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The development of new materials typically involves a process of trial and error, guided by insights from past exper-
imental and theoretical findings. The inverse design approach for soft-matter systems has the potential to optimize
specific physical parameters such as particle interactions, particle shape, or composition and packing fraction. This op-
timization aims to facilitate the spontaneous formation of specific target structures through self-assembly. In this study,
we expand upon a recently introduced inverse design protocol for monodisperse systems to identify the required con-
ditions and interactions for assembling crystal and quasicrystal phases within a binary mixture of two distinct species.
This method utilizes an evolutionary algorithm to identify the optimal state point and interaction parameters, enabling
the self-assembly of the desired structure. Additionally, we employ a convolutional neural network (CNN) that classi-
fies different phases based on their diffraction patterns, serving as a fitness function for the desired structure. Using our
protocol, we successfully inverse design two-dimensional crystalline structures, including a hexagonal lattice, and a
dodecagonal quasicrystal, within a non-additive binary mixture of hard disks. Finally, we introduce a symmetry-based
order parameter that leverages the encoded symmetry within the diffraction pattern. This order parameter circumvents

the need for training a CNN, and is used as a fitness function to inverse design an octagonal quasicrystal.

I.  INTRODUCTION

The self-assembly of colloidal particles is a pivotal mecha-
nism for fabricating nanostructured materials. Colloidal sys-
tems, consisting of particles ranging from nanometer to mi-
crometer sizes suspended in a fluid medium, inherently pos-
sess the ability to spontaneously organize themselves into
structured arrangements due to interparticle forces and ther-
modynamic conditions. These systems show promise for
potential applications due to their photonic/"# magnetic and
electronic properties® However, the structure of the assembly
of such materials depends on the building blocks, namely the
interaction between the species composing the system, and
the thermodynamic conditions, such as temperature, pressure,
density, or composition. Understanding the relationship be-
tween these building blocks, thermodynamic state, and self-
assembled structures is crucial for leveraging them for mate-
rials design. This relationship is fundamental, as the physical
properties of each material are intrinsically intertwined with
its structure.

In the forward design approach, a specific colloidal parti-
cle system is chosen as the foundational building blocks for a
material with desired properties. Subsequently, the interaction
parameters and thermodynamic conditions are systematically
changed until achieving the desired material. The forward
design approach can quickly become unfeasible, because the
number of possible building block combinations and condi-
tions needed to assemble the required structures is intractably
large.

Recently, there has been a growing interest in developing
frameworks for the inverse design of self-assembled struc-
tures and materials # The inverse design approach directly de-

termines the parameters and thermodynamic conditions nec-
essary to attain a target structure with specific properties”
Inverse design protocols have been successfully applied to
the search of both crystalline®’ and quasicrystalline struc-
turesZ13 One category of methods involves adjusting inter-
molecular interactions to target the radial distribution func-
tion of the desired phase. The objective is to precisely match
the two-body structural correlations using a maximum entropy
optimization scheme 141>

Recently, machine learning methods have been used for
the analysis, identification, and formation of soft-matter sys-
tems* Coli et al. developed an inverse design protocol'”
employing supervised machine learning techniques. The au-
thors used a convolutional neural network (CNN) as a clas-
sifier to differentiate structures based on their diffraction pat-
terns. Subsequently, target structures are achieved by mod-
ifying the interaction parameters and thermodynamic state
points through an evolutionary strategy optimization algo-
rithm, which uses a CNN-based fitness. This exploration
helps identifying the thermodynamic conditions and interac-
tions necessary for stabilizing the desired structures. The
methodology proposed by Coli ef al. facilitates the self-
assembly of quasicrystals, as the symmetry of the structure
is encoded within the diffraction patterns. Recently, Lieu and
Yoshinaga proposed an alternative framework in which rein-
forcement learning is used along with patchy particles to pro-
mote the self-assembly of dodecagonal quasicrystals'® Us-
ing an optimization method tailored for reinforcement learn-
ing, they automatically tuned the cooling schedule such that
a critical temperature is identified at which the quasicrystal is
formed.

In this work, we expand upon the protocol of Coli et al.
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to encompass non-additive binary mixtures of hard disks, a
system more akin to the quasicrystals observed in the ex-
periments on monolayers of inorganic nanoparticles” The
phase behavior of a similar system, i.e. binary mixtures of
hard spheres, has been explored by computer simulations 15:1°
We employ a CNN to classify different structures using the
diffraction patterns of one of the species within the mixture.
Subsequently, we use an evolutionary strategy algorithm to
optimize the thermodynamic conditions and interaction pa-
rameters, facilitating the self-assembly of binary crystals and
quasicrystals. However, this protocol encounters severe chal-
lenges when the training data for the CNN lacks diffraction
patterns of the target structure, hindering its effectiveness in
inverse designing the desired system. To address this limita-
tion, we introduce a novel symmetry-based order parameter.
This order parameter eliminates the necessity for training a
CNN and bypasses the requirement for diffraction patterns of
the structures to be inverse-designed. We observe that this
order parameter, which measures the order of symmetry of
the diffraction pattern, can successfully be used as a fitness
function in the evolutionary strategy algorithm to optimize the
physical parameters for the self-assembly of the desired struc-
tures.

This paper is organized as follows. In Sec.[ll, we intro-
duce our model for the binary mixture of hard disks. The
inverse design protocol is presented in Sec. This proto-
col comprises simulations for sampling, both a CNN and a
symmetry-based order parameter for fitness evaluation, and
an evolutionary strategy for the optimization of the parame-
ters. In Sec. we present the main results, illustrating the
self-assembly of crystalline and quasicrystalline structures via
the CNN approach. Following this, we employ the symmetry-
based order parameter to successfully inverse design an octag-
onal quasicrystal. We present our conclusions in Sec. [V]

II. MODEL

In our inverse-design approach for self-assembly of binary
mixtures, we aim to produce trajectories that start in a disor-
dered, low-density phase and finish in the target crystalline or
quasicrystalline phase. Producing such trajectories requires
time propagation of particle motions, which we compute via
molecular dynamics (MD) simulations?? We consider a two-
dimensional non-additive binary mixture of hard disks of two
different sizes. The large (L) species have a diameter 67, and
the small (S) species a diameter os. To perform MD sim-
ulations of hard-disk systems, it is necessary to employ a
continuous interaction potential. Using the Extended Law of
Corresponding States as formulated by Noro and Frenkel 2!
and assuming its applicability extends to repulsive potentials,
Biez et al®? argued that by using a re-parametrization of
the intermolecular potential proposed by Jover er al.% it be-
comes feasible to map the hard-core interaction onto a con-
tinuous potential. This approach yields accurate results, par-
ticularly when the continuous potential precisely reproduces
the second virial coefficient of the true hard-particle poten-
tial. Such a re-parametrization of the continuous hard-core po-

tential ug(r) between species & = L, S and species 8 = L, S
reads

Ugp (r) =

with
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where r denotes the center-of-mass distance between the
two particles, o, represents the hard-core diameter between
species a and f3, and € denotes the effective strength of the in-
teraction. We set the hard-core diameters 6;; = 07, Ogs = Oy,
and introduce a non-additivity parameter A for the contact dis-
tance between the large and small species

Og+ oL,

OoLs =
2

(1-4). 3)
A non-linear equation in terms of the reduced temperature
T* = kgT /€ with kg Boltzmann’s constant must be solved in
order to determine the temperature at which the difference be-
tween the second virial coefficient of both interaction poten-
tials becomes zero.

In this study, the parameter A is held constant at A = 50 in
Eq. (I, as well as the temperature, which remains constant
across all simulations. For the two-dimensional systems stud-
ied here, the temperature is set to 7* = 1.4671 following the
results of Baéz et al* for a two-dimensional system. By fix-
ing A, the values of A and B are also fixed in Eq. (2).

The thermodynamic state of our binary mixture is defined
by four design parameters:

* the size ratio ¢ = 65/ 0y,

* the small species composition xs = Ns/N with Ny the
number of particles for the small species,

* the non-additivity parameter A,

« and the packing fraction n = (Nso? + N, 0}) w/4A
with A the area defined by the simulation box.

I1l.  INVERSE DESIGN PROTOCOL

Our aim is to optimize the interaction parameters as well as
the thermodynamic state point to favor the self-assembly of
specific target phases in a non-additive binary hard-disk mix-
ture. In this work, we build upon the inverse design protocol
introduced in Ref. [10l This approach combines the covari-
ance matrix adaptation evolution strategy (CMA-ES) to sam-
ple and optimize the set of design parameters, using a CNN
to evaluate the fitness of each sample. The method consists
of three steps. In the first step of the inverse design process,



a fixed number of parameter sets are drawn from a multivari-
ate Gaussian distribution. The dimension of the multivariate
Gaussian distribution is set by the number of free design pa-
rameters that need to be tuned. For each set of parameters,
also called sample, we perform MD simulations of the sys-
tem from which equilibrated configurations will be collected
to compute diffraction patterns. In the second step, we eval-
uate the fitness of the samples by classifying their diffraction
patterns using the CNN or the symmetry-based order param-
eter. Samples more likely to be classified as the target phase
receive a higher fitness value. In the final step, we update the
mean and covariance matrix of the Gaussian distribution to
move towards regions within the parameter space where the
fittest samples are located. Below, we describe the three steps
in more detail.

A. Simulations

We perform MD simulations of the non-additive binary
hard-disk mixture in a square simulation box with periodic
boundary conditions in all directions using the LAMMPS sim-
ulation code version 28 Mar 2023 2427 Each system consists
of N = Ng+ Np, = 512 particles. We initialize the system by
randomly placing the particles within the simulation box at an
initial packing fraction of = 0.3. Subsequently, the simula-
tion box is linearly compressed to a higher target packing frac-
tion, determined by CMA-ES, over a duration of 108 7, where
T = 074/m/€ denotes the simulation time unit, and m repre-
sents the mass of a particle, which is kept identical for both
species. This box deformation scheduling is used to reach the
higher packing fractions where the crystals and quasicrystals
can be self-assembled. A time step of 7= 0.001 is employed
for all simulations. Upon reaching the target packing frac-
tion, an equilibration phase follows wherein the positions of
the particles are propagated for at least 107 T to reach equi-
librium. However, for systems exhibiting quasicrystal phases,
at least 108 7 was required for equilibration, which we deter-
mine by monitoring the time evolution of the energy of the
system and the radial distribution function. Longer runs are
needed in order to reduce the number of defects in the sys-
tem 2822 Subsequently, a production phase of at least 107 7 is
performed to collect a large number of independent config-
urations of the system. Configurations were collected every
10% 7, resulting in a total of 10° configurations. The various
thermodynamic state points are explored using simulations in
the canonical (NVT) ensemble with canonical thermostatting,
employing the method introduced by Bussi et al* The ther-
mostat relaxation time is set to 100 .

B. Convolutional neural network as classifier

The inverse design protocol used in Ref.|10lemploys a CNN
as a classifier. The output of the CNN provides a probabil-
ity indicating how closely a given configuration resembles the
target phase, effectively serving as a fitness function. Sub-
sequently, a derivative-free optimization method is employed

to optimize the fitness of the samples. The CNN takes as in-
put the diffraction patterns extracted from the configurations
gathered during the simulations. The aim of employing a
CNN is to classify the various phases within a non-additive
binary hard-disk mixture based on their respective diffraction
patterns. We anticipate this two-dimensional mixture to stabi-
lize various phases, including, for example, an isotropic fluid
phase (FLUID), hexagonal (HEX) and square (SQ) crystal
phases, and quasicrystal phases such as the decagonal (QC10),
dodecagonal (QC12), and octadecagonal (QC18) quasicrystal
phases.

To train the CNN,!¥ we need diffraction patterns corre-
sponding to these phases. As the aim of this paper is to inverse
design these phases within a binary mixture of hard disks,
these diffraction patterns are currently unavailable. However,
data is available from a single-component system of particles
interacting with a hard-core square-shoulder potential 1 This
monodisperse system exhibits crystalline and quasicrystalline
phases sharing similar translational and rotational symmetries
as the anticipated phases in the binary mixture 192831 In this
study, we investigate the possibility of training the CNN us-
ing diffraction patterns from a monodisperse two-dimensional
system interacting via a hard-core square-shoulder potential
for inverse designing these phases in a binary mixture 1928

To generate training data, Monte Carlo simulations of the
two-dimensional hard-core square-shoulder model were per-
formed for a total of 5 x 107 Monte Carlo sweeps, where each
sweep represents an attempt to randomly displace all parti-
cles in the system. The equilibration phase is followed by
1 x 10% sweeps, during which we save a configuration every
103 sweeps, resulting in 103 independent configurations. This
is repeated for 10 different state points for each of the six con-
sidered phases, FLUID, HEX, SQ, QC12, QC10, and QC18.
To ensure identification of phases regardless of their orienta-
tion, every training configuration is rotated by a random angle
before evaluating its diffraction pattern following the proce-
dure outlined in Ref. [10. The diffraction patterns for these
one-component systems are obtained by computing the two-
dimensional structure factor,

HE
St = 5| L e *)
i=1

where k = 27 (ny,ny) /L represents the wavevector with n, and
ny denoting two integers, L the box length, and r; the center-
of-mass position of particle j. We determine the diffraction
pattern for each training configuration on a 150 x 150 grid,
followed by a size reduction using a max pooling filter to
achieve a final size of 33 x 33. The primary goal of max pool-
ing is to reduce the dimensions of the data while preserving
important input features. Consequently, the max pooling step
reduces the computational time and memory during training.
To classify and evaluate structures in our binary mixture,
we consider only the large species in computing the diffrac-
tion patterns. The CNN used in this work is comprised of two
convolutional layers for feature extraction and two fully con-
nected layers for classification as depicted schematically in
Fig.[I] Each convolutional layer performs two operations: fea-
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FIG. 1. Schematic representation of the CNN used as a classifier in this work. The network consists of two convolutional layers for
feature extraction, followed by a MaxPooling layer to reduce resolution and two fully connected layers before a SoftMax function for final
classification. All details about kernels, layer size, and activation functions are also shown. Each layer uses a non-linear Mish activation
function. Note that between the fully connected layers there is a dropout layer to avoid overfitting.

ture extraction through convolutional filters and a non-linear
transformation using the Mish activation function, defined as
f(x) = x tanh [log (1 4 ¢*)]2* The first convolutional layer has
one input channel, corresponding to the maxpooled diffrac-
tion pattern, and sixteen output channels, which are the ex-
tracted features. The convolutional layer uses kernels of size
3 x 3, with a stride of s = 1 and a padding of p = 1. The
second convolutional layer takes as input the sixteen channels
and outputs thirty-two channels in order to increase the fea-
tures extracted from the images. The kernels in this layer have
the same size, padding and stride as the first convolutional
layer. We use a downsampling step after the channels through
a layer with a 2 x 2 max pooling filter with a stride of s = 2.
To enhance the robustness of the neural network, a dropout
probability of P = 0.25 is introduced following the downsam-
pling of the second convolutional layer. Dropout is a regular-
ization technique that selectively eliminates feature detectors
with a probability P, while the remaining weights are trained
as usual®¥ The dropout layer is subsequently stacked, flat-
tened, and prepared as input for classification, where two fully
connected layers are used to classify the features extracted
from the convolutional layers. The first fully connected layer
consists of 256 units, and the second layer consists of 100
units. The Mish activation function is applied to all units in
the layers. To further enhance robustness and introduce regu-
larization, a dropout probability of P = 0.5 is applied between
the two fully connected layers. The output layer contains six
units to align with the available training classes, followed by
a SoftMax function to determine classification probabilities.
We train the CNN by minimizing the cross-entropy loss
while implementing L, regularization as weight decay of
1073 3% This regularization of weights enhances robustness of
the network, making it less prone to overfitting. The Adam
optimizer™ is used with a learning rate of 1073. To prevent
overfitting, early-stopping is employed. If the loss remains
unchanged between consecutive epochs, the training is halted
and the optimization is assumed to have reached convergence
within a maximum of fifty epochs. The dataset comprises a

total of 48000 samples, divided into 8000 samples per class,
split in an 80 — 20% ratio for training and test sets. The test
set, containing samples not used during training, is employed
to evaluate the performance of the classifier, which reaches a
final classification accuracy in the test set of at least 99.9%.
The CNN implementation and training protocol are carried
out using PyTorch and PyTorch Lightning 337

C. Symmetry-Based Order Parameter

It is important to note that training the CNN relies on hav-
ing the diffraction patterns for the target structures. How-
ever, when we aim to reverse engineer a structure without
access to its diffraction pattern, this inverse design method
will not succeed. To overcome this challenge, we introduce
a symmetry-based order parameter leveraging the unique ro-
tational symmetry within diffraction patterns, eliminating the
need for training a CNN, and serving as a fitness function for
inverse design protocols. To analyze the symmetry present in
a diffraction pattern, we ascertain the count of detectable sym-
metry axes within the aforementioned pattern. More specifi-
cally, we identify the lines of symmetry that cut the diffraction
pattern into two identical mirror images. To discern lines of
symmetry, we posit a metric to quantify the degree of inverse
reflectivity exhibited by a given axis. Mathematically, this
reads

S(0)=Y 1(Q(8) r)—1I(r)], (5)

FEA

where A = {(x,y): x> +y* < R?} represents all points r =
(x,y) lying within a circle of radius R centered around the
origin of the diffraction pattern. The angle 6 denotes the angle
formed between the reflection axis and the x-axis as illustrated
in Fig. 2Ja). The peak intensity within the diffraction pattern
at location r is defined as I(r). Finally, Q(6) represents the
reflection matrix across the reflection axis at an angle 6 with



the x-axis
_[cos(28) sin(20)
Q(0) = (sin (20) —cos(20)) - ©)
By inverse reflectivity we mean that a high value of S(6) in-
dicates a lack of reflection symmetry for that particular angle
0, i.e. there is no mirror symmetry between the two opposite

sections of the diffraction pattern. Conversely, a low value of
S(0) suggests high reflection symmetry for that specific angle
0

Applying the floor operation to the expression Q(0) - r in
Eq. (3) is essential to ensure the use of real pixel locations
when dealing with the raw data from diffraction patterns.
Fig. [2la) provides a schematic representation of this method,
illustrating the circle of radius R in the diffraction pattern. We
note that as the method operates with real information from
diffraction pattern images, it can readily be extended to exper-
imental setups.

We calculate S(0) for a uniform grid of M angles in the
range of 6 € [0,m). We show S(6) as a function of 6 in
Fig. b), where we find an oscillatory pattern in S(0) as a
function of 6. The oscillation frequency of S(6) correlates
with the number of reflection axes of the diffraction pattern.
To evaluate the number of symmetry axes, we compute the
power spectral density P(m). First, we subtract the mean from
S(0) in order to normalize the symmetry score across differ-
ent samples. Subsequently, the power spectral density P(m) is
computed according to the equation

2

1 M= .
P(m) — M Z S(Gk) e—thnkAB , (7)
k=0

where 6, = 6y 4+ kA6 represents the discrete angles used to
compute the discrete symmetry scores S(6;), with ) = 0
and k € {0,1,2,...,M — 1}, i denotes the imaginary unit,
m € {0,1,2,...M — 1} represents the m-fold rotational sym-
metry, and |-|* denotes the norm of the complex numbers.
Essentially, the power spectral density P(m) decomposes the
signal into its Fourier components such that the underlying
rotational symmetries are easier to detect. A representative
plot of the power spectral density P(m) is shown in Fig. 2Jc),
where the high peaks correspond to the rotational symmetries
obtained from the signal decomposition of S(8). For an m-
fold rotationally symmetric diffraction pattern, we expect to
find a high value at the m value of the power spectral density
P(m). For instance, a QC8 exhibits a 8-fold rotational sym-
metry in its diffraction pattern, and the power spectral density
P(m) exhibits the 8-fold symmetry by having the largest value
atm = 8, as shown in Fig. 2|c). It is essential to note that sig-
nal aliasing might occur, leading to high values at frequencies
that are multiples of the sampling frequency, like the 16-fold
and 24-fold symmetry for an 8-fold diffraction pattern (see the
small peaks in Fig. c)).38

We can now define a symmetry-based order parameter f,,
serving as a fitness function

M—1

fm=P(m)— Y P(i), (8)
i=0,
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FIG. 2. Symmetry-based order parameter. (a) A grey line repre-
sents the reflection axis, forming an angle 6 with the x-axis. Inten-
sities of points from one half of the circle are subtracted point-wise
from the intensity of their reflection points across the reflection axis
on the other half of the circle. An example of intensities are depicted
by small circles and connected by a dotted line in the image. The ab-
solute sum of all intensity differences quantifies the degree of inverse
reflectivity S(0). (b) S(6) as a function of 6. (c) The power spectral
density P(m) of S(0) as a function of m, with m denoting the m-fold
rotational symmetry.



where we anticipate a high value for P(m) when the diffrac-
tion pattern displays m-fold symmetry. By subtracting all ro-
tational symmetries that are not equal to m (the second term
in Eq. (8)), we penalize symmetries that might induce aliasing
effects of the m-fold symmetry. Subsequently, we can opti-
mize f, defined in Eq. using an evolution strategy algo-
rithm, similar to the fitness value as determined by the CNN.
In this way, we promote the self-assembly of structures with
m-fold symmetry. It is important to note here that f;, is not
bounded from above, as opposed to the CNN, so the highest
value of the peak is unknown beforehand.

D. Covariance Matrix Adaptation Evolution Strategy as
Optimizer

In this study, we employ the covariance matrix adaptation
evolution strategy (CMA-ES) for optimizing the fitness func-
tion, which provides a measure of how close the system is
to the target phase. Here we present a short summary of the
method. For further explanations, we direct the reader to the
references cited in the following. The CMA-ES represents a
stochastic zero-order optimization technique designed to opti-
mize a real-valued, non-convex, and nonlinear function, oper-
ating without requiring gradient information of the function>*
CMA-ES is an iterative algorithm which samples from a mul-
tivariate Gaussian distribution and updates the mean and the
covariance matrix of the Gaussian distribution at each itera-
tion. This process continues until a convergence criterion is
met. In each iteration, often referred to as a generation, the
algorithm draws n samples from a d-dimensional multivariate
Gaussian distribution, where d represents the number of de-
sign parameters we wish to optimize. The fitness function is
then evaluated for these n samples, and the outcomes are ar-
ranged in descending order. Subsequently, the top k samples
from this particular generation are chosen as the best candi-
dates, forming the elements of the set X. In each generation,
the mean vector p € R? and covariance matrix C' € R?*? are
updated to adjust the Gaussian distribution to reach the opti-
mum.

Various proposals for updating these parameters have been
introduced *¥ but here we focus on the separable CMA-ES
(sepCMA-ES)* The sepCMA-ES version constrains the co-
variance matrix to remain diagonal, enabling linear space and
time complexity. The sepCMA-ES version outperforms the
traditional CMA-ES algorithm in many optimization prob-
lems 42

We start from an initial mean vector p sampled uniformly
within the feasible parameter space, and an initial covariance
matrix C' = I, with I the identity matrix with shape d x d.
The sepCMA-ES generates a new candidate solution using the

following equations

zi~A(0,I) for i=1,...,n
T = M+GBDZi
k
®= Zwi-’ﬂi:k
i=1
k
z=) wizix ©))
i=1

where x;.; denotes the i-th best individual out of the k£ sam-
ples. The elements of z; are standard normal random vari-
ables. The matrix B has the orthogonal eigenvectors of C'
as columns, whereas the matrix D has the eigenvalue square
roots as diagonal elements. The parameter o is the initial stan-
dard deviation used at the start of the optimization method.
The distribution of weights is defined as

_ log(k+1)—log(i)
X log(k+1)—log())’

where i is the rank index of sample x, with i = 1 indicating
the configuration with the highest f value. These equations
update the candidate solution as well as the mean vector used
to sample the multivariate normal distribution.

We now turn our attention to updating the covariance ma-
trix, using the following equations

Po=1—cs)ps+Vlwes(2—cs)Bz

pe=(1—cc)pe+Hs\/ Uwee(2—c.)BDz

(10)

i

1
C = (1 — CC(,V)C+ 7600\/!’6’1’?
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1 k
~+ Ceov <1_ > ZWiBDzi:k(BDzi:k)Ta (11)
Heov ) i

where the Heaviside function H; — 1 when the condition
—rel__ < (1.44 2;)E(|#(0,I)|]) is met. This is the

1—(1—cg)8
condgtioﬁy )that happens most often during the evolution path,
but the other case Hy = 0 can happen as well, which indicates
that the evolution path is stalled. The d-dimensional vectors
po control the amplitude of the covariance matrix, while the
d-dimensional vector p, manipulates the directionality. Addi-
tionally, (||-#(0,I)||) represents the average length of a vec-
tor sampled from a standard multivariate normal distribution.
This quantity is used for step-size control. All the other pa-
rameters are free parameters which are constant throughout
the optimization procedure, and the values chosen are ex-
plained below.

Finally, we update the step size o along with the covariance
matrix and its decomposition, using the following equations

O =0exp (CCZZ <E(|J1f(ao|!1)||)_ 1))
D? = diag(C), (2

where diag(C') is a diagonal matrix with the same diagonal
elements as C.



In this work, we use n = 24 and k = 12 for all our results.
The value of the initial standard deviation changes for each
optimization problem, since it depends on the bounds of the d-
dimensional search space [a,b]d. In all results presented here,
6 = 0.3(b — a) where a and b might be different depending
on the phase to inverse design. The initial values for ps and
pe in Eq. (TT) are null vectors. All free parameters c¢;,
and U in Eq. (TT) and Eq. (I2) are set to the default values
as outlined in the original work*! and in the Python imple-
mentation by Nomura and Shibata*? that we use in this work.
Finally, the stopping criterion of the optimization scheme is
determined by setting the number of generations to fifty gen-
erations. This is a common choice for stopping the optimiza-
tion scheme in numerical optimization experiments, where the
number of function evaluations is fixed *4

IV. RESULTS
A. Inverse design of a hexagonal lattice

We start our investigation by reverse-engineering the
hexagonal crystal (HEX) phase in a non-additive binary mix-
ture of hard disks. Our goal is to identify the optimal set of
design parameters that facilitates the self-assembly of a hexag-
onal lattice within this mixture. To accomplish this, we use
the size ratio g, the small species composition xg, the non-
additivity parameter A, and the packing fraction 7, as design
parameters. The values of these parameters are sampled from
a multivariate normal distribution in each generation accord-
ing to the equations of sepCMA-ES.

To specifically target the hexagonal lattice, we employ the
output of the trained CNN, which represents the probability
that the diffraction pattern of a given configuration is clas-
sified as a hexagonal lattice, denoted as Pygx, as the fitness
function, i.e. f = Pygx. Here, the "bar" indicates that the input
diffraction pattern for the classifier is an averaged diffraction
pattern of fifty different configurations collected during the
production phase of the simulation. It is important to note that
the CNN is trained using diffraction patterns of fluid, crys-
talline, and quasicrystalline phases obtained from a monodis-
perse system interacting with a hard-core square-shoulder po-
tential. We thus investigate whether the classification of the
CNN trained with diffraction patterns of a monodisperse sys-
tem is general enough to inverse design target phases in a bi-
nary system.

The results of the reverse-engineering process are presented
in Fig. 3] The algorithm successfully finds the target hexag-
onal lattice in approximately eight generations, evident from
the rapid rise in the mean fitness to a high value. By the tenth
generation, the algorithm consistently samples state points
that, on average, facilitate the self-assembly of the hexagonal
lattice. Additionally, Fig. [3c) shows a representative snap-
shot along with its diffraction pattern computed for the large
species, exhibiting clear hexagonal symmetry.

The evolution of the design parameters is shown in
Fig. B[b). The algorithm quickly converges to the range of
design parameters where the hexagonal lattice self-assembles.

7

Comparing these findings to those obtained in Fayen et al.'®
it is expected that the inverse design protocol would favor
the self-assembly of this phase as the stability region of the
hexagonal lattice is extensive in the phase diagram. In our
work, this is evident from the wide spread of samples with
high fitness values, which gradually narrows as the evolution
progresses and the optimization method converges. Subse-
quently, the probability distribution narrows around the esti-
mated mean. This behavior is attributed to the rugged land-
scape of f, with multiple minima, allowing the hexagonal lat-
tice to self-assemble across a broad range of design param-
eters. It is important to note that once the optimizer has fo-
cused on a local minimum, other samples from other minima
get discarded due to the selection mechanism choosing the
best samples within each generation. These challenges can be
overcome by using different exploration mechanisms which
could explore other minima during optimization, even after
discovering a local minimum of f 424>

B. Inverse design of a dodecagonal quasicrystal

We now target a dodecagonal quasicrystal (QC12) phase in
a non-additive binary hard-disk mixture, recently predicted in
simulations 1812 This quasicrystal comprises a random tiling
of squares and equilateral triangles, exhibiting distinct 12-
fold rotational symmetry. This square-triangle random tiling
has been investigated extensively,*® and observed in computer
simulations of monodisperse systems'?® Given that data for
a one-component 12-fold quasicrystal (QC12) is already in-
cluded in the training data of the CNN, it can readily be used
to target this phase within the binary mixture.

We define the fitness function as f = Pchz, where Poci2
represents the probability that the diffraction pattern of a given
configuration is classified as a QC12 by the CNN. Similar to
the protocol used for the hexagonal lattice, the "bar" indicates
that the input diffraction pattern for the classifier is an aver-
aged diffraction pattern of fifty different configurations col-
lected during the production phase of the simulation.

We present the results of the inverse design protocol in
Fig. @] We clearly observe that the optimization of the qua-
sicrystal phase requires more generations to identify a local
minimum than in the HEX case. However, once found, the
evolution of parameters remains stable, eventually reaching
a plateau. A clear indicator of the inverse design protocol
approaching the target phase is monitoring the packing frac-
tion 7, which shows a consistent increase as the protocol con-
verges. Higher packing fractions are favored, since the QC12
and other crystalline phases only self-assemble at high pres-
sures and high packing fractions. In Fig.[d(a), we observe that
after approximately ten generations, 7 starts to increase con-
sistently toward values exceeding 11 > 0.8. Subsequently, the
packing fraction remains close to 1) = 0.84.

The behavior observed in the other parameters, specifically
g and xg, contrasts with that of the packing fraction 1. The
size ratio ¢ displays extensive variations within the first ten
generations, as shown by the large spread in the samples in
Fig. [@b). During the first ten generations, at least 90% of the
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given generation. The dotted lines are the bounds imposed for the optimization problem. (c) Exemplary configuration snapshot of a hexagonal

lattice obtained during the last generation. (d) Diffraction pattern of the configuration in[(c)]

total range of the size ratio ¢ is explored.

During the exploration phase, corresponding to the first fif-
teen generations of the sepCMA-ES, attempts are made to
sample a wide region of the search space, until a high fitness
state point is found, subsequently directing the optimizer to-
ward that region. However, for both ¢ and xg, the region ex-
plored remains quite large, covering at least 60% of the total
range, until it reaches a plateau at around generation number
30. The extensive exploration is required since the region of
self-assembly of the octagonal quasicrystal is small compared
to the size of the design parameter space. Still, the average
values found for ¢ and xg agree well with Ref.[I8]

Regarding the non-additivity parameter A, low values are
obtained, which is expected since the small particles stabilize
the random square-triangle tiling. Larger values of A would
imply significant overlap between small and large particles,
a scenario the optimizer has steered away from within the

search space.
We would like to emphasize once more that the QC12 self-

assembled in the binary mixture comprises a random square-
triangle tiling for the large species. The data used to train
the CNN originates from a single-component system that also
exhibits a square-triangle tiling. It is important to note that
the current training data may not be sufficient to facilitate
the inverse design of other quasicrystals observed in simula-
tions 2829

C. Inverse design of octagonal quasicrystal

So far, we have successfully reverse-engineered hexagonal
crystals and dodecagonal quasicrystals within a non-additive
binary hard-disk mixture using a CNN trained solely with
diffraction patterns from a single-component system. How-
ever, in cases where we aim to inverse design structures
within a binary mixture that are not available in the one-
component system, we face a challenging recursive loop. The
sought-after structure is necessary to train the CNN, while a
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trained CNN is crucial to inverse design that specific struc-
ture. An exame of such a structure is the octagonal qua-
sicrystal (QC8) 18 for which diffraction patterns from a single-
component system are absent in our training data. This ab-
sence poses a challenge when attempting to employ the CNN
for the inverse design of QCS8 within the binary mixture.
We therefore resort to our symmetry-based order parameter,
which bypasses the requirement for training a CNN and can
be used as a fitness function in our inverse design protocol.

Our focus is now on achieving the octagonal quasicrystal
structure using the fitness function presented in Section [[IT'C}
Consistent with our previous endeavours, our objective is to
identify the optimal set of design parameters that facilitates
the self-assembly of QC8s. We focus on the following de-
sign parameters, the size ratio g, the small species compo-
sition xg, and the packing fraction 1. These parameters are
again sampled from a multivariate Gaussian distribution at
each generation. We compute the non-additivity parameter
as a function of the size ratio g, using the expression A(g) =

(2y/9)/(1+¢q) — 1 to facilitate a comparison with Ref.[18!

The fitness function is now defined as fg, using the expres-
sion from Eq. (8) for f. In this case, the CNN is no longer
used and the symmetry-based order parameter serves as the
fitness function steering the optimization. Similar to the pre-
vious sections, the "bar" in the fitness function indicates that
the input diffraction pattern for the classifier is an averaged
diffraction pattern of fifty different configurations collected
during the production phase of the simulation.

In Fig. [5|b), we present the evolution of the parameters for
the QCS, displaying a plateau in the evolution of the fitness
after twenty generations as shown in Fig. 5fa). The packing
fraction 1) undergoes extensive exploration but quickly local-
izes at high values, as expected since the QCS8 can only self-
assemble at high packing fractions. Additionally, the size ra-
tio g and small species composition xg converge to values with
high fitness after fifteen generations. These values align with
Ref. A representative snapshot and diffraction pattern are
shown in Fig.[5{c) and Fig.[5[(d), respectively, highlighting the
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octagonal symmetry.

Our results thus show that the fitness, defined in terms of
the symmetry of the diffraction pattern, functions as intended.
From Fig. [5]a), we observe that the evolution of the fitness
function appears noisy in the later generations, a characteris-
tic not observed in our results using the CNN. This could stem
from the fitness function not being bounded but instead rely-
ing on obtaining peaks in the power spectral density P(m) as
large as possible. However, as these values can fluctuate due
to penalties imposed on other frequencies, the maximum val-
ues of the peaks are not known in advance. One way to solve
this issue could involve computing multiple scores simultane-
ously using different sets of diffraction patterns, or averaging
the total fitness value during the evolution of the design pa-
rameters.

V. CONCLUSIONS

In conclusion, we have extended a recently introduced in-
verse design protocol to reverse-engineer crystalline and qua-
sicrystalline structures within a two-dimensional non-additive
binary hard-disk mixture. This method employs a CNN to
characterize and classify diffraction patterns as similar or dis-
similar to a target phase. This information can be used to-
gether with an optimizer, e.g. an evolutionary algorithm, to
find the optimal state point and interaction parameters that fa-
cilitate the assembly of the target phase. More importantly, we
show that we have successfully inverse designed hexagonal
crystals and dodecagonal quasicrystals within a binary mix-
ture using a CNN trained on solely diffraction patterns from a
single-component system.

When dealing with unknown phases, the neural network
cannot be trained since there is no readily available informa-
tion about the system. To address this limitation, a symmetry-
based order parameter was introduced, enabling the inverse



design of crystalline structures and quasicrystals with new
symmetries. This order parameter determines the symmetry
of the diffraction patterns by identifying the number of re-
flection axes. More specifically, this approach bypasses the
necessity of training a CNN and the requirement for diffrac-
tion patterns of the structures to be reverse-engineered. By
only changing the fitness function in our inverse design proto-
col, we successfully inverse designed octagonal quasicrystals
within a binary mixture.

This study demonstrates that data from single-component
systems is sufficient for training neural networks and reverse
engineering structures in binary mixtures, provided that these
phases are represented in the training data and large quanti-
ties can be obtained. While the neural network performs well
when data of the specific structure is available, the symmetry-
based order parameter serves as a valuable tool when the tar-
get structure data remains elusive.
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