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Abstract

A conjecture in algorithmic model theory predicts that the model-checking problem for first-
order logic is fixed-parameter tractable on a hereditary graph class if and only if the class is
monadically dependent. Originating in model theory, this notion is defined in terms of logic,
and encompasses nowhere dense classes, monadically stable classes, and classes of bounded twin-
width. Working towards this conjecture, we provide the first two combinatorial characterizations
of monadically dependent graph classes. This yields the following dichotomy.

On the structure side, we characterize monadic dependence by a Ramsey-theoretic prop-
erty called flip-breakability. This notion generalizes the notions of uniform quasi-wideness, flip-
flatness, and bounded grid rank, which characterize nowhere denseness, monadic stability, and
bounded twin-width, respectively, and played a key role in their respective model checking al-
gorithms. Natural restrictions of flip-breakability additionally characterize bounded treewidth
and cliquewidth and bounded treedepth and shrubdepth.

On the non-structure side, we characterize monadic dependence by explicitly listing few
families of forbidden induced subgraphs. This result is analogous to the characterization of
nowhere denseness via forbidden subdivided cliques, and allows us to resolve one half of the
motivating conjecture: First-order model checking is AW[∗]-hard on every hereditary graph class
that is monadically independent. The result moreover implies that hereditary graph classes
which are small, have almost bounded twin-width, or have almost bounded flip-width, are
monadically dependent.

Lastly, we lift our result to also obtain a combinatorial dichotomy in the more general setting
of monadically dependent classes of binary structures.
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1 Introduction

Algorithmic model theory studies the interplay between the computational complexity of compu-
tational problems defined using logic, and the structural properties of the considered instances. In
this context, algorithmic meta-theorems [41, 37] are results that establish the tractability of entire
families of computational problems, which are defined in terms of logic, while imposing structural
restrictions on the input instances. The archetypical example is Courcelle’s theorem, which states
that every problem that can be expressed in monadic second order logic (MSO), can be solved in
linear time, whenever the considered input graphs have bounded treewidth [13, 3]. This implies
that the model checking problem for MSO is fixed-parameter tractable (fpt) on every class C of
bounded treewidth. That is, there is an algorithm which determines whether a given input graph
G ∈ C satisfies a given MSO formula φ in time f(|φ|) · |V (G)|c for some function f : N → N and
some constant c (in this case c = 1). More generally, the model checking problem for MSO is fpt
on all classes of bounded cliquewidth [14].

In this paper, we focus on the model-checking problem for first-order logic (FO), which allows
to relax the structure of the input graphs greatly, at the cost of restricting the logic. Graph classes
for which this problem is fpt include classes of bounded degree [53], the class of planar graphs [29],
classes which exclude a minor [28], classes of bounded expansion [25], and more generally, nowhere
dense classes [38], all of which are sparse graph classes (specifically, every n-vertex graph in such a
class has O(n1+ε) edges, for every fixed ε > 0). The problem is moreover fpt on proper hereditary
classes of permutation graphs, some classes of bounded twin-width [9], structurally nowhere dense
classes [21], monadically stable classes [20], and others [5]. The central question in the area, first
phrased in [37, Sec. 8.2], is the following.

What are the structural properties that exactly characterize the hereditary1 graph
classes with fpt first-order model checking?

Sparsity theory [44], initiated by Nešetřil and Ossona de Mendez, has provided solid structural
foundations, and a very general notion of structural tameness for sparse graph classes. More
recently, twin-width theory [9] provides another notion of graph classes which are structurally tame,
and not necessarily sparse. While twin-width theory and sparsity theory bear striking similarities,
they are fundamentally incomparable in scope. The community eagerly anticipates a theory that
unifies both frameworks, and answers the central question. Stability theory – an area in model
theory developed initially by Shelah – provides very general notions of logical tameness of classes of
graphs (or other structures), called (monadic) stability and dependence2, which subsume the notions
studied in sparsity theory and in twin-width theory, but are not easily amenable to combinatorial
or algorithmic treatment. Let us briefly review sparsity theory, twin-width theory, and stability
theory, which we build upon. Figure 1 shows the relationships between the properties of graph
classes discussed in this paper.

Sparsity. The central notion of sparsity theory [44] is that of a nowhere dense graph class. This
is a very general notion of structural tameness of sparse graph classes, and encompasses all classes
with bounded degree, bounded treewidth, the class of planar graphs, and classes that exclude some
graph as a minor. After a long sequence of prior work [53, 28, 29, 17, 25], the celebrated result
of Grohe, Kreutzer and Siebertz [38] established that the model checking problem is fpt on every
nowhere dense graph class. For classes that are monotone (closed under removal of vertices and
edges) this is optimal [25, 41], yielding the following milestone result.

1A graph class is hereditary if it is closed under vertex removal.
2In the literature, dependence is also referred to as NIP, which stands for negation of the independence property.
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Figure 1: Hierarchy of selected properties of graph classes. Classes in green boxes are known do admit
fpt model checking algorithms (with additional assumptions required in the case of bounded twin-width).
Monadically dependent classes are known to generalize all these notions. It is conjectured that a hereditary
class is monadically dependent if and only if its model checking problem is tractable.

A monotone graph class admits fpt model checking if and only if it is nowhere dense
(assuming FPT ̸= AW[∗]) [38].

Here, FPT ̸= AW[∗] is a standard complexity assumption in parameterized complexity, equiv-
alent to the statement that model checking is not fpt on the class of all graphs. The major
shortcoming of this result is that it only captures monotone classes, and thus sparse graph classes,
while there are dense graph classes which are not monotone, and have fpt model checking. A
trivial example is the class of cliques. More generally, all classes of bounded cliquewidth have fpt
model checking. For many years, not many examples of graph classes for which the model checking
problem is fpt – beyond nowhere dense classes and classes of bounded cliquewidth – were known.

A recent line of research extends sparsity theory beyond the sparse setting using transductions.
We say a graph class C transduces a graph class D if there exists a first-order formula φ(x, y) such
that every graph in D can be obtained by the following four steps: (1) taking a graph G ∈ C,
(2) coloring the vertices of G, (3) replacing the edge set of G with {uv | u, v ∈ V (G), u ̸= v,G |=
φ(u, v)∨φ(v, u)}, and (4) taking an induced subgraph. Step 3 can construct, for example, the edge-
complement of G with φ(x, y) = ¬E(x, y) or the square of G with φ(x, y) = ∃z E(x, z) ∧ E(z, y).
Note that the formula φ has access to the colors of G from step 2. Therefore, for example, the
class of all graphs is transduced by the class of 1-subdivided cliques (by coloring the subdivision
vertices that should be turned into edges), but is not transduced by the class of cliques. It was
recently shown that model checking is fpt on transductions of nowhere dense classes [21], extending
the work of Grohe, Kreutzer, and Siebertz [38] beyond the sparse setting. This result has been
generalized very recently in [20], as described below.

Figure 2: A half-
graph of order 4.

Monadic Stability. Stability, and its variants, are logical tameness conditions
arising in Shelah’s classification program [54]. A graph class is monadically3

stable if it does not transduce the class of all half-graphs (see Figure 2). Monad-
ically stable classes include all structurally nowhere dense classes [2, 49]. In [20]
it is shown that FO model checking is fpt on all monadically stable classes, and
moreover obtains matching hardness bounds via a new characterization of such
classes in terms of forbidden induced subgraphs. A class is orderless if it avoids some half-graph
as a semi-induced4 subgraph. This establishes monadically stable classes as the limit of tractability
among orderless classes.

3Monadically refers to the coloring step of a transduction, which is an expansion of the graph with unary/monadic
predicates. In classical model theory monadically stable (monadically dependent) classes are equivalently defined as
those classes that remain stable (dependent) under unary expansions.

4Semi-induced half-graphs look similar to Figure 2, but the connections within the top row and within the bottom
row may be arbitrary.
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An orderless, hereditary graph class admits fpt model checking if and only if it is
monadically stable (assuming FPT ̸= AW[∗]) [20].

Twin-Width. Twin-width [9] is a recently introduced notion which has its roots in enumera-
tive combinatorics and the Stanley-Wilf conjecture/Marcus-Tardos theorem. Graph classes with
bounded twin-width include the class of planar graphs, all classes of bounded cliquewidth, the class
of unit interval graphs, and every proper hereditary class of permutation graphs. It was shown that
model checking is fpt on graph classes of bounded twin-width, assuming an appropriate decompo-
sition of the graph (in form of a so-called contraction sequence) is given as part of the input [9].
On ordered graphs (that is, graphs equipped with a total order on the vertex set, which can be
accessed by the formulas) a recent breakthrough result has lifted this additional proviso, and also
characterized classes of bounded twin-width as the limit of tractability [7].

A hereditary class of ordered graphs admits fpt model checking if and only if it has
bounded twin-width (assuming FPT ̸= AW[∗]) [7].

Monadic Dependence. As discussed above, an exact characterization of classes with fpt model-
checking has been established in three settings: for monotone graph classes, for the more general
hereditary orderless graph classes, and for hereditary classes of ordered graphs, in terms of the
notions of nowhere denseness, monadic stability, and bounded twin-width, respectively. Those
notions turn out to be three facets of a single notion, again originating in stability theory. A
graph class C is monadically independent if it transduces the class of all graphs [4]. Otherwise C
is monadically dependent. In all three settings where we have a complete characterization of fpt
model checking, monadic dependence precisely captures the limit of tractability.

• On monotone classes, nowhere denseness is equivalent to monadic dependence [49, 2].

• On orderless classes, monadic stability is equivalent to monadic dependence [45].

• On classes of ordered graphs, bounded twin-width is equivalent to monadic dependence [7].

This suggests that the known tractability limits [38, 7, 21, 20] are fragments of a larger picture,
where monadically dependent classes unify sparsity theory, twin-width theory, and stability theory
into a single theory of tractability.

Conjecture 1.1 (e.g., [1, 7, 21]). Let C be a hereditary class of graphs. Then the model checking
problem for first-order logic is fpt on C if and only if C is monadically dependent.5

Originally stated in 2016 [1], the above conjecture is now the central open problem in the area.
Both directions have been open.

Contribution

To approach Conjecture 1.1, a combinatorial characterization of monadic dependence is sought.
Based on the development in the sparse, orderless, and ordered cases discussed above, it appears
that what is needed are combinatorial dichotomy results, stating that all monadically dependent
graph classes exhibit structure which can be used to design efficient algorithms, while all other
graph classes exhibit a sufficient lack of structure, which can be used to prove hardness results. The
three known restricted classifications of classes with fpt model checking were enabled in part (see

5The conjecture stated in [1] mentions dependence instead of monadic dependence, but for hereditary classes,
those notions are equivalent [12]. Furthermore, the conjecture in [1] states only one implication, but the other one
was also posed at the same workshop as an open problem.
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discussion below) thanks to such combinatorial dichotomies for nowhere dense, monadically stable,
and bounded twin-width graph classes. However, for monadically dependent classes not a single
combinatorial characterization has been known. Previous characterizations of monadic dependence
(for example, via indiscernible sequences or existentially defined canonical configurations [11, 12])
all have a logical, rather than combinatorial, aspect. This limits their algorithmic usefulness.

In this paper, we provide the first two purely combinatorial characterizations of monadically
dependent classes, which together constitute a combinatorial dichotomy theorem for these classes.

• On the one hand, we show that monadically dependent graph classes have a Ramsey-like
property called flip-breakability, which guarantees that any large set of vertices W contains
two still-large subsets A,B that in a certain sense are strongly separated.

• On the other hand, we show that graph classes that are monadically independent contain
certain highly regular patterns as induced subgraphs, which are essentially two highly inter-
connected sets.

As argued below, flip-breakability might be a crucial step towards establishing fixed-parameter
tractability of the model checking problem for monadically dependent classes, and settling the
tractability side of Conjecture 1.1. Moreover, we use the patterns of the second characterization to
prove the hardness side of Conjecture 1.1: we show that first-order model checking is AW[∗]-hard
on every hereditary graph class that is monadically independent (Theorem 1.7). We now present
our two combinatorial characterizations of monadically dependent classes in more detail.

Flip-Breakability

Flips are a central emerging mechanism in the study of well-behaved graph classes (e.g., [33, 5, 32,
55]). A k-flip of a graph G is a graph H obtained from G by partitioning the vertex set into k
parts and, for every pair X,Y of parts, either leaving the adjacency between X and Y intact, or
complementing it (see also Section 4).

We use flips to measure the interaction between vertex sets A,B at a fixed distance r in a graph
G. Intuitively, if for some small value k there is a k-flip H of G in which the distance distH(A,B)
is larger than r, then this witnesses that the sets A and B are “well-separated” at distance r.

A B A B

Figure 3: The sets A and B are far away after a 5-flip shown on the right side. We flip between the blue
squares and the blue circles, and between the orange squares and the orange circles.

Consider for example the graph G on the left side of Figure 3, consisting of stacked half-graphs.
Applying a flip between the blue squares and the blue circles (as depicted to the right of Fig. 3),
and between the orange squares and the orange circles, we obtain a 5-flip of G in which the sets A
and B have distance at least 6.

Roughly, our first main result expresses that for graphs from a monadically dependent class, in
every sufficiently large vertex set W , we can find two still-large subsets A and B whose distance in
some O(1)-flip is larger than a given constant r. This is formally expressed as follows.

Definition 1.2 (Flip-Breakability). A class of graphs C is flip-breakable if for every radius r ∈ N
there exists a function Nr : N → N and a constant kr ∈ N such that for all m ∈ N, G ∈ C and
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W ⊆ V (G) with |W | ⩾ Nr(m) there exist subsets A,B ⊆ W with |A|, |B| ⩾ m and a kr-flip H of
G such that:

distH(A,B) > r.

Theorem 1.3. A class of graphs is monadically dependent if and only if it is flip-breakable.

Our proof is algorithmic: For a fixed monadically dependent class C and radius r, the subsets
A and B and the witnessing flip H can be computed in time OC,r(|V (G)|2) (Theorem 13.2).

As we discuss in Section 2, our results are based on a new notion called the insulation property
(Definitions 5.2 and 7.2), which trivially implies flip-breakability, but imposes an even more regular
structure on monadically dependent graph classes.

Relation of Flip-Breakability to Other Work

The model checking algorithms for nowhere dense classes [38] and monadically stable classes [21, 20]
are respectively based on winning strategies for pursuit-evasion games called the splitter game [38]
and the flipper game [32]. These winning strategies were obtained from a characterization of
nowhere dense classes in terms of uniform quasi-wideness [16, 43] and a characterization of monad-
ically stable classes in terms of flip-flatness [22]. Both are Ramsey-like properties which are very
similar to flip-breakability. The definitions of these three notions match the same template:

A class of graphs C is . . . if for every radius r ∈ N there exists a function Nr : N → N
and a constant kr ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G) with |W | ⩾ Nr(m)
there exist . . .

In all three cases we continue the definition by stating the existence of a large number of vertices
that are in a certain sense “well-separated”. However, the sentence is completed in an increasingly
more general way for the three notions. The crucial differences are highlighted in bold.

• uniform quasi-wide [16, 43]: . . . a set S ⊆ V (G) of at most kr vertices and A ⊆W \S with
|A| ⩾ m, such that in G \ S, all vertices from A have pairwise distance greater than r.

• flip-flat [22]: . . . a kr-flip H of G and A ⊆ W with |A| ⩾ m, such that in H, all vertices
from A have pairwise distance greater than r.

• flip-breakable: . . . a kr-flip H of G and A,B ⊆ W with |A|, |B| ⩾ m, such that in H, all
vertices in A have distance greater than r from all vertices in B.

In the context of ordered graphs, the model checking algorithm for classes of bounded twin-
width crucially relied on a characterization of these classes in terms of bounded grid rank [7, Sec.
3.4]. Rephrasing this characterization in the language of this paper, it reads as follows.

A class of ordered graphs C has bounded grid rank if there exists k ∈ N such that for all
G ∈ C and ordered sequences of vertices a1 < · · · < ak ∈ V (G), b1 < · · · < bk ∈ V (G),
there exists a k-flip H of G and indices i, j ∈ [k − 1] defining ranges A = {a ∈ V (G) |
ai ⩽ a ⩽ ai+1}, B = {b ∈ V (G) | bj ⩽ b ⩽ bj+1}, such that there are no edges incident
to both A and B in H.

Flip-breakability combines the distance-r-based aspects of uniform quasi-wideness and flip-
flatness with the “no edges incident to both A and B” criterion of grid rank. Using our insulation
property, one can easily reprove the characterization of nowhere dense classes in terms of uniform
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quasi-wideness [43], of monadically stable classes in terms of flip-flatness [22], and of classes of
ordered graphs with bounded twin-width in terms of grid rank [7].

Given that flip-breakability characterizes monadically dependent graph classes and naturally
generalizes the previous notions, we believe that it will also play a crucial role in a future model
checking algorithm for monadically dependent classes: Mirroring the situation for nowhere dense
and monadically stable classes, flip-breakability might lead to a characterization of monadically
dependent classes in terms of a pursuit-evasion game. Just like the previous two algorithms [38,
21, 20], winning strategies for this game might then be useful for model checking, and settling the
backward direction of Conjecture 1.1. (Note however that in each of these cases, the games where
only one of the main ingredients of the model checking algorithm).

Binary Structures. Our results apply in the more general setting of binary structures, rather
than graphs, that is, of structures equipped with one or more binary relation. In particular, we
prove that monadically dependent classes of binary structures can be equivalently characterized in
terms of flip-breakability, defined suitably for binary structures. As an application, we derive a key
result of [7]: that monadically dependent classes of ordered graphs have bounded grid rank (see
definition above).

Theorem 1.4 ([7]). Let C be a monadically dependent class of ordered graphs. Then C has bounded
grid rank.

Variants of Flip-Breakability. The previously highlighted similarities between flip-breakability,
flip-flatness, and uniform quasi-wideness suggest the following natural variations of flip-breakability.
We allow to modify the graph using either (1) flips or vertex deletions and demand that the resulting
subset is either (2) flat or broken, that is, either pairwise separated or separated into two large
sets. We further additionally parameterize the type of separation to be either (3) distance-r or
distance-∞. While distance-r separation corresponds to the usual kind given in Definition 1.2,
distance-∞ separation demands sets to be in different connected components of the graph. This is
formalized by the following definition.

Definition 1.5. A class of graphs C is distance-∞ flip-breakable, if there exists a function N : N →
N and a constant k ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G) with |W | ⩾ N(m) there
exist subsets A,B ⊆ W with |A|, |B| ⩾ m and a k-flip H of G such that in H, no two vertices
a ∈ A and b ∈ B are in the same connected component.

Using this terminology, uniform quasi-wideness, for example, becomes distance-r deletion-
flatness. For formal definitions of these variants, we refer to Section 18. As summarized in the
following Table 1, each of the eight possible combinations of (1), (2) and (3) characterizes a well-
studied property of graph classes.

flatness breakability

dist-r
flip- monadic stability [22] monadic dependence (Thm. 13.1)

deletion- nowhere denseness [16, 43] nowhere denseness (Thm. 18.2)

dist-∞ flip- bd. shrubdepth (Thm. 18.17) bd. cliquewidth (Thm. 18.4)
deletion- bd. treedepth (Thm. 18.28) bd. treewidth (Thm. 18.12)

Table 1: Variants of flip-breakability.

Notably, the right column of Table 1 corresponds to conjectured tractability limits of the model
checking problem, where the distance-r and distance-∞ variants correspond to, respectively, first-
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order and monadic second-order logic, and the flip and deletion variants correspond to hereditary
and monotone classes. Furthermore, it is interesting to see that the seemingly more general deletion-
breakability collapses to deletion-flatness, as both properties characterize nowhere denseness.

Forbidden Induced Subgraphs

Imposing bounds on the size of certain patterns is a common and powerful mechanism for defining
well-behaved graph classes. For example, by definition, a class C is nowhere dense if and only if for
every r ∈ N, C avoids some r-subdivided clique as a subgraph. In similar spirit, it is shown [20] that
an orderless class C is monadically stable if and only if for every r ∈ N, the class C avoids all r-flips
of the r-subdivided clique, and its line graph, as an induced subgraph. A similar characterization
for monadically dependent classes has so far been elusive. In this paper, we show that a class C is
monadically dependent if and only if for every r ∈ N, the class C avoids certain variations of the
r-subdivision of some complete bipartite graph, as an induced subgraph. Let us start by defining
these patterns.

For r ⩾ 1, the star r-crossing of order n is the r-subdivision of Kn,n. More precisely, it consists
of roots a1, . . . , an and b1, . . . , bn together with r-vertex paths {πi,j | i, j ∈ [n]} that are pairwise
vertex-disjoint (see Figure 4). We denote the two endpoints of a path πi,j by start(πi,j) and end(πi,j).
We require that roots appear on no path, that each root ai is adjacent to {start(πi,j) | j ∈ [n]},
and that each root bj is adjacent to {end(πi,j) | i ∈ [n]}. The clique r-crossing of order n is the
graph obtained from the star r-crossing of order n by turning the neighborhood of each root into
a clique. Moreover, we define the half-graph r-crossing of order n similarly to the star r-crossing
of order n, where each root ai is instead adjacent to {start(πi′,j) | i′, j ∈ [n], i ⩽ i′}, and each root
bj is instead adjacent to {end(πi,j′) | i, j′ ∈ [n], j ⩽ j′}. Each of the three r-crossings contains no
edges other than the ones described. At last, the comparability grid of order n consists of vertices
{ai,j | i, j ∈ [n]} and edges between vertices ai,j and ai′,j′ if and only if either i = i′, or j = j′, or
i < i′ ⇔ j < j′.

b1

b2

b3

b4

a1 a2 a3 a4

b1

b2

b3

b4

a1 a2 a3 a4

b1

b2

b3

b4

a1 a2 a3 a4
start(π1,4)

end(π1,4)

Figure 4: (i) star 4-crossing of order 4. (ii) clique 4-crossing of order 4. (iii) half-graph 4-crossing of order 4.
(iv) comparability grid of order 4. In (i), (ii), (iii), the roots are adjacent to all vertices in their respective
colorful strip.

It is easy to see that these patterns are logically complicated: For every fixed r, the four graph
classes containing these four types of patterns are monadically independent.

We also need to consider certain flips of the above patterns. To this end, we partition the
vertices of star, clique, and half-graph r-crossings into layers: The 0th layer consists of the vertices
{a1, . . . , an}. The lth layer, for l ∈ [r], consists of the lth vertices of the paths {πi,j | i, j ∈ [n]}
(that is, the 1st and rth layer, respectively, are {start(πi,j) | i, j ∈ [n]} and {end(πi,j) | i, j ∈ [n]}).
Finally, the (r + 1)th layer consists of the vertices {b1, . . . , bn}. A flipped star/clique/half-graph
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r-crossing is a graph obtained from a star/clique/half-graph r-crossing by performing a flip where
the parts of the specifying partition are the layers of the r-crossing. Note that while there is only
one star/clique/half-graph r-crossing of order n, there are multiple flipped star/clique/half-graph
r-crossings of order n. Their number is however bounded by 2(r+2)2 : an upper bound for the
number of possible flips specified by a single partition of size (r + 2).

Theorem 1.6. Let C be a graph class. Then C is monadically dependent if and only if for every
r ⩾ 1 there exists k ∈ N such that C excludes as induced subgraphs

• all flipped star r-crossings of order k, and

• all flipped clique r-crossings of order k, and

• all flipped half-graph r-crossings of order k, and

• the comparability grid of order k.

This characterization by forbidden induced subgraphs opens the door for various algorithmic,
logical, and combinatorial hardness results. On the algorithmic side, we prove the hardness part of
Conjecture 1.1.

Theorem 1.7. The first-order model checking problem is AW[∗]-hard on every hereditary, monad-
ically independent graph class.

The result builds on the following logical hardness result, which is of independent interest.

Theorem 1.8. Every hereditary, monadically independent graph class efficiently interprets the
class of all graphs.

Recall that monadically independent classes were defined as those which transduce the class
of all graphs. For hereditary classes, the above result strengthens this definition: interpretations
are a more restrictive version of transductions, that do not include a nondeterministic coloring
step. Moreover, efficient interpretations come with a polynomial time algorithm which, given an
arbitrary input graph G, outputs a graph in C in which G is encoded. This allows to reduce the
model checking problem for all graphs to the model checking problem on the class C, thus proving
Theorem 1.7.

On the combinatorial side, we show that no hereditary, monadically independent graph class is
small, has almost bounded twin-width, or has almost bounded flip-width. Let us quickly explain the
three notions.

A graph class C is small if it contains at most n!cn distinct labeled n-vertex graphs, for some
constant c. This notion has been studied in enumerative combinatorics [42, 46]. It is known that
all classes of bounded twin-width are small [10]. The converse implication was conjectured, and
was subsequently refuted [6]. In the context of ordered graphs, it was shown that all small classes
of ordered graphs have bounded twin-width [7]. We prove the following.

Theorem 1.9. Every hereditary, small graph class is monadically dependent.

Say that a class C of graphs has almost bounded twin-width if for every ε > 0 the twin-width of
every n-vertex graph G ∈ C is bounded by Oε,C(nε). We prove the following.

Theorem 1.10. Every hereditary, almost bounded twin-width graph class is monadically dependent.

In [55], a family of graph-width parameters called flip-width of radius r, for r ⩾ 1, is introduced,
together with the ensuing notion of classes of almost bounded flip-width. Classes of almost bounded
flip-width include all nowhere dense classes, all classes of bounded twin-width, and more generally,
and all classes of almost bounded twin-width. It is conjectured that for hereditary graph classes,
almost bounded flip-width coincides with monadic dependence:
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Conjecture 1.11 ([55]). A hereditary graph class C has almost bounded flip-width if and only if it
is monadically dependent.

We prove one implication of this conjecture.

Theorem 1.12. Every hereditary, almost bounded flip-width graph class is monadically dependent.

Relation of the Patterns to Other Work

Our forbidden patterns characterization Theorem 1.6 generalizes similar previous characterizations.
Recall that monadic dependence is captured by monadic stability, for hereditary orderless graph
classes, and by bounded twin-width, for hereditary classes of ordered graphs. The results [20, 7]
characterizing monadic dependence in those two settings can be restated as follows.

• For orderless graph classes, a class C is monadically dependent if and only if for every r ∈ N
there exists k ∈ N such that no graph in C contains a flipped star r-crossing or clique r-crossing
of order k as an induced subgraph [20].

• For classes of ordered graphs, a class C is monadically dependent if and only if there exists
k ∈ N and a specific, finite family of ordered graphs with 2k vertices (similar to a matching on
2k vertices ordered suitably) which are avoided by C as semi-induced ordered subgraphs [7]
(see Theorem 19.16 for a formulation).

Our approach towards proving the forbidden patterns characterization and model checking hard-
ness originates in [20] and [7]. As a result, we reprove some of their results. A subset of the patterns
identified in this paper are sufficient to characterize monadic dependence in the setting of order-
less graph classes. As orderless classes cannot contain large half-graph crossings or comparability
grids, Theorem 1.6 implies the result of [20] characterizing monadically stable classes in terms of
forbidden induced subgraphs. It is worth noting that in [20], for hereditary, orderless, monadically
independent graph classes, hardness is shown even for existential model checking. Adapting our
results to the setting of binary structures, we show how to derive the characterization from [7] of
monadically dependent classes of ordered graphs in terms of forbidden patterns.

A recent paper by Braunfeld and Laskowski shows that a hereditary class of relational structures
is monadically dependent if and only if it is dependent [12]. Dependence is a generalization of
monadic dependence studied in model theory. For the special case of graph classes, our Theorem 1.8
reproves that result. Similarly to our paper, the proof of Braunfeld and Laskowski exhibits certain
large configurations (called pre-coding configurations) in classes that are monadically independent.
As pre-coding configurations are defined in terms of formulas with tuples of free variables, these
results are not a purely combinatorial characterization of monadically dependent graph classes. In
particular, they seem insufficient for obtaining algorithmic hardness results. However, we believe
that one could also prove Theorem 1.9, stating that small, hereditary classes are dependent, using
the results of [12].

In [27], Eppstein and McCarty prove that many different types of geometric graphs have un-
bounded flip-width, and in fact [27, App. A], form monadically independent graph classes. These
include interval graphs, permutation graphs, circle graphs, and others. It is shown that these
classes contain large interchanges, which are similar to 1-subdivided cliques, and to our patterns.
Containing interchanges of arbitrarily large order is a sufficient, but not necessary condition to
monadic independence.
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2 Technical Overview

All our proofs are fully constructive and only use elementary tools such as Ramsey’s theorem.

Insulators. In order to prove flip-breakability for a graph G and a large set W ⊆ V (G), we try to
enclose a sizeable subset W⋆ ⊆ W in a structure A that “insulates” the elements of W⋆ from each
other, and from external vertices that are not enclosed in A. We call this structure A an insulator
(Definition 5.2). It is a grid-like partition of a subset of V (G). An example is shown on the left
side of Figure 5 (in general, each cell may contain more than one vertex).

Roughly speaking, there is a coloring of the vertex set, using a bounded number of colors, such
that the adjacency between a pair of vertices in non-adjacent rows of the grid is determined only
by their colors. For a pair of vertices in adjacent rows, the adjacency is determined by their colors
and the order of their columns. Finally, the adjacencies between vertices in the exterior of the grid
and the vertices inside the grid (without the first and last column, and last row) are determined by
their colors. Exceptionally, the connections within the top row and between adjacent cells of the
grid may be arbitrary.

The large subset W⋆ ⊆W is distributed in the bottom row of the insulator, in a way such that
every vertex of W⋆ is contained in a different column. Assume the insulator has height at least r.
We can choose two large subsets A and B of W⋆, such that for any two vertices v ∈ A and w ∈ B,
it takes at least r steps along edges which are not controlled by the insulator to get from v to w.

W⋆⊆W A B

Figure 5: Left: An insulator surrounding the set W⋆. The shown stacked half-graph layout is easily described
by a bounded number of colors and the column order. A bounded number of flips are sufficient to ensure the
highlighted subsets A ⊆W⋆ and B ⊆W⋆ have distance larger than 4. The shades of red and blue highlight
upper bounds on the distance of other vertices to A and B. In particular, all unshaded vertices have distance
larger than two to these sets.

Given r ∈ N, we strive for insulators of height r, where the number of colors is bounded by
some constant, depending on r. Thus, if we embed large sets A,B in such an insulator and coarsen
the columns as shown on the right side of Figure 5, we can ensure with a bounded number of flips
(depending on the number of colors) that edges only go between adjacent cells, and thus A and B
have distance at least r. Hence, we can use the insulators to obtain flip-breakability.

Constructing Insulators or Prepatterns. One can trivially construct an insulator of height
one that embeds a set W : Build a single row by placing every vertex of W into a distinct cell. The
central step of our construction, presented in Part I, takes a large insulator of height r, and adds
another row on top to obtain a still-large insulator of height r+ 1. To this end, we build upon and
significantly extend techniques developed in the context of flip-flatness [22], based on indiscernible
sequences, a fundamental tool in model theory.

Given a large insulator of height r in any graph G, the key step in our construction shows that
there is either enough disorder to connect the topmost row of the grid into a preliminary pattern,
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called prepattern (Definition 6.3), resembling a crossing (Figure 6, left), or enough order to add an
additional row r + 1 on top (Figure 6, right). While both cases reduce the number of columns in
the insulator, there still remains a large number of them.

enough disorder enough orderor

+1

Figure 6: In every graph, we can either increase the height of an insulator of find a large prepattern.

We define prepattern-free classes (Definition 6.4) by excluding certain prepatterns. In such
classes, we therefore always find enough order to construct large insulators row-by-row (Proposi-
tion 7.10). We say that such classes have the insulation property (Definition 7.2). By the arguments
outlined in Figure 5, such classes are easily shown to be flip-breakable (Proposition 8.1). Lastly,
using the locality property of first-order logic, it is easy to show that flip-breakable classes are
monadically dependent (Proposition 8.8). Thus, any graph class satisfies the following chain of
implications.

prepattern-free
Prop. 7.10
====⇒ insulation property

Prop. 8.1
====⇒ flip-breakable

Prop. 8.8
====⇒ mon. dependent

Cleaning Up Prepatterns. Afterwards, in Part II, we clean up the prepatterns. This in-
volves heavy use of Ramsey’s theorem to regularize the patterns until we either obtain a flipped
star/clique/half-graph crossing, or a comparability grid. From such patterns one can trivially
transduce all graphs. This is summarized by the following chain of implications.

¬prepattern-free
Def.⇐=⇒ large prepatterns

Prop. 10.14
====⇒ large patterns

Prop. 12.22
====⇒ mon. independent

Hence, by contrapositive, monadic dependence implies prepattern-freeness. Together with the
previous chain of implications, we obtain the desired equivalences.

insulation property ⇐⇒ flip-breakable ⇐⇒ no large patterns ⇐⇒ mon. dependent

Hardness. Consider a hereditary class C that is monadically independent. As discussed, C con-
tains large patterns witnessing this. To obtain hardness of model checking, we reduce from the
model checking problem in general graphs. This requires an encoding of an arbitrary graph into a
large pattern, using a first-order formula. We know that when adding colors, such an encoding is
possible: classes that are monadically independent transduce the class of all graphs. However, for
our reduction we require encodings that do not use colors: we want to show that every hereditary
class that is monadically independent interprets the class of all graphs. Here, an interpretation is
a transduction that does not use colors and where instead of taking arbitrary induced subgraphs,
the vertex set of the interpreted graph must be definable in the original graph by a formula δ(x).
Heavily relying on the fact that in hereditary classes we can take induced subgraphs before applying
the interpretation, it is not too hard to show that for each r ⩾ 1, the hereditary closures of the
class of all comparability grids and the classes of all non-flipped star/clique/half-graph r-crossings
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interpret the class of all graphs. The main challenge is to “reverse” the flips using first-order for-
mulas in the case of flipped r-crossings. This is achieved by using sets of twins to mark layers of
the r-crossing.

3 Conclusions and Future Work

In this paper, we obtain the first combinatorial characterizations of monadically dependent graph
classes, which open the way to generalizing the results of sparsity theory to the setting of hereditary
graph classes. Our main results, Theorem 1.3 and Theorem 1.6, may be seen as analogues of the
result [43] characterizing nowhere dense graph classes as exactly the uniformly quasi-wide classes
[16], and the result [2, 49] characterizing nowhere dense classes as exactly those, whose monotone
closure is monadically dependent.

Central results in sparsity theory, characterizing nowhere dense classes, can be usually grouped
into two types: qualitative characterizations and quantitative characterizations. Qualitative charac-
terizations typically say that for every radius r, some quantity is bounded by a constant depending
on r for all graphs in the class. Our two main results fall within this category.

On the other hand, quantitative characterizations of nowhere dense classes are phrased in terms
of a fine analysis of densities of some parameters, such as degeneracy, minimum degree, weak
coloring numbers, neighborhood complexity, or VC-density; those results almost always involve
bounds of the form nε or n1+ε, where n is the number of vertices of the considered graph, and
ε > 0 can be chosen arbitrarily small. For instance, given a nowhere dense graph class C, for every
fixed r ∈ N and ε > 0, all graphs G whose r-subdivision is a subgraph of a graph in C satisfy

|E(G)| ⩽ OC,r,ε(|V (G)|1+ε).

Similarly, a parameter called the weak r-coloring number (for any fixed r ∈ N, ε > 0), is bounded
by OC,r,ε(n

ε), for every n-vertex graph G in a nowhere dense class.
Both the qualitative and quantitative results are of fundamental importance in sparsity theory,

and lifting them to the setting of monadically dependent graph classes is therefore desirable. Some
of the most elaborate results of sparsity theory combine both aspects of the theory. In particular
for nowhere dense model checking [38], the splitter game [38] – a qualitative characterization – is
combined with the quantitative characterization in terms of weak coloring numbers. The character-
ization in terms of the splitter game relies on uniform quasi-wideness, and has been extended to the
setting of monadically stable graph classes, in terms of the flipper game [32], which in turn relies
on the characterization in terms of flip-flatness. Basing on this, we believe that flip-breakability
may be a first step towards obtaining a game characterization of monadic dependence.

As we observe now, our results also provide a first quantitative characterization of monadically
dependent classes. As an analogue of the notion of containing the r-subdivision of a graph as a
subgraph, we introduce the following concept of radius-r encodings. Fix an integer r ⩾ 1. Let
G = (A,B,E) be a bipartite graph with |A| = |B| = n for some n, and let A = {a1, . . . , an}
and B = {b1, . . . , bn}. Consider a graph H which is a star/clique/half-graph r-crossing with roots
a1, . . . , an and b1, . . . , bn. Recall that V (H) can be partitioned into r + 2 layers, and there are n2

distinguished r-vertex paths πi,j connecting ai and bj , for i, j ∈ [n]. Let H ′ be a graph obtained
from H by:

1. adding arbitrary edges within each layer of H,

2. removing all vertices of the paths πi,j for i, j ∈ [n] such that {ai, bj} /∈ E(G),

3. flipping pairs of layers arbitrarily.
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We call H ′ a radius-r encoding of G. In particular, every flipped star/clique/half-graph r-crossing
of order n is a radius-r encoding of the complete bipartite graph Kn,n. Moreover, the comparability
grid of order n+ 1 contains as an induced subgraph a radius-1 encoding of the complete bipartite
graph Kn,n, which can be obtained from the half-graph 1-crossing of order n + 1 by adding edges
within the three layers.

The following result follows easily from our Theorem 13.1, and from results of Dvořák [23, 24].

Theorem 3.1. Let C be a hereditary graph class. The following conditions are equivalent:

(i) C is monadically dependent,

(ii) for every real ε > 0 and integer r ⩾ 1, for every bipartite graph G such that C contains some
radius-r encoding of G, we have that |E(G)| ⩽ OC,r,ε(|V (G)|1+ε),

(iii) for every integer r ⩾ 1 there is an integer N ⩾ 1 such that for every bipartite graph G with

|V (G)| > N such that C contains some radius-r encoding of G, we have that |E(G)| < |V (G)|2
4 .

Theorem 3.1 may be a first step towards developing a quantitative theory of monadically de-
pendent classes. A challenging goal here is to generalize the characterization of nowhere denseness
in terms of weak coloring numbers, to monadically dependent classes.

Flip-width. The flip-width parameters were introduced [55] with the aim of obtaining quantita-
tive characterizations of monadic dependence. The flip-width at radius r ⩾ 1, denoted fwr(·), is
an analogue of the weak r-coloring number, and the notion of classes of bounded flip-width, and
almost bounded flip-width, generalize classes of bounded expansion and nowhere dense classes to
the dense setting. A graph class C has bounded flip-width if for every integer r ⩾ 1 there is a
constant kr such that fwr(G) ⩽ kr for all graphs G ∈ C. A hereditary graph class C has almost
bounded flip-width if for every integer r ⩾ 1 and real ε > 0 we have fwr(G) ⩽ OC,r,ε(n

ε) for all
n-vertex graphs G ∈ C. Conjecture 1.11 – equating monadic dependence with almost bounded
flip-width – therefore postulates a quantitative characterization of monadic dependence, parallel to
the characterization of nowhere denseness in terms of weak coloring numbers.

As mentioned, our results imply the forward implication of Conjecture 1.11: that every heredi-
tary class of almost bounded flip-width is monadically dependent. Theorem 3.1 might be an initial
step towards resolving the backwards direction in Conjecture 1.11, as by Theorem 3.1, Conjec-
ture 1.11 is equivalent to the following:

Conjecture 3.2. Let C be a hereditary graph class. Then the following conditions are equivalent:

(i) for every real ε > 0 and integer r ⩾ 1, for every bipartite graph G such that C contains some
radius-r encoding of G, we have:

|E(G)|
|V (G)|

⩽ OC,r,ε(|V (G)|ε),

(equivalently, by Theorem 3.1, C is monadically dependent)

(ii) C has almost bounded flip-width: For every real ε > 0 and integer r ⩾ 1, and graph G ∈ C,
we have:

fwr(G) ⩽ OC,r,ε(|V (G)|ε).

Note that the implication (ii)→(i) in Conjecture 3.2 holds, by Theorem 3.1 and Theorem 1.12.
The following conjecture would imply the converse implication.
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Conjecture 3.3. For every r ⩾ 1 there are integers s, k ⩾ 1 such that for every graph G we have:

fwr(G) ⩽ max
H

(
|E(H)|
|V (H)|

)k

,

where the maximum ranges over all bipartite graphs H such that G contains some radius-s encoding
of H as an induced subgraph.

An analogue of Conjecture 3.3 holds in the sparse setting. There, the flip-width parameters
are replaced by weak coloring numbers, and the maximum ranges over all graphs H such that
G contains some s-subdivision of H as a subgraph. Conjecture 3.3 would furthermore imply the
following characterization of classes of bounded flip-width, analogous to a known characterization
of classes with bounded expansion in terms of weak coloring numbers [56].

Conjecture 3.4. Let C be a hereditary graph class. Then the following conditions are equivalent:

(i) for every integer r ⩾ 1 there is a constant kr such that for every bipartite graph G such that
C contains some radius-r encoding of G, we have that |E(G)| ⩽ kr · |V (G)|,

(ii) C has bounded flip-width: For every integer r ⩾ 1 there is a constant kr such that for every
graph G ∈ C, we have that fwr(G) ⩽ kr.

Note that the implication (ii)→(i) follows from the results of [55] (that every weakly sparse
transduction of a class of bounded flip-width has bounded expansion). The converse implication
would resolve Conjecture 11.4 from [55], which predicts that if a class C has unbounded flip-width,
then C transduces a weakly sparse class of unbounded expansion.

Near-twins. A specific goal, not involving flip-width, which would be implied by the above
conjectures, can be phrased in terms of near-twins. Say that two distinct vertices u, v in a graph
G are k-near-twins, where k ∈ N, if the symmetric difference of the neighborhoods of u and of
v consists of at most k vertices. It is known [55] that every graph G with more than one vertex
contains a pair of (2 fw1(G))-near-twins. Consequently, for every class C of bounded flip-width
there is a constant k such that every graph G ∈ C with more than one vertex contains a pair of
k-near-twins. Similarly, if C has almost bounded flip-width then every n-vertex graph G ∈ C with
n > 1 contains a pair of OC,ε(n

ε)-near-twins.
Therefore, a first step towards Conjecture 1.11 is to prove that for all monadically dependent

classes, every n-vertex graph G ∈ C with n > 1 contains a pair of OC,ε(n
ε)-near-twins. Similarly,

a step towards Conjecture 3.4 is to prove the following consequence of Conjecture 3.3 (in the case
r = 1), stated below.

Conjecture 3.5. There is an integer s ⩾ 1 and an unbounded function f : N → N such that every
graph G with more than one vertex and no pair of d-near twins, for some d ∈ N, contains as an
induced subgraph a radius-s encoding of some bipartite graph H with |E(H)|/|V (H)| ⩾ f(d).

VC-density and Neighborhood Complexity. Another, related conjecture [20, Conj. 2] bounds
the neighborhood complexity, or VC-density of set systems defined by neighborhoods in graphs from
a monadically dependent graph class, and is phrased as follows.

Conjecture 3.6 ([20]). Let C be a monadically dependent graph class and let ε > 0 be a real. Then
for every graph G ∈ C and set A ⊆ V (G), we have that

|{N(v) ∩A : v ∈ V (G)}| ⩽ OC,ε(|A|1+ε).

This conjecture is confirmed for all nowhere dense classes [26, 48], for all monadically stable
classes [20], and for all classes of bounded twin-width [8, 50].
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4 Preliminaries

Sequences. To address and order the combinatorial objects of this paper, we use indexing se-
quences. These are sequences (usually denoted by I, J) of elements without duplicates. We denote
the sequence (1, . . . , n) also sometimes by [n]. We write I ⊆ J if I is a subsequence of J . We use
the usual comparison operators <,> to indicate the order of elements within a sequence. Given a
sequence I, and an element i ∈ I, we denote by predI(i) and succI(i) the predecessor and successor
of i in I. Moreover, if I = (a1, . . . , an), we define tail(I) := (a2, . . . , an).

Graphs. All graphs are simple and undirected. Unless a graph G is considered to be an input to
an algorithm, we do not need to assume that G is a finite graph.

The length of a path equals its number of edges. The distance between two vertex sets A and
B in a graph G, denoted by distG(A,B), is the length of a shortest path with endpoints in A and
B. Two sets A,B are non-adjacent if dist(A,B) > 1. The open and closed r-neighborhoods of a
vertex v are denoted, respectively, by

NG
r [u] = {v ∈ V (G) | distG({u}, {v}) ⩽ r}, NG

r (u) = NG
r [u] \ {v}.

The complement graph of a graph G is denoted by Ḡ. By default, graphs have no colors, but we
speak of colored graphs when we allow vertex-colors. In this case we treat the colors as a fixed set
of unary predicates which partition the vertex set, that is, each vertex has exactly one color. We
call G+ an s-coloring of G, if G+ is obtained by coloring G with s many colors.

A graph class is a set C of graphs. (In Section 17 we additionally assume that V (G) ⊆ N for
all G ∈ C, and that C is closed under isomorphism, but this assumption is not essential in other
sections.) A graph class C is hereditary if for every graph G ∈ C and set W ⊆ V (G) we have that
G[W ] ∈ C, where G[W ] denotes the subgraph of G induced by W .

Flips. Fix a graph G and a partition K of its vertices. We will think of K as a coloring of the
vertices of G. For every vertex v ∈ V (G) we denote by K(v) the unique color X ∈ K satisfying
v ∈ X. Let F ⊆ K2 be a symmetric relation. The flip G⊕K F of G is defined as the (undirected)
graph with vertex set V (G), and edges defined by the following condition, for distinct u, v ∈ V (G):

{u, v} ∈ E(G⊕K F ) ⇔

{
{u, v} /∈ E(G) if (K(u),K(v)) ∈ F,

{u, v} ∈ E(G) otherwise.

We call G⊕K F a K-flip of G. If K has at most k parts, we say that G⊕K F a k-flip of G. A
crucial property of flips is that they are reversible using first order-logic. We can recover the edges
of the original graph in a coloring of its flip as follows. Let H := G⊕K F and H+ be the coloring
of H where each part of K is assigned its own color. Define the symmetric binary formula

φK,F (x, y) := x ̸= y ∧
∨

X,Y ∈K
x ∈ X ∧ y ∈ Y ∧

(
E(x, y) XOR (X,Y ) ∈ F

)
.

We now have G |= E(u, v) ⇔ H+ |= φK,F (u, v).

Logic. All formulas are over the signature of (possibly colored) graphs. Let α(x; y1, . . . , yk) be a
formula, with free variables partitioned into x and y1, . . . , yk, as indicated by the colon. Given a
graph G, vertices v1, . . . , vk, and a set U ⊆ V (G), we denote

α(U ; v1, . . . , vk) := {u ∈ U : G |= α(u; v1, . . . , vk)}.
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Let G+ be a graph with colors U1, . . . , Ul. The atomic type of a tuple v̄ = (v1, . . . , vk) of
vertices in G+ is the quantifier-free formula α(x1, . . . , xk) defined as the conjunction of all literals
β(x1, . . . , xk) (that is, formulas xi = xj , E(xi, xj), U1(xi), . . . , Ul(xi), or their negations) such that

G+ |= β(v̄).

We write atpG+(v1, . . . , vk) to denote the atomic type of v̄ in G+.

Transductions and Monadic Dependence. In the Introduction we defined the notions that a
graph class C transduces a graph class D, and that a graph class C is monadically dependent. See
Section 19.1 for a more formal treatment.

Computation Model. Our proofs are effective. In the algorithmic statements, we assume that
the input graph is represented by its adjacency matrix. We assume the standard word RAM model
of computation, with machine words of length O(log n), where n is the size of the input. In this
model, it is possible to store each vertex of the input graph in a single machine word, and to
determine the adjacency of two vertices in time O(1).

Asymptotic Notation. We introduce two new notations that simplify our statements and
proofs.

const(p1, . . . , pk) denotes a natural number, only depending on the parameters p1, . . . , pk.

We allow parameters of any kind, in particular, graph classes. Moreover, as an analogue of the
O-notation,

Up1,...,pk(n) denotes an anonymous function that is non-negative and unbounded in n,
and only depends on the parameters p1, . . . , pk.

More precisely, the ith occurrence of the notation Up1,...,pk(n) in the text should be interpreted
as f ip1,...,pk(n), for some fixed unbounded function f ip1,...,pk : N → N that depends only on the
parameters p1, . . . , pk and i. To illustrate the use, we state Ramsey’s theorem with this notation.

Example 4.1. For every k-coloring of the edges of the complete graph on vertex set [n], there
exists a set X ⊆ [n] of size Uk(n) which induces a monochromatic clique.

Ramsey Theory. For ℓ ∈ N and a set I, let I(ℓ) denote the set of subsets J ⊆ I of size ℓ.

Lemma 4.2 (Ramsey’s Theorem, [51]). For every k, ℓ, n ∈ N there exists N ∈ N such that for
every

c : [N ](ℓ) → [k]

there is some I ∈ [N ](n) such that c(J) = c(J ′) for all J, J ′ ∈ I(ℓ).

Moreover, there is a function f : N3 → N such that for every k, ℓ ∈ N the function m 7→ f(k, ℓ,m) is
monotone and unbounded, and there is an algorithm that, given numbers k, ℓ,m ∈ N and a function
c : [m](ℓ) → [k], computes in time Ok,ℓ(m

ℓ) a set I ⊆ [m] of size f(k, ℓ,m) such that c(J) = c(J ′)
for all J, J ′ ∈ I(ℓ).
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See, e.g., [51, Thm. C] or [35, Thm. 5.4] for a (standard) proof of Lemma 4.2. The “moreover”
part of the statement above follows by tracing the construction, which proceeds by induction on ℓ,
where in each stage of the construction we iterate over some subset of [m].

For a pair (a, b) of elements of a linearly ordered set (A,⩽), let otp(a, b) ∈ {<,=, >} indicate
whether a < b, a = b, or a > b holds. For ℓ ⩾ 1 and an ℓ-tuple of elements a1, . . . , aℓ of a
linearly ordered set (A,⩽), define the order type of (a1, . . . , aℓ), denoted otp(a1, . . . , aℓ) as the
tuple (otp(ai, aj))1⩽i<j⩽ℓ.

We now reformulate Ramsey’s theorem using the U -notation, and also so that it talks about
ℓ-tuples, rather than ℓ-element subsets.

Lemma 4.3 (Reformulation of Ramsey’s Theorem). For every k, ℓ, n and coloring

c : [n]ℓ → [k]

there is a subset I ⊆ [n] of size Uk,ℓ(n) such that c(a1, . . . , aℓ) depends only on otp(a1, . . . , aℓ), for
all (a1, . . . , aℓ) ∈ Iℓ.

Moreover, there is an algorithm that, given c, computes I in time Ok,ℓ(n
ℓ).

The conclusion of the lemma means that there is a function f such that c(a1, . . . , aℓ) =
f(otp(a1, . . . , aℓ)), for all (a1, . . . , aℓ) ∈ Iℓ.

Lemma 4.4 (Bipartite Ramsey Theorem). For every k, ℓ1, ℓ2, n and coloring

c : [n]ℓ1 × [n]ℓ2 → [k]

there are subsets I1, I2 ⊆ [n] of size Uk,ℓ1,ℓ2(n) such that c(ā, b̄) depends only on otp(ā) and otp(b̄),

for all ā ∈ Iℓ11 and b̄ ∈ Iℓ22 .

The conclusion of the lemma means that there is a function f such that c(ā, b̄) = f(otp(ā), otp(b̄)),
for all ā ∈ Iℓ11 and b̄ ∈ Iℓ22 .

Proof. Set ℓ = ℓ1 + ℓ2. The coloring c can be viewed as a coloring c : [n]ℓ → [k]. By Lemma 4.3,
there is a subset I ⊆ [n] of size Uk,ℓ(n) such that the restriction of c to I is homogeneous, that
is, c(ā) depends only on otp(ā) for ā ∈ Iℓ. We can assume that |I| is even. Let I1 be the first
|I|/2 elements of I ⊆ [n], and I2 be the remaining |I|/2 elements of I. Then |I1| = |I2| ⩾ Uk,ℓ(n).

Let (ā, b̄), (ā′, b̄′) ∈ Iℓ11 × Iℓ22 be two pairs such that otp(ā) = otp(ā′) and otp(b̄) = otp(b̄′). Then
otp(ā, b̄) = otp(ā′, b̄′), since otp(a, b) = < for all a ∈ I1 and b ∈ I2. Therefore, c(ā, b̄) = c(ā′, b̄′), by
homogeneity of c restricted to I.
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Part I

Structure

In this part we define three tameness conditions for graph classes:

• Prepattern-freeness: the absence of certain combinatorial obstructions called prepatterns.

• Insulation property : the ability to guard any vertex set using so-called insulators.

• Flip-breakability : the ability to break any vertex set into two distant parts using few flips.

We show that for any graph class the following implications hold:

prepattern-free ⇒ insulation-property ⇒ flip-breakable ⇒ mon. dependent

We later close the circle of implications in Part II, where we show:

not prepattern-free ⇒ large flipped crossings/comparability grids ⇒ mon. independent

5 Grids and Insulators

Grids. The most basic building block of this section is the notion of grids.

Definition 5.1 (Grids). Fix a non-empty sequence I and an integer h ⩾ 1. A grid A indexed by
I and of height h in a graph G is a collection of pairwise disjoint sets A[i, r] ⊆ V (G), for i ∈ I and
r ∈ [h], called cells. Each grid is either tagged as orderless or ordered.

To facilitate notation, we often assume, up to renaming, the indexing sequence to be I =
(1, . . . , n). We do so in the following. For subsets J ⊆ I and R ⊆ [h], we write A[J,R] =⋃

i∈J,r∈RA[i, r]. We often use implicitly defined sets via wildcards and comparisons. For example

A[⩽i, ∗] stands for A
[
{1, . . . , i}, [h]

]
. In particular, we use A[i, ∗] :=

⋃
r∈[h]A[i, r] and A[∗, r] :=⋃

i∈I A[i, r], and refer to those sets as to columns and rows of A, respectively. In slight abuse of
notation, we often write A instead of A[∗, ∗] to denote the set of all elements inside the grid. We
define the interior of A as int(A) := A \ (A[1, ∗]∪A[n, ∗]∪A[∗, h]). Moreover, we say two columns
A[i, ∗] and A[j, ∗] are close, if |i − j| ⩽ 1 and two rows A[∗, r] and A[∗, t] are close, if |r − t| ⩽ 1.
Two cells are close if their respective columns and rows are close.

Note that unlike standard matrix notation, to highlight the hierarchical relationship between
columns and rows, our notation A[i, r] first mentions the column index i ∈ I and then the row
index r ∈ [h].

Insulators. The following notion of insulators serves a twofold purpose. On the one hand,
insulators enforce the necessary structure to obtain flip-breakability (see Section 8). On the other
hand, in Part II, we use insulators to build the patterns presented in Theorem 1.6.

Definition 5.2 (Insulators). An insulator A = (A,K, F,R) indexed by a sequence I of height h
and cost k in a graph G consists of

• a grid A indexed by I and of height h,

• a partition K of V (G) into at most k color classes,

• a symmetric relation F ⊆ K2 specifying a flip G′ := G⊕K F ,

• a relation R ⊆ K2.
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We furthermore say that A is orderless (ordered), if A is orderless (ordered).

If A is orderless, we demand:

(U.1) For all i ∈ I there exists ai ∈ V (G) such that

A[i, 1] = {ai} and A[i,⩽r] = NG′
r−1[ai] for all r ∈ [h].

▶ In particular, a column of an orderless insulator is just the radius h− 1 ball in a k-flip
around single vertex sitting in the bottom cell of that column.

If A is ordered, we demand:

(O.1) If two vertices are in different rows of A, then they have different colors in K.

▶ This technical property ensures that the rows of the insulator are sufficiently distin-
guishable. We will use this to argue that certain modifications on the insulator can be
performed without increasing its cost.

(O.2) Every vertex v ∈ A[i, r] with r > 1, i ∈ I has a neighbor in the cell A[i, r − 1] in G′.

▶ The mandatory downward edge, together with (O.4.2) and (O.5), ensures that each
column is cohesive: we will later observe that the columns of the insulator are first-order
definable. This property is crucial to obtain hardness results.

(O.3) For every v /∈ A[∗, ∗] and X ∈ K we require that v is homogeneous to X ∩ int(A) in G
(that is, either all or no vertices in X ∩ int(A) are adjacent to v).

▶ The inside of the insulator is “insulated” from its outside: the adjacencies between the
two are described using only colors.

(O.4) For every u ∈ A[i, r] with r < h, i ∈ I and v ∈ A we have the following:
(Up to renaming, we assume I = (1, . . . , n).)

(O.4.1) If u and v are in rows that are not close and u ∈ int(A),
then they are non-adjacent in G′.

(O.4.2) If v ∈ A[<i, r − 1] ∪A[>i, r + 1], then u and v are non-adjacent in G′.

(O.4.3) If v ∈ A[>i+ 1, {r, r − 1}], then G |= E(u, v) ⇔ (K(u),K(v)) ∈ R.

(O.4.4) If v ∈ A[<i− 1, {r, r + 1}], then G |= E(u, v) ⇔ (K(v),K(u)) ∈ R.

Otherwise, we make no claims regarding the adjacency of u and v.

▶ Properties (O.4.1), (O.4.3), and (O.4.4) provide vertical and horizontal insulation inside
the insulator. Property (O.4.2) helps to keep each column cohesive. See Figure 7 for an
illustration.

u

A[1, 1]

A[n, h]

depends on
R(K(u), ◦)

non-adjacent

depends on
R(◦,K(u))

non-adjacent

Figure 7: Illustration of how (O.4) controls the adjacency of a vertex u within the insulator.
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(O.5) There exists a bound r < h and a k-flip H of G such that for every two distinct vertices
u, v ∈ A[∗, 1].

NH
r [u] ∩NH

r [v] = ∅.

Moreover, there are vertices {b(v) ∈ NH
r [v] : v ∈ A[∗, 1]} and {ci ∈ V (G) : i ∈ I} and a

symbol ∼ ∈ {⩽,⩾} such that for every i, j ∈ I, v ∈ A[j, 1] and

G |= E(ci, b(v)) if and only if i ∼ j.

▶ This property orders the columns. It will later be used to first-order define the columns
as intervals in the order.

Observation 5.3. Every orderless insulator A = (A,K, F,R) where F = R also satisfies the
properties (O.2), (O.3), and (O.4) of an ordered insulator. Since the requirements of an orderless
insulator put no restrictions on R, in the orderless case we can always assume F = R.

Two example insulators are depicted in Figure 8.

Figure 8: On the left: an orderless insulator. Each column is just the ball (in a flip) around the single vertex
of its bottom cell. Apart from the boundary, there are no connections in between columns. On the right: an
ordered insulator. It contains connections between columns, but they are well controlled by property (O.4).
Property (O.5) is witnessed by the highlighted vertices. The purple b(·) vertices are contained in disjoint
radius r = 1 balls around the vertices of the bottom cell. They are preordered by the yellow c(·) vertices.

We will often identify an insulator A and its underlying grid A, and write, for example v ∈ A
to indicate that v ∈ A[∗, ∗]. We start by observing basic properties of insulators. The following
property will be crucial to obtain the model checking hardness result.

Lemma 5.4. The columns of an insulator are definable in first-order logic in a coloring of G.

More precisely: Let A be an insulator with grid A of cost k and height h indexed by I in a graph G.
There exists a formula α(x, y) (depending only on k and h), a const(k, h)-coloring G+ of G, and
vertices {ai : i ∈ I} such that for each i ∈ I

A[i, ∗] = {v ∈ V (G) : G+ |= α(v, ai)}.

We do not rely directly on this lemma, as we will later further process insulators before proving
hardness. However, we sketch a proof for instructive purposes.

Proof sketch for Lemma 5.4. All the formulas we write will work in a const(k, h)-coloring G+ of
G, but we omit the details of the coloring to streamline the presentation. If A is orderless we use
property (U.1). The ai vertices are the singleton vertices in the bottom row of A and the formula
α(x, y) is defined as
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“x and y are at distance at most h− 1 in the flip G′ of G”.

If A is ordered, we use (O.5). There is a formula β(x, y) that defines b(v) for each v ∈ A[i, ∗]:

“x is a b-vertex and contained in the r-ball around y in the flip H of G”.

Building on β, there is a formula γ(x, y) which, given v ∈ A[j, ∗], defines {ci : R(i, j), i ∈ I}:

“x is a c-vertex and adjacent to b(y) in G”.

As R ∈ {⩽,⩾}, we can now define a preorder ≺ on the vertices of the bottom row A[∗, 1] which
respects the column order by comparing their γ-neighborhoods:

x ≺ y := ∃z : γ(z, x) ∧ ¬γ(z, y) or x ≺ y := ∃z : ¬γ(z, x) ∧ γ(z, y)

depending on the choice of R. We choose an arbitrary vertex ai of each cell A[i, 1] of the bottom row.
Using the preorder, we can write a formula α1(x, y) that defines A[i, 1] from ai as its equivalence
class in the preorder. For 1 < r ⩽ h, we can now inductively write a formula αr(x, y) that defines
A[i,⩽r] from ai as all the vertices that are already in A[i, <r], or adjacent to A[i, <r] but not to
A[i− 1, <r] in G′. Here we again use the preorder to define A[i− 1, <r] from ai. The correctness
for vertices inside A follows from the properties (O.2) and (O.4.2). Vertices from outside A can be
marked in the coloring and ignored. Setting α := αh finishes the proof sketch.

Definition 5.5 (Subgrids and subinsulators). Let A be a grid indexed by a sequence J and of
height h in a graph G. For every subsequence I ⊆ J of length at least two we define the subgrid
A|I as the grid indexed by tail(I) and of height h, containing the following cells. For all i ∈ tail(I)
and r ∈ [h], depending on whether A is orderless or ordered, we respectively set

A|I [i, r] := A[i, r] or A|I [i, r] :=
⋃

{A[m, r] : m ∈ I and predI(i) < m ⩽ i}.

A|I is ordered (orderless) if and only if A is ordered (orderless). See Figure 9 for a depiction. For ev-
ery insulator (A|I ,K, F,R) indexed by J , we moreover define the subinsulator A|I := (A|I ,K, F,R).
The upcoming Lemma 5.9 will prove the validity of this definition.

Figure 9: On the left/right: a subgrid of an orderless/ordered grid. The original grid A is depicted in gray.
The dots at the bottom represent the sequence J indexing A. The subsequence I ⊆ J is marked with circles.
The subgrid A|I is overlaid in red. It is indexed by tail(I).

For an ordered insulator A, in the definition of a subinsulator A|I , it is necessary that the
indexing sequence tail(I) of A|I excludes the first element of I: each i ∈ I represents the interval
(predI(i), i] which is undefined for the first element of I. In orderless insulators this problem does
not arise, but we choose to also exclude the first element of I to allow for uniform proofs which
do not distinguish between the two. The following observation about subgrids is crucial to their
definition and will later be used to build well-behaved subgrids using Ramsey-arguments.
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Lemma 5.6. Let A be a grid indexed by J and of height h in a graph G. For every subsequence
I ⊆ J of length at least two, in the subgrid A|I , the content of the column A|I [i, ∗] depends only
on A, i and predI(i), instead of the whole sequence I. More precisely, there exists a function
MA : J × J → 2V (G) such that for every I ⊆ J and i ∈ tail(I) we have

A|I [i, ∗] = MA(predI(i), i).

Proof. We define the function µA : J × J × [h] → 2V (G) as follows. For all i < j ∈ J and every
r ∈ [h], depending on whether A is orderless or ordered, we respectively set

µA(i, j, r) := A[j, r] or µA(i, j, r) :=
⋃

{A[m, r] : m ∈ I and i < m ⩽ j}.

We can now define for all i < j ∈ J

MA(i, j) :=
⋃
r∈[h]

µA(i, j, r).

Observation 5.7 (Transitivity). Let A be a grid indexed by I0, I1 be a subsequence of I0, and I2
be a subsequence of tail(I1). If B = A|I1 and C = B|I2 then C = A|I2.

Observation 5.8 (Monotonicity and Coverability). Let A be a grid indexed by J of height h and
I be a subsequence of J . For all i ∈ tail(I) and r ∈ [h] we have

A[i, r] ⊆ A|I [i, r] ⊆
⋃

{A[m, r] : m ∈ I and predI(i) < m ⩽ i}.

We finally show that taking a subinsulator preserves its good properties without increasing
its cost.

Lemma 5.9. Let A = (A,K, F,R) be an insulator indexed by J on a graph G. For every subse-
quence I ⊆ J we have that A|I := (A|I ,K, F,R) is also an insulator on G.

Proof. Up to renaming, we assume J = (1, . . . , n). Let B := A|I and G′ := G⊕KF . In the orderless
case, as the graph G′ remains the same and B is obtained from A by just dropping columns, it is
easy to see that (U.1) still holds. It remains to check the ordered case.

• To prove (O.1) and (O.4), we observe that for every i ∈ I and r ∈ [h]

B[∗, r] ⊆ A[∗, r] and B[< i, r] ⊆ A[< i, r] and B[> i, r] ⊆ A[> i, r].

Property (O.1) follows directly. To prove, for example, (O.4.4), assume u ∈ B[i, r] and
v ∈ B[< i−1, {r, r+ 1}]. Then also u ∈ B[> predI(i), r] and v ∈ B[< predI(i), {r, r+ 1}]. As
argued above, u ∈ A[> predI(i), r] and v ∈ A[< predI(i), {r, r + 1}]. By property (O.4.4) of
A, we have G |= E(u, v) ⇔ (K(v),K(u)) ∈ R, as desired. The remaining statements of (O.4)
follow similarly.

• To prove (O.2), let u ∈ B[i, r] for r > 1 and let us show that u has a neighbor in B[i, r − 1]
in G. By construction, we have u ∈ A[i′, r] for some predI(i) < i′ ⩽ i. By (O.2) of A, u has
a neighbor v in A[i′, r − 1] in G′. Again by construction, A[i′, r − 1] ⊆ B[i, r − 1], so also
v ∈ B[i, r − 1].

• For (O.3) to hold we must check, for every u /∈ B and X ∈ K, that u is homogeneous to
XB := X ∩ int(B) in G. As G′ is a K-flip of G, we can check the property in G′ instead. If
u /∈ A this holds as XB ⊆ int(A) and (O.3) was already true in A.
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Assume now u ∈ A[i, r] \ B for some i ∈ J and r ∈ [h]. As we already established (O.1),
we know that all vertices from XB are in the same row B[∗, r′] ⊆ A[∗, r′] for some r′ ∈ [h].
If |r − r′| > 1 then u and XB are non-adjacent in G′ as A satisfies (O.4). Now assume
|r− r′| ⩽ 1. Let i0, i1, . . . , in be the continuous subsequence of J where i0 and in are the first
and last elements of I. By construction, we have

B[∗, ∗] = A[{i1, . . . , in}, ∗] and int(B) = A[{i2, . . . , in−1}, <h].

Since u /∈ B we have i < i1 or in < i. Assume i < i1. Then we have XB ⊆ A[⩽i1, r′] ⊆
A[>i, r′], and we can again use (O.4) of A. Now if r′ = r + 1 then u is non-adjacent to XB

in G′. If r′ ∈ {r, r − 1} then u is adjacent to all of XB if (K(u), X) ∈ R and non-adjacent to
all of XB otherwise. In each case u is homogeneous to XB. The case where in < j follows by
a symmetric argument.

• The property (O.5) of A is witnessed by

– a symbol ∼ ∈ {⩽,⩾},

– a k-flip H, and

– vertices {b(v) ∈ V (G) : v ∈ A[∗, 1]} and {ci ∈ V (G) : i ∈ J}.

To witness (O.5) of B, we use ∼, H, {b(v) ∈ V (G) : v ∈ B[∗, 1]}, and

– {ci′ : i′ = succJ(predI(i)), i ∈ tail(I)} if (∼) = (⩽), or

– {ci : i ∈ tail(I)} if (∼) = (⩾).

6 Prepatterns

Throughout the following sections, we will either make progress constructing large insulators, or
will obtain the following kind of preliminary patterns, which are then processed further in Part II.

Definition 6.1. Let A be an insulator indexed by a sequence K with grid A in a graph G. Say
that G contains a bi-prepattern of order t on A if there exist

• index sequences I, J ⊆ K of size t and with |I| = |J | = t,

• vertices ci,j ∈ V (G) for all i ∈ I, j ∈ J ,

• quantifier-free formulas α1(x; y, s1) and α2(x; y, s2) with parameters s1, s2 ∈ V (G),

• symbols ∼1,∼2∈ {=, ̸=},

such that for all i ∈ I, j ∈ J ,

i = min
{
i′ ∈ I : α1(A[i′, ∗]; ci,j , s1) ∼1 ∅

}
,

j = min
{
j′ ∈ J : α2(A[j′, ∗]; ci,j , s2) ∼2 ∅

}
.

Let us give some intuition for the above definition. The bi-prepattern consists of two sequences
of columns indexed by I and J . For each pair of columns (i, j) ∈ I×J , there exists a private vertex
ci,j pairing them up in the following sense. Column i is the first column in I, in which

• ci,j has no α1-neighbor (if ∼1 is =), or

• ci,j has an α1-neighbor (if ∼1 is ̸=).

Similarly, j is the first column in J in which has an α2-neighbor (resp. no α2-neighbor). Figure 10
(left) illustrates this column pairing.
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Figure 10: Schematic depiction of a bi-prepattern (left) and mono-prepattern (right).

This pairing aspect will be used later to argue that large bi-prepatterns witness monadic inde-
pendence (or equivalently: they are obstructions for monadic dependence). By Lemma 5.4, each
column of the insulator can be first-order defined from a single representative vertex. Bi-prepatterns
therefore logically resemble 1-subdivided bicliques, where the column representatives are the prin-
ciple vertices and the vertices ci,j form the subdivision vertices. Subdivided bicliques of unbounded
size are witnesses for monadic independence: they encode arbitrary bipartite graphs by coloring
the subdivision vertices. Therefore, bi-prepatterns may be thought of as obstructions to monadic
dependence. Moreover, by the strong structure properties of insulators and since α1 and α2 are
quantifier-free, we can use bi-prepatterns to later extract from them our concrete forbidden induced
subgraph characterization.

In addition to the bi-prepatterns, our analysis produces a second kind of obstruction called a
mono-prepattern.

Definition 6.2. Let A be an insulator indexed by a sequence K with grid A in a graph G. Say
that G contains a mono-prepattern of order t on A if there exist

• index sequences I, J with I ⊆ K and |I| = |J | = t,

• vertices cj ∈ V (G) for all j ∈ J ,

• vertices bi,j ∈ A[i, ∗] for all i ∈ I, j ∈ J ,

• a symbol ∼ ∈ {=, ̸=,⩽, <,⩾, >},

such that for all i ∈ I and j, j′ ∈ J ,

G |= E(cj , bi,j′) ⇔ j ∼ j′.

Similarly as in a bi-prepattern, in a mono-prepattern the cj vertices can be used to pair up
columns (i, j) ∈ I × I. While the bi-prepattern logically resembles a subdivided biclique (we pair
elements from two sequences I and J), the mono-prepattern corresponds to a subdivided clique
(we pair elements from the same sequence I). Figure 10 (right) illustrates mono-prepatterns.

Definition 6.3. G contains a prepattern of order t on an insulator A if it either contains a bi-
prepattern of order t on A or a mono-prepattern of order t on A.

Definition 6.4. A class of graphs C is prepattern-free, if for every k, r ∈ N, there exists t ∈ N such
that every graph G ∈ C does not contain prepatterns of order t on insulators of cost at most k and
height at most r in G.

We later show in Theorem 13.1 that these obstructions are exhaustive: prepattern-freeness
is equivalent to monadic dependence. In the following sections, we start by deriving structural
properties of prepattern-free classes.
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7 The Insulation Property

Towards proving that prepattern-free classes are flip-breakable, we first show that they possess a
more fine-grained structure property which we call the insulation property.

Definition 7.1. Let A be an insulator with grid A indexed by a sequence I in a graph G and let
W ⊆ V (G). We say that A insulates W if there is a bijection f : W → I, such that for all v ∈W

v ∈ A[f(v), 1].

A set W is (r, k)-insulated in G if there is an insulator A of height r and cost k that insulates W .

Definition 7.2. A class of graphs C has the insulation property, if for every radius r ∈ N there
exist a function Nr : N → N and a constant kr ∈ N such that for every m ∈ N, G ∈ C, W ⊆ V (G)
with |W | ⩾ Nr(m), there is a subset W⋆ ⊆W of size at least m that is (r, kr)-insulated in G.

More briefly: C has the insulation property if for every r ∈ N, G ∈ C and W ⊆ V (G) there is a
subset W⋆ ⊆W of size UC,r(|W |) that is (r, const(C, r))-insulated in G.

The goal of this section is to prove the following.

Proposition 7.3. Every prepattern-free graph class has the insulation property.

We first notice that insulation for radius r = 1 is trivial.

Lemma 7.4. Fix a graph G. Every set W ⊆ V (G) is (1, 1)-insulated in G.

Proof. Fix any enumeration (a1, . . . , an) of W . Let A be the orderless grid indexed by the sequence
I := (1, . . . , n) and of height 1 such that A[i, 1] := {ai} for all i ∈ I. Now A := (A, {V (G)},∅,∅)
is an orderless insulator with cost and height 1 that insulates W .

In order to insulate sets with higher radii, we will grow insulators in height.

Definition 7.5 (Row-Extensions). Let A be a grid indexed by I and of height h. We say a grid B
is a row-extension of A, if it satisfies the following properties.

• B is indexed by I and has height h+ 1.

• For all i ∈ I and j ∈ [h] we have B[i, j] = A[i, j].

• Either A and B are both orderless or both ordered.

Similarly, we say an insulator B is a row-extension of an insulator A, if the grid of B is a row-
extension of the grid of A.

Depending on whether the insulator at hand is orderless or ordered, we will create row-extensions
using one of the following two insulator growing lemmas. To keep the presentation streamlined,
the (quite technical) proofs of the two lemmas are deferred to Section 10.

Lemma 7.6 (Orderless Insulator Growing). Fix k, t ∈ N. For every graph G and orderless insula-
tor A indexed by J of cost k in G, we can compute a subsequence I ⊆ J of length Ut(|J |) such that
either

• G contains a prepattern of order t on A|I
• A|I is orderable, or

• there exists a row-extension of A|I of cost const(k, t) in G.
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Moreover, there is an algorithm that, given G and A, computes the sequence I and one of the
three outcomes (a prepattern, a witnesses for A|I being orderable, or a row-extension) in time
Ok,t(|V (G)|2).

The definition of an orderable insulator will be given shortly after the following lemma.

Lemma 7.7 (Ordered Insulator Growing). Fix k, t ∈ N. For every graph G and ordered insulator
A with cost k, indexed by J in G, we can compute a subsequence I ⊆ J of length Ut(|J |) such that
either

• G contains a prepattern of order t on A|I , or
• G contains a row-extension of A|I with cost const(k, t).

Moreover, there is an algorithm that, given G and A, computes the sequence I and one of the two
outcomes (a prepattern or a row-extension) in time Ok,t(|V (G)|2).

Both insulator growing lemmas follow the same scheme. Given an insulator we find a large
subinsulator that either witnesses a lot of non-structure (in form of a prepattern), or improves the
structural guarantees of the original insulator (in form of a row-extension). In the orderless case a
third outcome may appear: the subinsulator may be orderable. Orderable insulators are orderless
insulators which can be converted into ordered ones, as made precise by the following definition
and lemma.

Definition 7.8 (Orderable Insulators). Let A be an orderless insulator with grid A indexed by
I in a graph G. We say that A is orderable if there exist vertices {bi ∈ A[i, ∗] : i ∈ I} and
{ci ∈ V (G) : i ∈ I} and a symbol ∼ ∈ {⩽,⩾} such that for all i, j ∈ I

G |= E(ci, bj) if and only if i ∼ j.

Lemma 7.9. Let A be an orderless insulator of cost k and height h in a graph G that insulates a
set W ⊆ V (G). If A is orderable, then there exists an ordered insulator B of cost k ·h and height h
that also insulates W .

Moreover, there is an algorithm that, given G and A, computes B in time Ok,h(|V (G)|).

Proof. Let A = (A,K, F, F ) be as in the statement. Let B be the grid obtained by changing
the tag of the grid A from orderless to ordered. Towards ensuring (O.1), let K⋆ be the size k · h
coloring obtained by taking the common refinement of the k-coloring K and an h-coloring that
assigns vertices from different rows in A different colors. Let F⋆ be the corresponding refinement
of F such that G ⊕K F = G ⊕K⋆ F⋆. We check that B := (B,K⋆, F⋆, F⋆) is the desired ordered
insulator. The insulator property (O.1) holds by construction. By Observation 5.3, (O.2), (O.3),
and (O.4) carry over from A. Finally, (U.1) ensures for the k-flip H := G ⊕K F and v ∈ A[i, 1]
that NH

h−1[v] = A[i, ∗]. As A moreover is orderable (cf. Definition 7.8), property (O.5) follows. The
bound on the running time is trivial.

As we know how to grow orderless insulators, turn orderless, orderable insulators into ordered
ones, and grow ordered insulators, we can now grow arbitrarily high insulators. This yields a proof
of Proposition 7.3, which we restate below with an added algorithmic conclusion.

Proposition 7.10. Every prepattern-free graph class C has the insulation property.

Moreover, there is an algorithm that, given a radius r, a graph G ∈ C and a set W , computes the
subset W⋆ ⊆W and a witnessing insulator in time OC,r(|V (G)|2).
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Proof. Fix a prepattern-free class C and r ⩾ 1. We prove that for every G ∈ C and W ⊆ V (G)
there is a subset Wr ⊆W of size UC,r(|W |) that is (r, kr)-insulated in G, for some kr ⩽ const(C, r).
This statement is proved by induction on r ⩾ 1. The base case of r = 1 follows immediately from
Lemma 7.4.

In the inductive step, assume the statement holds for some r ⩾ 1; we prove it for r + 1. Let
kr ⩽ const(C, r) be the value obtained by inductive assumption. As C is prepattern-free, there is
some number t = const(C, r) such that no graph G ∈ C contains a pattern of order t on insulators
of cost at most kr · r and height at most r in G.

Let G ∈ C and W ⊆ V (G). By the inductive assumption, there is a subset Wr ⊆ W of size
UC,r(|W |) and an insulator Ar of height r and cost const(C, r) which insulates Wr. Let J denote the
indexing sequence of Ar. We prove that there is a subset Wr+1 ⊆Wr of size UC,r(|Wr|) ⩾ UC,r(|W |)
and an insulator Ar+1 of height r + 1 and cost const(C, r) which insulates Wr+1. We consider two
cases, depending on whether Ar is orderless or ordered.

Assume first that Ar is orderless. We apply Lemma 7.6 to Ar. This yields a sequence I ⊆ J of
length Ut(|J |) such that one of the following three cases applies.

1. G contains a prepattern of order t on Ar|I .

2. G contains a row-extension Ar|I with cost const(kr, t) ⩽ const(C, r).
3. Ar|I is orderable.

We set W ′ := A[∗, 1] where A is the grid of Ar|I . By the definition of an orderless subgrid we
have W ′ ⊆Wr ⊆W and

|W ′| = |tail(I)| = |I| − 1 ⩾ Ut(|J |).

As Ar is of height r and cost kr, the same holds for Ar|I . By our choice of t, the first case cannot
apply. In the second case, the row extension of Ar|I witnesses that W ′ is (r + 1, const(C, r))-
insulated, and we conclude by setting Wr+1 := W ′. It remains to handle the third case. We
apply Lemma 7.9 to the orderable insulator Ar|I , yielding an ordered insulator B of cost kr · r and
height r that also insulates W ′. Up to renaming, we can assume that B is indexed by tail(I), the
same sequence that also indexes Ar|I . We apply Lemma 7.7 to B with k := kr · r and t. This yields
a sequence K ⊆ tail(I) with |K| = Ut(|J |) such that one of the following two cases applies.

1. G contains a prepattern of order t on B|K .

2. G contains a row-extension of B|K with cost const(k, t) ⩽ const(C, r).

By our choice of t, the first case cannot apply. In the second case, by definition of an ordered
subgrid, there exists a set Wr+1 ⊆ W ′ ⊆ W which is insulated by a row extension of B|K and has
size at least

|Wr+1| = |tail(K)| = |K| − 1 ⩾ Ut(|J |).

Wr+1 is the desired (r + 1, k)-insulated set. This concludes the case where Ar is orderless. If Ar

is ordered we can directly apply Lemma 7.7, which just improves the bounds. This completes the
inductive proof.

The induction can be easily turned into an algorithm. The trivial insulator from Lemma 7.4 can
be computed in time O(|V (G)|). The running time of the inductive step follows from the running
times of Lemma 7.6, Lemma 7.9, and Lemma 7.7.
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8 Flip-Breakability

In this section we show the following implications:

insulation property ⇒ flip-breakable ⇒ monadically dependent

For convenience, we restate the definition of flip-breakability.

Definition 1.2 (Flip-Breakability). A class of graphs C is flip-breakable if for every radius r ∈ N
there exists a function Nr : N → N and a constant kr ∈ N such that for all m ∈ N, G ∈ C and
W ⊆ V (G) with |W | ⩾ Nr(m) there exist subsets A,B ⊆ W with |A|, |B| ⩾ m and a kr-flip H of
G such that:

distH(A,B) > r.

In short, C is flip-breakable if for every r ∈ N, graph G ∈ C and W ⊆ V (G), there exist subsets
A,B ⊆W with |A|, |B| ⩾ UC,r(|W |) and a const(C, r)-flip H of G with distH(A,B) > r.

8.1 Insulation Property Implies Flip-Breakability

In this section we prove the following.

Proposition 8.1. Every graph class C with the insulation property is flip-breakable.

Moreover, if C is also prepattern-free, then there is an algorithm that, given a radius r, graph
G, and set W , computes in time OC,r(|V (G)|2) subsets A,B ⊆ W , partition K⋆, and relation
F⋆ ⊆ K2

⋆ witnessing flip-breakability. (This means |A|, |B| ⩾ UC,r(|W |), |K⋆| ⩽ const(C, r), and
distH(A,B) > r in the flip H defined by K⋆ and F⋆.)

Let W be a set of vertices in a graph G. We call W (r, k)-flip-breakable, if there exist two
disjoint sets A,B ⊆W , each of size at least 1

3 |W |, and a k-flip H of G, such that

NH
r (A) ∩NH

r (B) = ∅.

Proposition 8.1 will be implied by the following.

Lemma 8.2. Let W be a (2r+ 1, k)-insulated set of at least 18r vertices in a graph G. Then W is
(r, 248r

2k)-flip-breakable in G.

Moreover, there is an algorithm that, given a radius r, graph G, set W , and an insulator witnessing
that W is (2r+ 1, k)-insulated, computes in time Or,k(|V (G)|) the subsets A,B ⊆W , partition K⋆,

and relation F⋆ ⊆ K2
⋆ that witness the (r, 248r

2k)-flip-breakability of W .

Proof. Let A = (A,K, F,R) be the insulator of cost k and height 2r + 1 that insulates W . Since
we will only be using the insulator properties (O.3) and (O.4) and by Observation 5.3, we do not
have to distinguish whether A is orderless or ordered. Up to renaming, we can assume that A is
indexed by a sequence I = (1, . . . , n) for some n ∈ N. Let l1, l2, r1, r2 ∈ I be the indices such that
(l1, l1 + 1, . . . , l2) and (r1, r1 + 1, . . . , r2) are the sequences containing the first and last 2r elements
of I respectively. Since A insulates W , we can choose indices m1 > ℓ2 and m2 < r1 such that
(m1,m1 + 1, . . . ,m2) contains 2r elements and there are two disjoint sets W1 := W ∩M1 ∩ A[∗, 1]
and W2 := W ∩M2 ∩A[∗, 1], where

M1 :=
⋃

l2<i<m1

A[i, ∗] and M2 :=
⋃

m2<i<r1

A[i, ∗],
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such that W1 and W2 each contain at least 1
2(|W | − 6r) ⩾ 1

3 |W | vertices. The sets W1 and W2

will play the role of the sets A and B in the flip-breakability statement. We define a new grid B
of height h indexed by J := (1, . . . , 3 · 2r + 2) on the same vertex set as A. The rows of B are the
same as the rows of A. The columns of B are in order

A[l1, ∗], . . . , A[l2, ∗]︸ ︷︷ ︸
2r columns

, M1, A[m1, ∗], . . . , A[m2, ∗]︸ ︷︷ ︸
2r columns

, M2, A[r1, ∗], . . . , A[r2, ∗]︸ ︷︷ ︸
2r columns

.

See Figure 11 for a visualization. We observe that B coarsens the columns of A in the following
sense.

Observation 8.3. Let u ∈ B[j, t] and v ∈ B[j′, t′] such that j < j′ for some j, j′ ∈ J and t, t′ ∈ [h].
The also u ∈ A[i, t] and v ∈ A[i′, t′] for some i < i′ ∈ I.

Additionally, the construction ensures that

• B has (3 · 2r + 2) · (2r + 1) ⩽ 24r2 cells,

• W1 ⊆ B[2r + 1, 1] and W2 ⊆ B[4r + 2, 1], and

• int(A) = int(B).

Figure 11: An example of a coarsening for radius r = 2. The coarsening B (in bold red) overlays the grid
A (in gray). The sequence W is located in the bottom row. The two subsequences W1 and W2 are marked
with circles and squares, respectively.

We build K⋆ as a refinement of K by encoding into the color of every vertex v ∈ V (G) for every
color X ∈ K and for every cell B[i, j] of B the information

(C.1) whether v ∈ X,

(C.2) whether v ∈ B[i, j],

(C.3) whether v is adjacent in G to a vertex from X ∩ int(B).

K⋆ has at most 2k·24r
2·2 colors. By (C.1), we can define for every X ∈ K⋆ a color K(X) ∈ K

such that for all v ∈ X we have v ∈ K(X). We define F⋆ ⊆ K2 via the following four rules.

(F.1) If X ⊆ B[j, t] and Y ⊆ B[j′, t′] and j < j′ and t′ ∈ {t, t− 1}, then

(X,Y ) ∈ F⋆ ⇔
(
K(X),K(Y )

)
∈ R.

(F.2) If X ⊆ B[j, t] and Y ⊆ B[j′, t′] and j > j′ and t′ ∈ {t, t+ 1}, then

(X,Y ) ∈ F⋆ ⇔
(
K(Y ),K(X)

)
∈ R.

(F.3) If X ̸⊆ B and Y ⊆ int(B), or vice versa, then

(X,Y ) ∈ F⋆ ⇔ there is an edge between X and Y in G.

(F.4) Otherwise, (X,Y ) ∈ F⋆ ⇔
(
K(X),K(Y )

)
∈ F .
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By construction, F⋆ is symmetric and therefore describes a valid flip. Let G′ := G ⊕K F and
G⋆ := G⊕K⋆ F⋆.

Claim 8.4. Let u ∈ int(B) and v ∈ B be vertices from rows that are not close in B. Then u and
v are non-adjacent in G⋆.

Proof. Let u and v be as in the claim. Then case (F.4) applies and u and v are adjacent in G⋆ if
an only if they are adjacent in G′. By construction of B, we have also u ∈ int(A) and v ∈ A and
u and v are in rows that are not close in A. It follows by property (O.4.1) of A that u and v are
non-adjacent in both G′ and G⋆. ■

Claim 8.5. Let u ∈ int(B) and v ∈ B be vertices from columns that are not close in B. Then u
and v are non-adjacent in G⋆.

Proof. Let u ∈ B[j, t] and v ∈ B[j′, t′] be as in the claim for some j, j′ ∈ J and t, t′ ∈ [h]. If u
and v are in rows that are not close, then we are done by Claim 8.4. We can therefore assume
t′ ∈ {t− 1, t, t+ 1}.

Assume first that j < j′. Since B[j, ∗] and B[j′, ∗] are not close, we even have j + 1 < j′. If
t′ = t + 1, then case (F.4) applies and u and v are adjacent in G⋆ if an only if they are adjacent
in G′. By Observation 8.3, the adjacency between u and v in G′ can be determined using the
insulator property (O.4.2) of A: u and v are non-adjacent as desired. If t′ ∈ {t, t − 1}, then by
(C.2), case (F.1) applies and the following are equivalent. Let X := K⋆(u) and Y := K⋆(v).

1. The adjacency between u and v got flipped when going from G to G⋆.

2.
(
K(X),K(Y )

)
∈ R. (by (F.1))

3. u and v are adjacent in G. (by Observation 8.3 and (O.4.3))

The equivalence between the first and the last item establishes that u and v are non-adjacent in G⋆,
as desired.

The proof for j > j′ works symmetrically. If t′ = t − 1, then case (F.4) applies, and we argue
using (O.4.2). If t′ ∈ {t, t+ 1}, then case (F.2) applies, and we argue using (O.4.4). ■

Claim 8.6. Let u ∈ int(B) and v be a vertex not in B. Then u and v are non-adjacent in G⋆.

Proof. Let X := K⋆(u) and Y := K⋆(v) be the colors of u and v in K⋆. By (C.2), we have Y ∩A = ∅
and X ⊆ int(A). It follows from property (O.3) of A that every vertex from Y is homogeneous to
X in G. Moreover, by (C.3), either every or no vertex in Y has a neighbor in X in G. It follows
that the connection between X and Y is homogeneous in G. Also, by (C.3), case (F.3) applies, and
the following are equivalent.

1. The adjacency between u and v got flipped when going from G to G⋆.

2. There is an edge between X and Y in G. (by (F.3))

3. There is an edge between u and v in G. (by homogeneity of X ∋ u and Y ∋ v in G)

The equivalence between the first and the last item establishes that u and v are non-adjacent in G⋆,
as desired. ■

Combining Claim 8.4, Claim 8.5, and Claim 8.6 yields the following crucial observation.

Observation 8.7. In G⋆, if vertices u ∈ int(B) and v ∈ V (G) are adjacent, then they are in cells
that are close in B.
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A straightforward induction now yields that the 2r-neighborhood of every vertex u ∈ W1 ⊆
B[2r + 1, 1] in G⋆ satisfies NG⋆

2r (u) ⊆ B[⩽4r + 1, ∗]. In particular, it contains no vertex from
W2 ⊆ B[4r+ 2, 1]. We therefore have NG⋆

r (W1)∩NG⋆
r (W2) = ∅ as desired. This finishes the proof

of the flip-breakability of W . To bound the running time, note that W1, W2, K⋆, and F⋆ can all be
computed in time Or,k(|V (G)|).

We can now prove Proposition 8.1.

Proof of Proposition 8.1. The non-algorithmic part of the statement immediately follows from
Lemma 8.2. For the algorithmic part, assume that C is also prepattern-free. Given any set W , we
can compute an insulated subset W ′ ⊆ W and a witnessing insulator A using Proposition 7.10.
Applying the algorithm given by Lemma 8.2 to W ′ and A yields the desired result.

8.2 Flip-Breakability Implies Monadic Dependence

We prove the second main implication of the section.

Proposition 8.8. Every flip-breakable class of graphs is monadically dependent.

Let φ(x, y) be a formula over the signature of colored graphs, G+ be a colored graph, and W
be a set of vertices in G+. We say that φ shatters W in G+, if there exists vertices (aR)R⊆W such
that for all b ∈ P and R ⊆W ,

G+ |= φ(aR, b) ⇔ b ∈ R.

Let G be an (uncolored) graph, and W be a set of vertices in G. We say that φ monadically shatters
W in G, if there exists a coloring G+ of G in which φ shatters W .

Fact 8.9 ([4]). A class of graphs C is monadically dependent if and only if for every formula φ(x, y)
over the signature of colored graphs, there exists a bound m such that φ monadically shatters no
set of size m in any graph of C.

Proposition 8.8 will be implied by the following.

Lemma 8.10. Let φ(x, y) be a formula and k ∈ N. There exist rφ,mφ,k ∈ N, where rφ depends
only on φ, such that no graph G contains a set of at least mφ,k vertices W such that

• φ monadically shatters W in G, and

• W is (rφ, k)-flip-breakable in G.

In order to prove Lemma 8.10, we use the following statement, which is an immediate con-
sequence of Gaifman’s locality theorem [30]. For an introduction of the locality theorem see for
example [37, Sec. 4.1].

Corollary 8.11 (of [30, Main Theorem]). Let φ(x, y) be a formula. Then there are numbers
r, t ∈ N, where r depends only on the quantifier-rank of φ and t depends only on the signature and
quantifier-rank of φ, such that every (colored) graph G can be vertex-colored using t colors in such
a way that for any two vertices u, v ∈ V (G) with distance greater than r in G, G |= φ(u, v) depends
only on the colors of u and v. We call r the Gaifman radius of φ.

Proof of Lemma 8.10. We set rφ to be the Gaifman radius of φ. Let s be the number of colors
used by φ. As stated in Corollary 8.11, let t be the number of colors needed to determine the truth
value of formulas in the signature of (s · k)-colored graphs that have the same quantifier-rank as
φ(x, y). Let mφ,k := 3(t+ 1).
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Assume now towards a contradiction the existence of an (rφ, k)-flip-breakable in set W in G
of size mφ,k such that φ monadically shatters W in G. Then there exists an s-coloring G+ of G
in which φ shatters W . We apply flip-breakability which yields a k-flip H of G together with two
disjoint sets A,B ⊆ W each of size at least t + 1, such that NH

r (A) ∩ NH
r (B) = ∅. By using k

colors to encode the flip, we can rewrite φ to a formula ψ with the same quantifier-rank as φ, such
that there exists a (s · k)-coloring H+ of H where for all u, v ∈ V (G),

G+ |= φ(u, v) ⇔ H+ |= ψ(u, v).

In particular, ψ shatters W in H+. Since ψ has the same quantifier-rank as φ and is a formula
over the signature of s · k-colored graphs, by Corollary 8.11 there exists a coloring of H+ with t
colors such that the truth of ψ(u, v) in H+ only depends on the colors of u and v for all vertices
u and v with distance greater than r in H+. Recall that A and B each have size t + 1. By the
pigeonhole principle, there exist two distinct vertices a1, a2 ∈ A that are assigned the same color
and two distinct vertices b1, b2 ∈ B that are assigned the same color. Since ψ shatters W in H+,
there exists a vertex v ∈ V (G) such that

H+ |= ψ(v, a1) ∧ ¬ψ(v, a2) ∧ ψ(v, b1) ∧ ¬ψ(v, b2).

By Corollary 8.11, v must be contained in NH
r (A) ∩ NH

r (B), as the truth of ψ is inhomoge-
neous among both v and {a1, a2} and among v and {b1, b2}. This is a contradiction to NH

r (A) ∩
NH

r (B) = ∅.

Combining the results of Section 7 and Section 8 yields the desired chain of implications.

prepattern-free ⇒ insulation-property ⇒ flip-breakable ⇒ mon. dependent

In the remaining two sections of Part I, we provide the deferred proofs of the two insulator growing
lemmas (Lemmas 7.6 and 7.7).

9 Sample Sets

We work towards proving Lemmas 7.6 and 7.7, which grow the height of an insulator. In this
section we show that in prepattern-free classes, given an insulator A, we can extract a subinsulator
B and a small sample set of vertices which can be used to approximately represent the connections
of all the vertices in the graph towards B. We give some notation to make this statement precise.

Definition 9.1. Given a graph G, a vertex v ∈ V (G), and a set A ⊆ V (G), we define the atomic
type of v over A as

atp(v/A) := {(R, a) : G |= R(v, a), R ∈ {E,=}, a ∈ A}.

Observation 9.2. Let G be a graph, u, v ∈ V (G), and A ⊆ B ⊆ V (G). Then

atp(u/A) ̸= atp(v/A) ⇒ atp(u/B) ̸= atp(v/B).

Definition 9.3. Let G be a graph containing an insulator A with grid A indexed by I. Let v, s<, s>
be vertices from G, i ∈ I, and m ∈ N. We say v is (m, i, s<, s>)-sampled on A if

atp(v/A[<i, ∗]) = atp(s</A[<i, ∗]) and atp(v/A[⩾i+m, ∗]) = atp(s>/A[⩾i+m, ∗]).

We call m the margin, i the exceptional index, s< the left-sample, and s> the right-sample.
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Definition 9.4. Fix p ∈ N. Let G be a graph containing an insulator A indexed by I and let
S ⊆ V (G). We say S samples G on A with margin m if there exists functions ex : V (G) → I and
s<, s> : V (G) → S such that every v ∈ V (G) is

(
m, ex(v), s<(v), s>(v)

)
-sampled on A.

We are now ready to state the main result of this section.

Lemma 9.5. Fix t ∈ N. For every graph G and insulator A indexed by J in G, there is a
subsequence I ⊆ J of size Ut(|J |) such that either

• G contains a prepattern of order t on A|I , or
• there is a set S ⊆ V (G) \ A|I of size const(t) that samples G on A|I with margin 2.

Moreover, there is an algorithm that, given G and A, computes I and one of the two outcomes (a
prepattern or a sampling set S) in time Ot(|V (G)|2).

We will build the set S iteratively by extracting single sampling vertices one by one.

9.1 Extracting Single Sample Vertices

Before we show how to extract a new sample vertex, we state some auxiliary lemmas about subin-
sulators and sampling sets.

Lemma 9.6. Let A be an insulator indexed by J in a graph G. Let I be a subsequence of J ,
u, v ∈ V (G), and i ∈ tail(I). Let A and B be the grids of A and A|I respectively. Then

atp(u/A[i, ∗]) ̸= atp(v/A[i, ∗]) ⇒ atp(u/B[i, ∗]) ̸= atp(v/B[i, ∗]).

Proof. Follows from Observation 9.2 and Observation 5.8. ■

Lemma 9.7. Let A be a grid indexed by a sequence J of length at least four in a graph G and let
v ∈ V (G). There exists a subsequence I ⊆ J of length |I| ⩾ 1

2 |J | such that v /∈ A|I .
Moreover, there is an algorithm that, given G and A, computes I in time O(|V (G)|).

Proof. Up to renaming, assume J = (1, . . . , n). If v /∈ A|I , we can just set I := J . Otherwise,
let i ∈ J be such that v ∈ A[i, ∗] where A is the grid of A. We choose I as the larger of the two
sequences (1, . . . , i− 1) and (i, . . . , n). Since I has length at least two, this defines a subinsulator.
By Observation 5.8, v ̸∈ A|I . The bound on the running time is obvious.

Lemma 9.8. Fix m ∈ N. Let G be a graph containing an insulator A indexed by J and S ⊆ V (G)
be a set that samples G on A with margin m. For every I ⊆ J , S also samples G on A|I with
margin m.

Proof. Let B := A|I be the grid of A|I . As in the first item in the proof of Lemma 5.9, we observe
for every i ∈ I

B[<i, ∗] ⊆ A[<i, ∗] and B[>i, ∗] ⊆ A[>i, ∗].

Hence, by contrapositive of Observation 9.2, for all vertices u, s<, s>,

atp(v/A[<i, ∗]) = atp(s</A[<i, ∗]) ⇒ atp(v/B[<i, ∗]) = atp(s</B[<i, ∗]),

atp(v/A[>i, ∗]) = atp(s>/A[>i, ∗]) ⇒ atp(v/B[>i, ∗]) = atp(s>/B[>i, ∗]).

The lemma now follows from Definition 9.4.
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We will now show how to extract a new sample vertex. We start with a given set of sample
vertices S. In the absence of large prepatterns, we either find a subinsulator on which S samples
G, or find a new vertex v by which we will later use to extend the sample set.

Lemma 9.9. Fix k, t ∈ N. For every graph G and insulator A indexed by J , and every vertex set
S of size at most k, there is a subsequence I ⊆ J of size Uk,t(|J |) such that either

• G contains a bi-prepattern of order t on A|I , or
• S samples G on A|I with margin 2, or

• there is a vertex v /∈ A|I , such that for all s ∈ S and every column C in A|I

atp(v/C) ̸= atp(s/C).

Moreover, there is an algorithm that, given G, A, and S, computes the sequence I and one of
the three outcomes (a bi-prepattern, the conclusion that S samples G, or a vertex v) in time
Ok,t(|V (G)|2).

Proof. We first show how to construct a sequence I with the desired properties. Afterwards we
analyze the running time. Getting the desired bounds will then require a small preprocessing that
reduces the size of J . The proof is split into multiple paragraphs.

Notation. For vertices v, s ∈ V (G) and a set U ⊆ V (G), we say v is s-connected to U if

atp(v/U) = atp(s/U).

We generalize this to sets S⋆ ⊆ S and say v is S⋆-connected to U if

{s ∈ S | v is s-connected to U} = S⋆.

Ramsey. We start by defining some coloring to which we will apply Ramsey’s theorem. Let A
be the grid of A and MA be the function from Lemma 5.6. For t′ ∈ {6, 4t} and S1, . . . , St′−1 ⊆ S,
we label all t′-tuples i1 < · · · < it′ ∈ J with a color indicating whether

∃v
∧

l=1,...,t′−1

v is Sl-connected to MA(il, il+1). (1)

Applying Ramsey’s Theorem (Lemma 4.2) to this coloring gives us a subsequence I ′ ⊆ J such that
for all t′ ∈ {8, 6t} and S1, . . . , St′−1 ⊆ S, the above equation (1) either holds for all or no t′-tuples
i1 < · · · < it′ ∈ I ′. Note that the number of colors is bounded by const(k, t), which guarantees
|I ′| ⩾ Uk,t(|J |). We can assume without loss of generality that I := tail(I ′) has length at least 24t.
In order to simplify notation, we assume up to renaming that I ′ = (0, . . . , n) and I = (1, . . . , n).
Let B := A|I′ be the grid of B := A|I′ . By Lemma 5.6, we observe the following.

Observation 9.10. For all i ∈ I we have B[i, ∗] = MA(i− 1, i).

We say a subsequence of a sequence K is 1-spaced if it contains no consecutive elements from K.

Claim 9.11. Let s ∈ S and w̄ ∈ {0, 1}2t. If there is a 1-spaced subsequence i1 < · · · < i2t of I such
that

∃v
∧

l=1,...,2t

v is s-connected to B[il, ∗] if and only if wl = 1,

then the above holds for all such 1-spaced subsequences of the same length.
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Proof. By Observation 9.10, the statement of the claim holds for a 1-spaced subsequence i1 < · · · <
i2t if and only if equation (1) holds for the corresponding 4t-tuple

i1 − 1 < i1 < i2 − 1 < i2 < · · · < i2t − 1 < i2t ∈ I ′

of distinct elements and some S1, . . . , S4t−1 ⊆ S with s ∈ S2l−1 ⇔ wl = 1. Note that we use
1-spacedness to guarantee that all elements in the 4t-tuple are distinct.

Assume there is a 1-spaced subsequence satisfying the claimed statement, and let S1, . . . , S4t−1 ⊆
S be the sets witnessing the truth of equation (1) for the corresponding 4t-tuple. By Ramsey’s
theorem, equation (1) with S1, . . . , S4t−1 ⊆ S holds for all 4t-tuples, and thus, the claimed statement
holds for all 1-spaced subsequences. ■

Claim 9.12. If there is i, j ∈ I with i+2 < j and sets Pi, Qi, Pj , Qj ⊆ S with Pi ̸= Qi and Pj ̸= Qj

such that

∃v v is Pi-connected to B[i, ∗]

∧ v is Qi-connected to B[i+ 1, ∗]

∧ v is Pj-connected to B[j, ∗]

∧ v is Qj-connected to B[j + 1, ∗]

then the above holds for all i, j ∈ I with i+ 2 < j.

Proof. We again use Observation 9.10. Thus, the statement of the claim holds for a given i, j ∈ I
if and only if equation (1) holds for the corresponding 6-tuple

i− 1 < i < i+ 1 < j − 1 < j < j + 1 ∈ I ′

of distinct elements and some S1, . . . , S5 ⊆ S with S1 = Pi and S2 = Qi and S4 = Pj and S5 = Qj .
The rest follows as in Claim 9.11. ■

Constructing a Prepattern. We say an index i ∈ I is an alternation point of a vertex v on B
if v is P -connected to B[i, ∗] and Q-connected to B[i+ 1, ∗] for distinct sets P ̸= Q ⊆ S.

Claim 9.13. One of the following two conditions holds.

1. For every vertex v ∈ V (G) with alternation points i, j ∈ I, we have |i− j| ⩽ 2.

2. G contains a bi-prepattern of order t on B.

Proof. Assume the first condition fails and let v ∈ V (G) be a vertex with alternation points i, j ∈ I
such that i+ 2 < j. By Claim 9.12, we can assume without loss of generality that v has alternation
points 6t and 19t. In the following, we find two 1-spaced subsequences of I

I⋆ = i1 < · · · < it︸ ︷︷ ︸
⊆(1,...,4t)

< i⋆︸︷︷︸
∈{6t,6t+1}

< it+1 < · · · < i2t︸ ︷︷ ︸
⊆(9t,11t)

,

J⋆ = j1 < · · · < jt︸ ︷︷ ︸
⊆(13t,...,17t)

< j⋆︸︷︷︸
∈{19t,19t+1}

< jt+1 < · · · < j2t︸ ︷︷ ︸
⊆(22t,...,24t)

and vertices s1, s2 ∈ S satisfying the following property: Either

• i⋆ is the first index among I⋆, such that v is s1-connected to B[i⋆, ∗], or

• i⋆ is the first index among I⋆, such that v is not s1-connected to B[i⋆, ∗],
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and moreover, either

• j⋆ is the first index among J⋆, such that v is s2-connected to B[j⋆, ∗], or

• j⋆ is the first index among J⋆, such that v is not s2-connected to B[j⋆, ∗].

We start by chosing s1 ∈ S to be an arbitrary vertex witnessing the alternation point 6t of v, that
is,

v is s1-connected to B[6t, ∗] ⇔ v is not s2-connected to B[6t+ 1, ∗].

By a simple majority argument, we can choose i1, . . . , it to be a 1-spaced subsequence of (1, . . . , 4t)
such that v is s1-connected either to none or to all of B[i1, ∗], . . . , B[it, ∗]. In the first case (respec-
tively last case) we set i⋆ to be the index from {6t, 6t + 1} such that v is s1-connected to B[i⋆, ∗]
(respectively not s1-connected to B[i⋆, ∗]). We can now choose it+1, . . . , i2t to be an arbitrary 1-
spaced subsequence of (9t, 11t). This concludes the construction of I⋆. We further choose s2 ∈ S
to be an arbitrary vertex witnessing the alternation point 19t of v and construct J⋆ analogously as
a 1-spaced subsequence of (13t, . . . , 24t).

For every i ∈ [t] let Ii be a subsequence of I⋆ of length t such that i⋆ is the ith element of Ii.
Such a sequence exists, since i⋆ has both t successors and t predecessors in I⋆. Similarly, for every
j ∈ [t] let Jj be a subsequence of J⋆ of length t such that j⋆ is the jth element of Jj . For every
i, j ∈ [t], by concatenating Ii and Jj , we obtain a 1-spaced subsequence Ii,j = (p1, . . . , pt, q1, . . . , qt)
of I of length 2t such that

• the s1-connection from v to B[p1, ∗], . . . , B[pi−1, ∗] is homogeneous but switches at B[pi, ∗],

• the s2-connection from v to B[q1, ∗], . . . , B[qj−1, ∗] is homogeneous but switches at B[qj , ∗].

By Claim 9.11 and witnessed by v and all the Ii,j , we can fix an arbitrary 1-spaced subsequence
(p1, . . . , pt, q1, . . . , qt) of I of length 2t and there exist vertices ci,j for all i, j ∈ [t] such that either

• ∀i, j ∈ [t]: ci,j is not s1-connected to B[p1, ∗], . . . , B[pi−1, ∗] but s1-connected to B[pi, ∗], or

• ∀i, j ∈ [t]: ci,j is s1-connected to B[p1, ∗], . . . , B[pi−1, ∗] but not s1-connected to B[pi, ∗],

and similarly either

• ∀i, j ∈ [t]: ci,j is not s2-connected to B[q1, ∗], . . . , B[qj−1, ∗] but s2-connected to B[qj , ∗], or

• ∀i, j ∈ [t]: ci,j is s2-connected to B[q1, ∗], . . . , B[qj−1, ∗] but not s2-connected to B[qj , ∗].

Let α1(y;x, s1) be the quantifier-free formula checking whether atp(x/{y}) ̸= atp(s1/{y}).
Whenever v is not s1-connected to a column B[i, ∗], then this is witnessed by an element u ∈ B[i, ∗]
such that G |= α1(u; v, s1). If v is s-connected to B[i, ∗], then no such element exists in B[i, ∗].
Among p1, . . . , pt, we have that either

• ∀i, j ∈ [t]: pi is the first index such that α1(B[pi, ∗]; ci,j , s1) is empty
(this happens in the case where the ci,j are s1-connected to B[pi, ∗]), or

• ∀i, j ∈ [t]: pi is the first index such that α1(B[pi, ∗]; ci,j , s1) is non-empty
(this happens in the case where the ci,j are not s1-connected to B[pi, ∗]).

Similarly, there is a quantifier-free formula α2(y, x, s2) checking whether atp(x/{y}) ̸= atp(s2/{y}).
Among q1, . . . , qt, we have that either

• ∀i, j ∈ [t]: qj is the first index such that α2(B[qj , ∗]; ci,j , s2) is empty, or

• ∀i, j ∈ [t]: qj is the first index such that α2(B[qj , ∗]; ci,j , s2) is non-empty.

This proves that G contains a bi-prepattern of order t on B witnessed by the sequences (p1, . . . , pt),
(q1, . . . , qt), the ci,j vertices, the parameters s1, s2, and the formulas α1 and α2. ■
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Extracting a Sample Vertex. If the second condition of Claim 9.13 holds, then G contains a
bi-prepattern of order t on A|I′ , so I ′ can play the role of the sequence I in the statement of the
lemma, and we are done. We therefore assume from now on that the first condition of Claim 9.13
holds.

Claim 9.14. One of the following two conditions holds.

1. For every vertex u ∈ V (G), that is ∅-connected to columns B[i, ∗] and B[j, ∗] for i, j ∈ I, we
have |i− j| ⩽ 1. In particular each vertex is ∅-connected to at most two columns in B.

2. There is a sequence K of length at least 1
6 |I| and a vertex v /∈ A|K , such that v is ∅-connected

to every column of A|K .

Proof. Assume the first condition fails. We have a vertex u that is ∅-connected to columns B[i, ∗]
and B[j, ∗] for i + 1 < j ∈ I. In order to show the second condition, we will first find a vertex v
together with a sequence K ′ ⊆ I of length at least 1

3 |I|, such that v is ∅-connected to every column
B[p, ∗] with p ∈ K. As (i, j) is a 1-spaced subsequence of I, Claim 9.11 yields a vertex v which is
∅-connected to B[m, ∗] and B[m+ 2, ∗] where m := ⌊12 |I|⌋. Assume v has at least one alternation
point on B and its earliest alternation point q satisfies m ⩽ q. Then u has the same connection
type to every B[p, ∗] with 1 ⩽ p ⩽ m. As v is ∅-connected to B[m, ∗], we can set K ′ := (1, . . . ,m).
Otherwise, either v has no alternation points on B, or the latest alternation point q of v satisfies
q ⩽ m+1, by Claim 9.13. Then u has the same connection type to every B[p, ∗] with m+2 ⩽ p ⩽ n.
As v is ∅-connected to B[m+ 2, ∗], we can set K ′ := (m+ 2, . . . , n). This finishes the construction
of v and K ′. We use Lemma 9.7 to obtain a sequence K ⊆ K ′ of length |K| ⩾ 1

2 |K
′| ⩾ 1

6 |I| with
v /∈ A|K . By Lemma 9.6, v is ∅-connected to every column of A|K . ■

Establishing the Sampling Property. If the second condition of Claim 9.14 holds, then there
exists a sequence K that can play the role of I in the statement of the lemma, and we are done.
We therefore assume from now on that the first condition of Claim 9.14 holds.

Claim 9.15. S samples G on A|K with margin 2 for K := (2, . . . , n− 2) ⊆ I.

Proof. We have to choose for every vertex v ∈ V (G) an exceptional index i ∈ tail(K) = (3 . . . , n−
2) and two vertices s<, s> ∈ S such that v is s<-connected to A|K [<i, ∗] and s>-connected to
A|K [>i+ 1, ∗]. By Observation 5.7, we have A|K = B|K . Thus, by Observation 5.8, we have

A|K [<i, ∗] ⊆ B[{3, . . . , i− 1}, ∗] and A|K [>i+ 1, ∗] ⊆ B[{i+ 2, . . . , n− 2}, ∗].

Take any vertex v. By Claim 9.13, there exist successive indices i1 ∈ I and i2 := i1 + 1, and sets
S1, S2 ⊆ S, such that v is S1-connected to all columns B[<i1, ∗] and S2-connected to all columns
B[>i2, ∗].

Assume S1 ̸= ∅ ̸= S2. Then we can arbitrarily choose s< ∈ S1 and s> ∈ S2 and set

i :=


3 if i1 < 3,

n− 2 if i1 > n− 2,

i1 otherwise.

Now v is s<-connected to B[{3, . . . , i− 1}, ∗] and s>-connected to B[{i+ 2, . . . , n− 2}, ∗], proving
the claim.

Assume S1 = ∅ ̸= S2. If i1 > 3 then v is ∅-connected to the first three columns of B, contradicting
Claim 9.14. So we have i1 ⩽ 3. We set i := 3 and choose an arbitrary s> ∈ S2. As desired, v is
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s>-connected to B[{i+2, . . . , n−2}, ∗]. As B[{3, . . . , i−1}, ∗] is empty any vertex from S can take
the role of s<.

Assume S1 ̸= ∅ = S2. The proof is symmetric to the previous case.

Assume S1 = ∅ = S2. Since |I| > 8, we either find left of i1 or right of i2 at least three columns of
B to which v is ∅-connected. This is a contradiction to Claim 9.14. ■

We have successfully established the sampling property which proves that K (I in the statement)
has the desired properties.

Running Time. In the previous paragraphs, we have proven the existence of a sequence I with
the desired properties. Let us redefine n := |V (G)|. To show that I can be constructed in time
Ok,t(n

2), we first consider the following preprocessing routine. Let t⋆ := max(6, 4t) and choose a
subsequence J0 ⊆ J of size ⌊|J |1/t⋆⌋. Note that |J0| ⩽ n1/t⋆ . By applying the construction to A|J0
and J0 instead of A and J , we obtain a subsequence I ⊆ J0 ⊆ J with the desired properties that
still has size |I| ⩾ Uk,t(|J0|) ⩾ Uk,t(|J |). By this argument, and as we can build J0 and A|J0 in
time Ok,t(n), we can from now on assume without loss of generality that |J | ⩽ n1/t⋆ .

Towards computing the coloring needed for the Ramsey application, we first compute for each
v ∈ V (G), S⋆ ⊆ S, and i ∈ J , whether v is S⋆-connected to the column A[i, ∗] of A. As the columns
of A are disjoint and |S| ⩽ k, this takes a total time of O(2k · n2). Moreover, for each vertex
v ∈ V (G), subset S⋆ ⊆ S and pair i < i′ ∈ J we calculate whether v is S⋆-connected to MA(i, i′).
By Lemma 5.6, if A is orderless this amounts to checking whether v is S⋆-connected to A[i′, ∗],
which we have already computed in the previous step. If A is ordered, we instead check whether v
is S⋆-connected to each of A[m, ∗] for i < m ⩽ i′. As |J | ⩽

√
n and with the data from the previous

step we can do this check in time O(
√
n) for a single vertex v, set S⋆ and pair i, i′. Since |J | ⩽ n1/4,

there are at most
√
n pairs i, i′ that need to be checked. It follows that we can compute the desired

data for all vertices v, sets S⋆, and pairs i, i′ in total time O(2k ·n ·
√
n ·

√
n) = O(2k ·n2). We recall

the construction of the coloring for the Ramsey application: For t′ ∈ {6, 4t} and S1, . . . , St′−1 ⊆ S,
the t′-tuples i1 < · · · < it′ ∈ J are labeled with a color indicating whether

∃v
∧

l=1,...,t′−1

v is Sl-connected to MA(il, il+1).

Using our precomputed information, for a single t′-tuple, we can compute its colors in time Ok,t(n)
by iterating over all vertices v ∈ V (G). As |J | ⩽ n1/t⋆ , there are at most n many t′-tuples from J ,
so we can compute the coloring in time Ok,t(n

2). Due to the size bounds on J , applying Ramsey’s
Theorem (Lemma 4.3) to the coloring runs in time Ok,t(n). This yields the sequence I.

Having constructed I, we obtain the insulator B = A|I′ . By Observation 9.10, our precomputed
information can also be used to check whether a vertex v ∈ V (G) is S⋆-connected to a column
B[i, ∗] of B for some S⋆ ⊆ S and i ∈ I. Let us now show how to compute one of the three outcomes:
a bi-prepattern, a new sample vertex v, or a large subsequence of I on which S samples G.

• We can check for every vertex, whether it contains two alternation points with distance bigger
than 2 on B in time Ok(n · |I|) ⩽ Ok(n2). If this such a vertex exists, the proof of Claim 9.13
yields that there is a bi-prepattern on B of size t on every 1-spaced subsequence of length 2t
of columns of B. We can choose any such sequence and search for the witnessing vertices in
time Ok,t(n).

• If the previous case does not apply, we can again search in time Ok(n · |I|) ⩽ Ok(n2) for a
new sample vertex v and a corresponding subsequence of I (cf. Claim 9.14).
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• If none of the two previous cases apply, we immediately find the sampled subsequence by
dropping the first and two last elements of I (cf. Claim 9.15).

We have shown that each step of the construction can be carried out in time Ok,t(n
2). This

concludes the proof of Lemma 9.9.

9.2 Extracting Small Sample Sets

We use the following Ramsey-type result for set systems due to Ding, Oporowski, Oxley, and
Vertigan [18, Cor. 2.4] (see also [36, Thm. 2]). We say a bipartite graph with sides a1, . . . , aℓ and
b1, . . . , bℓ forms

• a matching of order ℓ if ai and bj are adjacent if and only if i = j for all i, j ∈ [ℓ],

• a co-matching of order ℓ if ai and bj are adjacent if and only if i ̸= j for all i, j ∈ [ℓ],

• a half-graph of order ℓ if ai and bj are adjacent if and only if i ⩽ j for all i, j ∈ [ℓ].

We call two distinct vertices u and v twins in a graph G they have the same neighborhood, that
is, N(u) \ {v} = N(v) \ {u}.

Fact 9.16 ([18, Corollary 2.4]). There exists a function Q : N → N such that for every ℓ ∈ N
and for every bipartite graph G = (L,R,E), where L has size at least Q(ℓ) and contains no twins,
contains a matching, co-matching, or half-graph of order ℓ as an induced subgraph.

Moreover, there is an algorithm that, given G, computes such an induced subgraph in time O(|V (G)|2).

While the construction of [18] is algorithmic, no running time is stated for Fact 9.16. To be
self-contained, we instead deduce an algorithm a posteriori.

Proof of the running time of Fact 9.16. Let Q be the function given by the non-algorithmic part of
Fact 9.16. To prove an algorithmic version of the statement we weaken the bounds by demanding
L to have size at least f−1(Q(ℓ)) instead, where f(x) = ⌊

√
log(x)/2⌋.

We first compute an induced subgraph G′ of G on sets L′ ⊆ L and R′ ⊆ R. To this end, choose L′

as an arbitrary subset of L of size ⌊
√

log(|L|)/2⌋. Choose R′ ⊆ R of size at most |L′|2 ⩽ log(|L|)/2
by picking for each pair of distinct vertices u, v ∈ L′ a vertex from the symmetric difference of the
neighborhoods of u and v in R. Since L contains no twins in G, such a vertex always exists. G′

has size at most log(|L|) and can be constructed in time O(|V (G)|2).
By our choice of f , we observe that L′ has size at least Q(ℓ). By construction, L′ contains no

twins in G′. By the non-algorithmic version of Fact 9.16, we know that G′ contains a matching,
co-matching, or half-graph of order ℓ. Since G′ has at most log(|L|) vertices, we can perform a
brute force search in time O(|V (G)|2). As G′ is an induced subgraph of G, the computed solution
also applies to G.

We can now prove Lemma 9.5, which we restate for convenience.

Lemma 9.5. Fix t ∈ N. For every graph G and insulator A indexed by J in G, there is a
subsequence I ⊆ J of size Ut(|J |) such that either

• G contains a prepattern of order t on A|I , or
• there is a set S ⊆ V (G) \ A|I of size const(t) that samples G on A|I with margin 2.

Moreover, there is an algorithm that, given G and A, computes I and one of the two outcomes (a
prepattern or a sampling set S) in time Ot(|V (G)|2).
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Proof. We will inductively compute subsequences I0, I1, . . . of J and subsets S0, S1, . . . of V (G)
using the following procedure. For the base case we set I0 := J and S0 := ∅. In the inductive step
we are given Ii and Si and apply Lemma 9.9 on t, A|Ii , and Si. This yields the subsequence Ii+1

of size U|Si|,t(|Ii|) and the insulator (A|Ii)|Ii+1 = A|Ii+1 such that either

(C.1) G contains a prepattern of order t on A|Ii+1 , or

(C.2) Si samples G on A|Ii+1 with margin 2, or

(C.3) there is a vertex si+1 /∈ A|Ii+1 , such that for all s ∈ Si and every column C in A|Ii+1

atp(si+1/C) ̸= atp(s/C).

In the first two cases, we stop the construction and set I := Ii+1 and S := Si. In the third case,
we continue the construction with Si+1 := Si ∪ {si+1}.

Claim 9.17. For every i we have

(P.1) all vertices of Si have a pairwise different atomic type over every column of A|Ii,
(P.2) no s ∈ Si is contained in A|Ii,
(P.3) |Si| = i, and

(P.4) Ii has size Ui,t(J).

Proof. We prove the properties by induction on i. The base cases hold trivially. The properties
(P.1) and (P.2) hold on Si and A|Ii by induction, on Si and A|Ii+1 by Lemma 9.6, and finally on
Si+1 and A|Ii+1 by the choice of si+1 in (C.3). By (P.1), all elements of Si are distinct. As we only
add one element per turn, this proves (P.3). It follows that Ii+1 has size U|Si|,t(|Ii|) = Ui,t(|Ii|) and
by induction Ii+1 has size Ui,t(J), which proves (P.4). ■

Let k := Q3t(t), where Q is the function given by Fact 9.16. We have k = const(t).

Claim 9.18. If the construction runs for k steps, then G contains a prepattern of order t on A|Ik .

Proof. By Claim 9.17, the set Sk consists of k vertices which have pairwise different atomic types
with respect to every column of the grid A of A|Ik . Since no vertex of Sk is contained in A, we
know that these vertices all have the same type with regard to the equality relation and must
therefore have a pairwise different type with regard to the edge relation, that is, in the graph G,
the vertices of Sk have pairwise different neighborhoods in every column of A. Therefore, in the
semi-induced bipartite graph between any subset L ⊆ Sk and any column R := A[i, ∗] of A, there
are no twins in L and the preconditions of Fact 9.16 are met. We iterate Fact 9.16 a total number
of 3t times between Sk and 3t columns of A, which we can choose arbitrarily. Finally, we apply the
pigeonhole principle. This yields a size t subset S⋆ ⊆ Sk and columns C1, . . . , Ct of A containing
subsets R1, . . . , Rt such that the semi-induced bipartite graph between S⋆ and Ri

• is a matching for all i ∈ [t], or

• is a co-matching for all i ∈ [t], or

• is a half-graph for all i ∈ [t].

This witnesses a mono-prepattern of order t on A|Ik . ■

We can now finish the proof. By Claim 9.18, if the construction runs for k steps, we set
I := Ik and G contains a prepattern of order t on A|I . By Claim 9.17, Ik has size Uk,t(|J |). Since
k = const(t), this is equivalent to Ut(|J |), as desired.
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Otherwise, the construction terminates with I := Ii and S := Si for some i ⩽ k, as either (C.1)
or (C.2) holds. By the same reasoning as before, we have |I| ⩾ Ut(|J |). By Claim 9.17, we have
|S| ⩽ k and S ⊆ V (G) \ A|I . In case (C.1), we have a prepattern of order t on A|I and in case
(C.2) S samples G on A|I with margin 2.

As k = const(t), the running time of Ot(|V (G)|2) for the construction follows easily from the
running times of Lemma 9.9 and Fact 9.16.

9.3 Sample Sets for Orderless Insulators

For orderless insulators we want to strengthen Lemma 9.5 by improving the guarantees given by
the sampling set. For convenience, we restate the definition of a sampling set.

Definition 9.3. Let G be a graph containing an insulator A with grid A indexed by I. Let v, s<, s>
be vertices from G, i ∈ I, and m ∈ N. We say v is (m, i, s<, s>)-sampled on A if

atp(v/A[<i, ∗]) = atp(s</A[<i, ∗]) and atp(v/A[⩾i+m, ∗]) = atp(s>/A[⩾i+m, ∗]).

We call m the margin, i the exceptional index, s< the left-sample, and s> the right-sample.

Definition 9.4. Fix p ∈ N. Let G be a graph containing an insulator A indexed by I and let
S ⊆ V (G). We say S samples G on A with margin m if there exists functions ex : V (G) → I and
s<, s> : V (G) → S such that every v ∈ V (G) is

(
m, ex(v), s<(v), s>(v)

)
-sampled on A.

We say S symmetrically samples G on A, if we can choose s< = s> in the above definition.
For orderless insulators, we want to decrease the sampling margin to 1 and make the sampling
symmetric.

Lemma 9.19. Let G be a graph containing an orderless insulator A indexed by J , and let S ⊆ V (G)
be a set that samples G on A with margin 2. Let I ⊆ J be obtained by removing every second element
of J . S samples G on A|I with margin 1.

Proof. The exceptional indices of each vertex are successive. By only keeping every second column,
we reduce the number of exceptional indices to at most 1, which corresponds to margin 1.

Lemma 9.20. Fix t ∈ N. For every graph G and orderless insulator A indexed by J in G, we can
compute a subsequence I ⊆ J of size Ut(|J |) and a set S ⊆ V (G) \ A|I of size const(t) such that
either

• G contains a prepattern of order t on A|I , or
• A|I is orderable, or

• S symmetrically samples G on A|I with margin 1.

Moreover, there is an algorithm that, given G and A, computes the sequence I and one of the three
outcomes (a prepattern, a witnesses for A|I being orderable, or a set S) in time Ot(|V (G)|2).

Proof. We first apply Lemma 9.5 to A and J , which yields a sequence I0 of length Ut(J) and a set
S ⊆ V (G) \ A|I0 of size const(t) such that either

• G contains a prepattern of order t on A|I0 , or

• S samples G on A|I0 with margin 2.
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In the first case we are done by setting I := I0, so assume the second case. Lemma 9.19 yields a
sequence I1 ⊆ I0 of length Ut(|I0|) = Ut(|J |) such that S samples G on A|I1 with margin 1. Let
B be the grid of B := A|I1 . We color every element i ∈ tail(I1) by a color that encodes for all
s1, s2 ∈ S the information whether

N(s1) ∩B[i, ∗] ⊆ N(s2) ∩B[i, ∗]. (2)

This requires |S|2 = const(t) many colors. Inducing tail(I1) on the largest color class yields a
monochromatic subsequence I2 ⊆ tail(I1) of length Ut(|I1|) = Ut(|I0|) = Ut(|J |), where we can
interpret monochromaticity as follows.

Fact 9.21. For every s1, s2 ∈ S, if N(s1) ∩ B[i, ∗] ⊆ N(s2) ∩ B[i, ∗] for one i ∈ I2, then it holds
for every i ∈ I2. In particular, if two vertices s1, s2 ∈ S have the same neighborhood in one column
B[i, ∗] for some i ∈ I2 then they have the same neighborhood in every column B[i, ∗] with i ∈ I2.

By definition, A|I2 consists of the columns {Bi,∗ | i ∈ tail(I2)}. By Lemma 9.8, S also samples
G on A|I2 with margin 1. Whenever we have two vertices in S that have the same neighborhood
in every column of A|I2 we can remove one of them from S while still preserving that S samples G
on A|I2 with margin 1. Thus by Fact 9.21, for distinct vertices s1, s2 ∈ S and for every i ∈ I2 we
have N(s1) ∩B[i, ∗] ̸= N(s2) ∩B[i, ∗]. Together with Fact 9.21 we obtain the following.

Fact 9.22. For distinct vertices s1, s2 ∈ S, either

∀i ∈ I2 :
(
N(s1) ∩B[i, ∗]

)
̸⊆

(
N(s2) ∩B[i, ∗]

)
or ∀i ∈ I2 :

(
N(s1) ∩B[i, ∗]

)
̸⊇

(
N(s2) ∩B[i, ∗]

)
.

Remember that a vertex v ∈ V (G) is s-connected to a set U ⊆ V (G) if atp(s/U) = atp(v/U).
In the next step we color every 4-element subsequence ῑ = (ι1, . . . , ι4) ⊆ I2. In order to apply
Ramsey’s theorem, we encode for every 4-tuple s̄ = s1 . . . s4 ∈ S4 the information whether

∃v
∧
i∈[4]

v is si-connected to B[ιi, ∗]. (3)

Ramsey’s theorem yields a monochromatic subsequence I3 ⊆ I2 of length Ut(|J |), where we can
interpret monochromaticity as follows.

Fact 9.23. For every s̄ ∈ S4, whenever there exists a 4-element subsequence ῑ of I3 which satis-
fies (3), then every 4-element subsequence ῑ of I3 satisfies (3).

By Lemma 9.8, S still samples G on A|I3 with margin 1. Therefore, we can choose for every
vertex v ∈ V (G) two samples s<(v), s>(v) ∈ S and an exceptional index ex(v) such that

• v is s<(v)-connected to all B[i, ∗] with i ∈ I3 and i < ex(v), and

• v is s>(v)-connected to all B[i, ∗] with i ∈ I3 and i > ex(v).

We remove the first and last two elements of I3 to obtain I4. If for every vertex v with ex(v) ∈ I4
we have s<(v) = s>(v), then S symmetrically samples G on A|I4 , and we can complete the proof
by setting I := I4. Assume therefore, there is a vertex v⋆ with ex(v⋆) ∈ I4 and s<(v⋆) ̸= s>(v⋆).
Let s1 := s<(v⋆) and s2 := s>(v⋆).

Claim 9.24. For every i ∈ I4 there exists a vertex ci such that

• ci is s1-connected to all B[j, ∗] with j ∈ I3 and j < i, and

• ci is s2-connected to all B[i, ∗] with j ∈ I3 and j > i.
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Proof. Let ι1, ι2 and ι3, ι4 be the two immediate predecessors and successors of ex(v⋆) in I3. Those
are distinct indices, and they exist, since ex(v⋆) ∈ I4 and I4 was obtained from I3 by removing
the first and last two elements. Therefore, ῑ := (ι1, ι2, ι3, ι4) is a 4-element subsequence of I3.
Additionally, v⋆ is s1-connected to B[ι1, ∗], B[ι2, ∗] and s2-connected to B[ι3, ∗], B[ι4, ∗]

Pick i ∈ I4, and let ι′1, ι
′
2 and ι′3, ι

′
4 be the two immediate predecessors and successors of i

in I3. It follows by Fact 9.23 that there is a vertex ci that is s1-connected to B[ι′1, ∗], B[ι′2, ∗]
and s2-connected to B[ι′3, ∗], B[ι′4, ∗]. Since S samples G on A|I3 with margin 1, we have that
ex(ci) ∈ {ι′2, i, ι′4}. Since ci is s1-connected to B[ι′1, ∗], it is s1-connected to all B[j, ∗] with j ∈ I3
and j ⩽ ι′1. A symmetric statement holds for s2 and j ⩾ ι′4. This proves that ci has the desired
properties. ■

Consider Fact 9.22 for s1 and s2. We can assume ∀i ∈ I2 :
(
N(s1)∩B[i, ∗]

)
̸⊇

(
N(s2)∩B[i, ∗]

)
,

as the alternative case will follow by a symmetric argument. It follows that for every i ∈ I2 there
exists a vertex bi ∈ B[i, ∗] such that bi ∈ N(s2) \N(s1). Now by Claim 9.24, we have that for all
i, j ∈ I4

• ci is non-adjacent to bj if j < i, and

• ci is adjacent to bj if j > i.

By a simple majority argument we find a subsequence I5 ⊆ I4 of length at least 1
2 |I4| = Ut(|J |)

such that either

• ci and bj are adjacent if and only if j ⩾ i for all i, j ∈ I5, or

• ci and bj are adjacent if and only if i > j for all i, j ∈ I5.

By possibly dropping the first element from I5 and shifting the indices of the ci by one, we can
always assume the first case applies. Now (bi)i∈I5 and (ci)i∈I5 witness that A|I5 is orderable as
desired, so we can set I := I5.

Running Time. Let n := |V (G)|. Using the same preprocessing as in the run time analysis of
Lemma 9.9, we can assume that |J | ⩽ n1/4. We first apply Lemma 9.5, which runs in time Ot(n

2).
Coloring of the elements of tail(I1) and building I2 can be done in time Ot(n). We then color the
4-tuples of the resulting sequence. Similarly to the proof of Lemma 9.9, this can be done in time
Ot(n

2). As we have ensured |J | ⩽ n1/4, applying Ramsey to this coloring takes time Ot(n). For the
resulting sequence we can search for the ci-vertices of Claim 9.24. We do this by testing for every
vertex v ∈ V (G) the role of which of the ci it can take. For a single vertex this can be done in time
Ot(n) by checking its connections to each column of the insulator. An exhaustive search over all
vertices in G therefore takes time Ot(n

2). If we find a suitable candidate for every i ∈ I4, we can
compute I5 in time Ot(n), which yields the desired orderable insulator. If we cannot find suitable
candidates for all ci, we can conclude that S has the desired sampling property. The overall running
time is Ot(n

2) as desired.

10 Extending Insulators

We are now ready to prove the insulator growing lemmas. We first prove the orderless and then
the ordered case.
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10.1 Extending Orderless Insulators

Lemma 7.6 (Orderless Insulator Growing). Fix k, t ∈ N. For every graph G and orderless insula-
tor A indexed by J of cost k in G, we can compute a subsequence I ⊆ J of length Ut(|J |) such that
either

• G contains a prepattern of order t on A|I
• A|I is orderable, or

• there exists a row-extension of A|I of cost const(k, t) in G.

Moreover, there is an algorithm that, given G and A, computes the sequence I and one of the
three outcomes (a prepattern, a witnesses for A|I being orderable, or a row-extension) in time
Ok,t(|V (G)|2).

Proof. Let A = (A,K, F, F ). Apply Lemma 9.20 to A, which yields a subsequence I ⊆ J of size
Ut(|J |) and a set S ⊆ V (G) \ A|I of size const(t) such that either

• G contains a prepattern of order t on A|I , or

• A|I is orderable, or

• S symmetrically samples G on A|I with margin 1.

In the first two cases we are done, so we assume the last case: there exist functions s : V (G) → S
and ex : V (G) → tail(I) such that every v ∈ V (G) is (1, ex(v), s(v), s(v))-sampled on A|I . Let A
and B := A|I be the grids of A and B := A|I . Let I⋆ := tail(I) be the sequence indexing B and let
h be the height of A and B.

Defining the Grid. We build a row-extension C of B. By definition of a row-extension, we have
C[i, j] := B[i, j] for all i ∈ I⋆ and j ∈ [h]. It remains to define the row C[∗, h+ 1]. For every i ∈ I⋆,
we define C[i, h+ 1] to contain every vertex v that

• is not contained in B, and

• disagrees with its sample in the cell below, that is, atp(v/C[i, h]) ̸= atp(s(v)/C[i, h]).

As every vertex v is sampled with margin 1 in B, v can disagree with s(v) in at most one column
of B, so no vertex gets assigned into multiple columns. Furthermore, we only assign vertices to
C[∗, h+ 1] which were not in B, so the cells of C are pairwise disjoint and C is a valid grid. Thus,
C is a row-extension of B.

Claim 10.1. For every i ∈ I⋆ and v ∈ C[i, ∗], we have ex(v) = i.

Proof. As v is (1, ex(v), s(v), s(v))-sampled on B, we have

atp(v/B[i, ∗]) ̸= atp(s(v)/B[i, ∗]) ⇒ ex(v) = i.

If v ∈ C[i, h+ 1] then the premise is satisfied by construction. If v ∈ C[i,⩽ h] = B[i, ∗] then, since
s(v) /∈ B[i, ∗], the premise is again satisfied as we have

(=, v) ∈ atp(v/B[i, ∗]) \ atp(s(v)/B[i, ∗]). ■

The rest of the proof will be devoted to constructing K⋆ and F⋆ such that the row-extension
C := (C,K⋆, F⋆, F⋆) is an insulator of cost const(k, t) in G.
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Defining the Insulator. We build K⋆ as a refinement of K by encoding into the color of every
vertex v ∈ V (G) for every color X ∈ K and sample vertex s ∈ S the information

(C.1) whether v ∈ X,

(C.2) whether v ∈ C,

(C.3) whether v ∈ C[∗, h],

(C.4) whether v ∈ C[∗, h+ 1],

(C.5) whether v ∈ N(s),

(C.6) whether s(v) = s.

As |K| = k and |S| = const(t), we have |K⋆| = const(k, t). By (C.6), (C.5), and (C.1), we can
assign to every color X ∈ K⋆

• a sample vertex s(X) ∈ S, such that s(v) = s(X) for all v ∈ X,

• sample neighbors S(X) ⊆ S, such that N(v) ∩ S = S(X) for all v ∈ X, and

• a color K(X) ⊆ K, such that K(v) = K(X) for all v ∈ X.

In order to show that C is an insulator in G, it remains to define the symmetric relation F⋆ ⊆ K2
⋆

such that property (U.1) is satisfied. We define F⋆ via the following four cases. Let X,Y ∈ K⋆.

(F.1) If X ⊆ C[∗, h] and Y ⊆ C[∗, h], then (X,Y ) ∈ F⋆ ⇔
(
s(Y ) ∈ S(X) ∨ s(X) ∈ S(Y )

)
.

(F.2) If X ̸⊆ C[∗,⩽h] and Y ⊆ C[∗, h], then (X,Y ) ∈ F⋆ ⇔ s(X) ∈ S(Y ).

(F.3) If X ⊆ C[∗, h] and Y ̸⊆ C[∗,⩽h], then (X,Y ) ∈ F⋆ ⇔ s(Y ) ∈ S(X).

(F.4) Otherwise, (X,Y ) ∈ F⋆ ⇔
(
K(X),K(Y )

)
∈ F .

By construction, F⋆ is symmetric and therefore describes a valid flip. Let G′ := G ⊕K F and
G⋆ := G⊕K⋆ F⋆.

Proving Properties of Insulator. We have to show (U.1): for all i ∈ I⋆ there exists ai ∈ V (G)
such that for all r ∈ [h+ 1]

C[i, 1] = NG⋆
0 [ai] = {ai} and C[i,⩽r] = NG⋆

r−1[ai]. (4)

We first show that our flip conserves this property for r ∈ [h], and handle r = h+ 1 later.

Claim 10.2. For all i ∈ I⋆ and r ∈ [h], we have

C[i,⩽r] = B[i,⩽r] = NG′
r−1[ai] = NG⋆

r−1[ai].

Proof. The first two equalities follow by construction and property (U.1) of B. It remains to prove
NG′

r−1[ai] = NG⋆
r−1[ai]. We prove the claim by induction on r. The base case is trivial. For the

inductive step, assume the property holds for r ∈ [h − 1] and we want to show it for r + 1. We
show that for every vertex u we have u ∈ NG⋆

r [ai] if and only if u ∈ NG′
r [ai]. We can assume

u /∈ NG⋆
r−1[ai] = NG′

r−1[ai], as we would be done by induction otherwise. With these prerequisites,
the following are equivalent.

1. u ∈ NG⋆
r [ai]

2. u has a neighbor in NG⋆
r−1[ai] in G⋆ (as u /∈ NG⋆

r−1[ai])

3. u has a neighbor in C[i,⩽r] in G⋆ (by induction)

Let v be a vertex in C[i,⩽r] ⊆ C[i, <h]. By (C.2), (C.3), and (C.4), we have K⋆(v) ⊆ C[i, <h] and
case (F.4) applies: v has the same neighborhood in G⋆ as in G′. Hence, the following are equivalent
to the above.
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4. u has a neighbor in C[i,⩽r] in G′

5. u has a neighbor in NG′
r−1[ai] in G′ (by induction)

6. u ∈ NG′
r [ai] (as u /∈ NG′

r−1[ai])

■

Having proved Claim 10.2, in order to establish (U.1), it remains to prove

C[i, h+ 1] = NG⋆
h [ai] \NG⋆

h−1[ai].

We show the equivalence of the two sets by proving containment in both directions separately.

Claim 10.3. For all i ∈ I⋆ we have C[i, h+ 1] ⊆ NG⋆
h [ai] \NG⋆

h−1[ai].

Proof. Let u ∈ C[i, h+ 1]. As u /∈ C[i,⩽ h], we have by Claim 10.2 that u /∈ NG⋆
h−1[ai]. It remains

to show u ∈ NG⋆
h [ai]. By construction, we have

atp(u/C[i, h]) ̸= atp(s(u)/C[i, h]).

As neither u nor s(u) is contained in B, the difference in their atomic type must be witnessed by
a vertex v ∈ C[i, h] in the symmetric difference of their neighborhoods. We want to argue that
u and v are adjacent in G⋆. Let X := K⋆(u) and Y := K⋆(v). By (C.4) and (C.3), we have
X ⊆ C[i, h + 1] and Y ⊆ C[i, h]. Hence, case (F.2) from the construction of F⋆ applies and the
following are equivalent.

1. The adjacency between u and v got flipped when going from G to G⋆.

2. s(X) ∈ S(Y ). (by (F.2))

3. s(u) ∈ N(v) ∩ S. (by definition)

4. s(u) is a neighbor of v in G. (by definition)

5. u is a non-neighbor of v in G. (v is in the sym. diff. of N(s(u)) and N(u))

The equivalence between the first and the last item establishes that u and v are adjacent in G⋆.
By Claim 10.2, we have v ∈ NG⋆

h−1[ai], so u ∈ NG⋆
h [ai] and the claim is proven. ■

Claim 10.4. For all i ∈ I⋆ we have C[i, h+ 1] ⊇ NG⋆
h [ai] \NG⋆

h−1[ai].

Proof. Let u be a vertex in NG⋆
h [ai] \NG⋆

h−1[ai]. By Claim 10.2, this is witnessed by a vertex

v ∈ NG⋆
h−1[ai] = NG′

h−1[ai] = C[i, h]

that is adjacent to u in G⋆. We prove that u ∈ C[i, h+ 1] by ruling out all other possibilities.

• Assume that u ∈ C[j,⩽ h− 1] for some j ∈ I⋆. By Claim 10.2, we have

u ∈ NG⋆
h−2[aj ] = NG′

h−2[aj ].

As we assumed that u /∈ NG⋆
h−1[ai], we have that j ̸= i. Additionally, case (F.4) applies and

u has the same neighborhood in G′ and G⋆. Hence, u is adjacent to v also in G′. Now
v ∈ NG′

h−1(aj) = C[j,⩽h], but still v ∈ C[i, h]. This is a contradiction to C[i, h] and C[j,⩽h]
being disjoint.
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• Assume that u /∈ C or u ∈ C[j, h+ 1] for some j ̸= i ∈ I⋆. We first show

atp(u/C[i, h]) = atp(s(u)/C[i, h]). (5)

If u /∈ C, we deduce (5) from the construction of C. If u ∈ C[j, h + 1], we apply Claim 10.1
which yields j = ex(u) ̸= i. We then deduce (5) by the sampling property. Let X := K⋆(u)
and Y := K⋆(v). By our choice of u and v, we know their adjacency in G⋆ was determined
by case (F.2) and the following are equivalent.

1. The adjacency between u and v got flipped when going from G to G⋆.

2. s(X) ∈ S(Y ). (by (F.2))

3. s(u) ∈ N(v) ∩ S (by definition)

4. v is adjacent to s(u) in G. (by definition)

5. v is adjacent to u in G. (by (5))

The equivalence between the first and the last item establishes that u and v are non-adjacent
in G⋆, a contradiction.

• Finally, we assume that u ∈ C[j, h] for some j ∈ I⋆. As we know that u /∈ NG⋆
h−1[ai], Claim 10.2

yields i ̸= j. Then Claim 10.1 applied to u ∈ C[j, h] and v ∈ C[i, h] yields

j = ex(u) ̸= i = ex(v),

which together with the sampling property gives

atp(u/C[i, h]) = atp(s(u)/C[i, h]) and atp(v/C[j, h]) = atp(s(v)/C[j, h]). (6)

Let X := K⋆(u) and Y := K⋆(v). By our choice of u and v, we know their adjacency in G⋆

was determined by case (F.1) and the following are equivalent.

1. The adjacency between u and v got flipped when going from G to G⋆.

2. s(Y ) ∈ S(X) or s(X) ∈ S(Y ). (by (F.1))

3. s(v) ∈ N(u) ∩ S or s(u) ∈ N(v) ∩ S. (by definition)

4. u is a neighbor of s(v) in G or v is a neighbor of s(u) in G. (by definition)

5. u is a neighbor of v in G or v is a neighbor of u in G. (by (6))

6. u is a neighbor of v in G.

The equivalence between the first and the last item establishes that u and v are non-adjacent
in G⋆, a contradiction.

Having exhausted all other possibilities, we conclude that u ∈ C[i, h+1], which proves the claim. ■

The combination of Claim 10.2, Claim 10.3, and Claim 10.4 proves property (U.1). Hence,
C := (C,K⋆, F⋆, F⋆) is an insulator of cost const(k, t) in G. This proves that C is the desired row
extension. It remains to analyze the running time.

Running Time. Let n := |V (G)|. The application of Lemma 9.20 runs in time Ot(n
2). In the

case where a sample set S is returned, we can calculate the witnessing function s in time Ot(n
2)

by comparing each vertex v ∈ V (G) with each of the const(t) many vertices from S over every
column of A|I . With the function s at hand, we can also build the row-extension C of B in time
Ot(n

2). The construction of K⋆ and F⋆ runs in time Ok,t(n). This yields an overall running time
of Ok,t(n

2).

47



10.2 Extending Ordered Insulators

Lemma 7.7 (Ordered Insulator Growing). Fix k, t ∈ N. For every graph G and ordered insulator
A with cost k, indexed by J in G, we can compute a subsequence I ⊆ J of length Ut(|J |) such that
either

• G contains a prepattern of order t on A|I , or
• G contains a row-extension of A|I with cost const(k, t).

Moreover, there is an algorithm that, given G and A, computes the sequence I and one of the two
outcomes (a prepattern or a row-extension) in time Ok,t(|V (G)|2).

Proof. We first apply Lemma 9.5 to A, which yields a subsequence I ⊆ J of size Ut(|J |) and a set
S ⊆ V (G) \ A|I of size const(t) such that either

• G contains a prepattern of order t on A|I , or

• S samples G on A|I with margin 2.

In the first case we are done, so assume the second case. By possibly taking a subsequence and
applying Lemma 9.8, we can assume the following.

Property 10.5. I does not contain the first and last two elements of J .

Let B be the grid of B := A|I and let I⋆ := tail(I) be the sequence indexing B. As S
samples G on B with margin 2, there exist functions ex : V (G) → I⋆ and s<, s> : V (G) → S,
such that every v ∈ V (G) is (2, ex(v), s<(v), s>(v))-sampled in B. We can assume ex is chosen
maximal in the following sense: for every vertex v ∈ V (G) and index i ∈ I⋆, if atp(v/B[⩽i, ∗]) =
atp(s<(v)/B[⩽i, ∗]) then ex(v) ⩾ i.

Defining the Grid. We will build a row-extension C of B. By definition of a row-extension we
have C[i, r] := B[i, r] for all i ∈ I⋆ and r ∈ [h]. It remains to define the row C[∗, h+ 1]. For every
i ∈ I⋆, we set C[i, h+ 1] to contain every vertex v such that

• v is not contained in B, and

• atp(v/B[i, h]) ̸= atp(s<(v)/B[i, h]) and i is the minimal index in I⋆ with this property.

It is easy to see that cells of C are pairwise disjoint and C is a valid grid. Furthermore, we have
the following property.

Claim 10.6. For every i ∈ I⋆ and v ∈ C[i, ∗], we have ex(v) ∈ {i− 1, i}.

Proof. If v ∈ C[i,⩽ h] = B[i, ∗] then, since B[i, ∗] contains v but neither s<(v) nor s>(v), the
atomic type of v differs from the atomic types of both s<(v) and s>(v) over B[i, ∗]. By the
sampling property with margin 2, we have that i = ex(v) or i = ex(v) + 1.

If v ∈ C[i, h+1], then by construction the atomic type of v differs from the atomic type of s<(v)
over B[i, ∗]. This yields ex(v) ⩽ i. As we have chosen i minimal, we have atp(v/B[⩽i − 1, ∗]) =
atp(s<(v)/B[⩽i− 1, ∗]). As we have chosen ex maximal, we have ex(v) ⩾ i− 1. ■

The rest of the proof will be devoted to constructing K⋆, F⋆, and R⋆ such that the row-extension
C := (C,K⋆, F⋆, R⋆) is an insulator of cost const(k, t) in G.
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Defining the Insulator. We build K⋆ as a refinement of K by encoding into the color of every
vertex v ∈ V (G) for every color X ∈ K and sample vertex s ∈ S the information

(C.1) whether v ∈ X,

(C.2) whether v ∈ C,

(C.3) whether v ∈ C[∗, h],

(C.4) whether v ∈ C[∗, h+ 1],

(C.5) whether v ∈ N(s),

(C.6) whether v ∈ int(B),

(C.7) whether s<(v) = s,

(C.8) whether s>(v) = s,

(C.9) whether v has a neighbor in X ∩ int(B).

As K has size k and S has size const(t), we have |K⋆| = const(k, t). By (C.7), (C.8), (C.5), and
(C.1), we can define for every color X ∈ K⋆

• a left sample s<(X) ∈ S, such that for all v ∈ X we have s<(v) = s<(X),

• a right sample s>(X) ∈ S, such that for all v ∈ X we have s>(v) = s>(X),

• sample neighbors S(X) ⊆ S, such that for all v ∈ X we have N(v) ∩ S = S(X), and

• a color K(X) ∈ K, such that for all v ∈ X we have K(v) = K(X).

We define F⋆ ⊆ K2
⋆ via the following four cases. Let X,Y ∈ K⋆.

(F.1) If X ⊆ C[∗, h+ 1] and Y ⊆ C[∗, h], then (X,Y ) ∈ F⋆ ⇔ s<(X) ∈ S(Y ).

(F.2) If X ⊆ C[∗, h] and Y ⊆ C[∗, h+ 1], then (X,Y ) ∈ F⋆ ⇔ s<(Y ) ∈ S(X).

(F.3) If X ⊆ C[∗, h+ 1] and Y ⊆ C[∗, <h], or vice-versa, then

(X,Y ) ∈ F⋆ ⇔ there is an edge between X and Y in G.

(F.4) Otherwise, (X,Y ) ∈ F⋆ ⇔
(
K(X),K(Y )

)
∈ F .

In order for F⋆ to define a valid flip, F⋆ has to be symmetric. This is satisfied by our definition. The
cases (F.1) and (F.2) are dual and for (F.3) and (F.4) the symmetry follows from the symmetry of
their conditions and the symmetry of the edge relation and F .

We define R⋆ ⊆ K2
⋆ via the following three cases.

(R.1) If X ⊆ C[∗, h+ 1] and Y ⊆ C[∗,⩽h], or

(R.2) if X ⊆ C[∗, h] and Y ⊆ C[∗, h], then

(X,Y ) ∈ R⋆ ⇔ s>(X) ∈ S(Y ).

(R.3) Otherwise, (X,Y ) ∈ R⋆ ⇔
(
K(X),K(Y )

)
∈ R.

Proving Properties of the Insulator. Let G′ := G⊕K F and G⋆ := G⊕K⋆ F⋆. We prove the
various insulator properties.

Claim 10.7 ((O.1)). Every two vertices in different rows of C have different colors in K⋆.

Proof. If none of the two vertices is in C[∗, h+ 1] then the property holds as K⋆ is a refinement of
K, which satisfied this property in B. Otherwise, exactly one of them is contained in C[∗, h + 1]
and we can distinguish them using (C.4). ■
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Claim 10.8 ((O.2)). Every vertex u ∈ C[i, r] with r > 1 has a neighbor in the cell C[i, r−1] in G⋆.

Proof. If r ⩽ h, then by (O.2) of B, there is a vertex v ∈ C[i, r− 1] that is adjacent to u in G′. By
(F.4), u and v are also adjacent in G⋆.

It remains to check the case where u ∈ C[i, h + 1]. By construction there exists a vertex
v ∈ C[i, h] in the symmetric difference of N(u) and N(s<(u)). By (C.4) and (C.3), we have
K⋆(u) ⊆ C[∗, h+ 1] and K⋆(v) ⊆ C[∗, h]. Case (F.1) applies, and the following are equivalent.

1. The adjacency between u and v got flipped from G to G⋆.

2. s<(K(u)) ∈ S(K(v)). (by (F.1))

3. s<(u) ∈ N(v) ∩ S. (by definition)

4. s<(u) is adjacent to v in G. (by definition)

5. u is non-adjacent to v in G. (v is in the sym. diff. of N(s<(u)) and N(u))

The equivalence between the first and the last item establishes that u and v are adjacent in G⋆. ■

Claim 10.9 ((O.3)). For every v /∈ C and X ∈ K⋆, v is homogeneous to X ∩ int(C) in G.

Proof. Let XC := X ∩ int(C). As C is an extension of B, we also have v /∈ B. By construction
of C and (C.6) and (C.3), we have either XC ⊆ int(B) or XC ⊆ C[∗, h] = B[∗, h]. In the first
case we conclude by (O.3) of B. In the second case, since v did not get sorted into C, we know by
construction

atp(v/C[∗, h]) = atp(s<(v)/C[∗, h]).

By (C.5), s<(v) is homogeneous to X, and so is v. ■

In the following claims we prove (O.4). For this purpose let u ∈ C[i, r] for some i ∈ I⋆ and
r < h+ 1, and let v ∈ C. Up to renaming, we additionally assume I⋆ = (1, . . . , n).

Claim 10.10 ((O.4.1)). If u ∈ int(C) and u and v are in rows that are not close, then they are
non-adjacent in G⋆.

Proof. Assume first v ∈ C[∗, h+ 1]. Then u ∈ C[∗, <h], as u and v are in rows that are not close.
By construction of C this yields u ∈ int(B) and v /∈ B. Using the properties of our coloring, we
conclude the following. Let X := K⋆(u) and Y := K⋆(v).

• X ⊆ K(X) ∩ int(B). (by (C.1) and (C.6))

• No vertex of Y is contained in B. (by (C.2))

• Every or no vertex in Y has a neighbor in K(X) ∩ int(B). (by (C.9))

Combining the above with (O.3) of B, we know that the connection between X and Y is homoge-
neous in G. Additionally, X ⊆ C[∗, <h] and Y ⊆ C[∗, h+ 1] so case (F.3) applies and the following
are equivalent.

1. The adjacency between u and v got flipped from G to G⋆.

2. There is an edge between X and Y in G. (by (F.3))

3. There is an edge between u and v in G. (as X ∋ u and Y ∋ v are homogeneous)

The equivalence between the first and the last item establishes that u and v are non-adjacent in G⋆.
If v /∈ C[∗, h + 1], then since also u /∈ C[∗, h + 1], case (F.4) applies and u and v have the

same adjacency in G⋆ as in G′. Note that in this case, by construction and Observation 5.8, u
and v are both contained in both grids A and B and in both grids, they are in rows that are
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not close. If v ∈ C[∗, h], then again u ∈ int(B) and u and v non-adjacent in G′ by (O.4.1) of B.
Otherwise, v ∈ C[∗, <h] and by Property 10.5 and Observation 5.8 we have v ∈ int(A). Now u and
v non-adjacent in G′ by (O.4.1) of A.

■

Claim 10.11 ((O.4.2)). If v ∈ C[<i, r − 1] ∪ C[>i, r + 1], then u and v are non-adjacent in G⋆.

Proof. If at least one of u and v is contained in C[∗, <h] = B[∗, <h], then case (F.4) applies and u
and v have the same adjacency in G⋆ as in G′. Possibly exchanging the roles of u and v, we can
apply (O.4.2) of B to deduce that u and v are non-adjacent in G′.

In the remaining case we have u ∈ C[i, h] = B[i, h] and v ∈ C[>i, h + 1] and by construction
of C:

atp(v/B[i, h]) = atp(s<(v)/B[i, h]).

Also, K⋆(u) ⊆ C[∗, h] and K⋆(v) ⊆ C[∗, h + 1] by (C.3) and (C.4). Hence, case (F.2) applies, and
the following are equivalent.

1. The adjacency between u and v got flipped from G to G⋆.

2. s<(K⋆(v)) ∈ S(K⋆(u)). (by (F.2))

3. s<(v) ∈ N(u) ∩ S. (by definition)

4. u and s<(v) are adjacent in G. (by definition)

5. u and v are adjacent in G. (by atp(v/B[i, h]) = atp(s<(v)/B[i, h]))

The equivalence of the first and the last item establishes that u and v are non-adjacent in G⋆.
■

Claim 10.12 ((O.4.3)). If v ∈ C[>i+ 1, {r, r − 1}], then G |= E(u, v) ⇔ (K⋆(u),K⋆(v)) ∈ R⋆.

Proof. If either u ∈ C[∗, < h] or v ∈ C[∗, < h], then case (R.3) applies, we have

(K⋆(u),K⋆(v)) ∈ R⋆ ⇔ (K(u),K(v)) ∈ R,

and it remains to establish
G |= E(u, v) ⇔ (K(u),K(v)) ∈ R.

If u ∈ C[∗, <h], we argue using (O.4.3) of B. Otherwise, we have v ∈ C[∗, <h] and argue using
(O.4.4) of B, where we exchange the roles of u and v.

We can now assume u, v ∈ C[∗, h]. By (C.3), also K⋆(u),K⋆(v) ⊆ C[∗, h], and case (R.2) applies.
By assumption, we have v ∈ C[i′, h] for i+ 1 < i′. By Claim 10.6, we have that ex(u) + 1 < i′, and
the following are equivalent.

1. u and v are adjacent in G.

2. s>(u) and v are adjacent in G. (by the sampling property)

3. s>(u) ∈ N(v) ∩ S. (by definition)

4. s>(K⋆(u)) ∈ S(K⋆(v)). (by definition)

5. (K⋆(u),K⋆(v)) ∈ R⋆. (by (R.2))

■

Claim 10.13 ((O.4.4)). If v ∈ C[<i− 1, {r, r + 1}], then G |= E(u, v) ⇔ (K⋆(v),K⋆(u)) ∈ R⋆.

Proof. If either
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• one of u and v is contained in C[∗, <h], or

• both u and v are contained in C[∗, h],

then we can exchange u and v and the property follows from the already established property
(O.4.3). It remains to prove the case where u ∈ C[i, h] and v ∈ C[<i − 1, h + 1]. We have
K⋆(u) ⊆ C[∗, h] and K⋆(v) ⊆ C[∗, h+ 1], and case (R.1) applies for X = K⋆(v) and Y = K⋆(v). By
assumption, we have v ∈ C[i′, h+ 1] for i′ + 1 < i. By Claim 10.6, we have that ex(v) + 1 < i, and
the following are equivalent.

1. u and v are adjacent in G.

2. u and s>(v) are adjacent in G. (by the sampling property)

3. s>(v) ∈ N(u) ∩ S. (by definition)

4. s>(K⋆(v)) ∈ S(K⋆(u)). (by definition)

5. (K⋆(v),K⋆(u)) ∈ R⋆. (by (R.1))

■

This proves property (O.4). Finally, property (O.5) only concerns the first row C[∗, 1] = B[∗, 1],
so its truth carries over from B. Having proven all properties, it follows that C is an insulator. Its
cost is |K⋆| = const(k, t). This proves that C is the desired row extension. It remains to analyze
the running time.

Running Time. Let n := |V (G)|. Lemma 9.5 runs in time Ot(n
2). Similarly as in the proof of

Lemma 7.6, we can build the row-extension C of B in time Ot(n
2). The construction of K⋆, F⋆,

and R⋆ runs in time Ok,t(n). This yields an overall running time of Ok,t(n
2).

Having proven the insulator growing lemmas, this concludes Part I.
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Part II

Non-Structure

In Part I, we have shown that for any graph class the following implications hold:

prepattern-free ⇒ insulation-property ⇒ flip-breakable ⇒ mon. dependent

In Part II, we close the circle of implications by showing:

not prepattern-free ⇒ large flipped crossings/comparability grids ⇒ mon. independent

The main goal of Part II is to prove the following.

Proposition 10.14. Let G be a graph containing a prepattern of order n on an insulator of height
h and cost k. Then G contains as an induced subgraph either

• a flipped star r-crossing of order m, or

• a flipped clique r-crossing of order m, or

• a flipped half-graph r-crossing of order m, or

• the comparability grid of order m,

for some m ⩾ Uh,k(n) and 1 ⩽ r < 8h.

This is achieved in Section 11 and Section 12. Additionally, in Section 12.6 we prove that classes
which exhibit large patterns as listed in Proposition 10.14 are monadically independent. Finally,
in Section 13, we wrap up the proof of the main results of the paper.

Convention: We often write that some property or function P (x̄) “is the same for all tuples x̄
from a given domain.” This means that for all x̄, ȳ from a specified domain, P (x̄) = P (ȳ).

11 Transformers

As a first step, in Section 11, starting from large prepatterns, we will extract well-structured, but
rather abstract objects called transformers. After that, in Section 12, transformers will be analyzed
at a low level, and crossings will be extracted from them.

11.1 Meshes and Transformers

Definition 11.1. A mesh in a graph G is an injective function M : I×J → V (G), where I and J are
two non-empty indexing sequences of the same length. We denote V (M) := {M(i, j) : i ∈ I, j ∈ J}.
For a mesh M as above, by MT denote the mesh MT : J × I → V (G) such that MT(i, j) = M(j, i)
for all i ∈ I, j ∈ J . A mesh M has order m if |I| = |J | = m.

For I ′ ⊆ I and J ′ ⊆ J , by M |I′×J ′ we denote the mesh obtained by restricting M to I ′ × J ′.
We call M |I′×J ′ a submesh of M .

Definition 11.2. Let M : I × J → V (G) be a mesh in a (possibly colored) graph G. Then M is
vertical in G if |I| = |J | ⩽ 3, or if there is a function a : I → V (G) such that

• atpG(M(i, j), a(i′)) depends only on otp(i, i′) for all i, i′ ∈ I and j ∈ J , and

• atpG(M(i, j), a(i′)) is not the same for all i, i′ ∈ I and j ∈ J .
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We say that M is horizontal in G if MT is vertical in G. Note that a mesh can be both horizontal
and vertical.

Definition 11.3. Let M,M ′ : I × J → V (G) be meshes in a (possibly colored) graph G. We say
that in G the pair (M,M ′) is

• regular if atpG(M(i, j),M ′(i′, j′)) depends only on otp(i, i′) and otp(j, j′)
for all i, i′ ∈ I and j, j′ ∈ J ,

• homogeneous if atpG(M(i, j),M ′(i′, j′)) is the same
for all i, i′ ∈ I and j, j′ ∈ J ,

• conducting if either |I| = |J | ⩽ 3 or (M,M ′) is regular but not homogeneous in G.

Definition 11.4. A conductor of order n and length h is a sequence M1, . . . ,Mh : I × J → V (G)
of meshes of order n, such that each pair (Ms,Ms+1) is conducting for s = 1, . . . , h− 1.

We now define the central notion of Section 11.

Definition 11.5. A transformer of order n and length h is a conductor M1, . . . ,Mh of order n and
length h, such that M1 is vertical, and Mh is horizontal.

The main result of Section 11 is the following.

Proposition 11.6. Let G be a graph containing a prepattern of order n on an insulator of height
h and cost k. Then G contains a transformer of order Uh,k(n) and length at most 4h− 1.

We start with some simple observations.

Observation 11.7. Let M be a mesh in a graph G. If M is horizontal/vertical in G then this also
holds for every submesh of M .

Observation 11.8. LetM1,M2 : I×J → V (G) be meshes in a graph G such that the pair (M1,M2)
is conducting in G. For all I ′ ⊆ I and J ′ ⊆ J with |I ′| = |J ′| the pair (M1|I′×J ′ ,M2|I′×J ′) is also
conducting in G.

Lemma 11.9. Let G be a graph and G+ be a coloring of G. If a pair of meshes (M,M ′) is
conducting in G+ then it is also conducting in G.

Proof. Obviously the pair (M,M ′) is also regular in G. Via contrapositive, it remains to assume
that (M,M ′) is homogeneous in G, and show that it also is homogeneous in G+. To this end,
observe that the atomic type atpG+(M(i, j),M ′(i′, j′)) depends only on atpG(M(i, j),M ′(i′, j′)) as
well as the colors of M(i, j) and M ′(i′, j′). The former has the desired properties by homogeneity
in G, and the latter by regularity in G+.

Lemma 11.10. Let G be a graph and G+ be a coloring of G. If a mesh M is vertical in G+ then
it is also vertical in G.

Proof. Let a(·) be the function witnessing that M is vertical in G+. We argue as in the proof of
Lemma 11.9. Here, instead of regularity, we use verticality to argue that all vertices in the range
of a (respectively all vertices in the range of M) have the same atomic type in G+.
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11.2 From Prepatterns to Transformers

In this section, we prove Proposition 11.6, extracting transformers from prepatterns. Let us first
give an overview of the proof in the case where G contains a bi-prepattern. The mono-prepattern
case later falls out as a subcase. The bi-prepattern in G is witnessed by an insulator A whose
columns are indexed by a sequence K containing two subsequences I and J . Every pair of columns
(i, j) ∈ I×J is “matched up” by an element ci,j through quantifier-free formulas (cf. Definition 6.1).

Figure 12 is a schematic depiction of how the transformer will embed into the insulator A. The
transformer will be assembled from two conductors C = M0, . . . ,Mt and C ′ = M ′

0, . . . ,M
′
t . The

columns of the meshes of C and C ′ are contained in the columns of the insulator A indexed by I
and J , respectively. The structure of A imposes that Mt and M ′

t are both vertical. The meshes
M0 and M ′

0 are chosen from the vertices ci,j such that M0 = M ′
0
T. It follows that we can glue the

conductor C to the transposed meshes from C ′ yielding the desired transformer

Mt,Mt−1, . . . ,M1,M0 = M ′T
0 ,M

′T
1 , . . . ,M

′T
t−1,M

′T
t ,

where Mt is vertical and M ′T
t is horizontal.

The construction of C and C ′ is implemented by Lemma 11.16 or Lemma 11.18 (♣1 or ♣2 in the
picture) depending on the choice of ∼1 and ∼2 in the definition of a bi-prepattern. Lemma 11.16
iteratively extends the conductor by “stepping down” the insulator. A single step is performed
using Lemma 11.12 (♦), which creates meshes embedded into descending rows of the insulator (cf.
Definition 11.11). The structure of the insulator is used to establish conductivity between successive
meshes/rows. This process continues until either a vertical mesh is produced or we reach the bottom
row of the insulator. If we reach the bottom row, we use Lemma 11.15 (♠) to further extend the
conductor to reach a vertical mesh. Here we use the special structure of the bottom row: In the
unordered case, the cells how the bottom row contain only a single vertex each, which implies
that the mesh in the bottom row is already vertical. In the ordered case the mesh in the bottom
row is connected through short parts to a vertical mesh and we can bridge those short paths by a
conductor. This finishes the sketch of Lemma 11.16 (♣1). Lemma 11.18 (♣2) is a rather technical
case distinction which reduces the construction of the conductor to some previously established
subcase.

This concludes the overview of the proof of Proposition 11.6. We now give a detailed proof.

Definition 11.11. Let G be a graph containing an insulator A of height h with grid A and indexed
by a sequence K. Let M : I × J → V (G) be a mesh of order n in G with I ⊆ K. Let r ∈ [h]. We
say that M embeds into row r of A if for all i ∈ I and j ∈ J .

M(i, j) ∈ A[i, r].

Lemma 11.12 (♦ in Figure 12). Let G be a graph containing an insulator A of height h with grid
A and indexed by a sequence K. Let M : I × J → V (G) be a mesh of order n in G with I ⊆ K.
Let α(x, y) be a quantifier-free formula in a k-coloring G+ of G, and let r ∈ [h] be such that for all
i ∈ I, j ∈ J

i = min{i′ ∈ I : ∃v ∈ A[i′,⩽r] : G+ |= α(v,M(i, j))}. (7)

Then there are meshes M1,M2 of order Uk,h(n) such that

• M1 is a submesh of M , and

• the pair (M1,M2) is conducting in G, and
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♣1/♣2

♦

♦

♦

♠

M0 = M ′T
0

M1

M2

Mt

M ′
1

M ′
2

M ′
t

A

Figure 12: Constructing a transformer from a bi-prepattern.

• M2 is vertical in G or M2 embeds into some row r′ ⩽ r of A.

Proof. Note that by Lemma 11.9 and Lemma 11.10, it does not matter whether we show conduc-
tivity and verticality in G or G+. For every i ∈ I and j ∈ J , pick a vertex M ′(i, j) ∈ A[i,⩽ r] such
that G+ |= α(M ′(i, j),M(i, j)). Note that M is not necessarily a mesh, as it may not be injective.

Claim 11.13. There are sequences I ′ ⊆ I and J ′ ⊆ J with |I ′| = |J ′| ⩾ Uk,h(|I|) = Uk,h(n), and a
row number r′ ∈ [r] such that

(R.1) atpG+(M(i, j),M(i′, j′),M ′(i, j),M ′(i′, j′)) depends only on otp(i, i′) and otp(j, j′)
for i, i′ ∈ I ′ and j, j′ ∈ J ′, and

(R.2) M ′(i, j) ∈ A[i, r′] for all i ∈ I ′.

The proof of the claim is a straightforward application of Bipartite Ramsey (Lemma 4.4).
Readers experienced in Ramsey theory are invited to skip it. However, due to the importance of
Ramsey type arguments for this section, we include the details of an exemplary application here.

Proof of Claim 11.13. Up to renaming we can assume I = J = [n]. Let Π be the set of possible
atomic types of four tuples in k-colored graphs. There exists a constant k∗ ⩽ const(k, h) such that
there is a bijection b : Π × [r] → [k∗]. We now define the coloring c : [n]2 × [n]2 → [k∗] as

c
(
(i, i′), (j, j′)

)
:= b

(
atpG+

(
M(i, j),M(i′, j′),M ′(i, j),M ′(i′, j′)

)
, r′

)
where r′ is the unique row such that M ′(i, j) ∈ A[i, r′]. Applying Bipartite Ramsey (Lemma 4.4)
to the defined coloring yields sequences I ′ ⊆ I and J ′ ⊆ J with |I ′| = |J ′| ⩾ Uk,h(|I|) = Uk,h(n)
such that c

(
(i, i′), (j, j′)

)
depends only on otp(i, i′) and otp(j, j′) for i, i′ ∈ I ′ and j, j′ ∈ J ′. By the

56



construction of the coloring, this proves (R.1). To see that the row containing M ′(i, j) is the same
for all i ∈ I and j ∈ J , notice that

c
(
(i, i), (j, j)

)
= c

(
(i′, i′), (j′, j′)

)
for all i, i′ ∈ I ′ and j, j′ ∈ J ′.

Therefore, M(i, j) and M(i′, j′) are in the same row, which proves (R.2). ■

Let I ′, J ′, and r′ be as from the previous claim. We set M1 := M |I′×J ′ and M2 := M ′|I′×J ′ .

Claim 11.14. Either M1 is vertical, or M2 is a mesh (that is, M2 is injective).

Proof. Assume |I ′| > 3, as otherwise M1 is vertical by definition. Assume that M2 is not injective.
Then there exist distinct pairs (i, j), (i′, j′) ∈ I ′ × J ′ such that M2(i, j) = M2(i

′, j′). Since M2(i, j)
(equivalently M2(i

′, j′)) is from the ith (equivalently i′th) column of A, we have that i = i′. Hence,
j ̸= j′.

By (R.1) we have a(i) := M2(i, j) = M2(i, j
′) for all i ∈ I ′ and j, j′ ∈ J ′. Now also by (R.1),

atpG+(M1(i, j), a(i′)) depends only on otp(i, i′) for all i, i′ ∈ I and j ∈ J ′. Finally, by (7) and
|I ′| > 3, atpG+(M1(i, j), a(i′)) is not the same for all i, i′ ∈ I and j ∈ J ′. In summary: a(·)
witnesses that M1 is vertical. ■

Assume now the mesh M1 is vertical. By (R.1), the pair (M1,M1) is regular. As witnessed by
the equality type, the pair is not homogeneous and therefore conducting. We can return (M1,M1).

Otherwise, M2 is a mesh and embeds into the row r′ of A by (R.2). Furthermore, the pair
(M1,M2) is conducting: regularity follows from (R.1) and non-homogeneity from (7).

Lemma 11.15 (♠ in Figure 12). Let G be a graph containing an insulator A of cost k and height h
and let M be a mesh of order n that embeds into row 1 of A. There exists a conductor M1, . . . ,Mt

for t ⩽ h of order Uk,h(n) such that M1 is a submesh of M and Mt is vertical.

Proof. Let I, J be the sequences indexing the mesh M . Let A be the grid of A. Assume first that
A is orderless. Then by the insulator property (U.1), each cell in row 1 of A contains only a single
vertex. As M embeds into this row, it has order 1. Then M is vertical and the conductor consisting
only of M satisfies the conditions of the lemma.

Assume now that A is ordered. By (O.5), there exists a k-flip H of G and some radius r < h
such that the radius-r balls around the vertices in A[∗, 1] are pairwise disjoint. Moreover, there are
vertices {b(v) ∈ NH

r [v] : v ∈ A[∗, 1]} and {ci ∈ V (G) : i ∈ I} and a symbol ∼ ∈ {⩽,⩾} such that
for all i, j ∈ I and v ∈ A[j, 1]

G |= E(ci, b(v)) if and only if i ∼ j.

Let G+ be the k-coloring of G in which the edge relation of the flipped graph H can be expressed
by a quantifier-free formula. For each i ∈ I and j ∈ J let π(i, j) be the tuple of vertices forming a
shortest path from M(i, j) to b(M(i, j)) in H. By (O.5), these paths have equal length for all i, j
and consist of at most h vertices. By Bipartite Ramsey (Lemma 4.4), there exist sequences I ′ ⊆ I
and J ′ ⊆ I of length at least Uk,h(n) such that

atpG+(π(i, j), c(i), π(i′, j′), c(i′)) depends only on otp(i, i′) and otp(j, j′)
for all i, i′ ∈ I ′ and j, j′ ∈ J ′.
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For distinct pairs (i, j) and (i′, j′) in I ′ × J ′, π(i, j) and π(i′, j′) have no vertex in common, as
they stem from two disjoint balls in H. Therefore, each of the functions M1, . . . ,Mh : I ′ × J ′ →
V (G), where Mt(i, j) is defined as the tth component of π(i, j), is injective and forms a mesh.
By construction, M1 is a submesh of M . By Ramsey and (O.5), Mh is vertical. We next show
that M1, . . . ,Mh is a conductor in G+. By Ramsey, any pair of successive meshes (Mt,Mt+1) in
the sequence is regular in G+. It remains to show that (Mt,Mt+1) is not homogeneous in G+.
Consider two distinct pairs (i, j), (i′, j′) ∈ I ′ × J ′. As π(i, j) and π(i′, j′) are constructed via paths
through disjoint balls in H, we have that Mt(i, j) is adjacent to Mt+1(i, j) and non-adjacent to
Mt+1(i

′, j′) in H. It follows that (Mt,Mt+1) is not homogeneous in G+. Therefore, (Mt,Mt+1) is
conducting in G+. Hence, M1, . . . ,Mh is a conductor in G+, and by Lemma 11.9 and Lemma 11.10
also in G.

Lemma 11.16 (♣1 in Figure 12). Let G be a graph containing an insulator A of cost k and height
h with grid A and indexed by a sequence K. Let M : I × J → V (G) be a mesh of order n in G
with I ⊆ K. Let α(x, y) be a quantifier-free formula in a k-coloring G+ of G such that for all
i ∈ I, j ∈ J

i = min{i′ ∈ I : ∃v ∈ A[i′, ∗] : G+ |= α(v,M(i, j))}.

Then there is a conductor M1, . . . ,Mt of order Uk,h(n) and length at most 2h in G such that M1

is a submesh of M and Mt is vertical in G.

Proof. Note that by Lemma 11.9 and Lemma 11.10, it does not matter whether we show conduc-
tivity and verticality in G or G+. Denote M0 := M and r0 := h + 1. We inductively construct
a sequence of meshes M1,M2, . . . ,Mt where for each s = 1, 2, . . . , t, the mesh Ms satisfies the
following conditions:

• Ms has order Us,k,h(n),

• there is a row rs ∈ [rs−1 − 1] such that Ms embeds into row rs of A,

• there is a submesh M ′
s−1 of Ms−1 such that the pair (M ′

s−1,Ms) is conducting.

To construct M1, we apply Lemma 11.12 to the mesh M0 and the formula α(x, y) to obtain a
conducting pair of meshes (M ′

0,M1) of order Uk,h(n) where M ′
0 is a submesh of M0. If M1 is

vertical then M ′
0,M1 is the desired conductor, and we conclude the proof of the lemma. Otherwise,

M1 embeds into some row r1 ∈ [h] of A and satisfies the induction hypothesis.
Suppose the sequence M1, . . . ,Ms has been constructed for some s ⩾ 1. Below we either extend

the sequence by one, or terminate the process.
Assume first rs > 1. As the sequence r1, r2, . . . , rs is strictly decreasing we have s < h.

Let β(x, y) be the formula expressing adjacency in the flip G′ associated to A. As G′ is a k-
flip of G, β is expressible in a k-coloring of G. Let Is and Js be the sequences indexing Ms. For
every i0 < i ∈ Is and j ∈ Js, we have that Ms(i, j) has a β-neighbor in A[i, rs−1] but no β-neighbor
in A[i0, rs − 1]. This is by the insulator property (U.1) if A is orderless and by (O.2) and (O.4.2)
if A is ordered. Hence, we can apply Lemma 11.12 to the mesh Ms, the row number rs − 1, and
the formula β(x, y). We obtain a conducting pair of meshes (M ′

s,Ms+1) of order Us,k,h(n) where
M ′

s is a submesh of Ms. If Ms+1 is vertical then we conclude the proof of the lemma returning the
conductor

M0|I′×J ′ ,M1|I′×J ′ , . . . ,Ms|I′×J ′ ,Ms+1

of length at most h+ 1, where I ′ ⊆ I and J ′ ⊆ J are the indexing sequences of Ms+1. Otherwise,
Ms+1 embeds into some row rs+1 ∈ [rs−1] of A and satisfies the induction hypothesis. We continue
the process.
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Assume now rs = 1. Note that s ⩽ h. Then Ms embeds into the first row of A, and we can
apply Lemma 11.15. This yields a conductor M⋆

1 , . . . ,M
⋆
t⋆ of length t⋆ ⩽ h indexed by sequences

I ′ ⊆ I and J ′ ⊆ J of length Us,k,h(n) such that M⋆
1 is a submesh of Ms, and M⋆

t⋆ is vertical. Now
we conclude the proof of the lemma returning the following conductor of length at most 2h:

M0|I′×J ′ , . . . ,Ms−1|I′×J ′ ,M⋆
1 , . . . ,M

⋆
t⋆ .

Lemma 11.17. Assume G contains a mono-prepattern of order n on an insulator A of cost k and
height h. Then G contains a transformer of order Uk,h(n) and length at most 2h.

Proof. Let (cj : j ∈ J) and (bi,j : i ∈ I, j ∈ J) form a mono-prepattern of order n = |I| = |J |
on the insulator A. Define the function M : I × J → V (G) where M(i, j) = bi,j . By definition of
a mono-prepattern, all the bi,j are distinct, so M is a mesh. By Bipartite Ramsey (Lemma 4.4)
and Definition 6.2, there exist sequences I ′ ⊆ I and J ′ ⊆ I of length at least U(n) such that
atpG(M(i, j), cj′) depends only on otp(j, j′) for all i ∈ I ′ and j, j′ ∈ J ′. Since atpG(M(i, j), cj′) is
not the same for all i ∈ I ′ and j, j′ ∈ J ′, the submesh M |I′×J ′ is horizontal.

We apply Lemma 11.16 to the mesh M |I′×J ′ and formula α(x, y) := (x = y). This yields a
conductor M1, . . . ,Mt of length at most 2h and order Uh,k(n) such that M1 is a submesh of M |I′×J ′ ,
and Mt is vertical. As M |I′×J ′ is horizontal, the same holds for M1, and thus Mt, . . . ,M1 is the
desired transformer.

Lemma 11.16 is complemented by the following more technical Lemma 11.18. Together, these
two lemmas accommodate the two possible choices for the symbols ∼1,∼2∈ {=, ̸=} in the definition
of a bi-prepattern (Definition 6.1).

Lemma 11.18 (♣2 in Figure 12). Let A be an insulator of cost k and height h indexed by a
sequence K, let I, J be indexing sequences with I ⊆ K, let M : I × J → V (G) be a mesh of order
n, and let α be a quantifier-free formula in a k-coloring G+ of G, such that for all i ∈ I, j ∈ J

i = min{i′ ∈ I : ¬∃v ∈ A[i′, ∗] : G+ |= α(v,M(i, j))}.

Then there is a conductor M1, . . . ,Mt of order Uk,h(n) and length at most 2h such that either

• M1 is a submesh of M and Mt is vertical in G, or

• M1, . . . ,Mt is a transformer in G.

Proof. For all i∗, i ∈ I with i∗ < i and j ∈ J , fix a vertex F (i∗, i, j) ∈ A[i∗, ∗] such that

G+ |= α(F (i∗, i, j),M(i, j))

By Bipartite Ramsey (Lemma 4.4), there are sets I ′ ⊆ I and J ′ ⊆ J with |I ′| = |J ′| ⩾ U(|I|), such
that for all i∗, i, i′ ∈ I ′ with i∗ < i, i′, and for all j, j′ ∈ J ′,

atpG+(F (i∗, i′, j′),M(i, j)) depends only on otp(i, i′) and otp(j, j′). (∗)

In particular this holds for the fact whether G+ |= α(F (i∗, i′, j′),M(i, j)). For an exemplary
application of Bipartite Ramsey that illustrates how to obtain (∗), see the proof of Claim 11.13.
Denote

59



• imin := min(I ′),

• imax := max(I ′),

• i′max := max(I ′ \ imax),

• jmin := min(J ′),

• jmax := max(J ′),

• j′max := max(J ′ \ jmax).

For convenience, we redefine I := I ′ \ {imin, imax, i
′
max}, and J := J ′ \ {imin, imax, i

′
max}. We do

so to ensure that all elements in I and J have the same order type with respect to the previously
chosen extremal elements.

M |I×J

a(4) = F (imin, 4, jmax)
A

jmax

imin

Figure 13: A depiction of Case 1. On top: the desired vertical submesh of M . On the bottom: the insulator
A, whose columns contain the F (i∗, i, j) vertices (depicted as •). Here, the outermost columns correspond
to i∗-coordinates of F (i∗, i, j), and within each outermost column, the inner columns and rows correspond
to i- and j-coordinates, respectively. The F (i∗, i, j) vertices are only defined for indices i∗ < i, thus going
rightwards the columns are filled up with placeholders (depicted as ◦).

Case 1: Assume atpG+(F (i∗, i′, j′),M(i, j)) is not the same for all i∗, i, i′ ∈ I and j, j′ ∈ J with
i∗ < i, i′ and j < j′ (here j < j′ is the crucial assumption). In this case, we work towards
proving that M contains a large vertical submesh. The situation is depicted in Figure 13. We set
a(i′) := F (imin, i

′, jmax) for all i′ ∈ I. Let us now argue that atpG+(a(i′),M(i, j)) is not the same
for all i, i′ ∈ I and j ∈ J .

By assumption, there exist indices

• i∗1, i1, i
′
1 ∈ I and j1, j

′
1 ∈ J with i∗1 < i1, i

′
1 and j1 < j′1, and

• i∗2, i2, i
′
2 ∈ I and j2, j

′
2 ∈ J with i∗2 < i2, i

′
2 and j2 < j′2

such that
atpG+(F (i∗1, i

′
1, j

′
1),M(i1, j1)) ̸= atpG+(F (i∗2, i

′
2, j

′
2),M(i2, j2)).

As we removed the extremal elements from I and J , we have

• otp(i∗1, i1, i
′
1) = otp(imin, i1, i

′
1) and otp(j1, j

′
1) = otp(j1, jmax), as well as

• otp(i∗2, i2, i
′
2) = otp(imin, i2, i

′
2) and otp(j2, j

′
2) = otp(j2, jmax).

Now applying (∗), we get

atpG+(F (imin, i
′
1, jmax︸ ︷︷ ︸

a(i′1)

),M(i1, j1)) ̸= atpG+(F (imin, i
′
2, jmax︸ ︷︷ ︸

a(i′2)

),M(i2, j2)).

Thus, atpG+(a(i′),M(i, j)) is not the same for all i, i′ ∈ I and j ∈ J . Additionally, as j < jmax for
all j ∈ J , we have that atpG+(a(i′),M(i, j)) only depends on otp(i, i′) and no longer on j, for all
i, i′ ∈ I and j ∈ J . It follows that MI×J is vertical and forms the desired conductor (in this case of
length one).
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Case 2: Assume atpG+(F (i∗, i′, j′),M(i, j)) is not the same for all i∗, i, i′ ∈ I and j, j′ ∈ J with
i∗ < i, i′ and j > j′ (here j > j′ is the crucial assumption). We proceed as in the previous case,
but with jmin instead of jmax.

M

A

c(4) = M(imax, 4)

b(3, 4) = F (3, i′max, 4)

i′max

imax

Figure 14: A depiction of the mono-prepattern we discover in Case 3. In this example, we have that
G |= E(b(i∗, j′), c(j)) ⇔ j = j′.

Case 3: Assume atpG+(F (i∗, i′, j′),M(i, j)) is not the same for all i∗, i, i′ ∈ I and j, j′ ∈ J with
i∗ < i′ < i (here i′ < i is the crucial assumption). Now let

c(j) := M(imax, j) and b(i∗, j′) := F (i∗, i′max, j
′) ∈ A[i∗, ∗] for all i∗ ∈ I and j ∈ J .

Our goal is to show that the ranges of b(·, ·) and c(·) form a mono-prepattern on A. The situation
is depicted in Figure 14. As in Case 1, we argue via (∗) that for all i∗ ∈ I and j, j′ ∈ J

(A.1) atpG+(b(i∗, j′), c(j)) depends only on otp(j, j′), and

(A.2) atpG+(b(i∗, j′), c(j)) is not the same.

We claim that for all i∗ ∈ I and j, j′ ∈ J then also

(E.1) G |= E(b(i∗, j′), c(j)) depends only on otp(j, j′), and

(E.2) G |= E(b(i∗, j′), c(j)) is not the same.

By definition of an atomic type, (A.1) implies (E.1). To show (E.2) we argue similarly to the proof
of Lemma 11.9: We know that there are indices i∗1, i

∗
2 ∈ I and j1, j

′
1, j2, j

′
2 ∈ J and atomic types τ1

and τ2 such that

τ1 = atpG+(b(i∗1, j
′
1), c(j1)︸ ︷︷ ︸
ū

) ̸= atpG+(b(i∗2, j
′
2), c(j2)︸ ︷︷ ︸
v̄

) = τ2.

By (∗), all b(·, ·) elements have the same atomic type in G+ and all c(·) elements have the same
atomic type in G+. This means that the difference in the atomic types of v̄ and v̄′ must be caused
by either a difference in their equality or adjacency type. If the difference is witnessed in the
equality type, then by symmetry we can assume that

b(i∗1, j
′
1) = c(j1) and b(i∗2, j

′
2) ̸= c(j2).

It follows that b(i∗, j′1) = c(j1) for all i∗ ∈ I, since all of these pairs have the same order type
otp(j′1, j1). This is a contradiction to the columns of A being disjoint. Therefore, the difference in
the types of ū and v̄ must be witnessed by their adjacency type and we have

G |= E(b(i∗1, j
′
1), c(j1)) if and only if G ̸|= E(b(i∗2, j

′
2), c(j2)),
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which proves (E.2).
Having proven (E.1) and (E.2) it is easily verified that the ranges of b(·, ·) and c(·) form a mono-

prepattern on A. Applying Lemma 11.17 to this mono-prepattern yields the desired transformer.

Case 4: Assume atpG+(F (i∗, i′, j′),M(i, j)) is not the same for all i∗, i, i′ ∈ I and j, j′ ∈ J with
i∗ < i < i′ (here i < i′ is the crucial assumption). We argue as in the previous case, exchanging
the role of imax and i′max. This means we define

c(j) := M(i′max, j) and b(i∗, j′) := F (i∗, imax, j
′) ∈ A[i∗, ∗] for all i∗ ∈ I and j ∈ J .

As in Case 3, the ranges of b(·, ·) and c(·) form a mono-prepattern on A and we conclude by
Lemma 11.17.

Case 5: If none of the previous cases hold, then atpG+(F (i∗, i′, j′),M(i, j)) and in particular
G+ |= α(F (i∗, i′, j′),M(i, j)) is the same for all i∗, i, i′ ∈ I and j, j′ ∈ J with (i, j) ̸= (i′, j′) and
i∗ < i, i′. By (∗), this also holds for the extremal elements that are in I ′ and J ′, but not in I and
J . Let hence γ ∈ {true, false} be such that

G+ |= α(F (i∗, i′, j′),M(i, j)) ⇐⇒ γ

for all i∗, i, i′ ∈ I ′ and j, j′ ∈ J ′ with (i, j) ̸= (i′, j′) and i∗ < i, i′.

A

¬α

M |I×J

α

A[i, ∗]

i

Figure 15: Illustration for Case 5.1. Depicted is the insulator A, whose columns contain the F (i∗, i, j)
vertices. The F (i∗, i, j) vertices are only defined for indices satisfying i∗ < i, so going rightwards, the
columns are filled up with placeholders (depicted as ◦). The vertices in the ith column of the submesh
M |I×J are α-connected to all the F (i∗, i, j) vertices in A[<i, ∗] (marked in red), but ¬α-connected to all the
F (i∗, i, j) vertices in A[i, ∗] (marked in blue).

Case 5.1: Assume γ = true. At the beginning of the proof, we chose F such that G+ |=
α(F (i∗, i, j),M(i, j)). Therefore,

G+ |= α(F (i∗, i′, j′),M(i, j)) for all i∗, i, i′ ∈ I ′ with i∗ < i, i′ and j, j′ ∈ J ′. (8)

Our goal is to reduce to Lemma 11.16 (♣1). The situation is depicted in Figure 15. Let P =
{F (i∗, i, j) | i∗, i ∈ I ′, j ∈ J ′ with i∗ < i} and let G++ be the coloring of G+ where the vertices of P
are marked with an additional fresh color predicate. (By the definition of colored graphs given in
the preliminaries, we are technically required to give every vertex exactly one color, and it would of
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course be trivial, though more cumbersome, to take this into account.) Define the quantifier-free
formula β(x, y) := x ∈ P ∧ ¬α(x, y) in the signature of G++. Let us now verify that

i = min{i′ ∈ I : ∃v ∈ A[i′, ∗] : G++ |= β(v,M(i, j))} (9)

for all i ∈ I, j ∈ J . As all elements in I are smaller than imax, for every i ∈ I, we have that
the column A[i, ∗] contains at least one element, say, F (i, imax, jmax) ∈ P . By the assumption
of the lemma, M(i, j) is not α-connected to any element in A[i, ∗] and therefore β-connected to
F (i, imax, jmax). By (8) and definition of P , M(i, j) is α-connected (and therefore not β-connected)
to all elements from P in columns to the left of I, as desired. Having verified (9), we conclude by
Lemma 11.16.

Case 5.2: Assume γ = false. For all i, i′, i∗ ∈ I ′ with i∗ < i, i′ and j, j′ ∈ J ′, as G+ |=
α(F (i∗, i, j),M(i, j)), it follows that

G+ |= α(F (i∗, i′, j′),M(i, j)) if and only if (i, j) = (i′, j′).

Let c(j) := M(imax, j) and b(i∗, j′) := F (i∗, imax, j
′) for all i∗ ∈ I and j, j′ ∈ J . Then by (∗), and

as G+ |= α(b(i∗, j′), c(j)) if and only if j = j′, we have that

• atpG+(b(i∗, j′), c(j)) depends only on otp(j, j′), and

• atpG+(b(i∗, j′), c(j)) is not the same

for all i∗ ∈ I and j, j′ ∈ J . As in Case 3, the ranges of b(·, ·) and c(·) form a mono-prepattern on
A and we conclude by Lemma 11.17.

Having exhausted all cases, this proves the lemma.

We can now prove Proposition 11.6, which we restate for convenience.

Proposition 11.6. Let G be a graph containing a prepattern of order n on an insulator of height
h and cost k. Then G contains a transformer of order Uh,k(n) and length at most 4h− 1.

Proof. If the prepattern is a mono-prepattern, we conclude by Lemma 11.17. Therefore, suppose
that the prepattern is a bi-prepattern. Let the sequences I, J , vertices (ci,j : i ∈ I, j ∈ J), vertices
s1, s2, quantifier-free formulas α1(x; y, z1), α2(x; y, z1), and symbols ∼1,∼2 ∈ {=, ̸=} be as in the
definition of a bi-prepattern (see Definition 6.1).

Let G+ be the expansion of G by four unary predicates, representing the sets {s1}, {s2}, NG(s1),
and NG(s2). Then there are quantifier-free formulas β1(x, y) and β2(x, y) such that for all u, v ∈
V (G) and i ∈ {1, 2}, we have G+ |= αi(u, v, si) ⇐⇒ βi(u, v).

Define the mesh M : I×J → V (G) with M(i, j) = ci,j for i ∈ I, j ∈ J . Then M with the formula
β1 satisfies the assumptions of Lemma 11.16 if ∼1 is ̸=, and the assumptions of Lemma 11.18 if ∼1

is =. We apply the appropriate lemma. In case of Lemma 11.18, this might yield a transformer
and we are done. Otherwise, we obtain a conductor M1, . . . ,Mt : I

′ × J ′ → V (G) with |I ′| = |J ′| =
Uh,k(n), t ⩽ 2h, where Mt is vertical, and M1 = M |I′×J ′ .

Denote M ′ := MT
1 : J ′ × I ′ → V (G). Then M ′ with the formula β2 satisfy the assumptions of

Lemma 11.16 (with the roles of I ′ and J ′ swapped) if ∼2 is ̸=, and the assumptions of Lemma 11.18
if ∼2 is =. We again apply the appropriate lemma. Either this yields a transformer and we are
done, or we obtain a conductor M ′

1, . . . ,M
′
u : J ′′× I ′′ → V (G) with |J ′′| = |I ′′| = Uh,k(|I ′|), u ⩽ 2h,

where M ′
u is vertical and M ′

1 = M ′|J ′′×I′′ . Notice that

M ′
u|J ′′×I′′ , . . . ,M

′
1|J ′′×I′′ = MT

1 |J ′′×I′′ , . . . ,M
T
t |J ′′×I′′

is a conductor of order Uh,k(n) and length u+ t− 1 ⩽ 4h− 1. Observe that M ′
u and Mt are both

vertical, and that MT
t is horizontal. Thus, the sequence forms a transformer.
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11.3 Regular and Minimal Transformers

In this section, we normalize the transformers derived in Section 11.2.

Definition 11.19. A transformer T = (M1, . . . ,Mh) in a graph G is regular if for all s, t ∈ [h], the
pair (Ms,Mt) is a regular pair of meshes (in particular also for s = t). We say that T is minimal
if it is regular and for all s, t ∈ [h] the following conditions hold:

• Ms is vertical if and only if s = 1,

• Ms is horizontal if and only if s = h,

• Ms ̸= Mt if s ̸= t (that is, no two meshes are identical),

• the pair (Ms,Mt) is conducting if |s− t| = 1,

• the pair (Ms,Mt) is homogeneous if |s− t| > 1.

In particular, in a minimal transformer M1, . . . ,Mh, we have that either h = 1 and M1 = Mh is
both horizontal and vertical, or h > 1 and M1 is vertical and not horizontal, Mh is horizontal and
not vertical, and M2, . . . ,Mh−1 are neither horizontal nor vertical.

Lemma 11.20. If G contains a transformer of length h and order n then G contains a regular
transformer of length h and order Uh(n).

Proof. Let M1, . . . ,Mh be a transformer of length h in G. We can assume I, J = [n]. For all
i, j ∈ [n], let πi,j ∈ V (M)h be the h-tuple

πi,j := (M1(i, j), . . . ,Mh(i, j)).

By Bipartite Ramsey (Lemma 4.4), there are sets I ′, J ′ ⊆ [n] with |I ′| = |J ′| ⩾ Uh(n) such that
atp(πi,j , πi′,j′) depends only on otp(i, i′) and otp(j, j′), for all i, i′ ∈ I ′ and j, j′ ∈ J ′. It follows that
for all s, t ∈ [h], the meshes Ms|I′×J ′ and Mt|I′×J ′ form a regular mesh pair. Thus, the sequence
M1|I′×J ′ , . . . ,Mh|I′×J ′ is a regular transformer.

Lemma 11.21. If G contains a transformer of length h and order n then G contains a minimal
transformer of length at most h and order Uh(n).

Proof. By Lemma 11.20, there is a regular transformer M1, . . . ,Mh of length h and order Uh(n)
in G. Consider the graph G whose vertices are the meshes M1, . . . ,Mh, and edges are pairs MiMj

such that the pair (Mi,Mj) is conducting. Clearly, G contains a path of length h which starts in a
vertical mesh and ends in a horizontal mesh. Let π := Mi1 , . . . ,Mip be a shortest path in G which
starts in a vertical mesh and ends in a horizontal mesh. Then the path π is an induced path of
length at most h in G, which means that a pair Mis ,Mit , for distinct s, t ∈ [p] is conducting if
and only if |s− t| = 1. As every pair Mis ,Mit is regular, it follows that Mi1 , . . . ,Mip is a minimal
transformer of length p ⩽ h and order Uh(n).

12 Converters and Crossings

Our next goal is to analyze the structure of minimal transformers in graphs. We will arrive at
a notion of a converter, which is similar to a crossing. Finally, from converters, we will obtain
crossings.
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12.1 Regular Pairs of Meshes

We study the structure of regular pairs of meshes in graphs. We introduce the following notions.

Definition 12.1. Let M,M ′ : I × J → V (G) be two meshes in a graph G. We say that the pair
(M,M ′) is

• disjoint if V (M) ∩ V (M ′) = ∅,

• matched if for all i, i′ ∈ I and j, j′ ∈ J ,

G |= E(M(i, j),M ′(i′, j′)) if and only if (i, j) = (i′, j′).

• co-matched if the pair (M,M ′) is matched in the complement graph Ḡ,

• non-adjacent if V (M) and V (M ′) are non-adjacent in G,

• fully adjacent if uv ∈ E(G) for all u ∈ V (M) and v ∈ V (M ′).

We prove some preliminary observations regarding regular pairs of meshes.

Lemma 12.2. Let M,M ′ : I × J → V (G) be a regular pair of meshes of order n > 2 in a graph G.
Then M and M ′ are either identical, or disjoint.

Proof. We show that if M(i, j) = M ′(i′, j′) for some i, i′ ∈ I and j, j′ ∈ J , then (i, j) = (i′, j′).
By regularity of the pair (M,M ′), this implies that M(i, j) = M ′(i, j) for all i, j ∈ [n], so M
and M ′ are identical. So suppose that M(i, j) = M ′(i′, j′) for some i, i′ ∈ I and j, j′ ∈ J with
(i, j) ̸= (i′, j′). Up to reversing the order of I and up to exchanging the role of I and J , we can
assume that i < i′. Pick i1 < i2 < i3 ∈ I. Then by regularity we have that M(i1, j) = M ′(i2, j

′)
and M(i1, j) = M ′(i3, j

′). Thus, M ′(i2, j
′) = M ′(i3, j

′), contradicting injectivity of M ′.

Lemma 12.3. Let M,M ′ : I × J → V (G) be a regular pair of meshes of order n in a graph G.
Suppose that G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I, j, j′ ∈ J with j < j′, or is
not the same for all i, i′ ∈ I, j, j′ ∈ J with j > j′. Then there exist subsequences I ′ ⊆ I and J ′ ⊆ J
of order U(n) such that the submeshes M |I′×J ′ and M ′|I′×J ′ are both vertical.

Proof. Let jmin := min(J), jmax := max(J), J ′ := J − {jmin, jmax}, I ′ := I − {min(I),max(I)}.
We show the argument for M , while the case for M ′ follows by symmetry. Suppose the first case
holds, that is, G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I, j, j′ ∈ J with j < j′. The
other case proceeds by the same argument, exchanging the roles of jmax and jmin.

Let a(i′) = M ′(i′, jmax) for i′ ∈ I ′. Then by regularity, atp(M(i, j), a(i′)) depends only on
otp(i, i′), for i, i′ ∈ I ′ and j ∈ J ′. Furthermore, G |= E(M(i, j), a(i′)) is not the same for all
i, i′ ∈ I ′ and j ∈ J ′, by the assumption and by regularity. Hence, M |I′×J ′ is vertical.

Lemma 12.4. Let M,M ′ : I × J → V (G) be a regular pair of meshes of order n in a graph G.
Suppose that G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I, j, j′ ∈ J with (i, j) ̸= (i′, j′).
Then there exist subsequences I ′ ⊆ I and J ′ ⊆ J of order U(n) such that the submeshes M |I′×J ′

and M ′|I′×J ′ are either both vertical, or both horizontal.

Proof. It follows from the assumption that one of the following cases holds:

• G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I, j, j′ ∈ J with j < j′,

• G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I, j, j′ ∈ J with j > j′,

• G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I, j, j′ ∈ J with i < i′,

• G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I, j, j′ ∈ J with i > i′.
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In the first two cases we conclude by Lemma 12.3. In the last two cases we conclude by applying
the same lemma to MT and M ′T.

Lemma 12.5. Let M,M ′ : I × J → V (G) be a conducting pair of disjoint meshes of order n in G.
Then there exist subsequences I ′ ⊆ I and J ′ ⊆ J of order U(n) such that M |I′×J ′ and M ′|I′×J ′ are
either 1. both vertical, 2. both horizontal, 3. matched, or 4. co-matched.

Proof. Since M and M ′ are conducting, the pair is regular but not homogeneous. For all i, i′ ∈ I
and j, j′ ∈ J we have that

(1) G |= E(M(i, j),M ′(i′, j′)) depends only on otp(i, i′) and otp(j, j′), (by regularity)

(2) atpG(M(i, j),M ′(i′, j′)) is not always the same, (by non-homogeneity)

(3) the equality type of M(i, j) and M ′(i′, j′) is always (̸=), and (by disjointness)

(4) the adjacency between M(i, j) and M ′(i′, j′) is not always the same. (by (2) and (3))

Assume G |= E(M(i, j),M ′(i′, j′)) is the same for all i, i′ ∈ I, j, j′ ∈ J with (i, j) ̸= (i′, j′). Up
to replacing G with Ḡ, by (4) we have that for all i, i′ ∈ I, j, j′ ∈ J ,

G |= E(M(i, j),M ′(i′, j′)) if and only if (i, j) = (i′, j′).

Thus, M and M ′ are matched or co-matched.
Otherwise, G |= E(M(i, j),M ′(i′, j′)) is not the same for all i, i′ ∈ I, j, j′ ∈ J with (i, j) ̸= (i′, j′),

and we conclude that M and M ′ are both vertical or both horizontal by Lemma 12.4.

Lemma 12.6. Let G contain a minimal transformer of order n and length h. Then G contains
a minimal transformer M1, . . . ,Mh′ of order Uh(n) and length h′ ⩽ h such that the following
conditions are satisfied for s, t ∈ [h′]:

1. If s ̸= t, then Ms and Mt are disjoint.

2. If |s− t| > 1 then Ms and Mt are either non-adjacent or fully adjacent.

3. If |s− t| = 1 then Ms and Mt are either matched or co-matched.

Proof. If n ⩽ 3, as the minimal transformer we take any transformer of order 1 and length 1, so
assume n > 3. The first two properties hold in any minimal transformer T of order n > 3. Indeed,
as all meshes of T are pairwise distinct and regular, by Lemma 12.2 they are pairwise disjoint. Also,
any pair of non-consecutive meshes is regular and not conducting, hence (as n > 3) homogeneous.

We argue that we can find a minimal transformer satisfying additionally the last property. Let
T = (M1, . . . ,Mh) be a minimal transformer of order n.

Applying Lemma 12.5 to every pair of consecutive meshes in T (and each time reducing the
order of the transformer to Uh(n)) we may assume that for every pair (Ms,Ms+1) of consecutive
meshes in T , the pair is either matched, or co-matched, or both meshes are vertical, or both are
horizontal. Let Ms, . . . ,Mt be a subsequence of M1, . . . ,Mh of shortest length such that Ms is
vertical and Mt is horizontal. It follows that every two consecutive meshes in T ′ are matched or
co-matched, and that T ′ = (Ms, . . . ,Mt) is a minimal transformer. Thus, the last property in the
statement is satisfied.

12.2 Regular Meshes

We now analyze the structure of single meshes, depending on whether they are horizontal and/or
vertical. We introduce some notation.
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Definition 12.7. A single mesh M : I × J → V (G) is regular in a graph G, if the pair (M,M)
is. That is, atpG(M(i, j),M ′(i′, j′)) depends only on otp(i, i′) and otp(j, j′) for all i, i′ ∈ I and
j, j′ ∈ J .

Note that every mesh in a regular/minimal transformer is regular.

Definition 12.8. A mesh pattern is a subset P of the four lines in the following diagram:

All 24 possible mesh patterns are depicted below (including the empty pattern ).

Let P be a mesh pattern. A regular mesh M : I × J → V (G) with |I|, |J | ⩾ 2 is a P -mesh in a
graph G if for all (i, j), (i′, j′) ∈ I × J with i ⩽ i′, the vertices M(i, j) and M(i′, j′) are adjacent in
G if and only if one of the following conditions holds:

• i = i′ and j ̸= j′ and ∈ P ,

• i < i′ and j < j′ and ∈ P ,

• i < i′ and j = j′ and ∈ P ,

• i < i′ and j > j′ and ∈ P .

For example, M is a -mesh if and only if V (M) induces an independent set, and if M is
a -mesh, then V (M) induces a rook graph in G, and if M is a -mesh, then V (M) induces
a comparability grid in G. (Recall that the comparability grid of order n consists of vertices
{ai,j | i, j ∈ [n]} and edges between vertices ai,j and ai′,j′ if and only if either i = i′, or j = j′, or
i < i′ ⇔ j < j′.)

Definition 12.9. A generalized grid in a graph G is a regular mesh M : I × J → V (G) satisfying
the following conditions:

• G |= E(M(i, j),M(i′, j′)) does not depend only on otp(i, i′), for i, i′ ∈ I and j, j′ ∈ J with
(i, j) ̸= (i′, j′), and

• G |= E(M(i, j),M(i′, j′)) does not depend only on otp(j, j′), for i, i′ ∈ I and j, j′ ∈ J with
(i, j) ̸= (i′, j′).

Observe that a P -mesh M is a generalized grid if and only if P is not among { , , } or their
complements { , , }.

Lemma 12.10. Let M : I × J → V (G) be a regular mesh in a graph G. Then M is vertical, or is
horizontal, or is a -mesh in G or in Ḡ.

Proof. Suppose that G |= E(M(i, j),M(i′, j′)) is the same for all i, i′ ∈ I, j, j′ ∈ J with (i, j) ̸=
(i′, j′). Then V (M) forms an independent set or a clique in G. Otherwise, the statement follows
by Lemma 12.4, applied to M = M ′.

Lemma 12.11. Let M : I × J → V (G) be a regular mesh in a graph G, and assume G |=
E(M(i, j),M(i′, j′)) is the same for all i, i′ ∈ I and j, j′ ∈ J with i < i′. Then either in G or
in Ḡ, M is a -mesh or a -mesh.
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Proof. Replacing G with Ḡ if needed, we may assume that G |= ¬E(M(i, j),M(i′, j′)) for all i, i′ ∈ I
and j, j′ ∈ J with i < i′. By symmetry of the edge relation, we have that G |= ¬E(M(i, j),M(i′, j′))
holds for all i, i′ ∈ I and j, j′ ∈ J with i ̸= i′. If G |= E(M(i, j),M(i, j′)) for some i ∈ I and distinct
j, j′ ∈ J , then M is a -mesh. Otherwise, M is a -mesh.

Lemma 12.12. Let M be a regular mesh in a graph G which is not horizontal. Then either in G
or in Ḡ, M is a -mesh or a -mesh.

Proof. As MT is not vertical, we can apply the contrapositive of Lemma 12.3 to MT and MT. We
conclude that G |= E(M(i, j),M(i′, j′)) is the same for all i, i′ ∈ I and j, j′ ∈ J with i < i′. The
conclusion follows from Lemma 12.11.

Definition 12.13. A mesh M : I ×J → V (G) is capped if there is a function a : I ′ → V (G), where
I ′ = I − {min(I),max(I)}, such that one of the following conditions holds in G or in Ḡ:

(=) for all i, i′ ∈ I ′ and j ∈ J , M(i, j) is adjacent to a(i′) if and only if i = i′, or

(⩽) for all i, i′ ∈ I ′ and j ∈ J , M(i, j) is adjacent to a(i′) if and only if i ⩽ i′.

More precisely, a capped mesh M is α-capped, for α ∈ {=,⩽}, if the above condition α holds.

Lemma 12.14. Let M : I × J → V (G) be a vertical mesh in a graph G with |J | > 1. Then M is
capped.

Proof. Since M is vertical, there is some a : I → V (G) such that, for J ′ = J − {min(J),max(J)},

• atp(M(i, j), a(i′)), depends only on otp(i, i′), for all i, i′ ∈ I and j ∈ J ′, and

• atp(M(i, j), a(i′)) is not the same for all i, i′ ∈ I and j ∈ J ′.

First observe that the ranges of the functions a and M are disjoint. Assume otherwise, that is,
that a(i′) = M(i, j) for some i, i′ ∈ I and j ∈ J . Pick j′ ∈ J distinct from j, which exists since
we assume that |J | > 1. Then we have that a(i′) = M(i, j′), by the first defining condition of the
function a. This contradicts the fact that M is an injective function.

Let p<, p=, p> ∈ {0, 1} be such that for each R ∈ {<,=, >},

G |= E(M(i, j), a(i′)) ⇐⇒ pR = 1 for all j ∈ J ′, i, i′ ∈ I with i R i′.

By the assumption on a, the values p<, p=, p> are not all equal. Replacing G with Ḡ if needed,
we can assume that p> = 0. Thus, one of three cases occurs:

1. (p<, p=, p>) = (0, 1, 0),

2. (p<, p=, p>) = (1, 1, 0),

3. (p<, p=, p>) = (1, 0, 0).

Let I ′ = I − {min(I),max(I)} and let a|I′ be the restriction of a to the domain I ′. In the first
case, (M,a|I′) is a =-capped mesh. In the second case, (M,a|I′) is a ⩽-capped mesh. Suppose the
third case occurs, and let b : I ′ → V (G) be such that b(i) = a(i+) where i+ is the successor of i
in I. Then (M, b) is a ⩽-capped mesh.

Lemma 12.15. Let M : I × J → V (G) be a regular mesh of order n > 1 in a graph G. Then the
following hold.

1. If M is not horizontal and not vertical, then M forms a -mesh in G or in Ḡ.

2. If M is vertical and not horizontal, then one of two cases occurs in G or in Ḡ:
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(a) M is a -mesh, or

(b) M is a -mesh and capped.

3. If M is both horizontal and vertical, then one of four cases occurs in G or in Ḡ:

(a) M is a generalized grid,

(b) M is a -mesh and MT is capped,

(c) M is a -mesh and M is capped, or

(d) M is a -mesh and both M and MT are capped.

Proof. The first item is by Lemma 12.10.

We prove the second item. By Lemma 12.12, either in G or in Ḡ, M is a -mesh or a -mesh.
In the first case we are done. In the second case, Lemma 12.14 yields the conclusion.

Finally, we prove the third item. Assume that M is both vertical and horizontal. Then, by
Lemma 12.14, both M and MT are capped. Suppose M is not a generalized grid, as otherwise
condition (a) holds, and we are done. Then either G |= E(M(i, j),M(i′, j′)) depends only on
otp(i, i′), or it depends only on otp(j, j′), for all distinct (i, j), (i′, j′) ∈ I × J . Suppose it depends
only on otp(i, i′), while the other case follows by replacing M with MT. By Lemma 12.11 we have
that either in G or in Ḡ, M is a -mesh or a -mesh. If M is a -mesh, condition (b) holds. If M
is a -mesh, condition (d) holds.

This concludes the lemma.

Lemma 12.16. Let G be a graph and M be a regular mesh of order n in G which is a generalized
grid. Then M is a -mesh or -mesh, or G contains a comparability grid of order ⌊

√
n⌋ as induced

subgraph.

Proof. Let M be a regular mesh of order m in G, and let P be the pattern of M . Note that if P is
among { , , } or their complements { , , }, then M is not a generalized grid. So assume that P
is not among those patterns. We can exclude P ∈ { , }, so assume that P is among the remaining
patterns, that is, P ∈ { , , , , , , , }.

Up to symmetries that swap the two coordinates and invert their orders, it is enough to consider
the cases P ∈ { , , }. If P = , then V (M) induces a comparability grid of order m in G. It
remains to show that if G has a P -mesh of order m = n2, for some P ∈ { , }, then G contains a
comparability grid of order n.

Let I = [n]× [n], and let ⩽lex denote the lexicographic order on [n]× [n]. To declutter notation,
below we write ij for a pair (i, j) ∈ I.

Assume G has a P -mesh of order n2. By reindexing ([n2],⩽) as (I,⩽lex), we can view it
as a P -mesh M : I × I → V (G) in G. Then for all i1, i2, i

′
1, i

′
2 ∈ I and j1, j2, j

′
1, j

′
2 ∈ I with

(i1i2, j1j2) ̸= (i′1i
′
2, j

′
1j

′
2) we have that

• if P = , then M(i1i2, j1j2) and M(i′1i
′
2, j

′
1j

′
2) are adjacent if and only if

(i1i2 <lex i
′
1i

′
2 and j1j2 <lex j

′
1j

′
2)︸ ︷︷ ︸

edges from M(i1i2, j1j2) to the top right

or (i′1i
′
2 <lex i1i2 and j′1j

′
2 <lex j1j2),︸ ︷︷ ︸

edges from M(i1i2, j1j2) to the bottom left

(10)

• if P = , then M(i1i2, j1j2) and M(i′1i
′
2, j

′
1j

′
2) are adjacent if and only if

(i1i2 = i′1i
′
2)︸ ︷︷ ︸

edges in the same column

or (i1i2 <lex i
′
1i

′
2 and j1j2 <lex j

′
1j

′
2)︸ ︷︷ ︸

edges from M(i1i2, j1j2) to the top right

or (i′1i
′
2 <lex i1i2 and j′1j

′
2 <lex j1j2).︸ ︷︷ ︸

edges from M(i1i2, j1j2) to the bottom left
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= f(2, 3)
((2, 3), (3, 2))

Figure 16: A P -mesh indexed by ([4]2, <lex) × ([4]2, <lex). The neighbors of ((2, 3), (3, 2)) are (red ∪ blue)
if P = and (red ∪ blue ∪ purple) if P = . In solid black: the vertices in the range of f which form the
comparability grid of order 4.

The adjacencies are depicted in Figure 16. Note that the cases P = and P = differ only if
(i1i2 = i′1i

′
2).

Consider the function f : [n] × [n] → I × I, such that

f(i, j) = (ij, ji) for i, j ∈ [n].

The range of this function is depicted in Figure 16. We verify that M ′ := M ◦ f : [n]× [n] → V (G)
is a -mesh. Let (i, j), (i′, j′) ∈ [n] × [n] be distinct, with i ⩽ i′. We need to show that M ′(i, j) =
M(ij, ji) and M ′(i′, j′) = M(i′j′, j′i′) are adjacent in G if and only if i = i′ or j ⩽ j′. Note that
(ij) ̸= (i′j′), as (i, j) ̸= (i′, j′) are distinct, so the distinction between P = and P = is irrelevant.
We can therefore assume P = , and we will argue using (10) for

i1i2 := ij, i′1i
′
2 := i′j′, j1j2 := ji, and j′1j

′
2 := j′i′.

Assume first that i = i′. In this case we want to show that M ′(i, j) and M ′(i′, j′) are adjacent. As
ij and i′j′ are distinct, we either have j < j′ or j′ < j. If j < j′ then ij <lex i

′j′ and ji <lex j
′i′,

and we conclude using the first disjunct of (10). If j′ < j then i′j′ <lex ij and j′i′ <lex ji, and we
conclude using the second disjunct of (10).

Assume now that i ̸= i′, so i < i′. In this case we want to show that M ′(i, j) and M ′(i′, j′)
are adjacent if and only if j ⩽ j′. As ij <lex i

′j′, by (10) we have that M ′(i, j) and M ′(i′, j′) are
adjacent if and only if ji <lex j

′i′, which is the case if and only if j ⩽ j′, as desired.
Having exhausted all cases, we conclude that M ′ is a -mesh of order n, and therefore, G

contains an induced comparability grid of order n.

12.3 Converters

The following notion is aimed at providing a low-level description of minimal transformers.

Definition 12.17. Fix h, n ⩾ 1 and a graph G. A converter of length h and order n in G consists
of

• meshes M1, . . . ,Mh : [n] × [n] → V (G) in G,

• two functions a, b : [n] → V (G); we denote the range of these functions by V (a), V (b),

such that the following conditions hold:

(G.1) the sets V (M1), . . . , V (Mh) are pairwise disjoint,
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(G.2) for s, t ∈ {1, . . . , h}, if |s− t| = 1, then Ms is matched or co-matched with Mt,

(G.3) for s, t ∈ {1, . . . , h}, if |s− t| > 1, then V (Ms) is fully adjacent or non-adjacent to V (Mt),

(G.4) for s ∈ {2, . . . , h− 1}, V (Ms) is an independent set or a clique,

(G.5) Let (M,f) ∈ {(M1, a), (MT
h , b)}. Then one of the following three conditions holds in G or

in Ḡ:

(C) M is a -mesh, or h = 1 and M is a -mesh. Moreover, M(i, j) is adjacent to f(i′)
if and only if i = i′, for all i, i′, j ∈ [n],

(S) M is a -mesh, or h = 1 and M is a -mesh. Moreover, M(i, j) is adjacent to f(i′)
if and only if i = i′, for all i, i′, j ∈ [n],

(H) M is a -mesh, or h = 1 and M is a -mesh. Moreover, M(i, j) is adjacent to f(i′)
if and only if i′ ⩽ i, for all i, i′, j ∈ [n].

Say that (M,f) as above has kind C,S, or H respectively, if it satisfies the corresponding condition
above (which stand for clique, star, and half-graph, respectively). A converter has kind (α, β), where
α, β ∈ {C,S,H}, if (M1, a) has kind α and (MT

h , b) has kind β.
A converter is proper if the following hold:

• the sets V (a), V (M1), . . . , V (Mh), V (b) are pairwise disjoint,

• the sets V (a) and V (M2) ∪ · · · ∪ V (Mh) are homogeneously connected,

• the sets V (b) and V (M1) ∪ · · · ∪ V (Mh−1) are homogeneously connected,

• the sets V (a) and V (b) are homogeneously connected,

• each of the sets V (a) and V (b) induces an independent set or a clique.

Lemma 12.18. Let G contain a converter of length h and order n. Then, for some number
m ⩾ Uh(n), either G contains a proper converter of length at most h and order m, or m = 1.

Proof. Let M1, . . . ,Mh : [n] × [n] → V (G) and a, b : [n] → V (G) form a converter. For every pair
i, j ∈ [n] let πi,j denote the sequence (a(i),M1(i, j), . . . ,Mh(i, j), b(j)). Apply Bipartite Ramsey
(Lemma 4.4) to get sets I ⊆ [n] and J ⊆ [n] of size m = Uh(n), so that atp(πi,jπi′,j′) only depends
on otp(i, i′) and otp(j, j′) for i ∈ I and j ∈ J . Observe that if a(i) = Ms(i

′, j) for some i, i′ ∈ I,
j ∈ J , and s ∈ [h], then also a(i) = Ms(i

′, j′) for some other j′, which implies Ms(i
′, j) = Ms(i

′, j′)
and contradicts injectivity of Ms, unless |J | = m = 1. Similarly, if a(i) = b(j) for some i ∈ I and
j ∈ J , then we conclude that a(i) = a(i′) for all i, i′ ∈ I, which implies that |I| = m = 1, since the
conditions C,S,H imply that a is injective. A similar argument can be made for b.

The tuple M ′
1 := M1|I×J , . . . ,M

′
h := Mh|I×J , a

′ := a|I , b′ := b|J , with I and J both reindexed
to [m], forms a converter of order m. As discussed above and by (G.1), we observe the sets
V (a′), V (b′), V (M ′

1), . . . , V (M ′
h) to be pairwise disjoint. Further note that V (a′) and V (b′) each

induce an independent set or a clique by construction. Lastly, to have a proper converter, we have
to ensure that V (M ′

t) and V (b′) are homogeneous for all 1 ⩽ t < h, and that V (M ′
t) and V (a′) are

homogeneous for all 1 < t ⩽ h.
We only sketch this last argument. Suppose for example that V (b′) and V (M ′

t) are not homoge-
neous, for some 1 ⩽ t < h. Then M ′

t is either horizontal, or is vertical, as witnessed by b′. We can
therefore obtain a converter of the same order and smaller length. Thus, by replacing the converter
a′,M ′

1, . . . ,M
′
h, b

′ by a shorter one if needed, we arrive at a proper converter of order m.

Lemma 12.19. Let G contain a transformer of length h and order n. Then there is a number
m ⩾ Uh(n) such that, G contains a converter of length at most h and order m, or contains a
comparability grid of order m as an induced subgraph.
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Proof. By Lemma 11.21 and Lemma 12.6, G contains a minimal transformer M1, . . . ,Mh′ : I×J →
V (G) of order Uh(n) and length h′ ⩽ h, such that:

• the sets V (M1), . . . , V (M ′
h) are pairwise disjoint,

• for s, t ∈ [h′] with |s− t| = 1, Ms and Mt are matched or co-matched,

• for s, t ∈ [h′] with |s− t| > 1, Ms and Mt are fully adjacent or fully non-adjacent.

Let I ′ = I − {min(I),max(I)} and J ′ = J − {min(J),max(J)}.

Suppose first that h′ = 1. Then M1 is both vertical and horizontal. By Lemma 12.15, one of
the following holds for M := M1 in either G or Ḡ:

(a) M is a generalized grid,

(b) M is a -mesh and MT is α-capped for some α ∈ {=,⩽},

(c) M is a -mesh and M is α-capped for some α ∈ {=,⩽}, or

(d) M is a -mesh and there are some α1, α2 ∈ {=,⩽} such that M is α1-capped and MT is
α2-capped.

In case (a), M is by definition a generalized grid in both Ḡ and G. By Lemma 12.16, M is a P -mesh
with P ∈ { , } in G, or G contains or a comparability grid of order Uh(n) as an induced graph.
If M is a P -mesh, then M |I′×J ′ together with a, b has kind (C,C), where a : I ′ → V (G) is defined
by a(i) = M(i,min(J)) for i ∈ I ′, and where b : J ′ → V (G) is defined by b(j) = M(min(I), j) for
j ∈ J ′. In either case, the statement holds.

Suppose we are in case (b). Let b : J ′ → V (G) witness that MT is α-capped. Let a : I ′ → V (G)
be defined by a(i) = M(i,min(J)). Then M |I′×J ′ , a and b form a converter of kind (C,S) if α is =,
and a converter of kind (C,H) if α is ⩽. The case (c) is symmetric.

Finally, suppose we are in case (d). Let a : I ′ → V (G) witness that M is α1-capped, and
b : J ′ → V (G) witness that MT is α2-capped. Then M |I′×J ′ , a, and b form a converter of kind
(τ1, τ2), where τi = S if αi is =, and τi = H if αi is ⩽, for i = 1, 2.

This concludes the case of length h′ = 1. Suppose now that h′ > 1. Then, by the minimality
assumption (Definition 11.19),

• M1 is vertical and not horizontal,

• Mh′ is horizontal and not vertical, and

• M2, . . . ,Mh′−1 are neither vertical nor horizontal.

By Lemma 12.15, we conclude that each of M2, . . . ,Mh′−1 is a -mesh in either G or Ḡ. By
Lemma 12.15 applied to M1, one of two cases holds in either G or Ḡ:

(a) M1 is a -mesh, or

(b) M1 is a -mesh and is α-capped for some α ∈ {=,⩽}.

In the first case, M1|I′×J ′ together with a has kind C, where a : I ′ → V (G) is defined by a(i) =
M(i,min(J)) for i ∈ I ′. In the second case, let a : I ′ → V (G) witness that M1 is α-capped. Then
M1|I′×J ′ together with a has kind S if α is =, and has kind H if α is ⩽.

Similarly, by Lemma 12.15 applied to MT
h′ , we conclude that MT

h′ |J ′×I′ together with some
b : J ′ → V (G) has kind C,S or H. We thus conclude that M1, . . . ,Mh′ induced on I ′×J ′, together
with a : I ′ → V (G) and b : J ′ → V (G), form a converter of length h′.
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12.4 Crossings

The last step is to go from converters to crossings, whose definition we recall for convenience. For
r ⩾ 1, the star r-crossing of order n is the r-subdivision of Kn,n. More precisely, it consists of roots
a1, . . . , an and b1, . . . , bn together with r-vertex paths {πi,j | i, j ∈ [n]} that are pairwise vertex-
disjoint (see Figure 4). We denote the two endpoints of a path πi,j by start(πi,j) and end(πi,j). We
require that roots appear on no path, that each root ai is adjacent to {start(πi,j) | j ∈ [n]}, and
that each root bj is adjacent to {end(πi,j) | i ∈ [n]}. The clique r-crossing of order n is the graph
obtained from the star r-crossing of order n by turning the neighborhood of each root into a clique.
Moreover, we define the half-graph r-crossing of order n similarly to the star r-crossing of order n,
where each root ai is instead adjacent to {start(πi′,j) | i′, j ∈ [n], i ⩽ i′}, and each root bj is instead
adjacent to {end(πi,j′) | i, j′ ∈ [n], j ⩽ j′}. Each of the three r-crossings contains no edges other
than the ones described.

b1

b2

b3

b4

a1 a2 a3 a4

b1

b2

b3

b4

a1 a2 a3 a4

b1

b2

b3

b4

a1 a2 a3 a4
start(π1,4)

end(π1,4)

Figure 17: (i) star 4-crossing of order 4. (ii) clique 4-crossing of order 4. (iii) half-graph 4-crossing of order
4. In (i), (ii), (iii), the roots are adjacent to all vertices in their respective colorful strip.

We partition the vertex sets of the r-crossings into layers: The 0th layer consists of the vertices
{a1, . . . , an}. The lth layer, for l ∈ [r], consists of the lth vertices of the paths {πi,j | i, j ∈ [n]}
(that is, the 1st and rth layer, respectively, are {start(πi,j) | i, j ∈ [n]} and {end(πi,j) | i, j ∈ [n]}).
Finally, the (r + 1)th layer consists of the vertices {b1, . . . , bn}. A flipped star/clique/half-graph
r-crossing is a graph obtained from a star/clique/half-graph r-crossing by performing a flip where
the parts of the specifying partition are the layers of the r-crossing.

We observe that a flipped r-crossing is the same as a proper converter of kind (α, α) for some
α ∈ {C,S,H}. So the goal is to show that from a converter of kind (α, β) we can extract a converter
with α = β. This is achieved in the next lemma.

Lemma 12.20. Let G be a graph containing proper converter C of length h and order n. Then G
contains as an induced subgraph either

• a flipped star r-crossing, or

• a flipped clique r-crossing, or

• a flipped half-graph r-crossing,

of order ⌊
√
n⌋, for some 1 ⩽ r ⩽ 2h+ 1.

Proof. Suppose the meshes M1, . . . ,Mh : [n] × [n] → V (G) and functions a, b : [n] → V (G) form a
proper converter of kind (α, β) and order n in G. If (α, β) ̸= (H,H), then either α ∈ {C,S} or
β ∈ {C,S}. By replacing M1, . . . ,Mh with the converter MT

h , . . . ,M
T
1 of kind (β, α) if needed, we

may assume that either β ∈ {C,S}, or α = β = H.
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Let P = {V (a), V (M1), . . . , V (Mh), V (b)}. By taking an induced subgraph if needed, we may
assume that V (G) =

⋃
P. It follows from the definition of a proper converter that there is a unique

P-flip G′ of G with the following properties:

• the meshes Ms and Mt are non-adjacent if |t− s| > 1 and are matched if |t− s| = 1,

• for 1 < s ⩽ h, V (Ms) is non-adjacent to V (a),

• for 1 ⩽ s < h, V (Ms) is non-adjacent to V (b),

• V (a) and V (b) are non-adjacent,

b(f(i, i′))

ai := a(i) bi′ := a(m+ i′)

π(i, i′)[1]

π(i, i′)[h]
π(i, i′)[ℓ− h+ 1]

π(i, i′)[ℓ]

Figure 18: Construction of an ℓ-crossing from a proper converter. Edges whose presence depends on the
values of α and β are dashed.

In the case α = β = H we construct a flipped half-graph h-crossing of order n in G. For this,
we choose the roots a1 := a(1), . . . , an := a(n) on one side, and b1 := b(1), . . . , bn := b(n) on the
other side, and connect them via the paths πi,j with πi,j [s] = M1(i, j) for s = 1, . . . , h. It follows
that G contains a flipped half-graph h-crossing of order n as an induced subgraph.

Consider now the case where β ∈ {C,S}. We observe that

• for all i, j, j′ ∈ [n], Mh(i, j) is adjacent to b(j′) if and only if j = j′.

Set ℓ := 2h if β = C and ℓ := 2h+ 1 if β = S. We construct an ℓ-crossing. For all i, i′, j ∈ [n] with
i ̸= i′ consider the unique ℓ-vertex path σi,i′,j in G′ from M1(i, j) to M1(i

′, j) with the following
properties:

• σi,i′,j has length ℓ,

• σi,i′,j [d] = Md(i, j) for d = 1, . . . , h,

• σi,i′,j [ℓ+ 1 − d] = Md(i′, j) for d = 1, . . . , h,

• if β = S then σi,i′,j [h+ 1] = b(j).

Note that σi,j,j′ is an induced path in G′. Let m = ⌊
√
n⌋ and pick any injective function f : [m] ×

[m] → [n]. For i, i′ ∈ [m], let πi,i′ := σi,i′+m,f(i,i′). Observe that there are no edges in G between
any pair of paths πi,i′ , i, i

′ ∈ [m]. We construct a flipped star/clique/half-graph ℓ-crossing in
G, corresponding to the cases α = S,C,H, respectively. For this, we choose the roots a1 :=
a(1), . . . , am := a(m) on one side, and b1 := a(m + 1), . . . , bm := a(2m) on the other side and
connect them via the paths πi,i′ for i, i′ ∈ [m]. Note that if α = H, then {ai | i ∈ [m]} is fully
connected to {end(πi,i′) | i, i′ ∈ [m]}. The construction is illustrated in Figure 18. It follows that
G contains a flipped ℓ-crossing of order m as an induced subgraph.
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12.5 From Prepatterns to Flipped Crossings and Comparability Grids

We finally prove the main non-structure result.

Proposition 10.14. Let G be a graph containing a prepattern of order n on an insulator of height
h and cost k. Then G contains as an induced subgraph either

• a flipped star r-crossing of order m, or

• a flipped clique r-crossing of order m, or

• a flipped half-graph r-crossing of order m, or

• the comparability grid of order m,

for some m ⩾ Uh,k(n) and 1 ⩽ r < 8h.

Proof. By Proposition 11.6, G contains a transformer of order Uk,h(n) and length at most 4h− 1.
By Lemma 12.19, G contains a comparability grid of order Uk,h(n) as an induced subgraph, or a
converter of length at most 4h− 1 and order Uk,h(n). In the latter case, we can make the converter
proper by Lemma 12.18. By Lemma 12.20, we obtain the required flipped r-crossing of order
Uk,h(n) for some r ⩽ 2 · (4h− 1) + 1 = 8h− 1.

As a corollary, we obtain the following.

Proposition 12.21. Let C be a graph class that is not prepattern-free. Then there exists r ∈ N
such that for every k ∈ N, C contains as an induced subgraph either

• a flipped star r-crossing of order k, or

• a flipped clique r-crossing of order k, or

• a flipped half-graph r-crossing of order k, or

• a comparability grid of order k.

12.6 From Flipped Crossings and Comparability Grids to Independence

The next result states that the patterns are a witness to monadic independence.

Proposition 12.22. Let C be a graph class and r ⩾ 1, such that for every k ∈ N, C contains as
an induced subgraph

• a flipped star r-crossing of order k, or

• a flipped clique r-crossing of order k, or

• a flipped half-graph r-crossing of order k, or

• a comparability grid of order k.

Then C is monadically independent.

Proof sketch. We will be brief, as a more rigorous proof of a stronger statement is later given
in Proposition 14.5, where we show that the hereditary closure of C interprets the class of all
graphs. For this sketch, we use the fact that transductions are transitive: if C transduces D and
D transduces E , then already C transduces E . We transduce the class of all graphs from C by
concatenating multiple simpler transductions, each of which depends only on r (and not on C or k).

As there is a transduction which produces from C all its induced subgraphs, we can assume
that C is hereditary. Additionally, there is a fixed transduction that turns flipped r-crossings into
their non-flipped versions (or more generally: a transduction that maps C to all of its (r+ 2)-flips).
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Now by the pigeonhole principle, we can assume that C is either the class of all (non-flipped)
star/clique/half-graph r-crossings or the class of all comparability grids.

We start with describing a transduction which, when given a star r-crossing with roots A and
B, can create an arbitrary bipartite graph (A,B,E). The transduction colors the roots in A and
B with colors CA and CB respectively, and the vertices on the paths between a ∈ A and b ∈ B
with color C+ if {a, b} ∈ E and color C− otherwise. It is then trivial to connect a ∈ A with b ∈ B
by a first-order formula checking if there is a path of color C+ between them.

Let us further argue that there is a transduction that takes as input a clique or half-graph
r-crossing with root sets A and B, and creates a star r-crossing with the same roots. For clique
r-crossings this is easy to see, as it suffices to turn the neighborhood of each root into a star.
For half-graph r-crossings, we first recover the linear order of the roots. Focusing on the side A
first, we observe for a, a′ ∈ A that a ⩽ a′ if and only if N(a) ⊆ N(a′). The latter condition is
expressible in first-order logic, therefore a transduction can remove all edges from a vertex a ∈ A
to

⋃
a′>aN(a′). By also proceeding similarly for the roots in B, this turns a half-graph r-crossing

into a star r-crossing.
The case of comparability grids proceeds similarly as the case of half-graph 1-crossings above.

Namely, for a bipartite graph G = (A,B,E) with A = {a1, . . . , ak} and B = {b1, . . . , bℓ}, we
consider a comparability grid with vertex set {0, . . . , k}×{0, . . . , ℓ}, and identify B with the vertices
[k]×{0}, and A with the vertices {0}× [ℓ], and then proceed as in the case of half-graph 1-crossings
(see also the proof of Lemma 16.8 where this construction is formalized).

In summary, by chaining transductions, we can take a flipped r-crossing (or comparability grid),
undo the flips, turn it into a star r-crossing, and then into any bipartite graph on the same root
sets. From the class of bipartite graphs one can trivially transduce the class of all graphs. Hence,
C is monadically independent.

We formulate a lemma which follows from the construction presented in the proof sketch above,
and will be used in the proofs of Theorem 3.1 and Theorem 1.9.

We recall the notion of radius-r encodings of a bipartite graph G. Fix an integer r ⩾ 1. Let
G = (A,B,E) be a bipartite graph with |A| = |B| = n for some n, and let A = {a1, . . . , an} and
B = {b1, . . . , bn}. Consider a graph H0 which is either a star r-crossing, or a clique r-crossing, or
a half-graph r-crossing with roots a1, . . . , an and b1, . . . , bn. Recall that V (H0) can be partitioned
into r + 2 layers, and there are n2 distinguished r-vertex paths πi,j . Let H be a graph obtained
from H0 by:

1. adding arbitrary edges within each layer of H0,

2. removing all vertices of the paths πi,j for i, j ∈ [n] such that {ai, bj} /∈ E(G),

3. flipping pairs of layers arbitrarily.

We call H a radius-r encoding of G.

Lemma 12.23. For every fixed r there is a number k and a formula φ(x, y) in the signature of
k-colored graphs, with the following property. For every bipartite graph G and radius-r encoding H
of G, there is a k-coloring H+ of H such that the graph φ(H+) with vertices V (H) and edges

{{u, v} : u, v ∈ V (H), H+ |= φ(u, v)}

contains the 1-subdivision of G as an induced subgraph.

Proof sketch. We modify slightly the construction described in the proof of Proposition 12.22.
There, a transduction was described which, given a star/clique/half-graph r-crossing H0 with roots
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A and B, or a comparability grid, can output an arbitrary bipartite graph G = (A,B,E). Essen-
tially, we observe that the vertices marked C− in the proof of Proposition 12.22 can be removed
from H0 without breaking the construction (with one detail in the case of half-graph r-crossings,
commented below). Note that, differing from r-crossings, radius-r encodings may contain addi-
tional arbitrary edges between vertices in the same layer. However, by coloring each of the at most
r + 2 layers in a different color palette (only increasing the number of colors by a factor of r + 2),
we can ignore these arbitrary edges.

To prove the lemma, we therefore proceed the same way as in that construction, but instead
of representing G in the appropriate r-crossing with roots A and B, we represent it in a radius-r
encoding H of G.

In the case of r-half-graph crossings, we additionally mark (doubling the number of colors) the
vertices of A and B that are isolated in G. The key observation is that for two non-isolated roots
a, a′ ∈ A we still have that a ⩽ a′ if and only if N(a) ⊆ N(A′), and similarly for non-isolated
roots in B. This is enough to recover the edges of G using a fixed first-order formula, just as in
Proposition 12.22.

Technically, this way we produce three formulas φr
S(x, y), φr

C(x, y), φr
H(x, y), rather than a single

formula φ(x, y), corresponding to the cases where the host crossing is a star r-crossing, a clique
r-crossing, or a half-graph r-crossing. To obtain a single formula φ(x, y), we can triple the number
of colors used in the construction to give each of the three cases its own color palette. The formula
φ(x, y) can then be written as a boolean combination of the formulas φr

S(x, y), φr
C(x, y), φr

H(x, y),
which tests which color palette was used.

13 Wrapping Up

We are now ready to prove the main results of this paper, Theorems 1.3 and 1.6. They are implied
by the following.

Theorem 13.1. Let C be a graph class. Then the following are equivalent.

(i) C is monadically dependent;

(ii) For every r ⩾ 1 there exists k ∈ N such that C excludes as induced subgraphs

• all flipped star r-crossings of order k, and

• all flipped clique r-crossings of order k, and

• all flipped half-graph r-crossings of order k, and

• the comparability grid of order k;

(iii) C is prepattern-free;

(iv) C has the insulation property;

(v) C is flip-breakable.

Proof. We have already proven all the necessary implications:

• (i) ⇒ (ii): Proposition 12.22

• (ii) ⇒ (iii): Proposition 12.21

• (iii) ⇒ (iv): Proposition 7.10

• (iv) ⇒ (v): Proposition 8.1

• (v) ⇒ (i): Proposition 8.8
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We obtain the following algorithmic version of flip-breakability by combining Theorem 13.1 and
Proposition 8.1.

Theorem 13.2. For every monadically dependent class C and radius r ∈ N, there exists an un-
bounded function fr : N → N, a constant kr ∈ N, and an algorithm that, given a graph G ∈ C and
W ⊆ V (G), computes in time OC,r(|V (G)|2) two subsets A,B ⊆ W with |A|, |B| ⩾ fr(|W |) and a
kr-flip H of G such that:

distH(A,B) > r.

Theorem 3.1. Let C be a hereditary graph class. The following conditions are equivalent:

(i) C is monadically dependent,

(ii) for every real ε > 0 and integer r ⩾ 1, for every bipartite graph G such that C contains some
radius-r encoding of G, we have that |E(G)| ⩽ OC,r,ε(|V (G)|1+ε),

(iii) for every integer r ⩾ 1 there is an integer N ⩾ 1 such that for every bipartite graph G with

|V (G)| > N such that C contains some radius-r encoding of G, we have that |E(G)| < |V (G)|2
4 .

Proof. The implication (ii)→(iii) is immediate. We prove the implications (i)→(ii) and (iii)→(i).
(i)→(ii). Fix ε > 0, r ⩾ 1 and a graph class C. Let Br denote the class of bipartite graphs G

such that some radius-r encoding of G belongs to C, and let B(1)
r denote the class of 1-subdivisions

of the bipartite graphs in Br. By Lemma 12.23, the class C transduces the class B(1)
r . As C is

monadically dependent, B(1)
r is as well. As B(1)

r is weakly sparse6 and monadically dependent, it

is nowhere dense (this follows from [24], see [45]). As the class B(1)
r of 1-subdivisions of graphs

from Br is nowhere dense, it follows that Br is nowhere dense (indeed, if Br contains some k-

subdivided clique Kn as a subgraph, for some k, n ∈ N, then B(1)
r contains the (2k+ 1)-subdivided

clique Kn as a subgraph). Since Br is nowhere dense, it follows from [23] (see also [43]) that
|E(G)| ⩽ OBr,ε(|V (G)|1+ε) ⩽ OC,r,ε(|V (G)|1+ε). The conclusion follows.

(iii)→(i). We proceed by contrapositive. Let C be a hereditary, monadically independent graph
class. By Theorem 13.1, there is some r ⩾ 1 such that for every n, C contains some flipped r-
crossing of order n, or the comparability grid of order n + 1. As mentioned earlier, those contain
as induced subgraphs radius-r encodings (r = 1 in the case of comparability grids) of the complete
bipartite graph Kn,n of order n, which has |E(Kn,n)| = n2 and |V (Kn,n)| = 2n, and therefore
|E(Kn,n)| ⩾ |V (Kn,n)|2/4. As n is arbitrarily large, this proves the negation of condition (iii), and
finishes the proof of the implication.

6A graph class C is weakly sparse if there is a bound t such that C excludes the biclique Kt,t of order t as a
subgraph. In our case C consists of subdivided graphs and excludes K2,2 as a subgraph.
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Part III

Lower Bounds

In this part we present several algorithmic and combinatorial lower bounds for hereditary, monad-
ically independent graph classes.

14 Hardness of Model Checking

This section is devoted to proving the following theorem.

Theorem 1.7. The first-order model checking problem is AW[∗]-hard on every hereditary, monad-
ically independent graph class.

We show this by reducing from the first-order model checking problem on the class of all graphs,
which is AW[∗]-complete [19]. Our main tool is that of an interpretation.

Definition 14.1. Let δ(x) and φ(x, y) be formulas, where φ is symmetric and irreflexive. The
interpretation Iδ,φ is defined as the operation that maps a given input graph G to the output
graph Iδ,φ(G) := H where H has vertex set V (H) := {v ∈ V (G) : G |= δ(v)} and edge set
{(u, v) ∈ V (H)2 : G |= φ(u, v)}. A class of graphs C efficiently interprets a class D if there exists a
polynomial-time computable function f : D → C such that I(f(H)) = H for all H ∈ D.

Note that since the graph f(H) is computed in polynomial time givenH, in particular, |V (f(H))| ⩽
p(|V (H)|), for some fixed polynomial p : N → N.

The following property of interpretations is well known and follows by a simple formula rewriting
procedure (see, e.g., [39, Thm. 4.3.1]).

Lemma 14.2. For every interpretation I and formula ψ(x̄), we can compute a formula ψ⋆(x̄),
such that for all graphs G and H satisfying G = I(H) and every tuple ā ∈ V (G)|x̄|,

G |= ψ(ā) ⇔ H |= ψ⋆(ā).

Corollary 14.3 (Transitivity). Let C,D, E be classes of graphs such that C efficiently interprets D
and D efficiently interprets E. Then also C efficiently interprets E.

Corollary 14.4 (Reduction). Let C be a class of graphs that efficiently interprets the class of all
graphs. Then the first-order model checking problem is AW[∗]-hard on C.

We spend the rest of this section proving the following proposition.

Proposition 14.5. Let C be a hereditary graph class and r ⩾ 1, such that for all k ∈ N, C contains

• a comparability grid of order k, or

• a flipped star r-crossing of order k, or

• a flipped clique r-crossing of order k, or

• a flipped half-graph r-crossing of order k.

Then C efficiently interprets the class of all graphs.

Using Theorem 1.6, this is equivalent to the Theorem 1.8, which we restate for convenience.
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Theorem 1.8. Every hereditary, monadically independent graph class efficiently interprets the
class of all graphs.

By Corollary 14.4, this then immediately implies Theorem 1.7, stating AW[∗]-hardness of the
model checking problem on every hereditary, monadically independent graph class. Moreover,
Theorem 1.8 implies that a hereditary graph class is dependent if and only if it is monadically
dependent. This equivalence was previously proven by Braunfeld and Laskowski for the more
general setting of hereditary classes of relational structures [12].

Note that it is rather straightforward to prove that, under the assumptions of Proposition 14.5,
some class C+ of colored graphs from C efficiently interprets the class of all graphs. Indeed, using
colors we can mark the r + 2 layers of (an induced subgraph of) a flipped r-crossing representing
the input graph, and then use the colors to “undo” the flip, thus obtaining an unflipped r-crossing,
with which we can proceed similarly as in the sketched proof of Proposition 12.22. This, however,
would yield a significantly weaker statement than Theorem 1.7: that the first-order model checking
problem on colored graphs from C is AW[∗]-hard, for every hereditary, monadically independent
class C.

14.1 Crossings and Comparability Grids

Since we explicitly refer to the individual vertices of our r-crossing patterns in this section, let us
restate their definition in greater detail and explicitly name their vertex sets.

Definition 14.6 (r-crossings). For every radius r ⩾ 1 we define the star, clique, and half-graph
r-crossing of order n as the graph whose vertex set

{ai : i ∈ [n]} ∪ {bi : i ∈ [n]} ∪ {pi,j,t : i, j ∈ [n], t ∈ [r]}

is partitioned into l := r + 2 layers L := {L0, . . . , Lr+1} with

• L0 := {ai : i ∈ [n]},

• Lt := {pi,j,t : i, j ∈ [n]} for all t ∈ [r],

• Lr+1 := {bj : j ∈ [n]},

and whose edges are defined as follows. The vertices (ai, pi,j,1, . . . , pi,j,r, bj) form a path for all
i, j ∈ [n]. Each of the three types enforces separate additional edges.

• The star r-crossing contains no additional edges.

• For the clique r-crossing,

– pi,j,1 and pi,j′,1 are adjacent for all j ̸= j′ ∈ [n], and

– pi,j,r and pi′,j,r are adjacent for all i ̸= i′ ∈ [n].

• For the half-graph r-crossing,

– ai is adjacent to pi′,j,1 for all i ⩽ i′ ⩽ n and for all j ∈ [n], and

– bj is adjacent to pi,j′,r for all i ∈ [n] and for all j ⩽ j′ ⩽ n.

For every r ⩾ 1, let B⋆
r , B•

r , B◀
r be the hereditary closure of the class of all star, clique, and

half-graph r-crossings, respectively.

Lastly, recall that the comparability grid of order n is the graph with vertex set {ai,j : i, j ∈ [n]}
where for all i ⩽ i′, ai,j and ai′,j′ are adjacent if and only if i = i′ or j ⩽ j′. Denote by B the
hereditary closure of the class of all comparability grids.
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14.2 Twins

Two vertices u and v are twins in a graph G, if NG(u) \ {u, v} = NG(v) \ {u, v}. This relation is
transitive and definable in first-order logic:

twins(x, y) := ∀z : (z ̸= x ∧ z ̸= y) → (E(z, x) ↔ E(z, y)).

The twin classes of a graph G are the equivalence classes of the twin-relation of G. For every fixed
k ∈ N, the formulas

#twins⩾k(x) := ∃z1, . . . , zk :
∧

(i,j)∈(k2)

zi ̸= zj ∧ zi ̸= x ∧ twins(zi, x),

#twins=k(x) := #twins⩾k(x) ∧ ¬(#twins⩾k+1(x))

express that x has at least or exactly k twins, respectively (equivalently, the twin class containing
x has at least or exactly k + 1 elements).

14.3 Reversing Flips

Combining hereditariness and the pigeonhole principle, we observe the following.

Observation 14.7. Let C be a hereditary graph class and r ⩾ 1, such that for all k ∈ N, C contains

• a comparability grid of order k, or

• a flipped star r-crossing of order k, or

• a flipped clique r-crossing of order k, or

• a flipped half-graph r-crossing of order k.

Then C contains either B or there is B ∈ {B⋆
r ,B•

r ,B◀
r }, such that C contains a layer-wise flip of

each graph in B.

Recall that B⋆
r/B•

r/B◀
r contains all the induced subgraphs of all star/clique/half-graph r-crossings.

A layer-wise flip of a graph G in B ∈ {B⋆
r ,B•

r ,B◀
r } is an {L0, . . . , Lr+1}-flip of G: the flip respects the

layered structure of the class B. As the vertices of the graphs in B are named (cf. Definition 14.6),
it is clear in which layer each vertex of G is located.

In this subsection we use interpretations to undo the flips and recover the graphs from B.
However, we only recover graphs without twins and without isolated vertices. Let T be the class
of all graphs containing twins. Let I be the class of all graphs containing isolated vertices.

Lemma 14.8. Fix r ⩾ 1. Let B ∈ {B⋆
r ,B•

r ,B◀
r } and let C be a hereditary class containing a

layer-wise flip of each graph from B.

C efficiently interprets B \ (T ∪ I).

Proof. Denote by Bn the star/clique/half-graph r-crossing of order n. Since C is hereditary and
by the pigeonhole principle, we can assume that there exist an integer k ⩽ r + 2, a mapping
lc : {0, . . . , r + 1} → [k] (for layer color), and a symmetric relation R ⊆ [k]2 with the following
property.

• For every n ∈ N, let Kn be the k-coloring of V (Bn) in which each layer L0, . . . , Lr+1 of Bn

is monochromatically colored by the color lc(0), . . . , lc(r + 1), respectively. Note that two
different layers might be assigned the same color.
The graph flip(Bn) := Bn ⊕Kn R is contained in C.
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Without loss of generality, we can assume k to be minimal in the following sense.

• Every color is used: the map lc is surjective.

• No two colors can be merged: for all i ̸= j ∈ [k] there exists d ∈ [k] such that

(i, d) ∈ R⇔ (j, d) ̸∈ R.

Having fixed lc, from now on we assume every Bn to be implicitly k-colored, and that B is the
hereditary closure of these k-colored graphs. We extend our notion flip(G) := G⊕KR to all graphs
G ∈ B, where K is the aforementioned k-coloring associated with G. Note that flip(G) ∈ C for all
G ∈ B. Our notion of layers carries over to all graphs G, and flip(G) in the obvious way. We use
twin classes to uniquely quantify representative vertices of each color class. The representatives are
added as follows. For any k-colored graph G, let prep(G) be the graph obtained from G by adding,
for each color i ∈ [k], (i+ 1) many isolated vertices si,1, . . . , si,(i+1) of color i to G.

Claim 14.9. If G ∈ B, then the same holds for prep(G).

Proof. By assumption, there exists an embedding f from G to Bn, for some n ∈ N. Let c := r ·(l+1)
and m := n+ 2c. We show how to embed prep(G) into Bm. First note that the function

g(·) :=
⋃

i,j∈[n],t∈[r]

{ai 7→ ai+c, bj 7→ bj+c, pi,j,t 7→ pi+c,j+c,t}

is an embedding from Bn to Bm. It follows that h(·) := g ◦ f is an embedding from G to Bm. Let
h(G) := {h(v) : v ∈ V (G)}. Importantly, every vertex ai, bj , or pi,j,t in h(G) satisfies

i, j ∈ {c+ 1, . . . , c+ n} and t ∈ [k].

We next choose a set S(L) of (l + 1) vertices from each layer L ∈ {L0, . . . , Lr+1} as follows.

• S(L0) := {ac+n+i : i ∈ [l + 1]},

• S(Lt) := {pi′+i,i′+i,t : i ∈ [l + 1]} for every t ∈ [r] and i′ := (t− 1) · (l + 1),

• S(Lr+1) := {bc+n+j : j ∈ [l + 1]}.

See Figure 19 for a visualization.
We define I := S(L0) ∪ . . . ∪ S(Lr+1). By construction, I and h(G) are disjoint. Let us now

argue that every vertex from I is isolated in the induced subgraph B′
m := Bm[h(G) ∪ I].

• Let ai ∈ I. Then i > c + n. All the neighbors of ai in Bm are of the form pi′,j,t for some
i′ ⩾ i. All vertices pi′,j,t in B′

m satisfy i′ ⩽ c+ n, so they are non-adjacent to ai.

• Let bj ∈ I. The same reasoning as in the previous case applies.

• Let pi,j,t ∈ I. Then i ⩽ c and j ⩽ c. By the same reasoning as before, pi,j,t is non-adjacent to
all vertices of the form ai′ or bj′ in B′

m. Furthermore, any neighbor of pi,j,t of the form pi′,j′,t′

in Bm must satisfy i′ = i or j′ = j. By construction, B′
m contains no vertex pi′,j′,t′ satisfying

i′ = i or j′ = j, apart from pi,j,t itself.

This proves that the set I is indeed isolated in B′
m. We want to stress that our argument works for

each of the three classes B ∈ {B⋆
r ,B•

r ,B◀
r }.

We finally embed prep(G) into B′
m. The vertices of G are embedded using h. The additional

vertices si,1, . . . , si,(i+1) that are added to prep(G) for each color i ∈ [k] can now be mapped to
distinct vertices from a set S(L) to which the layer coloring lc assigns color i. As desired, they have
color i and are isolated. ■
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S(L0)

S(L1)

S(L2)

S(L3)

S(L4)

a3

b5

p2,6,1

Figure 19: A visualization of how the sets S(L) are embedded into Bm for the case r = 3. To preserve
readability in the visualization, each set S(L) has size 3 instead of l + 1 = 6. The black vertices correspond
to the embedding of Bn into Bm.
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Claim 14.10. Let G ∈ B \ (T ∪ I). The twin classes of flip(prep(G)) consist exactly of

• the singleton twin class {v} for every vertex v ∈ V (G), and

• the twin class Ti := {si,1, . . . , si,i+1} for every color i ∈ [k].

Proof. The following is easy to see.

For all vertices u, v with the same color:

u and v are twins in prep(G) if and only if they are twins in flip(prep(G)).
(11)

Additionally, we argue the following.

For all vertices u, v with different colors: u and v are not twins in flip(prep(G)). (12)

Let i ̸= j be the colors of u and v. By the assumed minimality of the coloring, there exist a
color d ∈ [k] such that (i, d) ∈ R ⇔ (j, d) ̸∈ R. There exists at least one vertex sd ∈ {sd,1, sd,2}
that has color d and is non-adjacent and non-equal to both u and v in prep(G). It follows that
in flip(prep(G)) exactly one of u and v will be adjacent to sd. Thus, u and v are no twins in
flip(prep(G)).

Combining (11) and (12), we have that every two vertices u and v which are no twins in prep(G)
are also no twins in flip(prep(G)). Since G /∈ T ∪ I, in prep(G) the vertices of V (G) neither have
twins among V (G) nor among the isolated vertices added to build prep(G) from G. It follows that
each vertex from V (G) is contained in a singleton twin class of flip(prep(G)) as desired. Finally,
by (11), for every color i ∈ [k] there is a twin class Ti containing the set of isolated vertices
{si,1, . . . , si,i+1}. As argued before, Ti contains no vertices from V (G). By (12), Ti is disjoint from
Tj for every other color j ̸= i. Then Ti is exactly {si,1, . . . , si,i+1}, as desired. ■

Claim 14.11. For every color i ∈ [k] there exists a formula coli(x) such that for every G ∈
B \ (T ∪ I) and every vertex v in prep(G) we have

v has color i ⇔ flip(prep(G)) |= coli(x).

Proof. We argue that the following formula does the job.

coli(x) := ∃z1, . . . , zk :
∧
j∈k

x ̸= zj ∧ #twins=j(zj) ∧
(
E(x, zj) ↔ (i, j) ∈ R

)
The formula quantifies vertices z̄ = z1 . . . zk containing for each color j ∈ [k] a vertex zj such that

• zj is not equal to x,

• zj is from a twin class of size exactly j + 1,

• zj is adjacent to x if and only if (i, j) ∈ R.

Let v be a vertex in prep(G). To prove the forwards direction of the claim, assume v has color i.
We can choose a satisfying valuation w̄ of z̄ as follows. By Claim 14.10, for each color j ∈ [k] the
twin class Tj has size exactly j + 1 and all its vertices are isolated in prep(G) and have color j. As
|Tj | ⩾ 2, we can pick a vertex wj ∈ Tj that is not equal to v. As v and wj are non-adjacent in
prep(G) and of color i and j respectively, we have flip(prep(G)) |= E(v, wj) ⇔ (i, j) ∈ R as desired.

For the backwards direction, assume towards contradiction that v has color i′ ̸= i and there
exists a satisfying valuation w̄ of z̄. By the assumed minimality of the coloring of prep(G), there
exist a color d ∈ [k] such that

(i′, d) ∈ R⇔ (i, d) /∈ R.
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Again wd has color d and is non-adjacent to v in prep(G). By definition of flip(prep(G)) we have

flip(prep(G)) |= E(v, wd) ⇔ (i′, d) ∈ R.

However, for w̄ to be a satisfying valuation of z̄ we must have

flip(prep(G)) |= E(v, wd) ⇔ (i, d) ∈ R.

Combining the three equivalences gives the desired contradiction. ■

Claim 14.12. For every formula φ(x̄) we can compute a formula flip(φ)(x̄) such that for every
graph G ∈ B \ (T ∪ I) and every tuple ā ∈ V (G)|x|,

prep(G) |= φ(ā) ⇔ flip(prep(G)) |= flip(φ)(ā).

Proof. Using Claim 14.11, it is easy to see that for all graphs G ∈ B \ (T ∪ I) and vertices u and v
in prep(G),

prep(G) |= E(u, v) ⇔ flip(prep(G)) |= E(u, v) XOR
∨

i,j∈[k]

coli(x) ∧ colj(y) ∧ (i, j) ∈ R.

For every φ(x̄), let flip(φ)(x̄) be the formula obtained by replacing every occurrence of E(x, y) with
the formula on the right side of the above equivalence. It now easily follows by structural induction
that flip(φ)(x̄) has the desired properties. ■

Let δ(x) := flip(hasNeighbor)(x) and φ(x, y) := flip(E)(x, y), where hasNeighbor(x) is the
formula checking that x is not an isolated vertex. Using Claim 14.12, we have

Iδ,φ
(
flip(prep(G))

)
= G

for every graph G ∈ B \ (T ∪ I). As flip(prep)(G) is contained in C and can be computed in
polynomial time from G, we have that C efficiently interprets B \ (T ∪ I).

14.4 Encoding Bipartite Graphs

Having undone the flips, we interpret all bipartite graphs (without isolated vertices) from our
intermediate classes {B⋆

r ,B•
r ,B◀

r ,B }. Targeting this class of bipartite graphs does not restrict the
general case, as the following lemma shows.

Lemma 14.13. The class of all bipartite graphs without isolated vertices efficiently interprets the
class of all graphs.

Proof. Let δ(x) be the formula stating that x has degree at least three and φ(x, y) be the formula
stating that x and y are at distance exactly two. For every graph G, we build the graph BG as
follows. For every vertex v ∈ V (G) we create a star with three leaves and center cv. For every
edge (u, v) ∈ E(G), we add a new vertex adjacent to both cu and cv. It is easy to see that BG is
bipartite, without isolated vertices, and Iδ,φ(BG) = G.

The following notation will be convenient. For every bipartite graph H there exists at least one
bipartite representation of H, that is, a tuple

H ′ = (U ′ ⊆ N, V ′ ⊆ N, E(H ′) ⊆ U ′ × V ′),

such that there exist
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• a bipartition of V (H) into two independent sets U and V , and

• two bijections f : U → U ′ and g : V → V ′,

such that for all u ∈ U and v ∈ V : (f(u), f(v)) ∈ E(H ′) ⇔ (u, v) ∈ E(H). Note that U ′ and V ′ do
not have to be disjoint and E(H ′) is not necessarily symmetric.

Encoding Bipartite Graphs in Star and Clique r-Crossings

Lemma 14.14. For every r ⩾ 1 and B ∈ {B⋆
r ,B•

r},

B \ (T ∪ I) efficiently interprets the class of all bipartite graphs.

Proof. First assume B = B⋆
r . Let δ(x) be the formula checking whether x has degree at least

three, and let φ(x, y) be the formula checking whether the distance between x and y is exactly
r + 1. To prove the lemma, we show that for every bipartite graph H, we can construct a graph
BH ∈ B \ (T ∪ I) such that Iδ,φ(BH) = H. Let

H ′ = ([n], [m], E(H ′) ⊆ [n] × [m])

be a bipartite representation of H for some n,m ∈ N. We build the graph BH as follows. For
every i ∈ [n] we create a 1-subdivided star with three leaves consisting of: a center ci and for every
s ∈ {0, 1, 2} a subdivision vertex ci,s,1 and a leaf ci,s,2 such that (ci, ci,s,1, ci,s,2) form a path. We
do the same for every j ∈ [m], giving us vertices dj , dj,s,1, dj,s,2 for every s ∈ {0, 1, 2}. Finally, for
every edge (i, j) ∈ E(H ′) we add vertices {qi,j,t : t ∈ [r]} and connect (ci, qi,j,1, . . . , qi,j,r, dj) to form
a path of length r+ 1. It is easy to see that Iδ,φ(BH) = H and that BH contains neither twins nor
isolated vertices. It remains to show that BH is an induced subgraph of a star r-crossing.

Let N := 3(n + m) and BN be the star r-crossing of order N . We give an embedding h :
V (BH) → V (BN ) of BH into BN . Let f(i) := 3i−2 and g(j) := 3n+3j−2. We define h as follows
for all i ∈ [n], j ∈ [m], s ∈ {0, 1, 2}, and t ∈ [r].

• h(ci) := af(i)

• h(ci,s,1) := pf(i),f(i)+s,1

• h(ci,s,2) :=

{
pf(i),f(i)+s,2 if r > 1

bf(i)+s if r = 1

• h(qi,j,t) := pf(i),g(j),t

• h(dj) := bg(j)

• h(dj,s,1) := pg(j)+s,g(j),r

• h(dj,s,2) :=

{
pg(j)+s,g(j),r−1 if r > 1

ag(j)+s if r = 1

See Figure 20 for a visualization of the embedding. It is easily checked that h is an embedding.
This finishes the case B = B⋆

r .
For the case B = B•

r , we take the same edge formula φ and update the domain formula to state

δ(x) := “x has degree at least three and the neighborhood of x is a clique”.

We build BH as in the previous case but add additional edges. For every i ∈ [n] we turn the set⋃{
{ci,s,1, ci,s,2, qi,j,1} : j ∈ [m], (i, j) ∈ E(H ′), s ∈ {0, 1, 2}

}
that contains exactly the neighborhood of ci into a clique. Symmetrically, we do the same for every
j ∈ [m] with the set⋃{

{dj,s,1, dj,s,2, qi,j,r} : i ∈ [n], (i, j) ∈ E(H ′), s ∈ {0, 1, 2}
}

of all neighbors of dj . Again Iδ,φ(BH) = H, BH contains neither twins nor isolated vertices, and h
is an embedding of BH into the clique r-crossing of order 3(n+m).

86



h(d2)

h(c1)

h(q2,3,3) h(d3,1,1)

h(c2,3,2)

Figure 20: A visualization of how BH embeds into BN for the case where r = 3 and H is the biclique of
order 3.
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Encoding Bipartite Graphs in Half-Graph r-Crossings and in Comparability Grids

Lemma 14.15. For every r ⩾ 1 and B ∈ {B◀
r ,B },

B \ (T ∪ I) efficiently interprets the class of all bipartite graphs without isolated vertices.

Proof. We first prove the statement for B = B◀
r . For every n ∈ N, we define JnK := [n] \ {1, n} =

{2, . . . , n− 1}. Let H be an arbitrary bipartite graph without isolated vertices and let

H ′ = (JnK, JmK, E(H ′) ⊆ JnK × JmK)

be a bipartite representation of H for some n,m ∈ N. We define BH to be the subgraph of the
half-graph r-crossing of order max(n,m) induced by the vertices

• A := {ai : i ∈ JnK} corresponding to the left vertices of H,

• B := {bj : j ∈ JmK} corresponding to the right vertices of H,

• P := {pi,j,t : (i, j) ∈ E(H ′), t ∈ [r]} corresponding to the edges of H,

• {an, pn,1,1} and {bm, p1,m,r} which we use as auxiliary vertices.

See the left side of Figure 21 for a visualization.
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Figure 21: On the left: a visualization of the vertices of BH where H is the half-graph of order 4 and r = 3.
The vertices in A, B, and P are colored red, blue, and black respectively. On the right: a visualization of
the embedding of BH into a comparability grid, where again H is the half-graph of order 4.

Our goal is to interpret H from BH . Let

A⋆ := A ∪ {an}, B⋆ := B ∪ {bm}, P⋆ := P ∪ {pn,1,1, p1,m,r}.

Claim 14.16. NBH
(pn,1,1) = A⋆ and NBH

(p1,m,r) = B⋆.

Proof. The claim follows by the definition of the adjacencies in half-graph crossings. A⋆ is included
in the neighborhood of pn,1,1 because i ⩽ n for all i ∈ JnK ∪ {n}. All neighbors of B⋆ are of the
form pi,j,t for some j ⩾ 2, so no vertex of B⋆ is included in the neighborhood of pn,1,1. The vertex
pn,1,2 is not contained in P⋆, so no vertex of P⋆ is included in the neighborhood of pn,1,1. We argue
symmetrically to determine the neighborhood of p1,m,r. ■
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Observation 14.17. NBH
(an) = {pn,1,1} and NBH

(bm) = {p1,m,r}.

Claim 14.18. Except for an and bm, all vertices have degree at least two.

Proof. All vertices in A are adjacent to pn,1,1 and at least one other pi,j,1 vertex since H contains
no isolated vertices. A symmetric statement holds for B and p1,m,r. The vertices in P are inner
vertices of paths from A to B, so they have degree at least two. The vertices pn,1,1 and p1,m,r have
high degree by the previous claim. ■

Observation 14.19. BH contains no isolated vertices.

Claim 14.20. BH contains no twins.

Proof. The vertices in A⋆ can be distinguished from the vertices in B⋆ and P⋆ by their adjacency
to pn,1,1. Two vertices ai and ai′ from A⋆ with i < i′ ⩽ n can be differentiated by a vertex pi,j,1 for
some j ∈ JmK which is adjacent to ai but not to ai′ . This j exist since no vertex in H is isolated.
It follows that A⋆ contains no twins and by a symmetric argument, neither does B⋆.

It remains to distinguish the vertices inside P⋆. The auxiliary vertices pn,1,1 and p1,m,r each
have a private neighbor in an and bm, so we can focus our attention on the set P . Let pi,j,t and
pi′,j′,t′ be two distinct vertices from P . By symmetry, we can assume that either i < i′ or j < j′ or
t < t′. If i < i′ or t < t′ then the vertex

d :=

{
pi,j,t−1 if t > 1,

ai if t = 1,

is adjacent to pi,j,t but non-adjacent to pi′,j′,t′ . If j < j′ we argue symmetrically using either pi,j,t+1

or bj if t = r. We want to stress that the argument works also for the case of r = 1. ■

We have proven that BH ∈ B◀
r \ (T ∪ I). Let us continue to show that BH interprets H.

Combining Observation 14.17, Claim 14.16, Claim 14.18, we have that the formula

δ(x) := “x has degree at least 2 and is at distance exactly 2 from a degree 1 vertex”

is true exactly on the vertices from A ∪ B. It can therefore act as the domain formula of our
interpretation. It remains to define the edge relation. First notice that the formula

sameSide(x, y) := ∃z : “z has degree 1 and is at distance exactly 2 from both x and y”

distinguishes A⋆ and B⋆: for all vertices u and v

BH |= sameSide(u, v) ⇔ {u, v} ∈ A⋆ ∨ {u, v} ∈ B⋆.

We next construct a formula that resolves the half-graphs between A and P⋆ and between B and
P⋆ in the following sense.

Claim 14.21. There exists a formula E0(x, y) such that for all i ∈ JnK,

{v ∈ V (BH) | BH |= E0(ai, v)} = {pi,j,1 : (i, j) ∈ E(H ′), j ∈ JmK},

and for all j ∈ JmK,

{v ∈ V (BH) | BH |= E0(bj , v)} = {pi,j,r : (i, j) ∈ E(H ′), i ∈ JnK}.
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Proof. The formula

x ≺ y := sameSide(x, y) ∧ “N(y) is a strict subset of N(x)”

orders A⋆ and B⋆ respectively: for all ai ∈ A⋆ and bj ∈ B⋆ we have(
BH |= ai ≺ a

)
⇔

(
a ∈ {ai′ : i < i′ ⩽ n}

)
and

(
BH |= bj ≺ b

)
⇔

(
b ∈ {bj′ : j < j′ ⩽ m}

)
.

Now the following formula

E0(x, y) := E(x, y) ∧ ¬
(
∃x′ : x ≺ x′ ∧ E(x′, y)

)
has the desired properties. ■

We can finally construct the formula interpreting the edges of H

φ(x, y) := ¬sameSide(x, y) ∧ ∃z1, . . . , zr : E0(x, z1) ∧ E0(y, zr) ∧
∧
t<r

E(zt, zt+1),

which states that x and y are from different sides and connected by a path containing r + 1 edges
and whose first and last edge are E0-edges. The formula defines a bipartite graph with sides A and
B: it is symmetric, and we have BH ̸|= φ(u, v) for all vertices u and v such that {u, v} ⊆ A or
{u, v} ⊆ B.

Claim 14.22. For all i ∈ JnK and j ∈ JmK: BH |= φ(ai, bj) ⇔ (i, j) ∈ E(H ′).

Proof. Assume (i, j) ∈ E(H ′). Then pi,j,1, . . . , pi,j,r is a valuation of z1, . . . , zr witnessing that
BH |= φ(ai, bj). For the backwards direction assume a satisfying valuation p1, . . . , pr of z1, . . . , zr.
By Claim 14.21 we have p1 = pi,j′,1 and pr = pi′,j,r for some j′ ∈ JmK \ {j} and i′ ∈ JnK \ {i}. The
existence of p2, . . . , pr−1 implies i = i′ and j = j′. Hence, (i, j) ∈ E(H ′). ■

It follows that Iδ,φ(BH) = H. Since the definition of δ and φ does not depend on H, and H was
chosen to be an arbitrary bipartite graph without isolated vertices, we have that this interpretation
interprets all such H from their corresponding preimage BH ∈ B◀

r \ (T ∪I). Furthermore, for every
H the preimage BH can be computed in polynomial time, so the interpretation is efficient. This
finishes the case of B = B◀

r .

We next show that the interpretation that we constructed for the previous case, where r = 1 and
B = B◀

1 , also works for the case B = B . In the previous case, we constructed for every bipartite
graph without isolated vertices H, a graph BH ∈ B◀

1 such that Iδ,φ(BH) = H. In this case, since
r = 1, the formula φ collapses to

φ(x, y) := ¬sameSide(x, y) ∧ ∃z1 : E0(x, z1) ∧ E0(y, z1)

and the graph BH consists of vertices

{ai : i ∈ JnK}︸ ︷︷ ︸
=A

∪{bj : j ∈ JmK}︸ ︷︷ ︸
=B

∪{pi,j,1 : (i, j) ∈ E(H ′)}︸ ︷︷ ︸
=P

∪{an, pn,1,1} ∪ {bm, p1,m,1}

where H ′ is again the bipartite representation of H. We now build a new graph BH from BH by
adding additional edges as follows. We connect each vertex pi,j,1 ∈ P with all the vertices pi′,j′,1 ∈ P
such that i ⩽ i′ and j ⩽ j′ (but not with itself). It is easily checked that all the previous claims
for BH , still hold true for BH :
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• We only modified adjacencies inside P , so Claim 14.16 and Observation 14.17 also hold in
BH .

• The degree of vertices in P only increased, so Claim 14.18 and Observation 14.19 also hold
in BH .

• As r = 1, P is pairwise distinguished using onlyA andB, soBH contains no twins (Claim 14.20).

• The construction of the formulas sameSide(x, y) and E0(x, y) only depends on the previous
claims and the neighborhoods of A and B, so the formulas still work as intended in BH .

It follows that BH contains neither isolated vertices nor twins and that Iδ,φ(BH) = Iδ,φ(BH) = H.
It remains to show that BH ∈ B . We do this by showing that BH is an induced subgraph of the
comparability grid GN of order N := (n+m− 1) whose vertex set is {ai,j : i, j ∈ [N ]}. We witness
this fact by constructing an embedding f of BH into GN as follows:

• f(ai) := am+i−1,n−i+1 for all ai ∈ A⋆,

• f(bj) := am−j+1,n+j−1 for all bj ∈ B⋆,

• f(pi,j,1) := am+i−1,n+j−1 for all pi,j,1 ∈ P⋆.

See the right side of Figure 21 for a visualization of the embedding. Using this visualization, it is
easy to check that f is indeed an embedding of BH into GN . This finishes the case for B = B and
concludes the proof.

14.5 Proof of Proposition 14.5

Proposition 14.5. Let C be a hereditary graph class and r ⩾ 1, such that for all k ∈ N, C contains

• a comparability grid of order k, or

• a flipped star r-crossing of order k, or

• a flipped clique r-crossing of order k, or

• a flipped half-graph r-crossing of order k.

Then C efficiently interprets the class of all graphs.

Proof. We first show that C efficiently interprets the class of all bipartite graphs without isolated
vertices. By Observation 14.7, we distinguish three cases.

• Either C contains a layer-wise flip of each graph from B, for B ∈ {B⋆
r ,B•

r}, and we can apply
Lemma 14.8 and Lemma 14.14,

• or C contains a layer-wise flip of each graph from B◀
r , and we can apply Lemma 14.8 and

Lemma 14.15,

• or C contains B and we can apply Lemma 14.15.

From there, Lemma 14.13 brings us to the class of all graphs.

15 Almost Bounded Twin-Width

Twin-width is a graph parameter recently introduced in [9]. We quickly recall its definition. A
contraction sequence for an n-vertex graph G is a sequence of partitions of V (G)

P1 = {{v} : v ∈ V (G)}, . . . ,Pn = {V (G)}

where Pi+1 is obtained from Pi by merging two parts. The red-degree of a part P ∈ Pi is the
number of parts Q ∈ Pi \ {P}, such that P and Q are neither fully adjacent nor fully non-adjacent
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in G. The red-degree of a partition is the largest red-degree among its parts. The twin-width of
a graph G, denoted tww(G), is the smallest integer d such that G has a contraction sequence in
which every partition has red-degree at most d. A graph class C has almost bounded twin-width if
for every ε > 0 we have

tww(G) ⩽ OC,ε(n
ε) for every n-vertex graph G ∈ C.

The goal of this section is to show the following.

Theorem 1.10. Every hereditary, almost bounded twin-width graph class is monadically dependent.

Note that in Section 16 we prove that the more general classes of almost bounded flip-width are
monadically dependent. This immediately implies Theorem 1.10, but we provide a self-contained
proof in this section.

We prove the theorem by analyzing the induced subgraphs appearing in classes that are monad-
ically independent: flipped star/clique/half-graph r-crossings and comparability grids.

Lemma 15.1. Let G be a flipped star/clique/half-graph r-crossing of order n. Then tww(G) ⩾

n
1

r+1 − 2.

The following proof closely follows the proof of [10, Proposition 6.2], where it was proven that
the r-subdivided clique of order n has twin-width Ωr(n

c) for some c > 0. We adapt their proof
to the bipartite setting (which slightly simplifies the setup), and generalize it to also work with
half-graph crossings (which makes the proof slightly more complicated).

Proof of Lemma 15.1. We use the notation for r-crossings presented in Definition 14.6. Let d be
the twin-width of G and fix a witnessing contraction sequence. By the bipartite symmetry of G,
we can assume that there is a step in the sequence, where two vertices ax, ay ∈ L0 with x < y are
contracted, but no vertices from Lr+1 have been contracted so far. Let P be the partition of V (G)
at this step, and P0 ∈ P be the part containing ax and ay. For every set S ⊆ [n] define the sets
Vt(S) := {px,j,t : j ∈ S} for t ∈ [r] and Vr+1(S) := {bj : j ∈ S}.

Claim 15.2. For every t ∈ [r+ 1] there is St ⊆ [n] with |St| ⩾ n
(d+2)t and Pt ∈ P with Vt(St) ⊆ Pt.

Proof. We prove the claim by induction on t. By definition of a flipped crossing, each vertex in
V1([n]) is adjacent exactly one vertex of ax and ay. Consequently, there is a red edge between P0

and every part P ∈ P \ {P0} that intersects V1([n]). Hence, at most d + 1 parts of P intersect
V1([n]), so there is a part P1 containing at least n

d+1 many vertices from V1([n]), and we can choose
S1 accordingly.

In the inductive step, by the structure of a flipped crossing, the vertices from Vt+1(St) have an
inhomogeneous connection to Vt(St), with the possible exception of the smallest vertex in St+1 (if
t = r and we consider a flipped half-graph crossing). Let Q be the set containing Pt and the part
of P that contains the smallest vertex in St+1. The aforementioned inhomogeneous connections
ensure that there is a red edge between Pt and every part P ∈ P \ Q that contains a vertex from

Vt+1(St). Then there must be a part Pt+1 that contains at least |Vt+1(St)|
d+2 ⩾ n

(d+2)t+1 vertices from

Vt+1(St). We can choose St+1 accordingly. ■

The above claim yields a part Pr+1 containing at least n
(d+2)r+1 vertices from Lr+1 ⊇ Vr+1([n]).

As no two vertices from Lr+1 have been contracted yet, Pr+1 can contain at most one vertex

from Lr+1. Then we have d ⩾ n
1

r+1 − 2.
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Lemma 15.3. Let G be a comparability grid of order n+ 1. Then tww(G) ⩾ n
1
2 − 2.

Proof. We proceed as in the proof of Lemma 15.1. Given a comparability grid of order n+ 1 with
vertex set {0, . . . , n} × {0, . . . , n}, we define L0 = {0} × [n] and L2 = [n] × {0}. By symmetry, we
consider the first step in a contraction sequence, where two vertices (0, x), (0, y) ∈ L0 with x < y
are contracted, but no vertices from L2 have been contracted so far. For every set S ⊆ [n] define the
sets V1(S) := S×{x} and V2(S) := S×{0}. The remainder of the proof proceeds as in Claim 15.2
and onwards (with r = 1).

We finally prove Theorem 1.10, which we rephrase as follows.

Proposition 15.4. For every hereditary, monadically independent graph class C there exists a real
δ > 0 such that for every n ∈ N, there is graph Gn ∈ C with |V (Gn)| ⩾ n and tww(Gn) ⩾ |V (Gn)|δ.

Proof. By Theorem 13.1 and hereditariness of C, there is r ∈ N such that for every n ∈ N, C contains
either a flipped star/clique/half-graph r-crossing of order n or the comparability grid of order n.
We choose Gn to be the flipped r-crossing or the comparability grid contained in C. In both cases
we have n ⩽ |V (Gn)| ⩽ Or(n

2). If Gn is a flipped crossing, we conclude using Lemma 15.1. If Gn

is a comparability grid, we conclude using Lemma 15.3.

16 Almost Bounded Flip-Width

The radius-r flip-width of a graph G, denoted fwr(G), is a graph width parameter recently intro-
duced in [55]. It is defined in terms of a generalization of the Cops and Robber game to dense
graphs. We refer the reader to [55] for a definition. Using this notion, a hereditary graph class C
has almost bounded flip-width if for every fixed radius r ⩾ 1 and ε > 0 we have

fwr(G) ⩽ OC,ε(n
ε) for every n-vertex graph G ∈ C.

In [55, Conjecture 10.7], the following conjecture is posed:

Conjecture 1.11 ([55]). A hereditary graph class C has almost bounded flip-width if and only if it
is monadically dependent.

In this section, we confirm the forwards implication of Conjecture 1.11 by proving the following
theorem.

Theorem 16.1. Let C be a hereditary graph class such that for every fixed r ⩾ 1,

fwr(G) ⩽ oC,r(n
1
2 ) for every n-vertex graph G ∈ C.

Then C is monadically dependent. In particular, every hereditary class of almost bounded flip-width
is monadically dependent.

Note that every class of almost bounded twin-width has almost bounded flip-width by [55, Thm.
10.21]. Therefore, Theorem 16.1 implies Theorem 1.10.

To prove Theorem 16.1, we show the following lemma.

Lemma 16.2. Fix r ⩾ 1. Let D be either

• the class of star r-crossings, or

• the class of clique r-crossings, or

93



• the class of half-graph r-crossings, or

• the class of comparability grids.

Then fwr+1(G) ⩾ Ωr(n
1
2 ) for every n-vertex graph G ∈ D.

Theorem 16.1 follows easily from Lemma 16.2, as we now show.

Proof of Theorem 16.1. Let C be a hereditary graph class, such that for every fixed r ⩾ 1, G ∈ C,
we have fwr(G) = oC,r(|G|

1
2 ). We want to prove that C is monadically dependent, so suppose

otherwise. By Theorem 13.1, there is some r, ℓ ⩾ 1 and a class D as in Lemma 16.2, such that
C contains some ℓ-flip G′ of every graph G ∈ D. Note that if G′ is an ℓ-flip of G, then from the
definition of flip-width, it follows easily that fwr+1(G) ⩽ ℓ · fwr+1(G

′) (see also [55, Thm. 8.2] with
q = 0). Thus, for every n-vertex graph G ∈ D which is a ℓ-flip of a graph G′ ∈ C we have by
Lemma 16.2 the contradiction

Ωr(n
1
2 ) ⩽ fwr+1(G) ⩽ ℓ · fwr+1(G

′) ⩽ oC,r(n
1
2 ).

This proves Theorem 16.1.

It remains to prove Lemma 16.2. The proof follows along the lines of the proof of [55, Proposition

6.7], which implies in particular that the r-subdivision K
(r)
n of Kn satisfies fwr+1(K

(r)
n ) ⩾ Ωr(n

1
2 ).

Fix n,m ⩾ 1 and a symbol S ∈ {⩽,=}. Let HS
n,m denote the bipartite graph with parts L = [n]

and R = [n]× [m], and edges {i, (i′, j)}, for i, i′ ∈ [n] and j ∈ [m], such that i S i′ holds. For i ∈ [n]
denote Ñ(i) := [i] × [m] ⊆ R.

Lemma 16.3. Fix k, n,m ⩾ 1, S ∈ {⩽,=}, and let H := HS
n,m = (L,R,E) be as defined above.

Let H ′ be a k-flip of H. Then there is a set X ⊆ L of size n−k and an injective function f : X → L
such that for every v ∈ X,

|NH′
(v) ∩ Ñ(f(v))| ⩾ m

2
.

Proof. Let P be the partition of V (H) into k parts such that the graph H ′ is a P-flip of H. First
consider the case when all the vertices of L are in one part A of P. Let W be the union of the
parts B of P that are not flipped with A in the flip that produces H ′ from H. Let X1 consist of
those vertices v ∈ L such that |Ñ(v) ∩W | ⩾ m

2 , and let X2 consist of the remaining vertices in L.
Every vertex in X1 is adjacent in H ′ to at least m

2 vertices in NH(v) (namely, to NH(v) ∩W ),
so we can set f(v) = v for all v ∈ X1. On the other hand, if v′ < v ∈ [n] are two distinct vertices
in X2, then NH′

(v) ⊇ Ñ(v′) \W and |Ñ(v′) \W | > m
2 . Set X := X1 ∪ X2 \ min(X2), and let

f : X1 ∪X2 \ min(X2) → X1 ∪X2 \ max(X2) be the injective function that maps every vertex in
X1 to itself, and every vertex in X2 − min(X2) to its predecessor in X2. Then |X| ⩾ |L| − 1, and
every v ∈ X is adjacent in H ′ to at least m

2 elements of Ñ(f(v)).
In the general case, partition L as L = L1 ⊎ . . . ⊎ Ls, for some s ⩽ k, following the partition P

restricted to L. For each 1 ⩽ i ⩽ s, let Hi = H[Li ∪ R], and H ′
i = H ′[Li ∪ R]; then H ′

i is a k-flip
of Hi, and they fall into the special case considered above. Hence, for each 1 ⩽ i ⩽ s there is a
set Xi ⊆ Li with |Xi| ⩾ |Li| − 1 and an injection fi : Xi → Li. Set X = X1 ⊎ . . . ⊎ Xs, and let
f : X → L be such that f(x) = fi(x) for x ∈ Xi. Then X and f satisfy the required condition.

For r, ℓ ⩾ 1, let Gr,ℓ denote the disjoint union of ℓ paths, each of length r (and with r + 1
vertices). In each path, call one of the vertices of degree one a source, and the other one a target.
We can use Lemma 16.3 (with m = 1 and S being =) to prove the following by induction on r ⩾ 1.
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Lemma 16.4. Fix k, r, ℓ ⩾ 1. If G′ is a k-flip of Gr,ℓ, then at least ℓ − rk target vertices of Gr,ℓ

are joined by a path of length r in G′ with some source vertex.

We present a modification of the notion of a hideout, defined in [55].

Definition 16.5. Fix r, k, d ⩾ 1 and a graph G. A pair (A,B) of subsets of V (G) is a (r, k, d)-bi-
hideout if |A|, |B| > d and for every k-flip G′ of G,

|{a ∈ A : |NG′
r [v] ∩B| ⩽ d}| ⩽ d,

|{b ∈ B : |NG′
r [v] ∩A| ⩽ d}| ⩽ d.

The following is an adaptation of [55, Lem. 5.16].

Lemma 16.6. Fix r, k ⩾ 1. Suppose that G has a (r, k, d)-bi-hideout for some d ⩾ 1. Then
fwr(G) > k.

Proof. Let (A,B) with A,B ⊆ V (G) be a (r, k, d)-bi-hideout. We describe a strategy for the runner
in the flipper game on G with radius r and width k, which allows to elude the flipper indefinitely.
The strategy is as follows: when the flipper announces a k-flip G′ of G in round i, if i is odd then
the runner moves to some vertex v ∈ A such that |NG′

r (v)∩B| > d, and if i is even then the runner
moves to some vertex v ∈ B such that |NG′

r (v) ∩A| > d.
In the first move, pick any v ∈ A with |NG

r (v) ∩ B| > d. Such a vertex exists by considering
the flip G′ = G, since |A| > d.

We show it is always possible to make a move as described in the strategy. Suppose at some
point in the game, say in an odd-numbered round (the other case is symmetric), the current position
v ∈ A of the runner is such that

|NP
r (v) ∩B| > d, (13)

where P is the previous k-flip of G announced by the flipper (in the first round, P = G), and that
the flipper now announces the next k-flip N of G. Since (A,B) is a (r, k, d)-bi-hideout, the set
X ⊆ B of vertices w ∈ B such that |NN

r (w) ∩ A| ⩽ d satisfies |X| ⩽ d. By (13), NP
r (v) contains

at least one vertex v′ ∈ B \ X. The runner moves from v ∈ A to v′ ∈ B along a path of length
at most r in P . As v′ ∈ B \X, the invariant is maintained. Therefore, playing according to this
strategy, the runner can elude the flipper indefinitely, so fwr(G) > k.

For a graph G and disjoint vertex sets U,W ⊆ V (G), denote by G[U,W ] the bipartite graph
with sides U and W and u ∈ U , w ∈W adjacent if and only if uw ∈ E(G).

Lemma 16.7. Fix r, k ⩾ 1 and n := 2(r + 1)k + 1. Let G be the star/clique/half-graph r-crossing
of order n. Then fwr+1(G) > k.

Proof. We use the notation of Definition 14.6 to denote the vertices of an r-crossing. Let A = L0 ⊆
and B = Lr+1 be the two sets of roots of the r-crossing G, with |A| = |B| = n. Moreover, pv,w,1

refers to the first vertex on the path from v ∈ A to w ∈ B. We show that (A,B) forms an
(r + 1, k, k)-bi-hideout in G. By Lemma 16.6, this implies that fwr+1(G) > k.

Denote A′ := L1 and B′ := Lr. Note that A and A′ are disjoint, and G[A,A′] is a bipartite
graph isomorphic to H⩽

n,n when G is a half-graph r-crossing, and isomorphic to H=
n,n in the other

two cases. Similarly, G[B,B′] is also isomorphic to either H⩽
n,n or H=

n,n.
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Consider a k-flip G′ of G. Applying Lemma 16.3 to the bipartite graph H := G[A,A′] and the
k-flip H ′ := G′[A,A′] of H gives us a set X ⊆ A of size n− k and an injective function f : X → A
such that for all v ∈ X,

P (v) ⊆ NG′
(v), where P (v) ⊆ {pf(v),w,1 : w ∈ [n]} with |P (v)| ⩾ n

2
.

Let v ∈ X. By definition of G, there are at least n/2 disjoint paths of length r between the
aforementioned set P (v) and B in G. Hence, by Lemma 16.4, at least n/2 − rk > k vertices in
P (v) are joined in G′ by a path of length r with some root in B. As P (v) ⊆ NG′

(v), we have
|NG′

r+1[v] ∩B| > k for all v ∈ X. Since |X| ⩾ n− k,

|{v ∈ A : |NG′
r+1[v] ∩B| ⩽ k}| ⩽ k.

By reversing the roles of A and B, we further obtain

|{v ∈ B : |NG′
r+1[v] ∩A| ⩽ k}| ⩽ k.

It follows that (A,B) forms an (r+1, k, k)-bi-hideout in G, and thus fwr+1(G) > k by Lemma 16.6.

Lemma 16.8. Let G be a comparability grid of order n. Then fw2(G) > (n− 2)/8.

Proof. Consider the comparability grid G with vertex set [n]× [n], and let G+ denote the 2-colored
graph obtained by removing (1, 1) and coloring the vertices {2, . . . , n} × {2, . . . , n} with color C1,
and the remaining vertices with color C2. The quantifier-free formula

φ(x, y) = E(x, y) ∧ ¬(C2(x) ∧ C2(y)),

when interpreted in the colored graph G+, defines a graph H which is isomorphic to the half-graph
1-crossing of order n− 1. By Lemma 16.7, we have

fw2(H) >
(n− 1) − 1

2 · (1 + 1)
= (n− 2)/4.

By [55, Thm. 8.2] (with q = 0), a quantifier-free interpretation, when applied to a c-colored graph,
can result in an at most c-fold increase of the flip-width. Therefore,

fw2(G) ⩾
1

2
· fw2(H).

Lemma 16.2 now follows easily.

Proof of Lemma 16.2. Follows from Lemma 16.7 and Lemma 16.8, as r-crossings/comparability
grids have Or(n

2) vertices.

This completes the proof of Theorem 16.1.

96



17 Small Classes

Definition 17.1. A hereditary graph class C is small if it contains at most n!cn distinct labeled
n-vertex graphs, for some constant c.

Formally, we implicitly assume that the class C is closed under isomorphism. By a labeled n-
vertex graph we mean a graph G with vertex set equal to {1, . . . , n}. Two labeled n-vertex graphs
are then considered equal if their edge sets are identical. Denoting by Cn the set of labeled n-vertex
graphs in a class C, the class C is small if for some constant c we have |Cn| ⩽ n!cn for all n.

The following theorem is a consequence of our results.

Theorem 1.9. Every hereditary, small graph class is monadically dependent.

Let us start by giving some context on small classes. It is known (see e.g. [10, Sec. 3.6])
that the class of bipartite subcubic graphs (that is, graphs with maximum degree at most 3) is not
small. Thus, in particular, the converse implication in Theorem 1.9 fails, as the class of all subcubic
graphs is nowhere dense and therefore monadically dependent.

On the other hand, it is known that every class of bounded twin-width is small [10]. In the
same paper, it has been conjectured that the converse also holds, but this conjecture has been
subsequently refuted in [6]. However, small classes of ordered graphs (that is, graphs equipped
with a total order on the vertex set) have bounded twin-width [7]. Note that for classes of ordered
graphs, bounded twin-width coincides with monadic dependence.

To prove Theorem 1.9, we prove the following lemma. For a formula φ(x, y) and graph G,
by φ(G) we denote the graph with vertex set V (G) and edges uv such that u, v ∈ V (G) and
G, u, v |= φ(u, v) ∨ φ(v, u).

Lemma 17.2. Let C be a hereditary class which is monadically independent, and is closed under
isomorphism. There is a positive integer c and a formula ψ(x, y) in the signature of c-colored
graphs, such that for every bipartite graph G with n vertices and m edges there is some c-coloring
G+ of a graph from C with at most c · (n+m) vertices such that G = ψ(G+)[V (G)].

We remark that by tracing the construction from Section 14, it is possible to derive a stronger
statement, where G+ ∈ C is uncolored. However, the statement above is sufficient for our purpose
here, and is easier to argue by analyzing the construction sketched in the proof of Proposition 12.22.

Note that we may assume that in the statement of Lemma 17.2, G is identical, not just isomor-
phic, to the subgraph of ψ(G+) induced by V (G). This follows from the weaker statement that
ψ(G+)[W ] is isomorphic to G for some W ⊆ V (G+), as the class C is assumed to be closed under
isomorphism. We stress the distinction between identical and isomorphic graphs, to highlight that
Lemma 17.2 implies that if G is a labeled graph, then there exists a coloring G+ of a labeled graph
from C with the desired properties.

Proof sketch. By Theorem 13.1, there is some r ⩾ 1 such that C contains a flipped star/clique/half-
graph r-crossing or a comparability grid of order n, for every n ⩾ 1.

Recall the notion of a radius-r encoding from Section 12.6. Observe that for every bipartite
graph G with n vertices and m edges, and every radius-r encoding H of G, the graph H has at
most 2n + r · m ⩽ Or(n + m) vertices. Moreover, a flipped star/clique/half-graph r-crossing or
comparability grid of order n contains some radius-r encoding H of G as an induced subgraph.
It follows that C contains some r-encoding H of every bipartite graph G, and moreover |V (H)| ⩽
Or(|V (G)| + |E(G)|).
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Let φ(x, y) be the formula from Lemma 12.23, allowing to define the 1-subdivision of G in some
coloring H+ of any radius-r encoding H of G. Then the formula

ψ(x, y) := ∃z.φ(x, z) ∧ φ(z, y)

allows to define G in H+, as required in the statement.

Proof of Theorem 1.9. Let C be a hereditary graph class which is monadically independent. As we
want to show that C is not small, assume towards a contradiction that C is small. We show that
the class D of all bipartite subcubic graphs is small, which is a contradiction (see [10, Sec. 3.6]).
Let ψ and c be as in Lemma 17.2.

By Dn we denote the set of all labeled graphs with exactly n vertices in D, and let C⩽n denote
the set of all labeled graphs with at most n vertices in C. Then |C⩽n| ⩽ n!2O(n) for all n.

For every labeled bipartite subcubic graph G ∈ Dn with n vertices, let G+ denote a c-colored
labeled graph as in Lemma 17.2, so that G = ψ(G+)[V (G)] and G+ has at most c(n+ 3n/2) ⩽ 3cn
vertices.

The function f : Dn → C⩽3cn × c[3cn] × 2[3cn] which maps G ∈ Dn to (G+, V (G)) is injective, as
we can recover G = ψ(G+)[V (G)]. We then have

|Dn| ⩽ |C⩽3cn| · (2c)3cn ⩽ (3cn)! · 2O(3cn) ⩽ n! · 2O(n).

This proves that the class D of bipartite subcubic graphs is small, a contradiction.
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Part IV

Restrictions and Extensions

18 Variants of Flip-Breakability

In this section we show how to characterize nowhere denseness, bounded cliquewidth, bounded
treewidth, bounded shrubdepth, and bounded treedepth using natural restrictions of flip-breakability.

18.1 Deletion-Breakability Characterizes Nowhere Denseness

Definition 18.1. A class of graphs C is deletion-breakable, if for every radius r ∈ N there exists a
function Nr : N → N and a constant kr ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G) with
|W | ⩾ Nr(m) there exist a set S ⊆ V (G) with |S| ⩽ kr and subsets A,B ⊆W \S with |A|, |B| ⩾ m
such that

distG−S(A,B) > r.

A class of graphs C is nowhere dense if for every radius r ∈ N, there exists a bound Nr ∈ N
such that no graph from C contains an r-subdivided clique of order Nr as a subgraph.

Theorem 18.2. A class of graphs is nowhere dense if and only if it is deletion-breakable.

Proof. It is easy to see that deletion-breakability generalizes the notion of uniform quasi-wideness
discussed in the introduction: In every huge set, we find a large set of vertices pairwise of distance
greater than r after removing few vertices. We can partition them into two halves A and B to
obtain deletion-breakabilitiy. Since nowhere dense classes are uniform quasi-wide, this implies that
they are also deletion-breakable.

For the other direction, assume towards a contradiction that C is not nowhere dense but deletion-
breakable with bounds Nr(·) and kr for every r ∈ N. By definition, there exists a radius r > 1
such that C contains arbitrarily large (r − 1)-subdivided cliques as subgraphs. Let G ∈ C be a
graph containing an (r−1)-subdivided clique of size Nr(kr + 1), whose principal vertices we denote
with W . By deletion-breakability, W contains two subsets A and B, each of size kr + 1, such that

distG−S(A,B) > r

for some vertex set S of size at most kr. Since W is an (r − 1)-subdivided clique in G, there exist
kr + 1 disjoint paths of length r, that each start in A and end in B. As |S| ⩽ kr, at most one of
those paths must survive in G− S, witnessing that distG−S(A,B) ⩽ r; a contradiction.

18.2 Distance-∞ Flip-Breakability Characterizes Bounded Cliquewidth

Definition 18.3. A class of graphs C is distance-∞ flip-breakable, if there exists a function N :
N → N and a constant k ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G) with |W | ⩾ N(m)
there exist subsets A,B ⊆W with |A|, |B| ⩾ m and a k-flip H of G such that in H, no two vertices
a ∈ A and b ∈ B are in the same connected component.

The goal of this subsection is to prove the following.

Theorem 18.4. A class of graphs has bounded cliquewidth if and only if it is distance-∞ flip-
breakable.
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To prove the theorem, we work with rankwidth, a parameter that is functionally equivalent to
cliquewidth. A graph G has rankwidth at most k if there is a tree T whose leaves are the vertices
of G, and inner nodes have degree at most 3, such that for every edge e of the tree, the bipartition
A ⊎ B of the leaves of T into the leaves on either side of e, has cut-rank at most k. The cut-rank
of a bipartition A ⊎ B of the vertex set of a graph G, denoted rkG(A,B), is defined as the rank,
over the two-element field, of the (0, 1)-matrix with rows A and columns B, where the entry at row
a ∈ A and column b ∈ B is 1 if ab ∈ E(G) and 0 otherwise.

Fact 18.5 ([40, Proposition 6.3]). A class of graphs has bounded cliquewidth if and only if it has
bounded rankwidth.

Lemma 18.6. Let T be a rooted subtree of a binary tree and let W be a subset of the leaves of T .
There exists an edge e ∈ E(T ) such that the two subtrees T1 and T2 obtained by removing e from T
each contain at least 1

4 |W | vertices from W .

Proof. For a vertex v ∈ V (T ), denote by T (v) the subtree rooted at v. Let (v1, . . . , vm) be a
root-to-leaf path in T such that for all 1 ⩽ i < m, the vertex vi+1 is the child of vi whose subtree
contains the most elements from W , where ties are broken arbitrarily. Let i ∈ [m] be the largest
index such that T (vi) contains at least 1

4 |W | vertices from W . By construction, T (v2) contains at
least 1

2 |W | elements from W , and therefore i > 1, i.e. vi has a parent vi−1. T (vi) contains less than
1
2 |W | vertices from W , as both of its at most two children contain less than 1

4 |W | elements from
W . Therefore, the edge connecting vi and vi−1 is the desired edge.

Lemma 18.7. Every class of graphs with bounded rankwidth is distance-∞ flip-breakable.

Proof. Fix a number k and let C be a class of graphs of rankwidth at most k. We will show that
C is distance-∞ flip-breakable for N(m) := 4m using 2k + 22

k
flips. For every graph G ∈ C there

is a rooted subtree T of a binary tree with leaves V (G), such that for every edge e ∈ E(T ), the
bipartition X ⊎ Y of the leaves of T into the leaves on either side of e, has cut-rank at most k.
Let W ⊆ V (G) be a set of size 4m. By Lemma 18.6, there exists an edge e such that in the
corresponding bipartition X ⊎ Y of V (G), both X and Y each contain at least m many vertices of
W . Observe that since rkG(X,Y ) ⩽ k, X induces at most 2k distinct neighborhoods over Y . Then

there is a (2k + 22
k
)-flip H of G in which there are no edges between X and Y : the corresponding

partition of V (G) partitions the vertices of X into 2k parts depending on their neighborhood in Y

and partitions the vertices of Y in 22
k

parts depending on their neighborhood in X.

A set W of vertices of G is well-linked, if for every bipartition A ⊎ B of V (G), the cut-rank of
A ⊎B satisfies rkG(A,B) ⩾ min(|A ∩W |, |B ∩W |). We use the following two facts.

Fact 18.8 ([40, Thm. 5.2]). Every graph of rankwidth greater than k contains well-linked set of
size k.

Fact 18.9 ([55, Lem. D.2]). Let G be a graph and A⊎B a bipartition of V (G) with rkG(A,B) > k.
Then for every k-flip H of G there is some edge ab ∈ E(H) with a ∈ A and b ∈ B.

Lemma 18.10. Every class of graphs with unbounded rankwidth is not distance-∞ flip-breakable.

Proof. Let C be a class of graphs with unbounded rankwidth. Assume towards a contradiction that
C is distance-∞ flip-breakable with bounds N(·) and k. By Fact 18.8, there exists a graph G ∈ C
that contains a well-linked set W of size at least N(k + 1). By distance-∞ flip-breakability, there
exists a k-flip H of G and two sets A,B ⊆ W of size k + 1 each, such that no two vertices a ∈ A

100



and b ∈ B are in the same component in H. We can therefore find a bipartition of X ⊎ Y of the
connected components of H, such that X contains all the components containing a vertex of A and
Y contains all the components containing a vertex of B. Components containing neither a vertex
of A nor of B can be distributed arbitrarily among X and Y. Let X :=

⋃
X and Y :=

⋃
Y. Then

X⊎Y is a bipartition of V (H), and there is no edge between X and Y in H. Since W is well-linked
we have that the cut-rank X ⊎ Y satisfies

rkG(X,Y ) ⩾ min(|X ∩W |, |Y ∩W |) ⩾ min(|A|, |B|) = k + 1.

By Fact 18.9, there must be an edge ab ∈ E(H) with a ∈ X and b ∈ Y ; a contradiction.

Combining Fact 18.5, Lemma 18.7, and Lemma 18.10 now yields Theorem 18.4.

18.3 Distance-∞ Deletion-Breakability Characterizes Bounded Treewidth

Definition 18.11. A class of graphs C is distance-∞ deletion-breakable, if there exists a function
N : N → N and a constant k ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G) with |W | ⩾ N(m)
there exist a set S ⊆ V (G) with |S| ⩽ k and subsets A,B ⊆ W \ S with |A|, |B| ⩾ m such that in
G− S, no two vertices a ∈ A and b ∈ B are in the same connected component.

The goal of this subsection is to prove the following.

Theorem 18.12. A class of graphs has bounded treewidth if and only if it is distance-∞ deletion-
breakable.

We start with the forward direction. We assume familiarity with treewidth and (nice) tree
decompositions. See for example [15] for an introduction.

Lemma 18.13. Every class of graphs with bounded treewidth is distance-∞ deletion-breakable.

Proof. Let C be a graph class of treewidth at most k − 1. We show that C is distance-∞ deletion-
breakable with bounds N(m) := 4(m+ k) and k := k.

Consider a graph G ∈ C of treewidth at most k− 1 and a subset W containing at least N(m) =
4(m+ k) vertices of G. We fix a nice tree decomposition of G of width k, and associate with every
bag t the set V (t) ⊆ V (G) consisting of all vertices that are contained either in t or in a descendant
of t. We consider a walk that starts at the root of the nice tree decomposition and walks downwards
towards the leaves. Whenever the walk reaches a join node, it proceeds towards the child t that
maximizes |V (t) ∩W |. As each node has at most two children, the cardinality |V (t) ∩W | of the
current node t of the walk can decrease at most by a factor 1

2 with each step. Hence, as in the
proof of Lemma 18.6, we reach at some point a node t with

m+ k ⩽
1

4
|W | ⩽ |V (t) ∩W | < 1

2
|W | ⩽ 2(m+ k).

Let S ⊆ V (G) be the vertices in this bag t and choose A = (V (t) ∩W ) \ S and B = W \ V (t).
Note that |S| ⩽ k and |A|, |B| ⩾ m. By the definition of tree decompositions, the vertices S act
as a separator in the desired sense: In G − S, no two vertices a ∈ A and b ∈ B are in the same
connected component.

The backwards direction will follow easily from the Grid-Minor theorem by Robertson and
Seymour. First some notation. A graph H is a minor of a graph G if there exists a minor model µ
of H in G. A minor model is a map µ that assigns to every vertex v ∈ V (H) a connected subgraph
µ(v) of G and to every edge e ∈ E(H) an edge µ(e) ∈ E(G) satisfying
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• for all u, v ∈ V (H) with u ̸= v: V (µ(u)) ∩ V (µ(v)) = ∅;

• for every (u, v) ∈ E(H): µ((u, v)) = (u′, v′) for vertices u′ ∈ V (µ(u)) and v′ ∈ V (µ(v)).

Possibly deviating from our notation in previous sections, in this section the k-grid is the graph on
the vertex set [k]×[k] where two vertices (i, j) and (i′, j′) are adjacent if and only if |i−i′|+|j−j′| = 1.
We can now state the Grid-Minor theorem.

Fact 18.14 ([52, Thm. 1.5]). Let C be a class of graphs with unbounded treewidth. Then for every
k ∈ N, C contains a graph which contains the k-grid as a minor.

Lemma 18.15. Every class of graphs with unbounded treewidth is not distance-∞ deletion-breakable.

Proof. Assume towards a contradiction that C has unbounded treewidth but is distance-∞ deletion-
breakable with bounds N(·) and k. Let t := N(2k + 2). By Fact 18.14, there is a graph G ∈ C
such that there exists a minor model µ of the t-grid in G. Let W := {v1, . . . , vt} ⊆ V (G) be a set
representing the bottom row of the t-grid: we pick one vertex vi from the subgraph µ((i, 1)) for
each i ∈ [t]. We apply distance-∞ flip-breakability to the set W in G, which yields a set S ⊆ V (G)
of size k and disjoint sets A,B ⊆ W \ S, each of size 2k + 2, such that in G − S there is no path
from a vertex in A to a vertex in B. Let iA ∈ [t] be an index such that each of the sets

A1 := {v1, . . . , viA} ∩A and A2 := {viA+1, . . . , vt} ∩A

contains k + 1 elements of A. Pick iB, B1, and B2 symmetrically. Assume first iA ⩽ iB. Then
i < j for all vi ∈ A1 and vj ∈ B2. Let A⋆ := {(i, 1) : vi ∈ A1} be the vertices from the bottom row
of the t-grid represented by A1 and likewise let B⋆ := {(j, 1) : vj ∈ B1}. In Figure 22 it is easy to
see that the vertices from A⋆ and B⋆ can be matched by k + 1 disjoint paths in the t-grid.

A⋆ B⋆

(t,1)

(t,4)

Figure 22: Pairing the vertices of A⋆ and B⋆ with disjoint paths in the t-grid.

By the definition of minor, also A1 and B1 can be matched by k + 1 disjoint paths in G. We
now reach the desired contradiction, as we assumed that no paths run between A and B in G− S,
but removing the at most k vertices from S can destroy at most k paths.

In the case where iA > iB, we have i < j for all vi ∈ B1 and vj ∈ A2 and argue symmetrically.

Combining Lemma 18.13 and Lemma 18.15 now yields Theorem 18.12.

18.4 Distance-∞ Flip-Flatness Characterizes Bounded Shrubdepth

Definition 18.16. A class of graphs C is distance-∞ flip-flat, if there exists a function N : N → N
and a constant k ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G) with |W | ⩾ N(m) there exists
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a subset W⋆ ⊆ W with |W⋆| ⩾ m and a k-flip H of G such that in H, no two vertices u, v ∈ W⋆

are in the same connected component.

The goal of this subsection is to prove the following.

Theorem 18.17. A class of graphs has bounded shrubdepth if and only if it is distance-∞ flip-flat.

To prove that bounded shrubdepth implies distance-∞ flip-flatness, we work with flipdepth, a
parameter that is functionally equivalent to shrubdepth. It is defined as follows. The single vertex
graph K1 has flipdepth 0. For k > 0, a graph G has flipdepth at most k, if it is a 2-flip of a disjoint
union of (arbitrarily many) graphs of flipdepth at most k − 1.

Fact 18.18 ([34, Thm. 3.6]). A class of graphs has bounded shrubdepth if and only if it has bounded
flipdepth.

More precisely, [34, Thm. 3.6] shows the functional equivalence of shrubdepth and the graph
parameter SC-depth. The definition of SC-depth is obtained from the definition of flipdepth by
replacing the 2-flip with a set complementation, that is, the operation of complementing all the
edges in an arbitrarily subset of the vertices. 2-flips generalize set complementations, but any 2-flip
can be simulated by performing at most three set complementations. Therefore, flipdepth and
SC-depth are functionally equivalent.

Lemma 18.19. For every graph G of flipdepth at most k and every set W ⊆ V (G), there exists a

subset W⋆ ⊆W with |W⋆| ⩾ |W |
1

2k and a 4k-flip H of G, such that in H, no two vertices from W⋆

are in the same connected component.

Proof. We prove the lemma by induction on k. If k = 0, we have G = K1 where the statement
holds. For the inductive step assume G has flipdepth at most k+ 1. Then G is 2-flip of a graph H
that is a disjoint union of graphs of flipdepth at most k. If in H at least |W |

1
2 vertices of W are

in pairwise different components, we are done. Otherwise, there exists a component C of H which
contains at least |W |

1
2 vertices of W . By assumption, H[C] has flipdepth at most k. By induction

there is a 4k-flip H⋆ of H[C] and a set W⋆ ⊆W of size at least |W⋆| ⩾ |W |
1
2
· 1

2k such that all vertices
from W⋆ are in pairwise different components in H⋆. Refining

• the size 2 partition of the flip that produced H from G,

• the size 2 partition which marks the component C in H,

• the size 4k partition of the flip that produced H⋆ from H[C],

yields a partition witnessing a 4k+1-flip of G in which all vertices from W⋆ are in pairwise different
components as desired.

Corollary 18.20. Every class of bounded shrubdepth is distance-∞ flip-flat.

We will use the following proof strategy for the other direction.

Fact 18.21 ([47, Thm. 1.1]). Every class of unbounded shrubdepth transduces the class of all paths.

Lemma 18.22. Let C be a class of graphs that is distance-∞ flip-flat. Every class that is trans-
ducible from C is also distance-∞ flip-flat.

Lemma 18.23. The class of all paths is not distance-∞ flip-flat.

It is easy to see that combining Fact 18.21, Lemma 18.22, Lemma 18.23 yields the following.
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Lemma 18.24. Every class of graphs with unbounded shrubdepth is not distance-∞ flip-flat.

Together with Corollary 18.20, the above lemma proves Theorem 18.17. It remains to prove
Lemma 18.22 and Lemma 18.23. The former is an immediate consequence of the following fact
where φ(x, y) is a formula in the language of colored graphs and φ(G) denotes the graph with
vertex set V (G) and edge set {uv : G |= φ(u, v) ∨ φ(v, u)}.

Fact 18.25 ([55, Lem. H.3]). For every formula φ(x, y) and k ∈ N there exists s, ℓ ∈ N such that
for every colored graph G and for every k-flip G′ of G, there exists an ℓ-flip H ′ of H := φ(G) such
that for every two vertices u and v adjacent in H ′ we have that distG′(u, v) ⩽ s.

Proof of Lemma 18.22. Assume the class C is distance-∞ flip-flat with bounds N(·) and k and
transduces the class D using the formula φ(x, y). We will show that also D is flip-flat with bounds
N(·) and ℓ, where ℓ is the bound obtained from Fact 18.25 for φ and k. Let H ∈ D, m ∈ N, and
W ⊆ V (G) be a set of size at least N(m). Since C transduces D, we have H = φ(G)[V (H)] for some
colored graph G ∈ C. By distance-∞ flip-flatness, there is a k-flip G′ of G and a subset W⋆ ⊆ W
of size at least m whose vertices are pairwise in different components in G′. By Fact 18.25, there
is also an ℓ-flip H ′ of φ(G) in which the vertices of W⋆ are in pairwise different components. It
follows that H ′[V (H)] is the desired ℓ-flip of H.

Proof of Lemma 18.23. Assume towards a contradiction that the class of all paths is distance-∞
flip-flat with bounds N(·) and k. Let G be the path containing N(8k+ 2) vertices. By flip-flatness
there exists a k-coloring K of G and F ⊆ K2 such that G⊕ := G ⊕K F contains at least 8k + 2
components. Let B := {C ∈ K : |C| ⩾ 5} be the big color classes and W :=

⋃
(K\B) be the at most

4k vertices contained in small color classes. Let G′ be the subgraph of G obtained by isolating W
and let F ′ := F ∩ B2 be the restriction of F to B. G′

⊕ := G′ ⊕K F
′ is a subgraph of G⊕: every

edge uv in G′
⊕ has no endpoint in W and is therefore also present in G⊕. Since G′

⊕ and G⊕ share
the same vertex set, G′

⊕ has at least as many components as G⊕. In order to arrive at the desired
contradiction, it remains to bound the number of components in G′

⊕. Towards this goal, we first
bound the number of components in G′. As G′ is obtained from a path by isolating at most 4k
vertices, G′ contains at most 8k + 1 components: the path is cut in at most 4k places leading to
4k + 1 components plus the additional at most 4k isolated vertices.

Claim 18.26. If two vertices u and v are adjacent in G′, then they are connected in G′
⊕.

Proof. Since u and v are adjacent, they are from big color classes K(u) and K(v). Assume the
adjacency between K(u) and K(v) was flipped, as otherwise we are done. As G′ has maximum
degree two, we have |NG′

1 [u] ∪NG′
1 [v]| ⩽ 4. If K(u) = K(v) then there exists a vertex in that class

that is adjacent to none of u and v in G′ and therefore adjacent to both of them in G′
⊕ and we

are done. Otherwise, there are three vertices U ⊆ K(u) non-adjacent to v in G′ and three vertices
V ⊆ K(v) non-adjacent to u. Again using the fact that G′ has maximum degree two, we find u′ ∈ U
and v′ ∈ V that are non-adjacent in G′. It follows that (u, v′, u′, v) is a path in G′

⊕. ■

It follows that G′
⊕ (and also G⊕) contains at most 8k + 1 components; a contradiction.

18.5 Distance-∞ Deletion-Flatness Characterizes Bounded Treedepth

Definition 18.27. A class of graphs C is distance-∞ deletion-flat, if there exists a function N :
N → N and a constant k ∈ N such that for all m ∈ N, G ∈ C and W ⊆ V (G) with |W | ⩾ N(m)
there exists a set S ⊆ V (G) with |S| ⩽ k and a subset W⋆ ⊆ W \ S with |W⋆| ⩾ m such that in
G− S, no two vertices u, v ∈W⋆ are in the same connected component.
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In this subsection we relate distance-∞ deletion-flatness to the graph parameter treedepth. The
single vertex graph K1 has treedepth 1. For k > 1, a graph G has treedepth at most k if there exists
a vertex whose deletion splits G into a disjoint union of (arbitrarily many) graphs of treedepth at
most k − 1.

Theorem 18.28. A class of graphs has bounded treedepth if and only if it is distance-∞ deletion-
flat.

Proof. Essentially, the definitions of treedepth and distance-∞ deletion-flatness are obtained from
the definitions of flipdepth and distance-∞ flip-flatness by replacing flips with vertex deletions.
Proving that every class of bounded treedepth is distance-∞ flip-flat is therefore analogous to the
proof of Lemma 18.19. The other direction follows by combining the following easy facts.

1. If a class has bounded treedepth then so does its closure under taking subgraphs.

2. Every class of unbounded treedepth contains all paths as subgraphs. [44, Proposition 6.1]

3. The class of all paths is not distance-∞ flip-flat.

19 Binary Structures

In this section, we lift the some of the characterizations of monadically dependent graph classes to
the more general setting of binary structures, that is, structures equipped with a finite number of
binary relations. More precisely, with the appropriate notion of flips for binary structures defined
further below, we prove the following.

Theorem 19.1. Let Σ be a finite signature consisting of binary relation symbols, and let C be a
class of Σ-structures. Then the following conditions are equivalent:

1. C is monadically dependent,

2. C is flip-breakable,

3. for every h ∈ N there is some n ∈ N such that no structure G ∈ C contains a (minimal)
transformer of length h and order n.

As an application, we demonstrate that in the setting of ordered graphs, this result allows
us to deduce a key result of [7], stating that monadically dependent classes of ordered graphs
have bounded grid rank, and hence bounded twin-width. Moreover, on the non-structure side, we
derive that monadically independent classes of ordered graphs contain some specific patterns that
were also exhibited in [7]. Those patterns form the main ingredient for the forbidden subgraph
characterization of monadic dependence for classes of ordered graphs given in [7].

The proof of Theorem 19.1 follows by using standard ideas. We use the fact that for any
monadically dependent class of binary structures we can find a monadically dependent graph class,
such that one can transduce back and forth between those classes via a straightforward transduc-
tion. We moreover use the observation that flip-breakability and transformers are preserved under
(quantifier-free) transductions.

19.1 Notions

We first introduce the setting of binary structures, and define monadic dependence and flip-
breakability for classes of binary structures.
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Structures. Fix a signature Σ consisting of one or more relation symbols, where each symbol
has a specified arity, which is a positive integer. The signature Σ is binary if every relation symbol
R ∈ Σ has arity exactly two. A Σ-structure G consists of a domain, denoted V (G), and an
interpretation of each relation symbol R ∈ Σ of arity k as a relation RG ⊆ V (G)k. A graph G is
represented as a structure over the signature {E} consisting of one binary relation symbol E, which
is interpreted as the set of pairs (u, v) ∈ V (G)2 such that uv ∈ E(G). In particular, each class of
graphs can be viewed as a class of {E}-structures.

Gaifman Graph and Distances. The Gaifman graph of a Σ-structure G is the graph with
vertex set V (G) and edges between vertices u ̸= v if and only if there is some symbol R ∈ Σ and
tuple ū ∈ RG such that both u and v occur in ū. For two elements u, v ∈ V (G), we write distG(u, v)
to denote the distance between u and v in the Gaifman graph of G.

Colored Structures. If G is a Σ-structure and k ∈ N, then a k-coloring G+ of G is specified
by a function mapping each element of V (G) to exactly one color in {1, . . . , k}. Denoting by Σ(k)

the signature Σ together with the k unary predicates U1, . . . , Uk, we may view a k-coloring of G
as the Σ(k)-structure G+ obtained from G by expanding G by unary relation symbols representing
the respective color classes.

Transductions and Monadic Dependence. Fix two relational signatures Σ and Γ relation
symbols. An abstract transduction T : Σ → Γ is a binary relation between Σ-structures and Γ-
structures. For a Σ-structure G we write T (G) to denote the class of Γ-structures that are related
to G via T , and say that T transduces H from G if H ∈ T (G). For a class C of Σ-structures we
write T (C) to denote

⋃
{T (G) : G ∈ C}.

A (first-order) transduction T : Σ → Γ is specified by a number k of colors, and a collection of
first-order formulas φR(x1, . . . , xr), for each symbol R ∈ Γ with arity r, where each of the formulas
φR is in the signature Σ(k). The transduction T is defined as follows. First, for a Σ(k)-structure
G+, let T0(G

+) denote the structure H with domain V (G+), in which each relation R ∈ Γ of arity
r is interpreted as

RH := { (v1, . . . , vr) ∈ V (G)r : G+ |= φ(v1, . . . , vr) }.

For a Σ-structure G, T (G) consists of all structures that can be obtained (up to isomorphism) in
the following steps:

1. color G using k colors, obtaining a Σ(k)-structure G+,

2. construct the structure H := T0(G
+) as defined above,

3. take an induced substructure of H.

This finishes the description of T .
By a transduction we mean a first-order transduction.

Definition 19.2. A class C of Σ-structures transduces a class D of Γ-structures if there exists a
first-order transduction T : Σ → Γ such that D ⊆ T (C).

Definition 19.3. A class C of Σ-structures is monadically dependent if C does not transduce the
class of all (finite) graphs.
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Flips. We use the notion of flips for binary structures defined in [55, Sec. 7]. For a Σ-structure G
and partition P of V (G), a P-flip F of G is specified by a Σ-structure F with domain P. Applying
F to G results in the structure G′ with domain V (G), in which each symbol R ∈ Σ is interpreted
as the relation

RG′ := RG △
⋃

(P,Q)∈RF

P ×Q,

where △ denotes the symmetric difference.
A k-flip of G is a structure G′ obtained as above, for some partition P of V (G) into k parts.

Flip-breakability.

Definition 19.4. Fix a signature Σ consisting of binary relation symbols. A class C of Σ-structures
is flip-breakable if for every radius r ∈ N there exists an unbounded function fr : N → N and a
constant kr ∈ N such that for all G ∈ C and W ⊆ V (G) there exist subsets A,B ⊆ W with
|A|, |B| ⩾ fr(|W |) and a kr-flip G′ of G such that

distG′(A,B) > r.

In other words, for every r ∈ N, G ∈ C and W ⊆ V (G) there are subsets A,B ⊆ W with
|A|, |B| ⩾ UC,r(|W |) and a const(C, r)-flip G′ of G such that distG′(A,B) > r.

Transformers and Minimal Transformers. All the notions from Section 11 – of meshes,
vertical/horizontal meshes, conducting pairs, (minimal) transformers – can be interpreted verbatim
in the setting of binary structures. Indeed, all those notions are defined in terms of the atomic
types of pairs of vertices, atpG(u, v), in a (colored) graph G, which makes sense in any structure.

We have defined all the notions involved in the statement of Theorem 19.1. We now introduce
some tools that will be used in its proof.

19.2 Flip Transfer Lemma

We repeat a lemma from [55], which allows to “transfer” flips along a transduction, without de-
creasing distances too much. We state the lemma in greater generality than [55, Lem. H.3], namely
for binary structures. However, the proof remains the same, and is a straightforward consequence
of locality of first-order logic.

Lemma 19.5 ([55, Lem. H.3]). Fix two finite signatures Γ,Σ consisting of binary relation symbols
and numbers k, c, q ⩾ 1. Let T : Σ → Γ be a transduction involving c colors and formulas of
quantifier rank at most q. Let G be a Σ-structure and let H ∈ T (G). For every k-flip G′ of G there
is a const(k, c, q)-flip H ′ of H such that:

distG′(u, v) ⩽ 2q · distH′(u, v) for all u, v ∈ V (G). (14)

The next lemma is an easy consequence.

Lemma 19.6. Fix two finite signatures Σ,Γ consisting of binary relation symbols. Let C be a
class of Σ-structures, which transduces a class D of Γ-structures. If C is flip-breakable then D is
flip-breakable.
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Proof. Let T : Σ → Γ be a transduction witnessing that C transduces D, where T involves c colors.
Let q be maximal quantifier rank of the formulas involved in T . Without loss of generality, we may
assume that D is the class of structures of the form T0(G

+), where G ∈ C and G+ is a c-coloring
of G, since flip-breakability is preserved by taking the hereditary closure of a class of structures.

Fix a radius r. We prove that D satisfies the condition in flip-breakability for radius r. By
assumption, C is flip-breakable for radius r·2q. This means that there is a constant k = const(C, q, r)
such that for every graph G ∈ C and set W ⊆ V (G) there is a k-flip G′ of G and two sets A,B ⊆W
of size UC,q,r(|W |) such that

distG′(A,B) > r · 2q. (15)

Let H ∈ D, so that H = T0(G
+) for some G ∈ C and c-coloring G+ of G. Let W ⊆ V (H) =

V (G). Then there is a k-flip G′ of G and two sets A,B ⊆ W as described above. Let H ′ be the
ℓ-flip of H as described in Lemma 19.5, for some ℓ = const(k, c, q) ⩽ const(C, q, r, T ) ⩽ const(D, r).
Then combining (15) with (14) we conclude that

distH′(A,B) > r. (16)

This proves that the class D is flip-breakable with radius r. As r is arbitrary, the lemma follows.

19.3 Encoding Binary Structures in Graphs

We now show how binary structures can be encoded in graphs, in a way which preserves monadic
dependence. This encoding is folklore, but we need to analyze some of its properties related to our
context.

To this end, it is convenient to use transductions with copying, defined below. First, the copying
operation, parameterized by a signature Σ and number ℓ of copies and denoted Cℓ, is an abstract
transduction from Σ-structures to Σ∪{M}-structures, where M is a binary relation symbol not in
Σ, and is defined as follows. Given an input Σ-structure G, define the Σ ∪ {M}-structure Cℓ(G),
with vertex set V (G) × [ℓ], such that

Cℓ(G)M = {((v, i), (v, j)) : v ∈ V (G), i, j ∈ [ℓ]},
Cℓ(G)R = {((v1, i), (v2, i), . . . , (vr, i)) : (v1, . . . , vr) ∈ RG, i ∈ [ℓ]} for R ∈ Σ of arity r.

A (first-order) transduction with copying T : Σ → Γ is a composition of a copying operation Cℓ : Σ →
(Σ ∪ {M}), for some ℓ ∈ N, and a transduction S : (Σ ∪ {M}) → Γ. More precisely, given a Σ-
structure G, we set T (G) := S(Cℓ(G)). We say that T is quantifier-free if all the formulas defining
the underlying transduction S are quantifier-free formulas.

Transductions with copying are closed under composition, as expressed by the following folklore
result (see, e.g., [31, Lem. 2.5]).

Fact 19.7. Let T : Σ → Γ and S : Γ → ∆ be two transductions with copying. Then the composition
S ◦ T : Σ → ∆ is (definable by) a transduction with copying.

Allowing transductions with copying instead of usual transductions in the definition of monadic
dependence would not affect the notion. This is also folklore, but we sketch a proof below for
completeness.

Fact 19.8. Let C be a class of Σ-structures such that for some transduction with copying T , the
class T (C) contains every graph. Then C transduces the class of all graphs via a transduction
without copying.

108



Proof sketch. This can be deduced from the result of Baldwin and Shelah [4, Thm. 8.1.8]. We sketch
a more direct argument. Suppose that C transduces the class of all graphs using a transduction T
with copying. Then T is of the form T = S ◦ Cℓ for some transduction S and number ℓ, where Cℓ

is the ℓ-times copying operation. Let K
(1)
n denote the 1-subdivision of the n-clique. In particular,

{K(1)
n : n ∈ N} ⊆ T (C)

Fix n ∈ N. Then there is a structure G ∈ C such that K
(1)
n ∈ T (G). We prove that there

is a fixed collection (Tp,q : p, q ∈ [ℓ]) of ℓ2 many transductions (depending only on T ) such that

K
(1)
m ∈ Tp,q(G) for some m ⩾ UT (n) and p, q ∈ [ℓ]. By the pigeonhole principle, since n is

arbitrarily large, and since C is hereditary, this proves that there is a fixed transduction Tp,q such

that {K(1)
m : m ∈ N} ⊆ Tp,q(C). Therefore, C transduces the class of 1-subdivided cliques, which in

turn transduces the class of all graphs. The conclusion follows by composing the two transductions
without copying, obtaining a single transduction without copying.

Denote the principal vertices of K
(1)
n by (ai : i ∈ [n]), and the subdivision vertices by (bi,j : i, j ∈

[n], i < j). As T creates ℓ copies, we can assume that V (K
(1)
n ) ⊆ V (G)× [ℓ]. Let π1 : V (G)× [ℓ] →

V (G) and π2 : V (G) × [ℓ] → [ℓ] be the projection mappings selecting the first and second entry of
a pair, respectively.

Color each edge {i, j}, where i < j ∈ [n], of the clique Kn with the color (π2(ai), π2(bij)). By
Ramsey’s theorem, there is a subset I ⊆ [n] of size Uℓ(n) such that all edges have the same color.
It follows that there are p, q ∈ [ℓ] such that π2(ai) = p for all i ∈ I and π2(bi,j) = q for all i < j ∈ I.

Let K
(1)
I be the subgraph of K

(1)
n induced by the vertices A = {ai : i ∈ I} and B = {bi,j : i <

j ∈ I}. Then K
(1)
I is (isomorphic to) the 1-subdivision of the clique on |I| ⩾ Uℓ(n) vertices. By

another Ramsey argument, it is not difficult to show that by replacing I by a subset of size U(|I|)
(which we denote I as well), we may ensure that the mapping π1, restricted to V (K

(1)
I ) ⊆ V (G)×[ℓ],

is injective (this is similar to the argument in Lemma 12.2).
For i ∈ [ℓ] let ci : V (G) → V (G) × [ℓ] denote the function that maps each vertex v ∈ V (G) to

the copy (v, i) of v in V (G) × [ℓ]. Let φ(x, y) be the formula underlying the transduction S, and
let k denote the number of colors that are involved in this formula. Define sets A′, B′ ⊆ V (G) as

A′ := π1(A) B′ := π1(B). (17)

It follows from the above that |A′| = |I|, |B′| =
(|I|
2

)
, A′ ∩ B′ = ∅. Furthermore, there is some

k-coloring H+ of H := Cℓ(G) such that

(A′ ∪B′, {ab : a ∈ A′, b ∈ B′, H+ |= φ(cp(a), cq(b))}) ∼= K
(1)
I . (18)

The k-coloring H+ of H induces a kℓ-coloring G+ of G, where each vertex v ∈ V (G) is colored
by the ℓ-tuple of colors of the ℓ copies of the vertex v in H+.

Claim 19.9. There is a formula φp,q(x, y), depending only on p, q, and φ, such that the following
holds for all a, b ∈ V (G):

G+ |= φp,q(a, b) ⇐⇒ H+ |= φ(cp(a), cq(b)).

Proof sketch. We show more generally that for every formula φ(x1, . . . , xt) and for each f : [t] → [ℓ],
there is a formula φf (x1, . . . , xt), depending only on φ and f , such that the following holds for all
a1, . . . , at ∈ V (G):

G+ |= φf (a1, . . . , at) ⇐⇒ H+ |= φ(cf(1)(a1), . . . , cf(t)(at)).
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This is proved by induction on the size of φ. In the base case φ is an atomic formula and the
formula φf is constructed directly. In the inductive step, we only need to consider formulas φ of
the form φ1∨φ2, ¬φ′ or ∃x.φ′, where φ1, φ2, φ

′ are formulas smaller than φ. The first two cases, of
boolean combinations, follow immediately from the inductive hypothesis. In the case of a formula
φ(x1, . . . , xt) = ∃xt+1.φ

′(x1, . . . , xt+1) define

φf (x1, . . . , xt) := ∃xt+1.
∨
f ′⊃f

φ′
f ′(x1, . . . , xt+1),

where the disjunction ranges over all functions f ′ : [t + 1] → [ℓ] extending f : [t] → [ℓ], and the
formula φ′

f ′ is obtained by inductive assumption. It is straightforward to verify that the formula
φf has the required property. This completes the induction. The claim then follows by setting
φp,q(x, y) := φf (x, y), where f(1) = p and f(2) = q. ■

From Claim 19.9 and (18) it follows that

(A′ ∪B′, {ab : a ∈ A′, b ∈ B′, G+ |= φp,q(a, b)}) ∼= K
(1)
I .

Moreover, the formula φp,q only depends on φ and the indices p, q ∈ [ℓ].
Let Tp,q denote the transduction without copying which first colors the given input structure

using kℓ colors, then applies the formula φp,q(x, y), defining the edges of a graph, and finally, takes
an arbitrary induced subgraph. The argument above proves that for every n ∈ N there are p, q ∈ [ℓ]
and m ⩾ UT (n) such that

K(1)
m ∈ Tp,q(G).

Corollary 19.10. If C is a monadically dependent class of Σ-structures and T : Σ → Γ is a
transduction with copying then T (C) is monadically dependent.

Proof. Assume towards a contradiction that T (C) transduces the class of all graphs, that is, there
is a transduction S : Γ → {E} such that (S ◦ T )(C) contains the class of all graphs. As S ◦ T is a
transduction with copying by Fact 19.7, by Fact 19.8 it follows that C transduces the class of all
graphs, that is, C is monadically independent; a contradiction.

The following lemma allows us to encode binary structures in graphs.

Lemma 19.11. Fix a finite signature Σ consisting of binary relational symbols, and let Γ = {E}
denote the signature of graphs. There are

• a quantifier-free transduction with copying F : Σ → Γ,

• a transduction (without copying) T : Γ → Σ,

such that

G ∈ T (F (G)) for every Σ-structure G. (19)

Proof sketch. Fix a Σ-structure G, and let V denote its vertex set. We define the graph F (G) as
follows. The vertex set is

V (F (G)) := V0 ⊎ V1 ⊎
⊎
R∈Σ

VR,

where V0, V1, and VR, for R ∈ Σ, are disjoint copies of V . That is, V (F (G)) consists of |Σ| + 2
copies of V (G). Write ci(v) ∈ Vi for the copy of vertex v ∈ V in Vi, for i ∈ {0, 1} ∪ Σ. The edges
of F (G) are
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• {c0(u), cR(v)}, for every R ∈ Σ and (u, v) ∈ RG,

• {c0(v), c1(v)}, for every v ∈ V (G), and

• {c1(v), cR(v)}, for every v ∈ V (G) and R ∈ Σ.

We skip the straightforward argument that the operation F can be implemented as a trans-
duction with copying. We now argue that there is a fixed transduction T which recovers G from
F (G).

By identifying V (G) with V0 by via the bijection c0, we observe that for every pair u, v ∈
V (G) = V0 and relation symbol R ∈ Σ, the following conditions are equivalent:

• (u, v) ∈ RG,

• there are vertices v′ ∈ VR and v′′ ∈ V1 such that {u, v′}, {v, v′′}, {v′, v′′} ∈ E(F (G)).

The transduction T colors each of the |Σ|+ 2 copies of V comprising V (F (G)) by a separate color,
using |Σ| + 2 many colors jointly, represented by unary predicates. For each relation R ∈ Σ, the
transduction contains a formula φR(x, y) in the signature of |Σ| + 2-colored graphs. The formula
φR(x, y) recovers the relation R by verifying the second condition described above, which is clearly
expressible by a first-order formula involving the unary predicates representing the copies and a
binary relation representing adjacency in F (G).

It follows from the equivalence of the two conditions above that G ∈ T (F (G)). As the trans-
duction T does not depend on the Σ-structure G, the statement follows.

The following lemma can be seen as a technical amendment to the statement of Lemma 19.11.

Lemma 19.12. Let F be the transduction constructed in Lemma 19.11. For every Σ-structure G,
if G contains a transformer of length h and order n, then there is a graph H ∈ F (G) that contains
a transformer of length at most 3h and order n.

Proof sketch. We use the transformer notation introduced in Section 11.1. Fix a Σ-structure G and
let H ∈ F (G) be the graph denoted as F (G) in the proof of Lemma 19.11. Let ci : V (G) → V (H)
be the functions that maps each vertex v ∈ V (G) to the corresponding copy of v in V (H), for
i ∈ {0, 1} ∪ Σ.

Since each ci is injective, it follows that for every mesh M : I × J → V (G) in G and each
i ∈ {0, 1} ∪ Σ, the composition ci ◦M is a mesh in H. Furthermore, it is easy to verify that if
M,M ′ is a regular pair of meshes in G, then the pair ci ◦M, cj ◦M ′ is a regular pair of meshes in
H, for each i, j ∈ {0, 1} ∪ Σ.

We now argue that if M,M ′ : I × J → V (G) is a conducting pair of meshes in G, then there is
R ∈ Σ such that each pair of consecutive meshes in the sequence

c0 ◦M, cR ◦M ′, c1 ◦M ′, c0 ◦M ′

is conducting.
Namely, as the pair M,M ′ is conducting, it is regular and not homogeneous. It follows that there

is some binary relation symbolR ∈ Σ such thatRG(M(i, j),M ′(i, j)) is not the same for all i ∈ I and
j ∈ J . By definition of the edge relation in H = F (G), it follows that E(c0(M(i, j)), cR(M ′(i, j)))
is not the same for all i ∈ I and j ∈ J . It follows that the pair c0 ◦M, cR ◦M ′ is not homogeneous
in H. As it is regular (see above), it is conducting. Furthermore, by construction of F (G), the
pairs (cR ◦M ′, c1 ◦M ′) and (c1 ◦M ′, c0 ◦M ′) are conducting, as E(H) forms a matching between
the corresponding copies VR and V1 of V , and between the copies V1 and V0 of V .

By a similar argument as above, it is easy to verify that if M : I × J → V (G) is vertical (resp.
horizontal) in G, then c0 ◦M : I × J → V (G) is vertical (resp. horizontal) in H.
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Finally, suppose that M1, . . . ,Mh is a transformer in G. By the arguments above, there are
R1, . . . , Rh−1 ∈ Σ such that the following sequence of meshes is a transformer in H:

c0 ◦M1, cR1 ◦M2, c1 ◦M2, c0 ◦M2, cR2 ◦M3, c1 ◦M3, c0 ◦M3, . . . , cRh−1
◦Mh, c1 ◦Mh, c0 ◦Mh

Lemma 19.13. Let F : Σ → Γ be a quantifier-free transduction with copying, where Σ and Γ consist
of binary relational symbols. Let G be a Σ-structure and H ∈ F (G). If H contains a transformer
of length h and order n then G contains a transformer of length h and order Uh,F (n).

Proof sketch. Suppose F is a composition of the ℓ-copying operation with a quantifier-free trans-
duction S without copying that uses k colors. Let H ∈ F (G). By definition, there is a k-coloring
G+

ℓ of Cℓ(G) such that H is an induced subgraph of S0(G
+
ℓ ). In particular V (H) ⊆ V (G) × [ℓ].

Consider the mapping π : V (H) → V (G) that maps each copy of a vertex v to v itself. This
mapping is injective when restricted to a single copy V (G) × {i}, for some i ∈ [ℓ]. Every mesh
M : I × J → V (H) in H induces a function π ◦M : I × J → V (G). Note that π ◦M might not be
injective, thus it is not necessarily a mesh in G. However, if M is a monocopy mesh in H, that is,
V (M) ⊆ V (G) × {i} for some i ∈ [ℓ], then π ◦M is a mesh in G.

We call a mesh M in H monochromatic, if all of its vertices have the same color in G+
ℓ . Using

the fact that S is quantifier-free, it is straightforward to verify that if a monochromatic monocopy
mesh M is vertical (resp. horizontal) in H, then π ◦M is vertical (resp. horizontal) in G, and that
if (M,M ′) is a conducting pair of monochromatic monocopy meshes in H, then (π ◦M,π ◦M ′) is
a conducting pair of meshes in G.

Note that if H contains a transformer T of length h and order n, then it also contains a trans-
former T ′ = (M1, . . . ,Mh) of length h and order Uh,ℓ,k(n) in which each meshMi is a monochromatic
monocopy mesh, by a Ramsey argument similar to Lemma 11.20. It follows from the above that
the sequence π◦M1, . . . , π◦Mh is a transformer in G of length h and order Uh,ℓ,k(n) ⩾ Uh,F (n).

19.4 Proof of Theorem 19.1

We now prove Theorem 19.1.

Proof of Theorem 19.1. Fix a finite signature Σ consisting of binary relational symbols, and let C
be a class of Σ-structures.

Let F : Σ → {E} and T : {E} → Σ be the transductions from Lemma 19.11. Denote D := F (C).
Note that D is a class of graphs and C ⊆ T (D) by (19). Then C is monadically dependent if and
only if D is monadically dependent, by Corollary 19.10.

We now show that C is monadically dependent if and only if it is flip-breakable. Suppose first
that C is monadically dependent. Hence, D is also monadically dependent, and therefore is flip-
breakable by Theorem 13.1. Since C ⊆ T (D), it follows that C is flip-breakable by Lemma 19.6.
Conversely, assume now that C is flip-breakable. By Lemma 19.6, every graph class transducible
from C is flip-breakable. As the class of all graphs is not flip-breakable, it follows that C is monad-
ically dependent.

The fact that the class of all graphs is not flip-breakable follows immediately from Theorem 13.1,
as clearly the class of all graphs is monadically independent. One could also argue more directly,
by showing that already the class of 1-subdivided cliques is not flip-breakable with radius 2, by a
combinatorial argument similar as in the proof Lemma 8.10.

We now show that if C is monadically independent then there is some h ∈ N such that C contains
transformers of length h and arbitrarily large order. Since C is monadically independent, neither
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is D. Therefore, by Theorem 13.1, D is not prepattern-free. By Proposition 11.6, there is some
h ∈ N such that for all n ∈ N, some graph Hn ∈ D contains a transformer of length h and order
n. As Hn ∈ D and D = F (C), for every n ∈ N there is some Gn ∈ C such that Hn ∈ F (Gn).
By Lemma 19.13, Gn ∈ C contains a transformer of length h and order UF,h(n). It follows that C
contains transformers of length h and arbitrarily large order, as required. Moreover, the transformer
can be converted to a minimal transformer of order UF,h(n), by Lemma 11.21.

Finally, suppose that C contains transformers of length h and arbitrarily large order. By
Lemma 19.12, D contains transformers of length at most 3h and arbitrarily large order. Therefore,
D is monadically independent, and thus neither is C.

One way to argue that D is monadically independent is by showing directly that D transduces
the class of all graphs, using the transformers. Another way is to observe that D contains one of
the families of patterns, as described in Proposition 10.14, by the same proof as in that proposition.
Hence, D is monadically independent by Theorem 13.1.

This concludes the proof of Theorem 19.1.

19.5 Two-Set Variant of Flip-Breakability

The following is a two-set variant of flip-breakability.

Theorem 19.14. Let C be a monadically dependent class of binary structures. For every r ⩾ 1,
structure G ∈ C and sets A,B ⊆ V (G) with |A| = |B| = m, there are subsets A′ ⊆ A and B′ ⊆ B
of size Ur,C(m), and a const(r, C)-flip G′ of G such that

distG′(A′, B′) > r.

Proof. By Theorem 19.1, the class C is flip-breakable. Applying flip-breakability to the set A and
radius 2r, we get two subsets A0, A1 ⊆ A of size Ur,C(|A|) and a const(r, C)-flip G′ of G such that

distG′(A0, A1) > 2r.

By the triangle inequality, every b ∈ B is at distance greater than r from either A0 or A1 in (the
Gaifman graph of) G′. By the pigeonhole principle, there is a subset B′ of B with |B′| ⩾ |B|/2
and A′ ∈ {A0, A1}, such that all elements of B′ are at distance larger than r from A′ in G′. This
yields the conclusion.

19.6 Ordered Graphs and Twin-Width

We now derive two consequences of Theorem 19.1 in the context of ordered graphs. An ordered
graph is a structure G = (V,E,<), where (V,E) is a graph and < is a total order on V . This is
naturally viewed as a binary structure over the signature consisting of two binary relation symbols
E and <.

We reprove the following result of [7]. For two sets A,B of vertices of a (ordered) graph G, let
rG(A,B) denote the maximum of the cardinalities of the following two sets

{N(a) ∩B : a ∈ A}, {N(b) ∩A : b ∈ B}.

In other words, rG(A,B) is the maximum of the number of distinct rows, and the number of distinct
columns, of the A×B adjacency matrix between the sets A and B. A convex partition of an ordered
graph G = (V,E,<) is a partition P of V such that every part of P is an interval with respect
to <.
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A class C of ordered graphs has bounded grid rank if there are constants ℓ,m such that for all
G = (V,E,<) ∈ C and convex partitions L,R of size ℓ, there are two intervals A ∈ L and B ∈ R
such that rG(A,B) ⩽ m. We remark that this definition of bounded grid rank is equivalent to the
definition we give in the introduction.

Theorem 19.15 ([7, Thm. 1, (iv)→(ii)]). Every monadically dependent class of ordered graphs
has bounded grid rank.

In [7] it is furthermore proved that for classes of ordered graphs, bounded grid rank implies
bounded twin-width. This is shown using a separate argument involving the Marcus-Tardos the-
orem. Theorem 19.15 can be deduced from Theorem 19.1 (actually, the two-set variant, Theo-
rem 19.14), as we show further below.

We also show how another of the central results of [7] can be deduced from Theorem 19.1.
Whereas Theorem 19.15 above describes the structure that is found in monadically dependent
classes of ordered graphs, the statement below is on the non-structure side, and describes the
patterns that can be found in monadically independent classes of ordered graphs. The following is
a reformulation of [7, Thm. 5, (iii)→(v)].

Theorem 19.16. Let C be a class of ordered graphs. If C is monadically independent then for
every n and bijection σ : [n] → [n], there is an ordered graph G = (V,E,<) ∈ C, increasing vertex
sequences a1 < · · · < an and b1 < · · · < bn in V , and a symbol α ∈ {=, ̸=,⩽,⩾} such that

{ai, bj} ∈ E(G) ⇐⇒ j α σ(i) for all i, j ∈ [n].

The following two subsections are dedicated to deriving these two theorems as consequences of
Theorem 19.1.

19.7 Proof of Theorem 19.15

We use a simple lemma from [55, Lem. G.2], which allows us to analyze flips of a totally ordered
set (V,<), viewed as a binary structure.

Lemma 19.17 ([55]). Let L = (V,<) be a totally ordered set (viewed as binary structure) and L′

be a k-flip of L. Then there is a set S with |S| ⩽ k such that any two vertices of V − S with no
vertex of S between them in the order are at distance at most 2 in the Gaifman graph of L′.

Proof of Theorem 19.15. Let C be a monadically dependent class of ordered graphs. Let G =
(V,E,<) ∈ C, and let L,R be two convex partitions of G with |L| = |R| = ℓ for some constant
ℓ = const(C) that will be specified later. Let L = {min(A) : A ∈ L} and R = {min(B) : B ∈ R}
denote the sets of minimal elements of the intervals in L and in R, respectively. Then |L| = |R| = ℓ.

Apply Theorem 19.14 with radius r = 5, yields sets L′ ⊆ L and R′ ⊆ R of size UC(ℓ), and a
k-flip G′ of G, for some k ⩽ const(C), such that

distG′(L′, R′) > 5. (20)

Denote G′ = (V,E′, <′). Note that (V,<′) is a k-flip of (V,<). Let S be the set given by
Lemma 19.17. Then |S| ⩽ k ⩽ const(C). There is a fixed constant ℓ depending only on C such that
|L| = |R| = ℓ implies |L′| = |R′| > |S|. This is because

|L′| = |R′| ⩾ UC(ℓ) > |S|
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for sufficiently large ℓ, as |S| ⩽ const(C). Fixing this sufficiently large constant ℓ = const(C), we
henceforth assume that |L′| = |R′| > |S|.

It follows that there is some interval A ∈ L with min(A) ∈ L′ and A∩S = ∅. By Lemma 19.17,
the elements of L are pairwise at distance at most 2 in the Gaifman graph of G′. Similarly, there
is an interval B ∈ R with min(B) ∈ R′ so that the elements of B are pairwise at distance at most
2 in the Gaifman graph of G′. Suppose some u ∈ A and v ∈ B are adjacent in the Gaifman graph
of G′. It follows that min(A) and min(B) are at distance at most 5 in the Gaifman graph of G′.
As min(A) ∈ L′ and min(B) ∈ R′, this contradicts (20).

Therefore, the sets A ∈ L and B ∈ R span no edges in G′. As (V,E′) is a k-flip of (V,E), it
follows that rG(A,B) ⩽ const(k) ⩽ const(C).

19.8 Proof of Theorem 19.16

We now prove Theorem 19.16, by analyzing the minimal transformers in ordered graphs. We use
the following lemma. If I, J are two indexing sequences then the lexicographic order <IJ on I × J
is defined as usual. Denoting by IR and JR the reverse sequences of I and J , then we have in total
8 lexicographic orders on I × J , namely <KL where K ∈ {I, IR} and L ∈ {J, JR}, or K ∈ {J, JR}
and L ∈ {I, IR}.

Lemma 19.18. Let I, J be two indexing sequences of length |I| = |J | ⩾ 3, and let (V,<) be a
totally ordered set. Let M : I × J → V be a regular mesh in (V,<). Then for one of the eight
lexicographic orders <lex described above, we have that

M(i, j) < M(i′, j′) ⇐⇒ (i, j) <lex (i′, j′) for all (i, j), (i′, j′) ∈ I × J.

Furthermore, for I ′ = I − {min(I),max(I)}, J ′ = J − {min(J),max(J)} with |I ′| = |J ′| > 3, we
have that MI′×J ′ is either horizontal and not vertical, or is vertical and not horizontal in (V,<).

Proof. Let i−1 < i0 < i1 ∈ I and j−1 < j0 < j1 ∈ J . As < is a total order, we have that
M(i0, j0) < M(i1, j0) or M(i0, j0) > M(i1, j0). Replacing I with IR if necessary, we may assume
that

M(i0, j0) < M(i1, j0). (21)

Similarly, replacing J with JR if necessary, we may assume

M(i0, j0) < M(i0, j1). (22)

By regularity of M we have that

M(i0, j0) < M(i1, j−1) ⇐⇒ M(i−1, j1) < M(i0, j0).

Thus, exactly one of the following holds:

M(i0, j0) < M(i1, j−1) or M(i0, j0) < M(i−1, j1).

Exchanging the roles of I and J if necessary, we may assume

M(i0, j0) < M(i1, j−1). (23)

Now, by regularity of M , we derive that

M(i0, j0)
(22)
< M(i0, j1)

(23)
< M(i1, j0)

(22)
< M(i1, j1).
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Therefore, we have

M(i0, j0) < M(i1, j1). (24)

In the following, we use (21),(22),(23),(24) to verify that for all i, i′ ∈ I and j, j′ ∈ J

M(i, j) < M(i′, j′) ⇐⇒ i = i′ and j < j′, or i < i′.

For the right-to-left implication, assume first that i = i′ and j < j′. Then M(i, j) < M(i′, j′)
follows by regularity and (22). If i < i′ then M(i, j) < M(i′, j′) follows from (21),(23),(24). We
prove the left-to-right implication by contrapositive. Observe that the negation of the condition in
the right-hand-side is equivalent to either i > i′, or i = i′ and j ⩾ j′. Assuming additionally that
(i, j) ̸= (i′, j′), this is equivalent to the right-hand side condition above, with (i, j) swapped with
(i′, j′). Thus, by the implication proved already, we conclude that M(i, j) > M(i′, j′), obtaining
the negation of the left-hand side condition, and proving the contrapositive. Therefore, < agrees
with the lexicographic order <IJ on V (M), proving the first part of the statement.

We now verify the second part of the statement. By symmetry, we may assume that < agrees
with <IJ on V (M). Let I ′ = I − {min(I),max(I)} and J ′ = J − {min(J),max(J)} and assume
|I ′| = |J ′| > 3. We observe that M |I′×J ′ is vertical and not horizontal in (V,<). Verticality is
witnessed by the function a : I ′ → V defined by a(i) := M(i,min(J)).

We show that MI′×J ′ is not horizontal. Assume b : J ′ → V is such that

atp(M(i, j), b(j′)) depends only on otp(j, j′) for all i ∈ I ′, j, j′ ∈ J ′ (25)

We show that atp(M(i, j), b(j′)) is the same for all i ∈ I ′ and j, j′ ∈ J . This will prove that MI′×J ′

is not horizontal.
Fix any j, j′ ∈ J ′ with min(J ′) < j′ < max(J ′). As MI′×J ′ is injective and |I ′| > 1, we have

that M(i, j) ̸= b(j′) for some i ∈ I ′. Suppose that

M(i, j) < b(j′) for some i ∈ I ′,

the other case being symmetric. By (25), we have that

M(max(I ′), j) < b(j′).

Pick any i′ ∈ I ′ with i′ < max(I ′). As < agrees with <IJ on V (M), for all j′′ ∈ J ′ we have:

M(i′, j′′) < M(max(I ′), j) < b(j′).

In particular, M(i′, j′′) < b(j′) for all j′′ ∈ J ′. As min(J ′) < j′ < max(J ′), combined with (25),
this implies that atp(M(i, j′′), b(j′)) is the same for all i ∈ I ′, j′, j′′ ∈ J ′.

Proof sketch for Theorem 19.16. Suppose C is a class of ordered graphs which is monadically inde-
pendent. By Theorem 19.1, there is some h ∈ N such that C contains minimal transformers of length
h and arbitrarily large order. Let G = (V,E,<) be an ordered graph and let T = (M1, . . . ,Mh)
be a minimal transformer in G of order at least 6 and length h. By Lemma 19.18 and reducing
the order of T by at most 2, we may assume that every mesh in T is either horizontal and not
vertical, or vertical and not horizontal in (V,<). In particular, every mesh in T is either horizontal
or vertical in G (possibly both). By minimality, the meshes M2, . . . ,Mh−1 are neither horizontal
nor vertical, so it follows that h ⩽ 2.
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Let n ⩾ 6. As argued above, we can find a transformer T in C of length h ∈ {1, 2} and order n,
where each mesh in T is either horizontal and not vertical, or vertical and not horizontal in (V,<).
We show that the following holds for some m ⩾ U(n). For every permutation σ : [m] → [m] there
are strictly monotone functions a : [m] → V and b : [m] → V such that one of the following cases
holds (uniformly) for all i, j ∈ [m]:

(=) {a(i), b(j)} ∈ E(G) ⇐⇒ j = σ(i),

(̸=) {a(i), b(j)} ∈ E(G) ⇐⇒ j ̸= σ(i),

(⩽) {a(i), b(j)} ∈ E(G) ⇐⇒ j ⩽ σ(i),

(>) {a(i), b(j)} ∈ E(G) ⇐⇒ j > σ(i).

As n is arbitrarily large, this will prove the theorem (observe that the case (>) can be reduced to
the analogous case (⩾) by shifting b).

Suppose first that h = 2, that is, T = (M,M ′) for some conducting pair of meshes M,M ′ : I ×
J → V (G), where M is vertical and not horizontal, and M ′ is horizontal and not vertical. By
the same argument as in Lemma 12.5, we conclude that the atomic type atpG(M(i, j),M ′(i′, j′))
is not the same for all i, i′ ∈ I and j, j′ ∈ J , but is the same for all i, i′ ∈ I and j, j′ ∈ J with
(i, j) ̸= (i′, j′). It is not difficult to see that in the setting of ordered graphs, this implies M and
M ′ to be either matched or co-matched in the (unordered) graph (V,E).

Up to reindexing, assume that the indexing sequences of M and M ′ are I = [n] and J = [n].
Let σ : [n] → [n] be any permutation; we view σ as a bijection σ : I → J .

As M is not horizontal in (V,<), the linear order < agrees on V (M) with one of the four
lexicographic orders <KL on I × J with K ∈ {I, IR} and L ∈ {J, JR}. Reversing the order of I if
necessary, we may assume that the sequence

(M(i, σ(i)) : i ∈ I) ⊆ V (M)

is strictly increasing. Similarly, as M ′ is not vertical, by reversing the order of J if necessary, we
may assume that the sequence

(M ′(σ−1(j), j) : j ∈ J) ⊆ V (M ′)

is strictly increasing. Moreover, if M and M ′ are matched, for all i ∈ I, j ∈ J we have that

(M(i, σ(i)), M ′(σ−1(j), j)) ∈ E(G) ⇐⇒ j = σ(i).

If M and M ′ are co-matched, the condition becomes j ̸= σ(i).
Set a(i) := M(i, σ(i)) and b(j) := M ′(σ−1(j)j) for i ∈ I and J ∈ J . Then

{a(i), b(j)} ∈ E(G) ⇐⇒ j = σ(i) for all i ∈ I, j ∈ J.

Moreover, (a(i) : i ∈ I) and (b(j) : j ∈ J) are strictly increasing. Therefore, the case (=) or ( ̸=)
described above occurs. This completes the analysis in the case when T is a transformer of length 2.

Suppose now that T is a transformer of length 1 and order n, that is, T consists of a single
mesh M which is regular, and is both vertical and horizontal in G = (V,E,<). We argued already
that M is either vertical or horizontal in the totally ordered set (V,<), but not both. Suppose
(by symmetry) that M is vertical and not horizontal in (V,<). As M is horizontal in (V,E,<)
but not in (V,<), it needs to be horizontal in (V,E). By Lemma 12.14, MT is capped in the
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graph (V,E). This means that for some α ∈ {=,⩽}, the mesh MT is α-capped in H, where
H is either the graph (V,E), or its edge-complement: There is some function b : J ′ → V , where
J ′ = J − {min(J),max(J)}, so that

{M(i, j), b(j′)} ∈ E(H) ⇐⇒ j α j′ for all i ∈ I and j, j′ ∈ J. (26)

As M is not horizontal in (V,<), the order < agrees on V (M) with <KL for K ∈ {I, IR} and
L ∈ {J, JR}. Reversing the order of I if necessary, we have that < agrees with <IJ or with <IJR .

By the Erdős-Szekeres theorem, replacing J ′ by a subsequence of length m ⩾ U(n), we may
assume that the function b : J ′ → V is strictly monotone with respect to <. Reversing the order of
J if necessary, we may assume that b : J ′ → V is strictly increasing.

Let I ′ ⊆ I be any subsequence such that |I ′| = |J ′| = m ⩾ U(n). Up to reindexing, assume that
I ′ = [m] and J ′ = [m]. Let σ : [m] → [m] be an arbitrary permutation; we view σ as a bijection
σ : I ′ → J ′.

Set a(i) := M(i, σ(i)) for i ∈ I ′. Then a : I ′ → V is strictly increasing, as < agrees on V (M)
with <IJ or with <IJR . By (26) we have

{a(i), b(j)} ∈ E(H) ⇐⇒ σ(i)α j for i ∈ I ′, j ∈ J ′.

We conclude that one of the two cases (=) or (̸=) holds if α is = (depending on whether H is (V,E)
or its edge-complement) and one of the two cases (⩽) or (>) holds if α is ⩽. This completes the
sketch of the proof.
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