way, that there is no arc from θj to θi, as well as from θj to θi unless
j < i. Here θ1, θ2, . . . , θl correspond to 1-point SCC. We call such an ordering
an acyclic ordering of the strong nondegenerate components of G − G0 − Gl.
Thus the following schematic representation of graph TCC is valid.

Fig. 4. TCC graph structure split to components: v0, isolated-loop and in-loop, and
the part SC(G−G0 −Gl).

4 Conclusion

An applied problem of medical area is considered that shows that among the
diversity of classification algorithms, there is a practical need to develop new al-
gorithms that assign objects to one predetermined class through the sequence of
classifications and transformations. This can be considered as a control problem,
or a management problem, however, this is also a particular discrete mathemat-
ical problem modelled with the transition graphs. Sequential steps of classifica-
tion consist of definition of the class of object, application of an action attached
to the class of object, and transition to the updated class of this object. On
a practical medical level, the study of such algorithms is related to the area
of precision/personalised medicine. This paper describes admissible structures
of graphs of transitions between classes, depending on properties of actions of
classes - deterministic, multivariate, stochastic. These properties determine the
structure of transition graphs that allow us to reveal its defects, knowing how
to improve its current structure with achieving the goal of the TCC process -



Transition Graph Properties of Target Class Classification 13

classification to the target class.

Acknowledgments
This paper is partially supported by by grant №21SC-BRFFR-1B029 of the

Science Committee of MESCS RA.

References

1. Aslanyan, L.: On a recognition method, based on partitioning of classes by the
disjunctive normal forms. Kibernetika 5, 103–110 (1975)

2. Aslanyan, L., Karakhanyan, V., Torosyan B.: On compactness of subsets of n-
dimensional unite cube. In Akad. Nauk SSSR Dokl. 19, 781–785 (1978)

3. Aslanyan, L.: The discrete isoperimetry problem and related extremal problems for
discrete spaces. Problemy kibernetiki 36, 85–128 (1979)

4. Aslanyan L., Zhuravlev Yu.: Logic separation principle. Computer Science and In-
formation Technologies Conference, Yerevan, September 17-20, 151–156 (2001)

5. Aslanyan, L., Sahakyan, H.: The splitting technique in monotone recognition. Dis-
crete Applied Mathematics 216, 502–512 (2017)

6. Aslanyan, L., Krasnoproshin, V., Ryazanov V., Sahakyan, H.: Logical-combinatorial
approaches in dynamic recognition problems. Mathematical Problems of Computer
Science 54, 96–107 (2010)

7. Aslanyan, L., Gishyan, K., Sahakyan, H.: Deterministic Recursion in Target
Class Classification. Proceedings of the 13th Conference on Data analysis meth-
ods for software systems, Vilnius University Proceedings 31(6), 6 (2016), doi:
10.15388/DAMSS.13.2022

8. Bollobas, B.: Modern graph theory. Vol. 184, Springer Science and Business Media
(1998)

9. Bongard, M.: Problem of Cognition (in Russian), Fizmatgiz, Moscow, (1967)
10. Braverman, E.: Experiments on machine learning to recognize visual patterns.

Automation and Remote Control, 23, 315–327 (1962)
11. Chakraborty, B.: Statistical methods for dynamic treatment regimes. Springer-

Verlag, doi: 10:978–1 (2013)
12. Chervonenkis, Ya., Vapnik, V.: Pattern recognition Theory (in Russian). Nauka,

Moscow (1974)
13. Even-Zohar, Y., Roth, D.: A sequential model for multi-class classification. arXiv

preprint cs/0106044 (2001)
14. Godsil, C. and Royle G.: Algebraic graph theory. volume 207, Springer Science and

Business Media (2001)
15. Harary, F.: Book title. Graph Theory, Addison-Wesley, Reading, MA (1969)
16. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to automata theory, languages,

and computation. Acm Sigact News, 32(1), 60–65 (2001)
17. Hu, Yi-Qi, Hong, Qian, Yang, Yu: Sequential classification-based optimization for

direct policy search. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 31, no. 1 (2017)

18. Johnson, A., Pollard, T., Shen L., et al.: MIMIC-III, a freely accessible critical care
database. Sci Data 3, 160035 (2016). https://doi.org/10.1038/sdata.2016.35

19. Bang-Jensen, J., Gutin, G. eds.: Classes of directed graphs, Cham: Springer (2018)
20. Khan, S., Madden, M.: One-class classification: taxonomy of study and review of

techniques. The Knowledge Engineering Review 29(3), 345-374 (2014)

http://arxiv.org/abs/cs/0106044


14 L. Aslanyan, H. Sahakyan

21. Koko, S., Capponi, C.: On multi-class classification through the minimization of
the confusion matrix norm. IIn Asian Conference on Machine Learning, pp. 277–292.
PMLR (2013)

22. Leng, Qian, Qi, Honggang, Miao, Jun, Zhu, Wentao: One-class classification with
extreme learning machine. In: Mathematical problems in engineering, (2015)

23. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of machine learning,
MIT press (2018)

24. Murphy, S.: An experimental design for the development of adaptive treatment
strategies. Statistics in medicine, 24(10), 1455—1481 (2005)

25. Rabiner, L.: A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286 (1989)

26. Sahakyan, H., Aslanyan L.: Numerical characterization of n-cube subset partition-
ing. Electronic Notes in Discrete Mathematics 27, 3–4 (2006)

27. Sahakyan, H.: Numerical characterisation of n-cube subset partitioning. Discrete
Applied Mathematics 157(9), 2191—2197 (2009)

28. Sutton, R., Barto, A.: Reinforcement learning: An introduction. MIT press (2018)
29. Vaintsvaig, M.: Pattern recognition learning algorithm kora. Moscow, Sovetskoe

Radio, 110-–116 (1973)
30. Zhang, Z. et al.: Reinforcement learning in clinical medicine: a method to optimize

dynamic treatment regime over time. Annals of translational medicine 7(14), 99–110
(2019)

31. Zhou, X., Yang, C., Gui, W.: State transition algorithm. Journal of Industrial and
Management Optimization 8(4), 1039–1056 (2012)

32. Zhuravlev, Yu., Nikiforov, V.: Recognition algorithms based on computation of
estimatese. Kibernetika 7(3), 387—400 (1971)

33. Zhuravlev, Yu.: Selected scientific works. Moscow, Magistr (1998)
34. Zhuravlev, Yu., Aslanyan, L., Ryazanov, V.: Analysis of a training sample and clas-

sification in one recognition model. Pattern recognition and image analysis 24(3),
347–352 (2014)

35. Zhuravlev, Yu., Aslanyan, L., Ryazanov, V., Sahakyan, H.: Application driven
inverse type constraint satisfaction problems. Pattern recognition and image analysis
27(3), 418–425 (2017)

36. Zhuravlev, Yu., Ryazanov, V., Aslanyan, L., Sahakyan, H.: On a classification
method for a large number of classes. Pattern Recognition and Image Analysis
29(3), 366–376 (2019)

37. Zhuravlev, Yu., Ryazanov, V., Ryazanov, Vl., Sahakyan H.: Comparison of differ-
ent dichotomous classification algorithms. Pattern Recognition and Image Analysis
30(3), 303–314 (2020)


	Transition Graph Properties of Target Class Classification

