
Exploring the Crochemore and Ziv-Lempel
factorizations of some automatic sequences with

the software Walnut

Marieh Jahannia1[0000−0001−8510−2599] and Manon
Stipulanti2[0000−0002−2805−2465]

1 School of Mathematics, Statistics and Computer Science, College of Science
University of Tehran, Tehran, Iran

mjahannia@ut.ac.ir
2 Department of Mathematics, University of Liège, Liège, Belgium,

m.stipulanti@uliege.be

Abstract. We explore the Ziv-Lempel and Crochemore factorizations
of some classical automatic sequences making an extensive use of the
theorem prover Walnut.

Keywords: Combinatorics on words · Crochemore factorization · Ziv-Lempel
factorization · Automatic sequences · Walnut theorem prover.

2020 Mathematics Subject Classification: 11B85, 68R15

ar
X

iv
:2

40
3.

15
21

5v
1

 [
cs

.D
M

]
 2

2
M

ar
 2

02
4

2 M. Jahannia and M. Stipulanti

1 Introduction

In the expansive variety of tools at the heart of combinatorics on words, fac-
torizations break down a given sequence into simpler components to provide
valuable insights about its properties and behavior. Crochemore [6,7] on the
one hand and Lempel and Ziv [14,21] on the other introduced two such distin-
guished factorizations, taking after their respective names. The first was aimed
for algorithm design and builds on repetitive and non-repetitive aspects of se-
quences. The second has remained a cornerstone of data compression and string
processing algorithms, with ongoing discoveries revealing new applications for
its use. In the case of infinite words, Berstel and Savelli [2] characterized the
Crochemore factorization of Sturmian words, the Thue-Morse sequence and its
generalizations, and the period-doubling sequence. Then Ghareghani et al. [10]
examined both the Crochemore and Ziv-Lempel factorizations for standard epis-
turmian words. Constantinescu and Ilie [5] characterized the general behavior of
the Ziv-Lempel factorization of morphic sequences, depending on the periodicity
of the sequence and the growth function of the morphism. Jahannia et al. [11,12]
introduced two variations of these factorizations where the factors are required
to satisfy an additional property and studied them for the m-bonacci words.

Within combinatorics on words, the study of automatic sequences [1,16,18]
has turned out to be a fascinating journey, showing complex structures and
patterns defined by fundamental mathematical principles. As their name points
it out, these sequences are produced by finite automata with output, but also
as fixed points of morphisms. Their generation rules often lead to connections
to various branches of mathematics. The Thue-Morse sequence is one of the
most famous –if not the most famous– examples and encapsulates the binary
encoding of the occurrences of 0’s and 1’s in binary representations, revealing a
self-replicating and non-repetitive structure [1]. The period-doubling sequence,
born from the logistic map, exhibits a chaotic behavior and contributes to the
field of dynamical systems [8]. The Rudin-Shapiro sequence, recognized for its
statistical relationship or mutual dependence to the Golay sequence, unfolds a
binary pattern influenced by the existence of certain arithmetic progressions [4].
Lastly, the paper-folding sequence, a classic representation of a fractal, illustrates
how simple operations can generate infinitely long sequences [1].

Recent developments in the field of sequence analysis have seen the emergence
of systematic and automated decision procedures designed to autonomously de-
termine the validity of a given property for specified sequences, altering the
need of human work in proofs. Notably, in the case of automatic sequences,
Mousavi [15] and Shallit [17] have made significant contributions by developing
the software called Walnut. The latter works by representing a sequence as a
finite automaton and expressing properties as first-order logic predicates. The
decision procedure then translates these predicates into automata, facilitating
the identification of representations for which the predicate holds true.

In this paper, we make use of Walnut to obtain a precise description of
the Crochemore and Ziv-Lempel factorizations of some classical automatic se-

The c-and z-factorizations of some automatic sequences via Walnut 3

quences. More precisely, our main direction of investigation is the following gen-
eral question (see Section 2 for precise definitions):

Question. Given an abstract numeration system S and an S-automatic se-
quence x, is it possible to use Walnut to show that the starting positions and
lengths of the factors in both the Crochemore and Ziv-Lempel factorizations of
x only depend on the numeration system S?

Using Fici’s [9] nice survey of factorizations of the Fibonacci word, we produce
a detailed Walnut code in Section 3 to answer this question about the Fibonacci
word. In Section 4, we apply this code to other classical automatic sequences.
We end the paper with Section 5 where we discuss the scope of our method.

2 Background

Combinatorics on words. We let Σ denote a finite set of symbols, called the
letters, referred to as an alphabet. A word over Σ is a finite or infinite sequence
of letters chosen from Σ. In this paper, to differentiate finite and infinite words,
we write the latter in bold. As usual, we let Σ∗ represent the set of finite words
over Σ, and ε denote the empty word. For a word w ∈ Σ∗, we let |w| denote
its length. For all i ∈ {0, . . . , |w| − 1}, we use w[i] to refer to the i-th letter
of w, starting from position 0. If we write w = w0w1 · · ·w|w|−1, then we let w̃
denote its reversal or mirror, defined as w̃ = w|w|−1 · · ·w1w0. A factor of w is
a contiguous block of letters within w; we write w[i..j] to represent the factor
occupying positions i, i+1, . . . , j. For instance, if w = computer, then v = comp

is a factor of w where v = w[0..3]. A prefix (resp., suffix) of w is a word x such
that w = xy (resp., w = yx) for some word y. For instance, comp is a prefix and
er is a suffix of computer. If w = xy, we write x−1w = y and wy−1 = x.

A morphism is a mapping ψ : Σ∗ → Σ∗ such that for all u, v ∈ Σ∗, ψ(uv) =
ψ(u)ψ(v). A morphism ψ is k-uniform if there exists an integer k such that
|ψ(a)| = k for all a ∈ Σ. A coding is a 1-uniform morphism. The morphism ψ is
prolongable on the letter a ∈ Σ if ψ(a) = au and ψn(u) ̸= ε for all n ≥ 0. A fixed
point of ψ is given by ψω(a) = auψ(u)ψ2(u) · · · . For example, the morphism
µ : a 7→ ab, 1 7→ ba is prolongable on both letters a and b. The infinite word
t = µω(a) = abbabaabbaababbabaababba · · · is a fixed point called the Thue-
Morse sequence.

Factorizations. For a finite word w, a factorization of w is a sequence
(x0, x1, . . . , xm) of finite words such that w can be expressed as the concate-
nation of the elements of the sequence, i.e., w = x0x1 · · ·xm. Similarly, in the
case of an infinite word w, the factorization is a sequence (x0, x1, . . .) of fi-
nite words such that w = x0x1 · · · . For example, a factorization of the word
w = abracadabra is (ab, ra, ca, da, bra). We now introduce two distinguished
factorizations of words. More formally, given an infinite word w, its Ziv-Lempel
factorization, in short z-factorization, is given by z(w) = (z0, z1, . . .), where zm
is the shortest prefix of zmzm+1 · · · occurring only once in the word z0 · · · zm.
The Crochemore factorization, in short c-factorization, of w is given by c(w) =

4 M. Jahannia and M. Stipulanti

(c0, c1, . . .), where cm is either the longest prefix of cmcm+1 · · · occurring twice
in c0 · · · cm or a letter not present in c0 · · · cm−1. Roughly, the Ziv-Lempel fac-
torization breaks the sequence into minimal never seen before factors, while the
Crochemore one splits the sequence into maximal already seen factors. We con-
sider similar definitions on finite words. For instance, for w = abbabaabbaababb,
its z- and c-factorizations are respectively z(w) = (a, b, ba, baa, bbaa, babb) and
c(w) = (a, b, b, ab, a, abba, aba, bb).

Abstract numeration systems. Such numeration systems were introduced
at the beginning of the century by Lecomte and Rigo [13]; see also [3, Chap. 3]
for a general presentation. An abstract numeration system (ANS) is defined by
a triple S = (L,Σ,<) where Σ is an alphabet ordered by the total order <
and L is an infinite regular language over Σ, i.e., accepted by a deterministic
finite automaton. We say that L is the numeration language of S. When we
genealogically order the words of L, we obtain a one-to-one correspondence repS
between N and L. Then, the S-representation of the non-negative integer n is
the (n + 1)st word of L, and the inverse map, called the (e)valuation map, is
denoted by valS . For instance, consider the ANS S built on the language a∗b∗

over the ordered alphabet {a, b : a < b}. The first few words in the language are
ε, a, b, aa, ab, bb, aaa, and we have repS(5) = bb and valS(aaa) = 6.

Automatic sequences. As their name indicates it, automatic sequences
are defined through automata. A deterministic finite automaton with output
(DFAO) is defined by a 6-tuple M = (Q,Σ, δ, q0, ∆, τ), where Q is a finite set
of states, Σ is a finite input alphabet, δ : Q × Σ → Q is the transition function,
q0 is the initial state, ∆ is a finite output alphabet, and τ : Q → ∆ is the output
function. The output of M on the finite word w ∈ Σ∗, denoted M(w), is defined
as M(w) = τ(δ(q0, w)) ∈ ∆.

Let S = (L,Σ,<) be an ANS. An infinite word x is S-automatic if there
exists a DFAO M such that, for all n ≥ 0, the nth term x[n] of x is given by
the output M(repS(n)) of M. In this case, we say that the DFAO M generates
or produces the sequence x. In particular, for an integer k ≥ 2, if M is fed with
the genealogically ordered language {ε} ∪ {1, . . . , k − 1}{0, . . . , k − 1}∗, then
x is said to be k-automatic. For the case of integer base numeration systems,
a classical reference on automatic sequences is [1], while [16,18] treat the case
of more exotic numeration systems. A well-known characterization of automatic
sequences states that they are morphic, i.e., obtained as the image under a coding
of a fixed point of a morphism [16]. In particular, a sequence is k-automatic if
and only if the morphism producing it is k-uniform morphism [1].

3 The Fibonacci word

The infinite Fibonacci word f = abaababa . . . is the fixed point, starting with a,
of the morphism ϕ : a → ab, b → a. It is automatic in a specific ANS based on
Fibonacci numbers defined by F0 = 1, F1 = 2, and Fn = Fn−1 + Fn−2 for all
n ≥ 2. Zeckendorf [20] demonstrated a remarkable theorem stating that every
non-negative integer can be represented as a sum of distinct non-consecutive

The c-and z-factorizations of some automatic sequences via Walnut 5

0/a 1/b

0

1

0

(a) Fibonacci.

q0/a q1/b

0

1

0

1

(b) Thue-Morse.

q0/a q1/b

0

1

0, 1

(c) Period-doubling.

q0/a q1/b

0, 1

2

0, 1

2

(d) Mephisto-Waltz.

q0/+ 1 q1/+ 1 q2/− 1 q3/− 1

1 1

1

0

0

10

0

(e) Rudin-Shapiro.

q0/+ 1 q1/+ 1 q2/− 1 q3/− 1

1 0 1

0

11

0

0

(f) Paper-folding.

Fig. 1: DFAOs generating the automatic sequences of the paper.

Fibonacci numbers. Given an integer n, its canonical Fibonacci representation,
denoted as repF (n), is defined as repF (n) =

∑m
i=0 ciFi where the coefficients

ci are in {0, 1} and obtained using the greedy algorithm. This gives rise to the
Fibonacci or Zeckendorf numeration system and the corresponding Fibonacci-
automatic sequences. For instance, the automaton in Figure 1a generates f .

Related to our concern, Fici [9] showed that the z-factorization of the Fi-
bonacci word f is the concatenation of its singular words, i.e.,

f =
∏

n≥−1

wn = a · b · aa · bab · aabaa · babaabab · · · . (1)

The singular words of the Fibonacci word f , introduced by Wen and Wen [19],
are defined as follows: w−1 = a, w0 = b, and for n ≥ 1, wn = x · ϕn(a) · y−1,
where xy ∈ {ab, ba} is the length-2 suffix of ϕn(a). The first few singular words
are a, b, aa, bab, aabaa, babaabab, aabaababaabaa. Notably, |wn| = |ϕn(a)| = Fn

for all n ≥ 0.
The idea behind our approach is that we can express the z-factorization of f

as a first-order logic formula in Walnut. We define the two following predicates:

def fibfactoreq "?msd_fib At t<n => F[i+t]=F[j+t]":

def fibzfactor "?msd_fib (Aj j<i => ~$fibfactoreq(i,j,n))

& (At t<n => (El l<i => $fibfactoreq(i,l,t)))":

The first formula takes the triple (i, j, n) as input and checks whether the length-
n factors f [i..i+n−1] and f [j..j+n−1] are equal. The second formula, on input

6 M. Jahannia and M. Stipulanti

(i, n), verifies whether the factor f [i..i+n− 1] does not appear before position i
and each of its prefixes appears before. In other words, it tests whether f [i..i+
n−1] is the shortest prefix of (f [0...i−1])−1f occurring only once in f [0...i+n−1].
In particular, the variables i, j indicate positions within f and n is a measure of
length. Running Walnut on these predicates yields the automaton in Figure 2.
Now observe from Identity (1) that the pairs (i, n) of position and length of the

(i,n): ?msd_fib (Aj j<i => ~$fibfactoreq(i,j,n)) & (At t<n => (El l<i => $fibfactoreq(i,l,t)))

0

[0,0]

1

[0,1]

2
[1,1]

3

[0,0]

4

[1,0]

5

[0,0] [0,1] [0,0]

[1,0]

6
[1,1]

[0,1]

[0,0]

[1,1]

7

[0,0]

8[1,0]

9[0,1]

[0,0]

[1,1]

[0,1]

[0,0]

[1,0]

[0,0]

Fig. 2: An automaton accepting, among others, the base-2 representations of the
pairs (i, n) giving the position and length of factors of the z-factorization of the
Fibonacci word.

factors of the z-factorization of f are given by (0, 1) and (Fn+1 − 1, Fn) for all
n ≥ 0. This gives rise to the regular expression in Walnut:

reg fibzgoodrep msd_fib msd_fib "[0,0]*[0,1] | [0,0]*[1,1]

| [0,0]*[1,1][0,0]([1,0][0,0])*

| [0,0]*[1,1][0,0]([1,0][0,0])*[1,0]":

Now we check that the pairs (i, n) guessed before indeed give factors having the
desired property fibzfactor, so we write the following check in Walnut:

eval fibzcheck "?msd_fib Ai An $fibzgoodrep(i,n) => $fibzfactor(i,n) ":

and Walnut returns TRUE. Note that previous check is not a bi-implication. In-
deed, for instance, we see from Figure 2 that other pairs (i, n) satisfy fibzfactor.
This is for instance the case of (3, 4) since f [3..6] = abab is the shortest prefix of
(f [0...2])−1f = ababaabaababaaba · · · that occurs only once in f [0...6] = abaabab.
Therefore, to obtain the z-factorization of f , we need the final check fibcheck

to be true, but also to have consecutive positions i that cover all N.

The c-and z-factorizations of some automatic sequences via Walnut 7

Fici [9] showed the following other factorization of the Fibonacci word:

f =
∏
n≥1

ϕ̃n(a) = a · ba · aba · baaba · ababaaba · · · . (2)

In fact, the latter is almost the c-factorization of f , with the difference that the
c-factorization starts with a, b, a and then coincides with Identity (2). See [2].
It is not difficult to modify the formula fibzfactor in Walnut to deal with the
c-factorization instead:

def fibcfactor "?msd_fib (Ej j<i => $fibfactoreq(i,j,n))

& (Al l<i => ~$fibfactoreq(i,l,n+1))":

As before, examining Identity (2), the pairs (i, n) for the factors of the c-
factorization are given by the following regular expression in Walnut:

reg fibcgoodrep msd_fib msd_fib "[0,0]*[0,1] | [0,0]*[1,1]

| [0,0]*[1,0][0,1] | [0,0]*[1,1][0,0][0,0]

| [0,0]*[1,1][0,0][0,0][1,0]

| [0,0]*[1,1][0,0]([1,0][0,0])*[1,0][0,0][0,0]

| [0,0]*[1,1][0,0]([1,0][0,0])*[1,0][0,0][0,0][1,0]":

The last check

eval fibccheck "?msd_fib Ai An $fibcgoodrep(i,n) => $fibcfactor(i,n)":

returns TRUE.

Remark 1. The palindromic (resp., closed) version of the z- and c-factorizations,
defined in [11] (resp., [12]), requires that each factor is palindromic (resp., closed,
i.e., each factor has a proper factor that occurs exactly twice, as a prefix and
as a suffix). One can tweak the Walnut code presented in this section to obtain
these. See [17, Sec. 8.6.3 and 8.8.3] for related Walnut code.

4 The z- and c- factorizations of some classical automatic
sequences

The conclusion of the previous section is the following: when a candidate is
known for the z- or c-factorization of an infinite word, then it is not difficult to
check with Walnut that it is indeed the right factorization. This is the purpose
of the current section, and we use the same techniques as in Section 3. Given an
infinite word x, the Walnut code for its z-factorization (resp., c-factorization) is
summed up in Code 1 (resp., Code 2). Also see Table 1 where we give the first
few factors of z(x) and c(x) for some words x.

Code 1. Given the k-automatic sequence x coded by X in Walnut, we use the
following predicates to find its z-factorization, where LX is some specific guessed
regular expression:

8 M. Jahannia and M. Stipulanti

x z(x) = (z0, z1, . . .)

f (a, b, aa, bab, aabaa, babaabab, aabaababaabaa, babaababaabaababaabab, . . .)
t (a, b, ba, baa, bbaa, babb, abaaba, bbaabb, abaabbaababbaa, bbabaababbab, . . .)
pd (a, b, aa, abab, abaaabaa, abaaabababaaabab, abaaabababaaabaaabaaabababaaabaa, . . .)
rs (1, 11(−1), 11(−1)111, 1(−1)(−1), (−1)1(−1), 111(−1)11(−1)1(−1), (−1)(−1)11, . . .)
pf (1, 1(−1), 11(−1)(−1), 111, (−1)(−1)1(−1), (−1)111(−1)1, 1(−1)(−1)(−1), . . .)
mw (a, ab, aabb, baaa, baabbbab, babbaa, abbbaaabaabbbabbabbaaabb, . . .)

x c(x) = (c0, c1, . . .)

f (a, b, a, aba, baaba, ababaaba, baabaababaaba, ababaababaabaababaaba, . . .)
t (a, b, b, ab, a, abba, aba, bbabaab, abbaab, babaabbaababba, abbabaababba, . . .)
pd (a, b, a, aa, ba, baba, aaba, aabaaaba, babaaaba, babaaabababaaaba, . . .)
rs (1, 11, (−1), 11(−1)11, 11(−1), (−1)(−1), 1(−1)111, (−1)11(−1)1, (−1)(−1)(−1)1, . . .)
pf (1, 1, (−1), 11(−1), (−1)11, 1(−1)(−1)1, (−1)(−1)111(−1), 11(−1)(−1), . . .)
mw (a, a, b, aab, bb, aa, abaabbba, bbabba, aabaab, aabbbaaabaabbbabbabbaaab, . . .)

Table 1: The first few factors of the z- and c-factorizations of the automatic
sequences considered in this paper.

def xfactoreq "?msd_k At t<n => X[i+t]=X[j+t]":

def xzfactor "?msd_k (Aj j<i => ~$xfactoreq(i,j,n)) &

(At t<n => (El l<i => $xfactoreq(i,l,t)))":

reg xzgoodrep msd_k msd_k "LX":

eval xzcheck "?msd_k Ai An $xzgoodrep(i,n) => $xzfactor(i,n)":

Code 2. Given the k-automatic sequence x coded by X in Walnut, we use the
following predicates to find its c-factorization, where LX is some specific guessed
regular expression:

def xfactoreq "?msd_k At t<n => X[i+t]=X[j+t]":

def xcfactor "?msd_k (Ej j<i => $xfactoreq(i,j,n))

& (Al l<i => ~$xfactoreq(i,l,n+1))":

reg xcgoodcrep msd_k msd_k "LX":

eval xccheck "?msd_k Ai An $xcgoodrep(i,n) => $xcfactor(i,n)":

4.1 The Thue-Morse sequence

The most famous example among 2-automatic sequences is the Thue-Morse se-
quence t which is the fixed point of the morphism µ : a 7→ ab, b 7→ ba starting
with a. This sequence is generated by the automaton in Figure 1b.

Theorem 1. Let z(t) = (z0, z1, . . .) be the z-factorization of the Thue-Morse
sequence t. Then, for all m ∈ {0, . . . , 6}, zm is given in Table 1 and, for all
m ≥ 7, zm = t[i..i+ n− 1] where

(i, n) =

{
(13 · 2m/2−3 + 1, 7 · 2m/2−3), if m is even;

(5 · 2(m−1)/2−1 + 1, 3 · 2(m−1)/2−2), if m is odd.

The c-and z-factorizations of some automatic sequences via Walnut 9

Proof. In Code 1, replace X by T, k by 2, and LX by

[0,0]*[0,1] | [0,0]*[1,1] | [0,0]*[1,0][1,0]

| [0,0]*[1,0][0,1][0,1] | [0,0]*[1,0][1,0][1,0]

| [0,0]*[1,0][0,1][1,0][1,0] | [0,0]*[1,0][1,0][1,1][1,0]

| [0,0]*[1,0][1,1][0,1][1,1][0,0]*[1,0]

| [0,0]*[1,0][0,0][1,1][0,1][0,0]*[1,0]

Then running Code 1 in Walnut returns TRUE. ⊓⊔

The next result gives back [2, Thm. 2].

Theorem 2. Let c(t) = (c0, c1, . . .) be the c-factorization of the Thue-Morse
sequence t. Then, for all m ∈ {0, . . . , 5}, cm is given in Table 1 and, for all
m ≥ 6, cm = t[i..i+ n− 1] where

(i, n) =

{
(5 · 2m/2−2, 3 · 2m/2−3), if m is even;

(13 · 2(m−1)/2−3, 7 · 2(m−1)/2−3), if m is odd.

Proof. In Code 2, replace X by T, k by 2, and LX by

[0,0]*[0,1] | [0,0]*[1,1] | [0,0]*[1,0][0,1] | [0,0]*[1,1][1,0]

| [0,0]*[1,0][0,0][1,1] | [0,0]*[1,1][1,0][0,0]

| [0,0]*[1,0][0,0][1,1][0,1][0,0]* | [0,0]*[1,0][1,1][0,1][1,1][0,0]*

Then running Code 2 in Walnut returns TRUE. ⊓⊔

4.2 The period-doubling sequence

The period-doubling sequence pd = abaaabababaaabaa · · · is also a 2-automatic
sequence. It is closely related to the Thue-Morse sequence as it is defined for all
n ≥ 0 by pd[n] = b if t[n] = t[n + 1], pd[n] = a otherwise. Furthermore, pd
is the fixed point of the morphism h : a 7→ ab, b 7→ aa, starting with a and is
generated by the automaton in Figure 1c.

Theorem 3. Let z(pd) = (z0, z1, . . .) be the z-factorization of the period-doubling
sequence pd. Then, z0 = a and, for all m ≥ 1, zm = pd[i..i + n − 1] where
i = n = 2m−1.

Proof. In Code 1, replace X by PD, k by 2, and LX by

[0,0]*[0,1] | [0,0]*[1,1][0,0]*

Then running Code 1 in Walnut returns TRUE. ⊓⊔

The next result gives back [2, Thm. 4].

Theorem 4. Let c(pd) = (c0, c1, . . .) be the c-factorization of the period-doubling
sequence pd. Then c0 = a and, for all m ≥ 1, cm = pd[i..i+ n− 1] where

(i, n) =

{
(3 · 2m/2−1 − 1, 2m/2−1), if m is even;

(2(m−1)/2+1 − 1, 2(m−1)/2), if m is odd.

10 M. Jahannia and M. Stipulanti

Proof. In Code 2, replace X by PD, k by 2, and LX by

[0,0]*[0,1] | [0,0]*[1,1][1,0]* | [0,0]*[1,1][0,0][1,0]*

Then running Code 2 in Walnut returns TRUE. ⊓⊔

4.3 The Rudin-Shapiro sequence

The Rudin-Shapiro sequence rs = 111(−1)11(−1)1 · · · is defined as follows: for
all n ≥ 0, the nth letter rs[n] is given by 1 or −1 according to the parity of
the number of (possibly overlapping) occurrences of the block 11 is the base-2
representation of n. The sequence is 2-automatic as the automaton in Figure 1e
generates it. In addition, rs can be written as τ(ρω(a)), where ρ : a 7→ ab, b 7→
ac, c 7→ db, d 7→ dc and τ : a, b 7→ 1, c, d 7→ −1.

Theorem 5. Let z(rs) = (z0, z1, . . .) be the z-factorization of the Rudin-Shapiro
sequence rs. Then zm = rs[i..i+ n− 1] where, for 0 ≤ m ≤ 10, (i, n) belongs to

{(0, 1), (1, 3), (4, 6), (10, 3), (13, 3), (16, 9), (25, 4), (29, 8), (37, 12), (49, 6), (55, 6)},

and for all m ≥ 11 with p = ⌊m
4 ⌋,

(i, n) =

(9 · 2p + 1, 3 · 2p), if m ≡ 0 mod 4;

(3 · 2p+2 + 1, 2p), if m ≡ 1 mod 4;

(13 · 2p + 1, 2p+1), if m ≡ 2 mod 4;

(15 · 2p + 1, 3 · 2p), if m ≡ 3 mod 4.

Proof. In Code 1, replace X by RS, k by 2, and LX by

[0,0]*[0,1] | [0,0]*[1,0][1,1] | [0,0]*[1,1][0,1][0,0]

| [0,0]*[1,0][0,0][1,1][0,1] | [0,0]*[1,0][1,0][1,1][1,1]

| [0,0]*[1,0][0,1][0,0][0,0][0,1] | [0,0]*[1,0][1,0][0,1][0,0][1,0]

| [0,0]*[1,0][1,1][1,0][0,0][1,0] | [0,0]*[1,0][0,0][0,1][1,1][0,0][1,0]

| [0,0]*[1,0][1,0][0,0][0,1][0,1][1,0]

| [0,0]*[1,0][1,0][0,0][1,1][1,1][1,0]

| [0,0]*[1,0][1,0][1,1][1,1][0,0][0,0]*[1,0]

| [0,0]*[1,0][0,0][0,1][1,1][0,0][0,0][0,0]*[1,0]

| [0,0]*[1,0][1,0][0,0][0,1][0,0][0,0][0,0]*[1,0]

| [0,0]*[1,0][1,0][0,1][1,0][0,0][0,0][0,0]*[1,0]

Then running Code 1 in Walnut returns TRUE. ⊓⊔

Theorem 6. Let c(rs) = (c0, c1, . . .) be the c-factorization of the Rudin-Shapiro
sequence rs. Then cm = rs[i..i+ n− 1] where, for 0 ≤ m ≤ 12, (i, n) belongs to

{(0, 1), (1, 2), (3, 1), (4, 5), (9, 3), (12, 2), (14, 5), (19, 5), (24, 4), (28, 8), (36, 12), (48, 6), (54, 6)},

The c-and z-factorizations of some automatic sequences via Walnut 11

and for all m ≥ 13 with p = ⌊m
4 ⌋,

(i, n) =

(13 · 2p−1, 2p), if m ≡ 0 mod 4;

(15 · 2p−1, 3 · 2p−1), if m ≡ 1 mod 4;

(9 · 2p, 3 · 2p), if m ≡ 2 mod 4;

(12 · 2p, 2p), if m ≡ 3 mod 4.

Proof. In Code 2, replace X by RS, k by 2, and LX by

[0,0]*[0,1] | [0,0]*[0,1][1,0] | [0,0]*[1,0][1,1]

| [0,0]*[1,1][0,0][0,1] | [0,0]*[1,0][0,0][0,1][1,1]

| [0,0]*[1,0][1,0][0,1][0,0] | [0,0]*[1,0][1,1][1,0][0,1]

| [0,0]*[1,0][0,0][0,1][1,0][1,1] | [0,0]*[1,0][1,0][0,1][0,0][0,0]

| [0,0]*[1,0][1,1][1,0][0,0][0,0]

| [0,0]*[1,0][0,0][0,1][1,1][0,0][0,0]

| [0,0]*[1,0][1,0][0,0][0,1][0,1][0,0]

| [0,0]*[1,0][1,0][0,0][1,1][1,1][0,0]

| [0,0]*[1,0][1,0][0,0][0,1][0,0][0,0][0,0]*[1,0]

| [0,0]*[1,0][1,0][0,1][1,0][0,0][0,0][0,0]*[1,0]

| [0,0]*[1,0][1,0][1,1][1,1][0,0][0,0][0,0]*[1,0]

| [0,0]*[1,0][0,0][0,1][1,1][0,0][0,0][0,0][0,0]*[1,0]

Then running Code 2 in Walnut returns TRUE. ⊓⊔

4.4 The paper-folding sequence

The paper-folding sequence arises from the iterative folding of a piece of paper.
As the paper is folded repeatedly to the right and then unfolded, the sequence
of turns is recorded. For each folding action, a corresponding binary digit is as-
signed: right turns are coded by 1 and left turns by −1. This systematic recording
process generates the infinite sequence

pf = 11(−1)11(−1)(−1)111(−1)(−1)1(−1)(−1)111(−1)11 · · · .

It is 2-automatic and generated by the automaton in Figure 1f. Finally, it can
be written as ν(hω(a)), where h : a 7→ ab, b 7→ cb, c 7→ ad, d 7→ cd and ν : a, b 7→
1, c, d 7→ −1.

Theorem 7. Let z(pf) = (z0, z1, . . .) be the z-factorization of the paper-folding
sequence pf . Then, for all m ∈ {0, . . . , 5}, zm is given in Table 1 and, for all
m ≥ 6, zm = pf [i..i+ n− 1] where

(i, n) =

{
(5 · 2m/2−1, 2m/2−1), if m is even;

(3 · 2(m−1)/2, 2(m−1)/2+1), if m is odd.

Proof. In Code 1, replace X by RS, k by 2, and LX by

12 M. Jahannia and M. Stipulanti

[0,0]*[0,1] | [0,0]*[0,1][1,0] | [0,0]*[0,1][1,0][1,0]

| [0,0]*[1,0][1,1][1,1] | [0,0]*[1,0][0,1][1,0][0,0]

| [0,0]*[1,0][1,1][1,1][0,0] | [0,0]*[1,0][0,0][1,1][0,0][0,0]*[0,0]

| [0,0]*[1,1][1,0][0,0][0,0][0,0]*[0,0]

Then running Code 1 in Walnut returns TRUE. ⊓⊔

Theorem 8. Let c(pf) = (c0, c1, . . .) be the c-factorization of the paper-folding
sequence pf . Then cm = pf [i..i+ n− 1] where, for 0 ≤ m ≤ 9, (i, n) belongs to

{(0, 1), (1, 1), (2, 1), (3, 3), (6, 3), (9, 4), (13, 6), (19, 4), (23, 6), (29, 10)},

and for all m ≥ 10 with p = ⌊m
3 ⌋,

(i, n) =

(13 · 2p−2 − 1, 7 · 2p−2), if m ≡ 0 mod 3;

(5 · 2p − 1, 2p), if m ≡ 1 mod 3;

(3 · 2p+1 − 1, 2p−1), if m ≡ 2 mod 3.

Proof. In Code 2, replace X by PF, k by 2, and LX by

[0,0]*[0,1] | [0,0]*[1,1] | [0,0]*[1,0][0,1] | [0,0]*[1,1][1,1]

| [0,0]*[1,0][1,1][0,1] | [0,0]*[1,0][0,1][0,0][1,0]

| [0,0]*[1,0][1,1][0,1][1,0] | [0,0]*[1,0][0,0][0,1][1,0][1,0]

| [0,0]*[1,0][0,0][1,1][1,1][1,0] | [0,0]*[1,0][1,1][1,0][0,1][1,0]

| [0,0]*[1,0][0,0][0,1][1,0][1,0][1,0][1,0]*

| [0,0]*[1,0][0,0][1,0][1,1][1,0][1,0][1,0]*

| [0,0]*[1,0][1,1][0,1][0,1][1,0][1,0][1,0]*

Then running Code 2 in Walnut returns TRUE. ⊓⊔

4.5 The Mephisto-Waltz sequence

The Mephisto-Waltz sequence mw = aabaabbba · · · is defined as the fixed point
of the morphism a 7→ aab, b 7→ bba starting with a. It is thus 3-automatic and
is generated by the automaton in Figure 1d. Another definition of this sequence
is, for all n ≥ 0, mw[n] = a if | rep3(n)|2 is even, mw[n] = b otherwise, i.e., we
store the parity of the number of 2’s in the base-3 representation of n.

Theorem 9. Let z(mw) = (z0, z1, . . .) be the z-factorization of the Mephisto-
Waltz sequence mw. Then, for all m ∈ {0, . . . , 3}, zm is given in Table 1 and,
for all m ≥ 4, zm = mw[i..i+ n− 1] where, for p = ⌊m

3 ⌋,

(i, n) =

(8 · 3p−1 + 1, 2 · 3p−1), if m ≡ 0 mod 3;

(10 · 3p−1 + 1, 8 · 3p−1), if m ≡ 1 mod 3;

(2 · 3p+1 + 1, 2 · 3p), if m ≡ 2 mod 3.

Proof. First, in Walnut, code the Mephisto-Waltz sequence with the commands
morphism h "0->001 1->110": and promote MW h. Then, in Code 1, replace X
by MW, k by 3, and LX by

The c-and z-factorizations of some automatic sequences via Walnut 13

[0,0]*[0,1] | [0,0]*[1,2] | [0,0]*[1,1][0,1] | [0,0]*[2,1][1,1]

| [0,0]*[1,0][0,2][2,2] | [0,0]*[2,0][2,2][0,0]*[1,0]

| [0,0]*[1,0][0,2][1,2][0,0]*[1,0] | [0,0]*[2,0][0,2][0,0]*[1,0]":

Then running Code 1 in Walnut returns TRUE. ⊓⊔

Theorem 10. Let c(mw) = (c0, c1, . . .) be the c-factorization of the Mephisto-
Waltz sequence mw. Then, for all m ∈ {0, . . . , 3}, cm is given in Table 1 and,
for all m ≥ 4, cm = mw[i..i+ n− 1] where, for p = ⌊m

3 ⌋,

(i, n) =

(10 · 3p−2, 8 · 3p−2), if m ≡ 0 mod 3;

(2 · 3p, 2 · 3p−1), if m ≡ 1 mod 3;

(8 · 3p−1, 2 · 3p−1), if m ≡ 2 mod 3.

Proof. In Code 2, replace X by MW coded in Walnut as in the proof of Theorem 9,
k by 3, and LX by

[0,0]*[0,1] | [0,0]*[1,1] | [0,0]*[2,1] | [0,0]*[1,0][1,0]

| [0,0]*[1,0][0,2][1,2][0,0]* | [0,0]*[2,0][0,2][0,0]*

| [0,0]*[2,0][2,2][0,0]*":

Then running Code 2 in Walnut returns TRUE. ⊓⊔

5 Conclusion

In this paper, we investigated the following problem: given an abstract numer-
ation system S and an S-automatic sequence x, is it possible to use Walnut to
obtain a description of both the Crochemore and Ziv-Lempel factorizations of
x that only depend on the numeration system S? We produced a detailed code
for several classical automatic sequences in the Zeckendorff system as well as in
bases 2 and 3. According to us, a general answer to the previous question is far
from being obvious to obtain. Indeed, first, the software Walnut only works in
the case of so-called addable abstract numeration systems, i.e., when addition
can be performed by an automaton. Then, as said previously, a candidate for
the factorizations has to be known in advance in the hope of using Walnut. We
believe that finding such candidates might be tricky for a general automatic
sequence, when not much information is known about the inner structure of
the sequence. Observe also that, already among the 2-automatic sequences we
considered, the pairs of positions and lengths of the factors of the factorizations
strongly depend on the sequence itself and not only on the underlying numer-
ation system. Finally, we wish to point that we examined non purely morphic
sequences for which Berstel and Savelli write in [2, Sec. 6] that “it is not yet
clear whether a satisfactory description [of the c-factorization] can be obtained”.

Acknowledgments

We thank Narad Rampersad for useful discussions.
Manon Stipulanti is an FNRS Research Associate supported by the Research

grant 1.C.104.24F.

14 M. Jahannia and M. Stipulanti

References

1. Allouche, J.P., Shallit, J.: Automatic sequences: theory, applications, generaliza-
tions. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/
CBO9780511546563

2. Berstel, J., Savelli, A.: Crochemore factorization of Sturmian and other infinite
words. In: Mathematical Foundations of Computer Science (MFCS) 2006, Lecture
Notes in Comput. Sci., vol. 4162, pp. 157–166. Springer, Berlin (2006). https:
//doi.org/10.1007/11821069_14

3. Berthé, V., Rigo, M. (eds.): Combinatorics, Automata, and Number Theory, En-
cyclopedia of Mathematics and its Applications, vol. 135. Cambridge University
Press (2010). https://doi.org/10.1017/CBO9780511777653

4. Brillhart, J., Morton, P.: A case study in mathematical research: the Golay-Rudin-
Shapiro sequence. Mathematical Intelligencer 13(1), 36–48 (1991)

5. Constantinescu, S., Ilie, L.: The Lempel–Ziv complexity of fixed points of mor-
phisms. SIAM Journal on Discrete Mathematics 21(2), 466–481 (2007). https:
//doi.org/10.1137/050646846

6. Crochemore, M.: Recherche linéaire d’un carré dans un mot. C. R. Acad. Sci. Paris
Sér. I Math. 296(18), 781–784 (1983)

7. Crochemore, M., Rytter, W.: Text algorithms. The Clarendon Press, Oxford Uni-
versity Press, New York (1994)

8. Devaney, R.L.: An introduction to chaotic dynamical systems. CRC Press, Boca
Raton, FL, third edn. (2022)

9. Fici, G.: Factorizations of the Fibonacci infinite word. J. Integer Seq. 18(9), Article
15.9.3, 14 (2015)

10. Ghareghani, N., Mohammad-Noori, M., Sharifani, P.: On z-factorization and c-
factorization of standard episturmian words. Theoret. Comput. Sci. 412(39), 5232–
5238 (2011). https://doi.org/10.1016/j.tcs.2011.05.035

11. Jahannia, M., Mohammad-Noori, M., Rampersad, N., Stipulanti, M.: Palindromic
Ziv-Lempel and Crochemore factorizations of m-bonacci infinite words. Theoret.
Comput. Sci. 790, 16–40 (2019). https://doi.org/10.1016/j.tcs.2019.05.010

12. Jahannia, M., Mohammad-Noori, M., Rampersad, N., Stipulanti, M.: Closed Ziv-
Lempel factorization of the m-bonacci words. Theoret. Comput. Sci. 918, 32–47
(2022). https://doi.org/10.1016/j.tcs.2022.03.019

13. Lecomte, P.B.A., Rigo, M.: Numeration systems on a regular language. Theory
Comput. Syst. 34(1), 27–44 (2001). https://doi.org/10.1007/s002240010014

14. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE transactions on
information theory 22(1), 75–81 (1976)

15. Mousavi, H.: Automatic theorem proving in Walnut (2021), preprint available at
https://arxiv.org/abs/1603.06017

16. Rigo, M., Maes, A.: More on generalized automatic sequences. Journal of Au-
tomata, Languages, and Combinatorics 7(3), 351–376 (2002). https://doi.org/
10.25596/jalc-2002-351

17. Shallit, J.: The logical approach to automatic sequences: exploring combinatorics
on words with Walnut. London Mathematical Society Lecture Note Series, Cam-
bridge University Press (2022). https://doi.org/10.1017/9781108775267

18. Shallit, J.: A generalization of automatic sequences. Theoret. Comput. Sci. 61(1),
1–16 (1988). https://doi.org/10.1016/0304-3975(88)90103-X

19. Wen, Z.X., Wen, Z.Y.: Some properties of the singular words of the Fibonacci
word. European J. Combin. 15(6), 587–598 (1994). https://doi.org/10.1006/
eujc.1994.1060

https://doi.org/10.1017/CBO9780511546563
https://doi.org/10.1017/CBO9780511546563
https://doi.org/10.1017/CBO9780511546563
https://doi.org/10.1017/CBO9780511546563
https://doi.org/10.1007/11821069_14
https://doi.org/10.1007/11821069_14
https://doi.org/10.1007/11821069_14
https://doi.org/10.1007/11821069_14
https://doi.org/10.1017/CBO9780511777653
https://doi.org/10.1017/CBO9780511777653
https://doi.org/10.1137/050646846
https://doi.org/10.1137/050646846
https://doi.org/10.1137/050646846
https://doi.org/10.1137/050646846
https://doi.org/10.1016/j.tcs.2011.05.035
https://doi.org/10.1016/j.tcs.2011.05.035
https://doi.org/10.1016/j.tcs.2019.05.010
https://doi.org/10.1016/j.tcs.2019.05.010
https://doi.org/10.1016/j.tcs.2022.03.019
https://doi.org/10.1016/j.tcs.2022.03.019
https://doi.org/10.1007/s002240010014
https://doi.org/10.1007/s002240010014
https://arxiv.org/abs/1603.06017
https://doi.org/10.25596/jalc-2002-351
https://doi.org/10.25596/jalc-2002-351
https://doi.org/10.25596/jalc-2002-351
https://doi.org/10.25596/jalc-2002-351
https://doi.org/10.1017/9781108775267
https://doi.org/10.1017/9781108775267
https://doi.org/10.1016/0304-3975(88)90103-X
https://doi.org/10.1016/0304-3975(88)90103-X
https://doi.org/10.1006/eujc.1994.1060
https://doi.org/10.1006/eujc.1994.1060
https://doi.org/10.1006/eujc.1994.1060
https://doi.org/10.1006/eujc.1994.1060

The c-and z-factorizations of some automatic sequences via Walnut 15

20. Zeckendorf, E.: Représentation des nombres naturels par une somme de nombres
de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liège 41, 179–182 (1972)

21. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inform. Theory IT-23(3), 337–343 (1977). https://doi.org/10.1109/tit.
1977.1055714

https://doi.org/10.1109/tit.1977.1055714
https://doi.org/10.1109/tit.1977.1055714
https://doi.org/10.1109/tit.1977.1055714
https://doi.org/10.1109/tit.1977.1055714

	Exploring the Crochemore and Ziv-Lempel factorizations of some automatic sequences with the software Walnut

