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Abstract

Retrieval-Augmented-Generation and Gener-
ation-Augmented-Generation have been pro-
posed to enhance the knowledge required for
question answering over Large Language Mod-
els (LLMs). However, the former depends
on external resources, and both require in-
corporating the explicit documents into the
context, which results in longer contexts that
lead to more resource consumption. Re-
cent works indicate that LLMs have mod-
eled rich knowledge, albeit not effectively trig-
gered or activated. Inspired by this, we pro-
pose a novel knowledge-augmented framework,
Imagination-Augmented-Generation (IAG),
which simulates the human capacity to com-
pensate for knowledge deficits while answering
questions solely through imagination, without
relying on external resources. Guided by IAG,
we propose an imagine richer context method
for question answering (IMcQA), which ob-
tains richer context through the following two
modules: explicit imagination by generating
a short dummy document with long context
compress and implicit imagination with Hyper-
Network for generating adapter weights. Exper-
imental results on three datasets demonstrate
that IMcQA exhibits significant advantages in
both open-domain and closed-book settings, as
well as in both in-distribution performance and
out-of-distribution generalizations 1.

1 Introduction

Knowledge-intensive tasks like question answer-
ing (QA) necessitate access to extensive world
and domain knowledge (Berant et al., 2013; Joshi
et al., 2017; Kwiatkowski et al., 2019). Recently,
Large Language Models (LLMs) have displayed
notable competencies in almost every task and in-
dustry within the “pre-train, prompt, and predict”
paradigm (Liu et al., 2023b). However, LLMs lack
the sufficient capability to independently handle

1Our code will be available at https://github.com/
Xnhyacinth/IAG
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Figure 1: Compared with RAG (Top) and GAG (Mid-
dle), the proposed IAG (Bottom) eschews external re-
sources, utilizing solely LLMs to imagine a shorter ex-
plicit document and more flexible implicit adapters.

knowledge-intensive tasks (Yu et al., 2023) and
usually generate hallucinations (Zhao et al., 2023).

In recent years, to alleviate the issue of hallu-
cinations in LLMs and improve performance in
knowledge-intensive tasks such as QA, researchers
have proposed numerous knowledge-augmented
methods for LLMs, which mainly include two cate-
gories: Retrieval-Augmented-Generation (RAG)
(Guu et al., 2020) and Generation-Augmented-
Generation (GAG) (Abdallah and Jatowt, 2023).
RAG (Top part of Figure 1) retrieves related docu-
ments from external resources (e.g., auxiliary tools
and domain documents) and then sends those re-
trieved documents and the question together into
LLMs (Izacard and Grave, 2021). RAG has demon-
strated formidable performance on several tasks
(Lewis et al., 2020). However, RAG not only re-
quires presupposed external resources but also ne-
cessitates more computational resources and longer
processing times (Xu et al., 2023a). Take typical
RAG method FiD (Izacard and Grave, 2021) as
an example, the required computing resources and
inference time continue to increase as the number
of retrieved documents increases. While retriev-
ing 100 documents requires processing over 12k
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tokens, it will result in an exceeding 100× prompt
length (decades times of GPU consumption) and an
over 1002× computational time (Liu et al., 2023a).

To avoid dependence on external resources,
GAG (Yu et al., 2023) has been proposed and
can utilize LLMs like InstructGPT (Ouyang et al.,
2022) to generate the relevant documents (Middle
part of Figure 1). However, it requires additional
financial costs (e.g., API calls) and still demands
substantial computational resources and time. Ad-
ditionally, both RAG and GAG utilize more ex-
plicit external resources (symbolized documents),
and the quality of the obtained content significantly
impacts downstream tasks (Li et al., 2023; Shaier
et al., 2024). For example, Gao et al. (2024) indi-
cates that noise in the documents negatively affects
the performance. Therefore, there is an urgent need
to explore new knowledge-augmented methods.

In fact, LLMs inherently contain rich knowl-
edge and possess significant potential for resolv-
ing knowledge-intensive tasks (Bhagavatula et al.,
2020). Enhancing the performance of specific
tasks can be achieved by better activating rele-
vant knowledge or expanding memory capacity
without relying on external resources. For exam-
ple, simply repeating the question twice (Xu et al.,
2023b), just reviewing and consolidating knowl-
edge by appending a straightforward prompt “As
far as I know” (Yao et al., 2023), and using visual-
language models to imagine images (Tang et al.,
2023), all approaches enhance the performance
of LLMs on downstream tasks. Inspired by this,
we introduce a novel knowledge-augmented frame-
work Imagination-Augmented-Generation (IAG)
for LLMs, which simulates the human capacity to
compensate for knowledge deficits solely through
imagination in QA. As shown in the bottom part of
Figure 1, for resolving knowledge-intensive tasks,
IAG utilizes solely LLMs to imagine a shorter ex-
plicit document and more flexible implicit adapters.

Within the framework of IAG, we introduce
an imagine richer context method for question
answering (IMcQA). To sufficiently utilize the in-
herent knowledge of LLMs, we design two main
modules to activate the various potential knowl-
edge modeling in LLMs and obtain a richer context.
Specifically, the explicit imagination module first
uses symbol distillation to obtain the compressed
context and then guides LLMs in generating a short
and useful dummy document. Subsequently, the
implicit imagination module utilizes the proposed

HyperNetwork to generate LoRA weights to acti-
vate the task-processing ability of LLMs. Unlike
the LoRA (Hu et al., 2021) stores task knowledge
and ability in modules, the HyperNetwork learns
to imagine hidden knowledge for each question.

We evaluate the proposed IMcQA to various
LLMs, including T5 (Roberts et al., 2020a) and
Llama2 (Touvron et al., 2023). The experimental
results across three QA datasets indicate that the
proposed method yields performance gains while
reducing computational expenses and time. No-
tably, it even outperforms baseline methods that
retrieve and generate knowledge under the same
document settings. In conclusion, the contributions
of this paper are summarized as follows:

• We propose a new knowledge augmentation
framework IAG to fully leverage the LLMs’
intrinsic knowledge more efficiently without
relying on external resources.

• We propose a novel QA method IMcQA that
employs two main modules (explicit imagina-
tion and implicit imagination) to better utilize
the knowledge stored in the LLMs and obtain
richer context in QA.

• Experimental results indicate that the pro-
posed method successfully activates the rel-
evant internal knowledge of LLMs. IMcQA
exhibits significant advantages in both open-
domain and closed-book settings, as well as
in both in-distribution performance and out-
of-distribution generalizations.

2 Related Work

This paper mainly utilizes context compression, hy-
pernetworks and knowledge distillation to achieve
knowledge enhancement. The following will eluci-
date pertinent research across four facets.
Knowledge Enhancement has usually been
adopted to alleviate the issue of insufficient knowl-
edge in LLMs. There are two main methods: RAG
(Sun et al., 2019) and GAG (Abdallah and Jatowt,
2023). The typical RAG method FiD (Izacard and
Grave, 2021) retrieves the documents from an ex-
ternal knowledge base to answer questions. As
LLMs can be considered a knowledge base, several
studies (Liu et al., 2022) propose to extract knowl-
edge from LLMs (e.g., GPT-3). For example, Yu
et al. (2023) generates 10 relevant documents for
world knowledge according to the question. How-
ever, RAG needs the related external resources, and



both RAG and GAG still need to obtain and utilize
verbose explicit long contexts. Recently, there have
been some methods to enhance the LLMs’ ability
through simulating human imagination of visual
information. But they use existing visual-language
models (Tang et al., 2023; Akter et al., 2024), while
we prefer self-imagination to augment knowledge.
Besides, they have not fully leveraged the param-
eterized knowledge within the models (Xu et al.,
2023b; Kazemnejad et al., 2023). In this paper,
the proposed method for augmenting knowledge
not only obviates the need for external resources
but also enhances the efficiency of extracting and
activating internal knowledge within LLMs.

Context Compression has often been used to im-
prove the efficiency of LLMs in processing long
contexts. Recent studies (Mu et al., 2023) propose
that long contexts be condensed into summary vec-
tors (soft prompts) to ensure their effective utiliza-
tion by LLMs. Simultaneously, some studies (Jiang
et al., 2023) believe that information redundancy
in lengthy texts and information entropy can be
utilized to compress the contexts (Li et al., 2023).
Unlike them, this paper is devoted to awakening
the long-context modeling ability of LLMs. By
learning an Imagine Model that can generate com-
pressed contexts, the QA model that operates on
short contexts can also possess a rich contextual
understanding akin to the QA model designed for
processing longer contexts.

Knowledge Distillation is a technique where a
smaller model learns to mimic the predictions of a
larger model, aiming to retain performance while
reducing computational resources (Hinton et al.,
2015). Recent studies (West et al., 2022) present
symbolic knowledge distillation, a process that fa-
cilitates knowledge transfer from a teacher model
via extracting training data to subsequently train a
student model. In this paper, the process of obtain-
ing compressed context during the explicit imag-
ination resembles a form of symbolic distillation.
Regarding training, our emphasis lies in distilling
the long-context modeling abilities of LLMs.

Hypernetworks is designed to reduce the number
of parameters (Ha et al., 2016), i.e., a small neural
network generates parameters for another big neu-
ral network. Recent studies (Phang et al., 2022; Ivi-
son et al., 2023) have explored the enhancement of
model performance in zero- and few-shot settings
through meta-learning involving hypernetworks.
We utilize hypernetworks to acquire implicit imag-

ine capabilities by dynamically generating LoRA
for efficiency and generalization.

3 Method

In this section, we introduce the detailed method of
IMcQA to activate LLMs’ intrinsic knowledge and
obtain a richer context for QA. The fundamental
premise underlying this method is that QA with a
richer context yields greater performance. Conse-
quently, diverse methods are employed for ques-
tions lacking in richer contexts to activate knowl-
edge within LLMs to replicate comparable effects
to those achieved with richer contexts.

Specifically, IMcQA comprises two main mod-
ules. Explicit imagination with long context com-
pression learns to imagine a short dummy docu-
ment (§ 3.2). And implicit imagination with the Hy-
perNetwork models hidden knowledge that learns
a shared knowledge feature projection across ques-
tions (§ 3.3). The HyperNetwork is trained to gen-
erate lightweight LoRA modules, aiming to align
the question and the internal knowledge. Besides,
there is long context distillation in training, which
learns the teacher’s rich representations to compen-
sate for missing knowledge in imagination (§ 3.4).

3.1 Formulation

The formulation of our task follows RAG for QA
(Guu et al., 2020). Let V∗ denote the infinite set,
encompassing all potential strings over the tokens
in vocabulary V , and this includes the empty string.
An instance within a QA dataset is defined as a
triplet (q, a, c) comprising question q, answer a,
and context c, where q, a, c ∈ V∗. Conventionally,
the context c is drawn from the knowledge corpus
Z , like Wikipedia, whereby Z ⊂ V∗.

The goal of QA is to learn a distribution function
p(a|q). In a closed-book setting, LLMs directly en-
code the given question q and generate the answer
a (Roberts et al., 2020b). However, employing
a direct approach of requesting models to output
answers frequently results in poor performance, pri-
marily attributable to the omission of a substantial
amount of world knowledge. Therefore, a pop-
ular approach is the open domain setting, which
marginalizes p(a|q, c) over contexts c. Additional
background details are available in A.1.

3.2 Explicit Imagination with Compress

To get the context c, we utilize LLMs to imagine a
short dummy document, which can mitigate knowl-
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Figure 2: Overview of IMcQA method. In the inference phase, for each question, the Imagine Model imagines a
short dummy document based on the question and the HyperNetwork generates specific LoRA weights. During
training, there are two stages: the first stage is the pre-training of the Imagine Model, aiming at its ability to
imagine a short dummy document based on the question, and the second stage is the HyperNetwork fine-tuning
using long context distillation (§ 3.4) to learn a map from the question to the LoRA weights.

edge corpus error (Lee et al., 2023) by considering
potentially useful contexts. In the view of com-
pression, we greatly reduce input length, minimize
noise, and elevate the salience of essential tokens.

As shown in the left part of Figure 2, to help
LLMs fully utilize the knowledge and imagine
compressed text, we first pretrain it on our col-
lected question-compressed document pairs. By
leveraging symbolic distillation, we employ the
long-context compression method LongLLMLin-
gua (Jiang et al., 2023) to condense a large corpus
of retrieved documents. These compressed texts
c′ then serve as fine-tuning data alongside specific
prompts pq (A.2) and question-answer pairs for the
Imagine Model Gθ (θ represents the model’s pa-
rameter), which guides the model to think about its
knowledge and imagine a short dummy document:

d = Gθ(pq(q; c
′)) (1)

where d is the dummy document generated from
the Imagine Model. This process enables LLMs
to conceive compressed knowledge that robustly
parallels the question’s knowledge requirements.

3.3 Implicit Imagination with HyperNetwork
We advance upon LoRA (Hu et al., 2021) by sug-
gesting the implementation of the HyperNetwork,
which does not directly optimize the LoRA module
but generates specific LoRA adapter weights using
the inputs for QA (bottom part of Figure 2). This
is akin to repeating the question in the prompt (Xu
et al., 2023b) and incorporating certain topical cues
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Figure 3: The Architecture of HyperNetwork. Hyper-
Network generates LoRA adapter weights for each ques-
tion. During training, only HyperNetwork, FFN, and
Norm weights are updated.

to stimulate the model’s recall of relevant ques-
tions (Wang et al., 2023). However, the distinction
lies in the fact that they serve as wake-up features,
whereas we are generating model parameters.

The HyperNetwork architecture for generating
LoRA weights is exhaustively outlined in Figure
3. Specifically, Dq

k and U q
k represent the low-rank

projections of layer k correlated with the Q, while
Dv

k and Uv
k correspond to those associated with the

V . HyperNetwork represented as gD and gU , takes
concat(f, i{q,v}k ) as input, where f is the feature
vectors that use the model’s encoder to obtain and
using whitening algorithm (Su, 2021) for dimen-



sionality reduction, i{q,v}k ∈ {0, . . . , 2×#blocks}
signifies the positional embedding differentiating
between layers and between QV . Each HyperNet-
work is defined by weights Wd and Wu which rep-
resent the down and up projections respectively.
Finally, the HyperNetwork equations for D{q,v}

and U{q,v} can be expressed as:

f = whitening(Encoder(q; d)) (2)

x = concat(f, i{q,v}k | iqk = 2k, ivk = 2k + 1) (3)

D{q,v}, U{q,v} = gD(x), gU (x) (4)

where the Encoder represents the encoder of the
model, whitening is a dimensionality reduction
algorithm, and concat means to splice the content.
gD and gU denote the descending and ascending
dimensions of HyperNetwork. More formally,

g(x) = MM(ReLU(MM,Wd),Wu) (5)

where MM stands for matrix multiplication, ReLU
is a activation function.

3.4 Training with Long Context Distillation
Within the framework of knowledge distillation,
components such as hidden representations (Jiao
et al., 2020), attention dependencies (Wang et al.,
2020), and relations among representations (Park
et al., 2021) are regarded as valuable knowledge
for transfer. In this paper, we consider long context
distillation (LCD) as the contextualized knowledge
that mainly guides the student.

Specifically, the teacher model FiD (Izacard and
Grave, 2021), which utilizes longer contextual in-
puts and theoretically contains more information
(richer context). It will activate more specific inter-
nal knowledge and serve as a supervisory model.
The teacher model assists the student model T5
(Roberts et al., 2020a), which has the same size as
the teacher and leverages short contextual inputs.
This aids in activating richer feature representations
and knowledge. The optimization objective for the
student model at each mini-batch zr = (xr, yr) is:

Ls(θs, θt, zr) = αLce(yr, S(xr; θs))

+(1− α)Lce(T (xr; θt), S(xr; θs))
(6)

where we have a teacher model denoted as T (·; θt)
and a student model denoted as S(·; θs). The cor-
responding model parameters are θt and θs.

As shown in the right of Figure 2, we perform
an additional representation alignment for better

knowledge transfer. In our distillation, both teacher
model and student model have the L layers, we feed
the text into them and can obtain the corresponding
output hidden states {Ht

l }Ll=0, {Hs
l }Ll=0, and atten-

tion matrices {At
l}Ll=1, {As

l }Ll=1. We suppose the
student’s l-th layer is aligned with the teacher’s l-th
layer, then the outputs of the student (i.e., Hs

l and
As

l ) should be close to the teacher’s (i.e., Ht
l and

At
l). For aligning hidden states, following (Park

et al., 2021), we use cosine distance COS to calcu-
late the proximity between the hidden states of the
teacher and the student:

Lhid = − COS(Hs
l , H

t
l ) (7)

While for aligning attention dependencies, we fol-
low (Jiao et al., 2020) to optimize the mean square
error (MSE) between the attention matrices of the
teacher and the student:

Lattn = − MSE(As
l , A

t
l) (8)

The overall objective for knowledge transfer is:

Lalign(H
s
l , H

t
l , A

s
l , A

t
l) = Lattn + Lhid (9)

The overall objective for training IMcQA is the
weighted sum of the two objectives:

L = Ls + λLalign (10)

4 Experiment

In this section, we conduct experiments to demon-
strate the effectiveness and efficiency of IAG and
IMcQA on QA. The experiment mainly answers
four research questions (RQs):
RQ1: Can IAG achieve knowledge augmentation
for answering questions over LLMs? (§ 4.4)
RQ2: Does our method have good knowledge acti-
vation and generalization abilities? (§ 4.5)
RQ3: Does IAG have advantages in effectiveness
and efficiency compared to RAG and GAG? (§ 4.7)
RQ4: What is the role of explicit and implicit imag-
ination modules in IAG and IMcQA? (§ 4.8)

4.1 Datasets
We evaluate the proposed approach on three pub-
lic question answering datasets: NaturalQuestions
(NQ) (Kwiatkowski et al., 2019), WebQuestions
(WQ) (Berant et al., 2013) and TriviaQA (TQA)
(Joshi et al., 2017). To evaluate the model perfor-
mance, we use the exact match (EM) score for eval-
uating predicted answers (Rajpurkar et al., 2016).
We provide dataset details in the Appendix A.4.



Models Reader
Params

# Docu-
ments NQ TriviaQA WebQ

# closed-book setting
T5-l (Roberts et al., 2020a) 770M 0 28.5* 28.7* 30.6*
T5-xl 3b 0 28.30 33.92 34.43
IMcQA-l (Ours) 770M 0 29.32 30.11 32.68
IMcQA-xl (Ours) 3b 0 29.59 35.71 37.40
# Retrieval Augmented Generation
DPR (Karpukhin et al., 2020) 110M 100 41.5* 56.8* 41.1*
RAG (Lewis et al., 2020) 400M 10 44.5* 56.1* 45.2*
FiD-l (Izacard and Grave, 2021) 770M 10 46.7* 61.9* 48.1*
FiD-xl 3b 10 50.1* 66.3* 50.8*
# Generation Augmented Generation
GENREAD-l (Yu et al., 2023) 770M 10† 40.3* 67.8* 51.5*
GENREAD-xl 3b 10† 42.6* 69.6* 52.6*
# Imagination Augmented Generation (Ours)
IMcQA-l 770M 1† 42.32 65.48 45.28
IMcQA-xl 3b 1† 46.51 68.38 50.45
IMcQA-l 770M 10 49.92 69.67 51.52
IMcQA-xl 3b 5‡ 50.87 70.34 52.78

Table 1: QA performances (%) of different methods on three datasets. The first part (closed-book setting) indicates
that only utilize questions; The latter three parts utilize explicit documents. The best results are in bold. * means
that those results are from existing papers, † denotes that the documents were generated (‡ indicates that the number
of documents is reduced due to insufficient memory for distillation). More results can be seen in Appendix A.5.1.

4.2 Baselines

Both the moderately sized language model (< 1B)
and the large language model (LLM) (≥ 3B) are
under consideration. T5 (Roberts et al., 2020a)
is selected as the backbone for our moderately
sized language models. We evaluate our proposed
IMcQA against several knowledge-enhanced ap-
proaches, which include RAG models such as DPR
(Karpukhin et al., 2020), RAG (Lewis et al., 2020),
and FiD (Izacard and Grave, 2021), as well as the
GAG model GENREAD (Yu et al., 2023), and pa-
rameters efficient fine-tuning method LoRA (Hu
et al., 2021). The Appendix A.3.2 provides further
information about those baselines.

For the zero-shot settings of LLMs (≥ 3B), we
use Llama2-7B and Llama2-13B (Touvron et al.,
2023) as the basic model. We evaluate with four
diverse settings: without retrieval, with retrieval,
with LoRA, and using the proposed IMcQA.

4.3 Implementations

In the pretraining stage, the Imagine Model initial-
ized with T5-large utilizes the generated question-
compressed pairs. During the second stage, the
teacher model employs a FiD reader with different

sizes (FiD-l and FiD-xl) that are fine-tuned on the
training split of target datasets. The student model
freezes the backbone and updates solely the Hyper-
Network, the feedforward neural network (FFN),
and the normalization layers (Chen et al., 2023).
More implementation details and experimental find-
ings are in the Appendix A.3.

4.4 Main Results

Table 1 shows the performance results, full results
including T5-Base are in the Appednidx A.5.1.

As shown in Table 1, when juxtaposed with
closed-book models, RAG, and GAG methods,
our proposed IAG framework IMcQA method ex-
hibits state-of-the-art performance with the equiva-
lent magnitude of document count and model size.

In the closed-book setting (in the upper part of
the table), our method outperforms the baseline by
an average of +2% EM score, indicating its excel-
lence in utilizing internal knowledge with imagina-
tion. It’s especially noteworthy that as the model
size expands, the performance advantages of the
imagination become ever more evident.

The following three parts of Table 1 show the
experimental results under the open domain setting.
Although our method only deals with one short



dummy document, it can still achieve results sim-
ilar to or better than the RAG and GAG methods,
which handle 10 documents. The findings reveal
that IMcQA exploits imagined condensed text to
strike a balance between efficiency and overhead.
Moreover, when IMcQA utilizes 10 retrieved doc-
uments, it supersedes the performance of FiD and
GENREAD with the EM average of +2.26% and
+3.06%.

4.5 Out-Of-Distribution (OOD) Performance
To further demonstrate the generalizations of the
IMcQA method and the importance of HyperNet-
work, we also evaluate its performance in out-of-
distribution (OOD) generalizations. Table 2 shows
the IID and OOD performance of FiD, and IMcQA
methods with different document settings when
training on NQ (From NQ generalization to the
other two datasets). Full OOD results of three
datasets are shown in the Appendix A.5.2.

It is patently clear that an increment in docu-
ment provision leads to better OOD performance,
likely due to the presence of answer-oriented con-
tent within these documents. Remarkably, IMcQA
can come within a relatively narrow 5% gap of FiD,
even when utilizing a single imagined document as
opposed to 10 retrieved ones.

Simultaneously, IMcQA generally showcases su-
perior performance in OOD when provided with 10
retrieved documents. This superiority can be traced
back to the pivotal role played by HyperNetwork
in generating LoRA adapters’ weights based on
questions. This equips models with the capability
to invoke and access internal knowledge based on
context-specific discourse rather than confining to
resolving distinct questions.

4.6 Zero-shot Results on LLMs
Figure 4 and Figure 5 illustrate the zero-shot results
for LLMs implementing IMcQA. This research
seeks to explore the possibility of enhancing LLMs
via IAG. Due to the high computational demands
of training, we only fine-tuned the HyperNetwork
on a mixed dataset without LCD in this experiment
and evaluated performance in a zero-shot setting.
Detailed prompt information can be found in the
Appendix A.2.

We discerned that Llama2’s performance can be
enhanced by imagining knowledge autonomously.
While leveraging explicit imagined context could
amplify the average EM +1%, this is not as signif-
icant as the improvement achieved by retrieving

Models # Docu- NQ
ments NQ TQA WQ

T5 0 22.16 3.18 4.12
IMcQA 0 23.89 6.21 10.94
IMcQA 1† 40.14 46.61 18.92
FiD 10 46.81 53.93 24.02
IMcQA 10 47.01 55.74 24.13
T5-l 0 28.5* 3.18 4.12
IMcQA-l 0 29.32 10.17 14.06
IMcQA-l 1† 42.32 54.80 22.05
FiD-l 10 46.7* 57.93 25.12
IMcQA-l 10 49.92 60.03 25.79

Table 2: OOD results. The primary row in the table
header delineates the dataset trained, while the under-
scored secondary row demonstrates the in-distribution
performance (IID).

10 documents, indicating the limitations of relying
solely on prompt cues for triggering corresponding
knowledge. IMcQA can enhance knowledge via
two main imagination processes, escalating EM by
+15.33% for NQ, +11.97% for TQA, and +16.38%
for WQ. With IAG, Llama2-7B demonstrated an
average improvement of +14% across the three
datasets. This trend is also observed in Llama2-
13B’s results. This implies that even in zero-shot
settings, our method can still offer substantial ben-
efits to LLMs. More results can be seen in A.5.3.

4.7 Training Cost and Inference Speed-up

We proceeded to measure the inference speed, doc-
umented in GPU time, and training time for 5000
steps on the NQ dataset, using T5-Base. The ex-
periments were conducted on a single RTX 3090
GPU, maintaining a standard batch size of 8 during
training and 1 during inference.

As evident from Table 3, the proposed method’s
advantage lies in its diminished requirement for
parameter updates, which can be attributed to the
shared HyperNetwork’s utilization that generates
LoRA adapters, thereby negating the necessity of

Models Training
Params

# Docu-
ments

# Avg
Tokens

Inference
Time

GPU
Memory

T5 220M 0 19.8 79.8s 2828M
IMcQA 139.3M 0 19.8 82.3s 2710M
IMcQA 139.3M 1 522.1 214.6s 2882M
FiD 220M 10 1748.3 683.3s 4358M
GENREAD 220M 10 1912.5 704.8s 4412M
FiD 220M 100 16625.7 1293.2s 19048M

Table 3: Training and inference cost on the NQ. The
backbone model is T5-Base.



Figure 4: Zero-Shot results (EM, %) of Llama2-7B on
three open-domain QA datasets.

individual LoRA adapters’ setup. Despite the lack
of a training advantage owing to distillation con-
straints, our approach achieves efficient reasoning
through an extremely lightweight design. Com-
pared to the other two methods, the token process-
ing count is significantly decreased, while either
outperforming them or showing negligible differ-
ences in performance. This represents an optimal
trade-off between efficiency and computational de-
mand. Moreover, unlike GAG, our approach incurs
no financial costs associated with API calls, and
the reduced model size facilitates faster generation.

4.8 Ablation Experiment

In this study, we introduced two key imagination
processes to stimulate LLMs’ internal knowledge:
Explicit Imagination (EI) and Implicit Imagination
(II). We particularly examined the influence of dif-
ferent imagination types on performance.

Figure 6 demonstrates that both EI and II are
important for IMcQA. Omitting either one results
in a considerable reduction in performance, with a
drop exceeding 10% observed when EI is neglected.
This is harmonious with the initial observation that
performance improvement becomes more notice-
able when relevant documents are available, thus
underscoring EI’s superiority.

The outcomes of Long Context Distillation
(LCD) and the application of EI in the HyperNet-
work also make marginal contributions to the over-
all results. This validates the previous assertion
that a more extensive context tends to optimize
performance, although with limited gains.

Figure 5: Zero-Shot results (EM, %) of Llama2-13B on
three open-domain QA datasets.

Figure 6: Ablation experiment results (%) of T5-Base
on three open-domain QA datasets.

5 Conclusion and Future Work

This study proposes a novel knowledge-augmented
strategy for LLMs, namely Imagine Augmented
Generation (IAG), and a specific method IMcQA
for open domain question answering. The proposed
method effectively activates and utilizes intrinsic
knowledge within LLMs through two imaginations:
explicit imagination, and implicit imagination. Ex-
perimental results demonstrate a significant im-
provement in QA performance while remaining
relatively lightweight. Although the main focus of
this method is on one specific task, we believe these
findings can offer a novel perspective on how to bet-
ter harness the potential of LLMs. In the future, we
plan to apply IAG to more NLP tasks and explore
multimodal knowledge-augmented generation.



Limitations

While this study has demonstrated significant
achievements in QA tasks, there are notable limita-
tions:
Tasks. The proposed methods in the study are spe-
cialized specifically for QA. It remains unknown
how effective they would be in other types of
knowledge-intensive tasks, such as fact-checking
or dialogue systems. Further validation is needed
to assess the generalizations and applicability of
this approach.
Multimodal. We have only considered imagined
text and hidden representations. In future work, it
is imperative to explore multimodal information
including the impact of imagining images on per-
formance.
Method. Our method relies on the knowledge
learned by LLMs in the pre-training phase, which
may limit the model’s ability to quickly adapt to
new information. The dependency on internal
knowledge activation in IAG may lead to a less
transparent decision-making process in the model,
making it challenging to explain the logic behind
the generated answers. In the future, there is a need
to continue exploring adaptive knowledge enhance-
ment methods to optimize results further.

Ethical Considerations

In this paper, we proposed a novel knowledge en-
hancement method aimed at leveraging the knowl-
edge of LLMs. However, LLMs may generate
inappropriate or discriminatory knowledge. Our
approach does not introduce ethical concerns. The
datasets we used are public, and there are no pri-
vacy issues.
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A Appendix

A.1 Background

Our task formulation follows retrieval augmented
models for QA (Guu et al., 2020; Sachan et al.,
2021). Let V∗ denote the infinite set, encompass-
ing all potential strings over the tokens in vocab-
ulary V , and this includes the empty string. An
instance within a QA dataset is defined as a triplet
(q, a, c) comprising question q, answer a, and con-
text c, where q, a, c ∈ V∗. Conventionally, the
context c is drawn from the knowledge corpus Z ,
like Wikipedia, whereby Z ⊂ V∗.

The goal of QA is to learn a distribution func-
tion, represented as p(a|q), wherein the models
decode a string a that serves as an abstractive an-
swer to a given query q. In a closed-book setting,
LLMs directly encode the given question and pre-
dict the answer (Roberts et al., 2020b). Specifi-
cally, considering the context c as the empty string,
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the reliance is solely on the model parameters, i.e.,
â = argmaxa∈V∗ p(a|q, θ), where θ represents the
LLMs’ parameters. However, employing a direct
approach of requesting models to output answers
frequently results in subpar performance, primarily
attributable to the omission of a substantial amount
of world knowledge during the process. There-
fore, a popular approach is open domain setting,
which marginalizes p(a|q, c) over contexts c in the
knowledge corpus (Lewis et al., 2020; Sachan et al.,
2021) or generated from models (Yu et al., 2023).
Given the computational infeasibility of calculating
probabilities for all contexts, p(a|q, c) is approxi-
mated to the sum of probabilities for top k contexts,

i.e., p(a|q, c) =
ci∈c∑

c∈TopK(q)

p(a|q, ci)p(ci|q), where

Topk(q) denotes the set of resulting top k passages
after the retrieval or generated with a query q.

A.2 Prompts for Explicit Imagine with LLMs
The prompt for explicit imagination of the Imagine
Model to imagine a short dummy useful document
is:

Imagine contexts based on the question: \n input
\n Contexts: \n

Table 7 shows the full prompts for zero-shot
results on LLM that we use for open domain QA:
NQ, TQA, WQ.

A.3 Experimantal Settings
In this section, we describe the implementation of
our experiments in detail, including the baseline
methods, backbone models, and hyperparameters.
Our model is built based on the T5 (Roberts et al.,
2020a). Differing from fine-tuning all model pa-
rameters θ of the updated Pre-trained Language
Model (LLM), LoRA (Hu et al., 2021) freezes
all pre-trained Transformer parameters and opti-
mizes only the parameters of each LoRA adapter.
We employ LoRA to train a parameter-efficient
fine-tuning baseline. Drawing from this, our ap-
proach updates only the parameters of the Hyper-
Network to generate the weights for each LoRA
adapter. This method is adopted based on Lon-
gLoRA’s (Chen et al., 2023) recommendations and
experimental findings, demonstrating improved per-
formance when the normalization and FFN layers
components are updated. This is because: 1) dy-
namically generating LoRA weights enhances gen-
eralization and parameter sharing, and 2) LoRA
performs comparably to fine-tuning but mitigates
the risk of catastrophic forgetting.

For the baseline, most of the hyperparameters are
the default parameters of FiD (Izacard and Grave,
2021). For LoRA (Hu et al., 2021), add the LoRA
module only to the QV of the attention layers and
also release the normalization and FFN layers.

We consider conducting experiments using three
different sizes of T5, namely T5-base, T5-large, T5-
3b, and Llama2-7B, Llama2-13B (Touvron et al.,
2023). Due to memory constraints and online dis-
tillation limitations, A100 supports processing 20
documents for T5-3b, while Llama2 does not sup-
port distillation. All experiments with T5-3b are
conducted on 2 A100 GPUs, T5-large on 2 A6000
GPUs, and T5-Base on 2 RTX 3090 GPUs. How-
ever, experiments with Llama2-7b and 13b, except
for IMcQA on 2 A100 GPUs, are tested on 8 RTX
3090 GPUs.

A.3.1 Hyperparameters

The detailed hyperparameter setting is as shown in
Table 4. For the LoRA modules, we set the α 32
and the lora rank 32.

Models Docu-
ments Steps Lr Batch

Size
T5 0 40000 1e-4 8
LoRA-Base 0 40000 5e-4 8
IMcQA 0 50000 1e-3 8
LoRA-l 0 40000 1e-4 4
IMcQA-l 0 50000 5e-4 4
FiD-3b 0 40000 1e-4 2
LoRA-3b 0 40000 1e-4 4
IMcQA 0 50000 1e-4 1
LoRA-Base 0† 40000 5e-4 8
IMcQA 0† 50000 1e-3 8
LoRA-l 0† 40000 1e-4 4
IMcQA-l 0† 50000 5e-4 4
LoRA-3b 0† 40000 1e-4 2
IMcQA-3b 0† 50000 1e-4 1
IMcQA 10 50000 5e-4 1
IMcQA-l 10 50000 5e-4 1
FiD-3b 10 40000 1e-4 1
IMcQA-3b 10 50000 1e-4 1

Table 4: Hyperparameter Settings.

A.3.2 Baselines

DPR (Karpukhin et al., 2020) generates by search-
ing for the most relevant documents through dense
vector space representation.



Models # Docu- NQ TQA WQ
ments NQ TQA WQ NQ TQA WQ NQ TQA WQ

T5 0 22.16 3.18 4.12 2.65 21.8 3.15 0.88 2.95 28.3
LoRA-Base 0 16.17 4.71 6.89 3.15 21.16 0.00 1.33 3.04 26.38
IMcQA 0 23.89 6.21 10.94 5.31 22.69 6.30 3.23 5.10 30.31
LoRA-Base 1† 37.17 45.20 15.62 19.57 55.37 12.50 14.15 30.89 28.88
IMcQA 1† 40.14 46.61 18.92 24.78 60.75 12.82 17.70 35.24 41.06
FiD 10 46.81 53.93 24.02 28.57 63.32 17.83 18.81 41.88 41.78
IMcQA 10 47.01 55.74 24.13 31.77 64.95 19.52 24.43 48.10 46.36
T5-l 0 28.5* 3.18 4.12 2.65 28.7* 3.15 0.88 2.95 30.6*
LoRA-l 0 17.70 7.49 8.66 3.54 23.87 4.72 0.00 5.65 29.13
IMcQA-l 0 29.32 10.17 14.06 7.02 30.11 7.81 2.65 7.06 32.68
LoRA-l 1† 37.61 48.50 20.71 20.54 62.71 14.81 15.36 33.83 39.37
IMcQA-l 1† 42.32 54.80 22.05 26.11 65.48 18.11 18.58 47.46 45.28
FiD-l 10 46.7* 57.93 25.12 34.29 61.9* 19.64 27.65 53.87 48.1*
IMcQA-l 10 49.92 60.03 25.79 34.35 69.67 20.28 30.19 54.94 51.52

Table 5: OOD results. The primary row in the table header delineates the dataset trained, while the underscored sec-
ondary row demonstrates the in-distribution performance. IMcQA attains optimal performance both in-distribution
and OOD under diverse document configurations.

FiD (Izacard and Grave, 2021) retrieve relevant
documents and send them separately to the En-
coder, then fuse the information in the Decoder.
GENREAD (Yu et al., 2023) prompt LLMs like
InstructGPT (Ouyang et al., 2022) to generate a
large number of relevant documents and let the
reader process them.
LoRA We use LoRA (Hu et al., 2021) to obtain
an efficiently fine-tuned baseline and compare it
with our method.

A.3.3 Evaluation
For QA datasets, we choose the exact match (EM)
score (Rajpurkar et al., 2016) as the evaluation
metric. An answer is deemed correct if it aligns
with any of the responses in the list of accept-
able answers after normalization. Normalization
involves transforming the text into lowercase, omit-
ting articles, punctuation, and eliminating redun-
dant spaces.

A.4 Downstream Evaluation Datasets

We use the following three Open-Domain QA for
the experiments (§ 4.1).

• NaturalQuestions ((Kwiatkowski et al., 2019))
contains questions corresponding to Google
search queries. The open-domain version of
this dataset is obtained by discarding answers
with more than 5 tokens, each accompanied
by a Wikipedia article containing the answer.

• TriviaQA ((Joshi et al., 2017)) contains ques-
tions gathered from trivia and quiz-league
websites. The unfiltered version of TriviaQA
is used for open-domain question answering,
each question is accompanied by pages from
web and Wikipedia searches that may contain
the answer.

• WebQuestions ((Berant et al., 2013)) contains
questions from web queries matched to corre-
sponding entries in FreeBase (Bollacker et al.,
2008).

A.5 Full Experimental Results
A.5.1 Supervised Performance
As shown in Table 8, our initial observations in-
dicate that regardless of the method implemented,
supplying a certain quantity of related documents
can expedite improvement and enhance perfor-
mance in QA. FiD (Izacard and Grave, 2021)
model outclasses all baseline models in perfor-
mance. Notably, utilizing FiD-xl with a mere 10
documents yields performance on par with that
attained through the use of FiD-l with 100 docu-
ments. Larger models not only encapsulate more
knowledge but also demonstrate a superior ability
to activate and apply this knowledge efficiently.

Additionally, in comparison with LoRA (Hu
et al., 2021) methods, IMcQA enhances EM scores
by an average of +2.2%. In the closed-book set-
ting, the LoRA method manifests a substantial de-



Figure 7: Zero-Shot results (Best_Subspan EM, %) of
Llama2-7B on three open-domain QA datasets.

crease in performance, likely attributable to the
inadequacy of learning sufficient knowledge via
questions for storage in the LoRA module. On
the other hand, IMcQA harnesses both explicit and
implicit imaginations to exploit knowledge for im-
proved outcomes. These results indicate that the
knowledge stored in the LLMs’ parameters can still
be further exploited.

A.5.2 OOD Results
Table 5 shows the full OOD results in QA. It can be
observed that our method has the best OOD gener-
alization ability on all three benchmarks. Although
LoRA performs well on the in-distribution part, its
performance is generally poor on OOD, with some
even showing negative performance. This high-
lights the importance of the domain adaptability
of the implicit imagination HyperNetwork in our
method, which generates LoRA adapter weights
based on input.

A.5.3 Zero-Shot results Best_Subspan EM
LLMs have limited capacity to utilize extensive
context effectively and are prone to generating il-
lusions and redundant content. Best_subspan EM
assesses whether the answer is included in the out-
put. Previous studies have corroborated that LLMs
encapsulate a considerable volume of knowledge
and exhibit robust performance in QA.

Here, we report the Best_Subspan_EM values of
Llama2-7B and Llama2-13B on three QA datasets.
From Figure 7 and Figure 8, it can be observed that
Best_Subspan_EM significantly improves, but the
EM values are relatively small. This indicates that

Figure 8: Zero-Shot results (Best_Subspan EM, %) of
Llama2-13B on three open-domain QA datasets.

LLMs may not effectively utilize retrieval docu-
ments and are prone to outputting a lot of irrelevant
information. Therefore, there is an urgent need to
explore efficient techniques that leverage external
information and internal knowledge.

However, the model did exhibit a weak adher-
ence to instructions, often failing to output the exact
answer. Remarkably, Llama2-13B displayed a de-
cline in EM with an increase in document length
on the WQ dataset, whereas the Best_Subspan_EM
value augmented. Contrarily, our method excelled
in extracting key information by using text imagi-
nation during the compression phase.

A.5.4 OOD and Ablation Experiment Results
Here, we supplement the experimental results of
LoRA and IMcQA under supervised fine-tuning
in closed-book settings and the ablation results of
feedforward neural network (FFN) and Long Con-
text Distillation (LCD). It can be observed that our
method like LoRA, belongs to parameter-efficient
fine-tuning, and because we share the HyperNet-
work to generate LoRA adapter weights, we fine-
tune fewer parameters.

From Table 6, it can be seen that releasing FFN
can bring more performance improvement, pos-
sibly because adding LoRA in Attention cannot
fully utilize enough knowledge (Yao et al., 2022).
With the support of LCD, performance is further
improved, with an average increase in EM of +5%.
This also proves the effectiveness of our proposed
LCD. In comparison with IMcQA and LoRA, it
becomes more evident that LoRA tends to transfer
knowledge to the LoRA module, resulting in low



Models # Docu- Trainable NQ TQA WQ
ments Params NQ TQA WQ NQ TQA WQ NQ TQA WQ

T5 0 220M 22.16 3.18 4.12 2.65 21.8 3.15 0.88 2.95 28.3
LoRA-Base 0 28.3M 5.43 3.15 4.02 0.00 9.60 0.00 0.22 1.77 20.47

w FFN 0 141.5M 16.17 4.71 6.89 3.15 21.16 0.00 1.33 3.04 26.38
w FFN & LCD 0 141.5M 21.37 2.82 6.89 1.99 17.94 3.74 0.00 2.82 32.50

IMcQA 0 26.1M 5.31 3.82 5.71 0.22 10.34 2.12 0.55 2.30 16.58
w FFN 0 139.3M 21.05 4.52 6.50 3.51 19.08 3.15 2.11 3.84 28.17
w FFN & LCD 0 141.5M 23.89 6.21 10.94 5.31 22.69 6.30 3.23 5.10 30.31

T5-l 0 770M 28.5* 3.18 4.12 2.65 28.7* 3.15 0.88 2.95 30.6*
LoRA-l 0 42.5M 4.42 6.50 7.87 3.98 10.03 3.94 1.99 6.71 18.11

w FFN 0 445.1M 17.70 7.49 8.66 3.54 23.87 4.72 0.00 5.65 29.13
w FFN & LCD 0 445.1M 28.32 4.52 10.94 5.31 25.71 6.12 1.75 4.52 29.92

IMcQA-l 0 34.8M 7.08 8.90 9.45 4.42 13.14 8.66 2.43 10.17 17.72
w FFN 0 437.5M 23.01 8.33 11.02 3.51 20.08 3.15 3.51 5.65 31.50
w FFN & LCD 0 437.5M 29.32 10.17 14.06 7.02 30.11 7.81 2.65 7.06 32.68

Table 6: OOD and ablation experiment results. * denotes the results are from the existing papers and LCD denotes
Long Context Distillation.

generalization. Our method enhances knowledge
activation through dynamic generation, showing
significant effects not only in-distribution but also
in OOD.



Methods Prompt

CBQA

Please write a high-quality answer for the given question using your knowledge.
Only give me the answer and do not output any other words.
Question: {question}
Answer:

Retrieval

Please write a high-quality answer for the given question using only the provided
search results (some of which might be irrelevant). Only give me the answer
and do not output any other words.
Context: {context}
Answer the question based on the given passages.
Question: {question}
Answer:

Imagine

Please write a high-quality answer for the given question using your knowledge
and the provided imagined compressed results (some of which might be irrelevant).
Only give me the answer and do not output any other words.
Imagined Context: {context}
Answer the question based on your knowledge and the given imagined context.
Question: {question}
Answer:

Table 7: Prompts for different methods on Zero-Shot setting. CBQA denotes closed-book QA that just prompts the
model with the question.



Models Reader
Params

# Docu-
ments NQ TriviaQA WebQ

# closed-book setting
T5 (Roberts et al., 2020a) 220M 0 25.9* 23.8* 27.9*
T5-l (Roberts et al., 2020a) 770M 0 28.5* 28.7* 30.6*
T5-xl 3b 0 28.30 33.92 34.43
LoRA-Base (Hu et al., 2021) 220M 0 16.17 21.16 26.38
LoRA-l (Hu et al., 2021) 770M 0 17.70 23.87 29.13
LoRA-xl 3b 0 23.15 32.16 35.24
IMcQA (Ours) 220M 0 23.89 22.69 30.31
IMcQA-l (Ours) 770M 0 29.32 30.11 32.68
IMcQA-xl (Ours) 3b 0 29.59 35.71 37.40
# Retrieval Augmented Generation
DPR (Karpukhin et al., 2020) 110M 100 41.5* 56.8* 41.1*
RAG (Lewis et al., 2020) 400M 10 44.5* 56.1* 45.2*
FiD (Izacard and Grave, 2021) 220M 100 48.2* 65.0* 46.71
FiD-l 770M 100 51.4* 67.6* 50.52
FiD-xl 3b 20 55.18 72.92 52.85
FiD-l 770M 10 46.7* 61.9* 48.1*
FiD-xl 3b 10 50.1* 66.3* 50.8*
# Generation Augmented Generation
GENREAD-l (Yu et al., 2023) 770M 10† 40.3* 67.8* 51.5*
GENREAD-xl 3b 10† 42.6* 69.6* 52.6*
# Our proposed method
LoRA-Base 220M 1† 34.51 54.05 32.28
LoRA-l 770M 1† 40.05 62.81 43.70
LoRA-xl 3b 1† 44.15 66.92 48.23
IMcQA 220M 1† 40.14 60.75 41.73
IMcQA-l 770M 1† 42.32 65.48 45.28
IMcQA-xl 3b 1† 46.51 68.38 50.45
IMcQA 220M 10 47.01 64.95 46.36
IMcQA-l 770M 10 49.92 69.67 51.52
IMcQA-xl 3b 5‡ 50.87 70.34 52.78

Table 8: Full QA performances (%) of different methods on three datasets. The first part (closed-book setting)
indicates that explicit documentation was not utilized; The latter three parts utilize explicit augmented documents.
The best results are in bold. * means that those results are from existing papers, † denotes that the number of
documents is generated (‡ indicates that the number of documents is reduced due to insufficient memory for
distillation).


