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Atomically-thin materials based on transition metal dichalcogenides and graphene offer a promis-
ing avenue for unlocking the mechanisms underlying the spin Hall effect (SHE) in heterointerfaces.
Here, we develop a microscopic theory of the SHE for twisted van der Waals heterostructures that
fully incorporates twisting and disorder effects, and illustrate the critical role of symmetry breaking
in the generation of spin-Hall currents. We find that an accurate treatment of vertex corrections
leads to a qualitatively and quantitatively different SHE than that obtained from popular approaches
like the “i η” and ladder approximations. A pronounced oscillatory behavior of skew-scattering pro-
cesses with twist angle, θ, is predicted, reflecting a non-trivial interplay of Rashba and valley-Zeeman
effects and yields a vanishing SHE for θ = 30◦ and, for graphene-WSe2, an optimal SHE for θ ≈ 17◦.
Our findings reveal disorder and broken symmetries as important knobs to optimize interfacial SHEs.

The discovery of superconductivity [1, 2], flat bands [3–
6], strongly-correlated insulating phases and topological
behavior [7, 8] in layer-twisted honeycomb systems has
lead them to be at the centre of many theoretical and
experimental studies [9–20]. The significance of twist-
ing in the plethora of spin-dependent phenomena gen-
erated by spin-orbit coupling (SOC) is currently under
intense investigation [21–29]. It has been shown that
the drastic alteration of the Fermi surface’s spin texture
induced by twisting [21–25] leads to profound changes
in the spin-charge interconversion processes displayed by
graphene-transition metal dichacolgenide (TMD) bilay-
ers [26, 27], a paradigmatic system in the burgeoning field
of graphene spintronics [30–32]. Despite these promising
developments, a microscopic theory of the spin Hall effect
(SHE) – the generation of a transverse spin current due
to an applied electric field – reflective of the untwisted,
let alone twisted, van der Waals (vdW) heterostructures
used in spin Hall experiments [33–41] remains an elu-
sive task. Such a theory could offer valuable insight into
the role of broken spatial symmetry and relative atomic
orientation between layers. Through twisting, the single
unique mirror plane present in aligned graphene-TMD
bilayers is lost, reducing the symmetry from C3v to the
chiral point group C3. From a physical perspective, the
metal-chalcogen environment around each carbon atom
is changed as the layers are twisted, leading to a modu-
lation of the out-of-plane asymmetry SOC (Rashba) and
the sublattice-resolved SOC (valley-Zeeman). Twisted
vdW heterostructures therefore provide a natural, highly
tunable platform to investigate interfacial SHEs and may
serve as a guide in examining other heterointerfaces.

Another key question is the breaking of translation
symmetry due to disorder, which is known to profoundly
modify the electrodynamic response of spin-orbit-coupled
Dirac bands [32]. The ubiquitous nature of disorder in 2D
crystals makes it a crucial ingredient for understanding
both the SHE and the wealth of magneto-electric effects

underlying charge-to-spin conversion, such as the inverse
spin galvanic effect (ISGE). The ISGE has been under-
stood in both untwisted [42, 43] and twisted [26] 2D vdW
heterostructures with dilute random impurities. In con-
trast, previous theoretical work on the SHE has focused
on minimal models of proximitized graphene, i.e. without
disorder [44, 45], within the Rashba spin gap [46], and in
the absence of the valley-Zeeman effect [47]. The diffusive
SHE with a Fermi energy located well above the spin gap
– the most experimentally accessible and well controlled
regime due to the suppression of carrier-density inho-
mogeneities [33–41] – is theoretically challenging, and
more so for comprehensive graphene-TMD models with
competing symmetry-breaking effects. Unlike the ISGE,
where the nonequilibrium spin density is simply propor-
tional to the charge transport time, the extrinsic SHE is
governed by its own time scales (which, technically speak-
ing, are encoded in vertex corrections to spin-charge re-
sponse functions). The microscopic processes governing
the SHE reflect the rich interplay between Fermi-surface
spin texture (quantum geometry) and spin-orbit scatter-
ing mechanisms due to disorder, and hence constitute
a critical puzzle piece in understanding non-local spin
transport experiments [36, 37], as well as guiding future
efforts in spin-twistronics.

In this paper, we construct a microscopic theory for
twisted graphene-TMD systems that accounts for band
structure effects non-perturbatively and straddles strong
and weak scattering regimes, hence overcoming the above
challenges via a unified approach. The most surprising
result is a giant modulation of the spin Hall conductiv-
ity with twist angle, yielding an optimal SHE for chiral
bilayers at a critical twist angle (θc ≈ 17◦ for graphene-
WSe2). This novel behavior, reflective of the sensitivity
of disorder corrections to quantum-geometric effects, is
absent in the “i η” approximation. Moreover, our findings
suggest that purely diffusive SHEs in graphene-TMD are
dominated by skew-scattering processes with large cross
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sections. An intriguing exception are C3v-invariant sys-
tems with θ = 30◦. Here, anomalous scattering processes
due to spatial fluctuations of the proximity-induced SOCs
[48–50] are expected to govern the steady-state SHE.

Model and Theory.—We implement the Hamiltonian
of Refs. [21–26] for the low-energy graphene-TMD de-
scription, which assumes the axes to be taken in the
graphene sheet’s frame of reference. Specifically (ℏ = 1),
for the clean system we write Hk = H0k + HR + Hvz
(k is the wavevector measured from a Dirac point), with
H0k = v(τzσxkx + σyky), Hvz = λvz(θ)τzsz, and

HR = λR(θ)e
isz

αR(θ)

2 (τzσxsy − σysx)e
−isz

αR(θ)

2 , (1)

where λR(θ), αR(θ), and λvz(θ) are the twist-dependent
Rashba magnitude, Rashba phase, and valley-Zeeman
coupling, respectively, v is the bare Fermi velocity, and
τi, σi, and si (i ∈ {x, y, z}) are the Pauli matrices act-
ing on the valley, sublattice, and spin degrees of freedom,
respectively. Here, we use the θ dependence of the SOC
magnitudes accurately mapped by recent quantum inter-
ference measurements on twisted graphene-WSe2 [28] to
predict the full θ dependence of the SHE. Furthermore,
we include scalar disorder into our model via the term
V (r) =

∑
i u0 δ(r −Ri), where {Ri} is the set of impu-

rity positions and u0 characterises the impurity scatter-
ing strength. The twisted system generally belongs to the
C3 chiral group, except for the discrete set of twist angles
θ = pπ/3 (p ∈ Z), at which the symmetry is elevated to
C3v due to the presence of a mirror plane. Moreover, as
shown below, there is an important hidden symmetry for
θ = π/6. These considerations will become crucial when
assessing the disorder corrections to SHE.

The spin Hall conductivity, σsH, is calculated from the
Kubo-Streda formula [50–52] using an extension of the
T -matrix diagrammatic technique of Ref. [50] to spin-
orbit-coupled bands. The transport in the dilute impu-
rity regime is governed by the Fermi-surface contribution

σsH =
∑
k

tr
[
J z
y G+

k j̃xG−
k

]
, (2)

where G±
k = (G±−1

0,k −Σ±)−1 are the disorder-averaged re-
tarded (+)/advanced (−) Green’s functions at the Fermi
energy, ε, Σ± are the disorder self-energies, G±

0,k =

(ε−Hk ± i0+)−1 are the clean Green’s functions, J z
y =

vσysz/2 is the spin current operator, jx = −e∂kx
Hk is

the charge current operator in the x direction (e > 0),
j̃x is the disorder-renormalized charge current operator
(Fig. 1), and the trace is taken over all internal degrees
of freedom. Eq. (2) captures all possible single-impurity
scattering processes when handled within the T -matrix
formalism outlined in Figs. 1(a)-(b). Most notably it ac-
counts for skew-scattering (semiclassical) and side-jump
(quantum) corrections in a fully non-perturbative fashion

FIG. 1. (a): Renormalized charge current vertex within the
T -matrix formalism. Solid red (blue) lines denote disorder-
averaged retarded (advanced) Green’s functions, red (blue)
dashed lines with black (white) boxes represent retarded (ad-
vanced) T -matrices, and the black cross signifies the insertion
of the scalar impurity density. (b): Expansion of the T -matrix
vertex renormalization. The black dashed lines denotes an im-
purity scattering event. (c): Y -diagrams. Response functions
with the insertion of a single third-order scattering event.
The grey shading indicates the renormalization of the ver-
tices within the BA (retaining only the first term in Fig. 1b).

[50]. If vertex corrections are ignored, σsH fails to van-
ish when λvz = 0, thus violating the exact SU(2)-gauge
covariance of the Rashba-coupled system [53, 54]. As it
turns out, vertex corrections are also essential when sub-
lattice symmetry is broken, i.e. λvz = λA − λB ̸= 0 [32],
where λA(B) is the intrinsic-like SOC on A(B) sites. We
demonstrate this in two complementary ways: by means
of a numerical evaluation of the T -matrix series (full re-
summation) and an analytical calculation of a sub-set of
Feynman diagrams. The latter provides insights into the
microscopic mechanisms governing the SHE, while the
former allows us to reach the strong and unitary scatter-
ing regimes (e.g, describing resonant impurities [55]).

Results.—We specialize to the case |ε| > ∆s, where
∆s =

√
4λ2

R + λ2
vz is the spin gap, which, as mentioned

previously, is the most pertinent parameter region. We
start by describing the impact of skew scattering to lead-
ing order in u0. This is achieved by calculating the Y -
diagrams shown in Fig. 1(c), in which the Green’s func-
tions and vertices are renormalized within the first Born
approximation (BA),

σsH
Y =

∑
k,p

2Re
{
tr
[
G−
k J̄ z

y G+
k Y +G+

p j̄xG−
p

]}
, (3)

where Y + = nu3
0

∑
q G+

q is the retarded skew-scattering
insertion, G±

k are the Green’s functions evaluated within
the BA, and J̄ z

y and j̄x are the disorder-renormalized spin
current and charge current vertices, respectively, calcu-
lated within the BA. We note that the Rashba phases in
Eq. (1) can be removed by untwisting the full Hamilto-
nian via a unitary spin rotation (see Ref. [26] for details).
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Evaluating the Y -diagrams in Fig. 1 produces

σsH
Y =

2eε

nπu0

λ4
Rλ

2
vz(ε

2 − λ2
vz)(ε

2 + λ2
vz)

2

(ε4(λ2
R + λ2

vz) + 3λ2
Rλ

4
vz − ε2λ4

vz)
2
, (4)

to leading order (O(n−1)) in the impurity concentra-
tion. The intricate behavior with the Fermi energy and
θ-dependent SOCs encoded in Eq. (4) reflects a remark-
able reliance of disorder effects on the spin-orbital texture
of Bloch wavefunctions (the quantum geometry of energy
bands [42]). Principally, a non-coplanar Rashba spin tex-
ture (and thus λvz ̸= 0) is required for a non-vanishing
SHE. This has a simple interpretation: skew scattering
from scalar impurities relies upon electronic states with
a well-defined spin polarization around a valley to en-
able a clear separation between spin-up and spin-down
scattering channels. The tilted Rashba spin textures in
graphene-TMD generally satisfy this requirement. Thus,
a spin Hall response naturally emerges when the sublat-
tice symmetry is broken (note that λR(θ) is guaranteed
to be non-zero due to the interfacial breaking of the hor-
izontal mirror plane). These considerations remains true
at O(n0), further emphasising the critical role played by
vertex corrections. In addition to occurring at O(n−1),
the renormalized response also carries a factor of u−1

0 ,
which puts it at the next order in the scattering strength
when compared to the electrical conductivity and spin
susceptibility [26, 47]. Anomalous scattering processes,
such as single-impurity side jumps and diffractive skew
scattering [50, 56–58], kick in to next order in the small-
n expansion, and thus are relevant for samples with low
carrier mobility. They are not considered here.

We now turn to the non-perturbative results in the
scattering strength obtained by resumming the infinite
T -matrix series in Fig. 1(b) numerically. The range of
impurity concentrations we focus on is chosen to yield
bona fide diffusive spin transport, i.e. σsH ∼ n−1. The
valley-Zeeman behavior of the steady-state spin Hall con-
ductivity and spin Hall angle, θsH = 2eσsH/σxx, is shown
in Fig. 2 in both the weak scattering and unitary limits.
(For consistency, we calculate the charge conductivity,
σxx, from linear response theory with the same methodol-
ogy used for σsH.) Moreover, the weak-scattering limit of
σsH (solid line) is obtained via Eq. (4); a numerical calcu-
lation in this regime is out of reach due to the smallness of
the disorder self-energy. We see that while the weak scat-
tering limit may yield a nominally large magnitude of the
spin Hall response, the corresponding spin-charge conver-
sion efficiency is significantly lower than in the unitary
case (|θunitary

sH | ≫ |θweak
sH |). This can be inferred from the

scaling behaviors in the perturbative regime: σsH ∝ u−1
0

[see Eq. (4)] as opposed to the faster decay featured by
the eletrical conductivity (σxx ∝ u−2

0 ). Furthermore, the
charge transport coefficients have distinct Fermi energy
dependencies in the Born and unitary scattering regimes.
Specifically, σxx ∼ ε0 (BA) and σxx ∼ ε2 (unitary) in the

FIG. 2. Valley-Zeeman coupling dependence of the spin Hall
response for weak scattering potentials (Eq. 4, with u0 = 0.1
eV nm2) and unitary (u0 → ∞) limits. A fixed Fermi energy
of ε = 0.2 eV is assumed alongside n = 1014 m−2 and λR = 20
meV. The grey region is the area accessible with intermediate
scattering strengths. Inset: Same for the spin Hall angle, θsH.

limit ε ≫ ∆s. This is fortunate, because the measured
charge conductivity in graphene-TMD closely follows the
ε2-law in the intermediate-to-high charge carrier density
regime [39, 59], thus matching the results of our theory
in the unitary limit and hence evidencing its predictive
power. In this strong scattering regime, not only do the
predicted spin Hall angles reach detectable values (see
inset to Fig. 2), more importantly, they agree well with
lateral spin Hall measurements [39]. Additionally, |σsH|
increases with λvz in a monotonic fashion for strong dis-
order, exhibiting no turning points inside a reasonable
range of λvz, unlike the weak scattering response which
displays a maximum at λvz ≃ λR.

The considerations above show that the unitary scat-
tering regime should be the primary focus when ana-
lyzing the SHE of realistic systems. To this end, we
use the twist dependent SOC magnitudes, λR(θ) and
λvz(θ), probed in recent experiments on graphene-WSe2
[28]. To extrapolate the experimental data to twist an-
gles greater than π/6, we exploit the twist angle symme-
tries of the individual SOCs [22, 23]. In practice, this is
accomplished by fitting a minimal Fourier series to the
data of Ref. [28]; see Figs. 3(b)-(c). To further im-
prove the accuracy of our results, we also account for
the SU(2)-gauge covariance breaking due to the momen-
tum cut-off regularization (kmax = Λ/v) of our numeri-
cal scheme [60]. The ensuing twist-angle behavior of the
spin Hall response in the unitary limit is shown in Fig.
3(a), which is the main finding of this paper. The sig-
nificance of these results is best appreciated by a direct
comparison against the iη-approximated response, σsH

η ,
wherein Σ± = ∓iη and vertex corrections are neglected
[60]. We immediately see that σsH and σsH

η differ in sev-
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eral ways. Most importantly, σsH vanishes when λvz = 0
while σsH

η reaches a maximal value at this point. What
is more, the iη approximation yields a response that is
not only different in sign, but also an order of magnitude
larger than the renormalized result. We gleam insight
for this size discrepancy from the weak scattering limit,
where σsH ∼ ε−1 for large Fermi energies in contrast
to σsH

η tending towards some constant value [60]. The iη
scheme irrefutably fails in modelling the SHE, even when
accounting for the parametric dependencies of the broad-
ening η = η(θ). Lastly, we note the ladder approxima-
tion, corresponding to only considering the first diagram
in the skeleton expansion of Fig. 1(b), also fails to de-
scribe the giant skew-scattering-driven SHE modulation
reported here. This is because the left-right asymmetry
of scattering cross sections manifests at third-order in the
scattering potential, as is well known.

Twisting effects.—We first focus on the region of twist
angles close to 30◦ as this will be the area hosting the
most exotic physics (Fig. 3). At θ = 30◦, the graphene-
TMD system has C3v symmetry, akin to untwisted bilay-
ers. However, unlike perfectly aligned heterostructures,
there is a hidden sublattice symmetry in our continuum
model. This is because λvz(30

◦) = 0 and thus the clean
system possesses chiral (sublattice) symmetry [61] at zero
chemical potential, σzHkσz = −Hk. (We note that our
model omits a small sublattice-resolved scalar potential
effects in accord to perturbation theory [22] and first
principles calculations [25].) As such, we speculate that,
when the twist angle is equal or close to 30◦, small fluctu-
ations in the proximity-induced spin-orbit fields will dom-
inate the SHE due to λvz approaching zero. These fluc-
tuations can arise from ripples in the graphene flake [62]
and non-uniform twisting across the sample [63]. Both
of these will yield spatially varying spin-orbit couplings
that can engender anomalous spin Hall responses [48, 49].
The exact consequence of these fluctuations makes for an
interesting question for further study beyond this work.
Second, we note that the spin Hall response in WSe2
is optimal for θ ≈ 17◦, by virtue of the maximal value
of |λvz(θ)|. The strong modulation of σsH demonstrated
here is a direct indicator of the giant renormalization gen-
erated by the interplay of disorder and twist-dependent
Fermi surface spin texture.

Lateral spin transport.—Lastly, we frame our results in
the context of recent experiments detecting the SHE in
graphene-TMD using spin precession techniques in Hall
bar geometry [37, 39]. Within the weak scattering regime
(specifically, u0 ≪ ν0(ε)

−1, with ν0(ε) the clean density
of states), the observed spin Hall angles (θexp

SHE ∼ 0.1–
1 %) are not achievable, even with proximity-induced
SOC choices larger than that recently mapped out by
quantum interference imaging [28]. Our microscopic the-
ory predicts θSHE ∼ 0.02% for λR = λvz = 20 meV

FIG. 3. (a): Twist angle dependence for the renormalized
and iη-approximated spin Hall conductivities for a graphene-
WSe2 bilayer based on the experimental observations of Ref.
[28], within the unitary and diffusive limits. The shaded re-
gion indicates where quantum effects will play a major role.
Here we take ε = 0.2 eV, n = 1014 m−2, and Λ = 10 eV. (b)
and (c) show minimal Fourier series fits to the experimental
data (black dots) of Ref. [28].

(see Fig. 2), indicating that the behaviour observed in
spin Hall transport experiments is the result of strong
scattering potentials. Working in the unitary limit, we
find that a spin Hall angle of order 0.1% is achievable
with larger SOCs or at higher impurity concentrations
(∼ 5 × 1015 m−2), however, this starts to move the sys-
tem away from the diffusive limit. For example, for a
system reflective of graphene-WSe2 [28, 29] (λR = 14
meV, λvz = 3 meV) with n = 4.5 × 1015m−2, we ob-
tain θSHE = 0.11% and find σxx to be approximately
diffusive (σxx(n)/σxx(2n) = 2.3). However, the σsH cal-
culated within the T -matrix method turns out to be non-
diffusive, reflecting higher-order corrections in n. Given
the breakdown of the diffusive limit in obtaining spin
Hall angles comparable to experiment, our findings sug-
gest that bona fide quantum effects, such as diffractive
skew scattering described by crossing diagrams [50], may
play a role in the spin transport observed.

In conclusion, our work demonstrates the necessity for
vertex corrections in the accurate modelling of the SHE
in layered materials with competing broken symmetries.
We find that disorder impacts pure interfacial SHEs in an
unexpected way, leading to a strong oscillatory behavior
of the spin Hall response upon twisting. The twist-angle
dependence of the SHE uncovered here reflects the un-
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derlying quantum geometry of electronic states in regions
of non-coplanar spin texture, raising intriguing questions
for future research.
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SUPPLEMENTARY MATERIAL

NEGLECTING VERTEX CORRECTIONS: THE iη APPROXIMATION

A common approximation in the literature is to take the self-energy to be a purely imaginary scalar quantity,
Σ± = ∓iη, discarding any matrix structure that may be generated by the disorder-averaging procedure. This is often
used in conjunction to the neglect of vertex corrections; this combination is commonly known as the iη-approximation.
Calculating the spin Hall response function within this scheme yields

σsH
η =

e

4π

λ2
R(ε

2 + λ2
vz)

ε2(λ2
R + λ2

vz)− λ4
R − 3λ2

Rλ
2
vz − λ4

vz
+O(η) . (5)

The renormalized response in Eq. (4) of main text behaves as σsH ∼ ε−1 for ε ≫ λR, λvz, η, whereas σsH
η instead

tends to a constant value of eλ2
R/[4π(λ

2
R +λ2

vz)]. As the Fermi energy is increased, the relative difference between the
two Fermi rings of the spin-orbit coupled bands decreases and thus would naturally yield a smaller spin Hall response,
further evidencing the need for vertex corrections to capture the correct behavior of the SHE.

NUMERICAL EVALUATION OF THE SPIN HALL CONDUCTIVITY

The use of a finite momentum cut-off in the momentum integral breaks the SU(2)-gauge covariance of the theory,
and so violates Dimitrova’s argument for a vanishing SHE when λR ̸= 0 and λvz = 0 [42, 53]. In calculating the
spin Hall conductivity numerically for arbitrary λR,vz, we remove the (small) contribution, σsH(λvz = 0), due to this
artificial symmetry breaking by determining the associated response for λvz = 0, where σsH

exact(λvz = 0) = 0 due to
the exact SU(2)-gauge covariance of the model.
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