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Abstract

Low-energy scattering is well described by the effective-range expansion. In quantum mechanics, a tower
of contact interactions can generate terms in this expansion after renormalization. Scattering parameters
are also encoded in the self-adjoint extension of the Hamiltonian. We briefly review this well-known result
for two particles with s-wave interactions using impenetrable self-adjoint extensions, including the case of
harmonically trapped two-particle states. By contrast, the one-dimensional scattering problem is surprisingly
intricate. We show that the families of self-adjoint extensions correspond to a coupled system of symmetric
and antisymmetric outgoing waves, which is diagonalized by an SU(2) transformation that accounts for
mixing and a relative phase. This is corroborated by an effective theory computation that includes all four
energy-independent contact interactions. The equivalence of various one-dimensional contact interactions
is discussed and scrutinized from the perspective of renormalization. As an application, the spectrum of a
general point interaction with a harmonic trap is solved in one dimension.

Keywords: Contact interactions, Effective theories, Quantum mechanics, Renormalization, Robin
boundary conditions, Scattering theory, Schrödinger equation, Self-adjoint extensions

1. Overview

Scattering of particles with short-range interac-
tions is well described at low energies by the effective-
range expansion [1]. From a modern perspective, this
expansion emerges from a systematic treatment of
contact interactions within the context of effective
quantum field theories. For systems exhibiting res-
onant interactions near threshold, there has been a
wealth of investigations and applications in atomic
and nuclear physics [2, 3, 4, 5].

Quantum mechanics with contact interactions has
a long history, however, starting with the pseudo-
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potential method, which is rooted in self-adjoint ex-
tensions of Hamiltonian operators. For a discussion
of the connection between these and effective field
theory, see Refs. [6, 7]. Further elaboration of the
connection between self-adjoint extensions and one-
dimensional contact interactions is the main focus
of the present work. Early on, von Neumann rec-
ognized that physical observables are described by
Hilbert-space operators that are not only Hermitian,
but also self adjoint [8]. While most discussion has
been centered in the mathematical physics commu-
nity [9], differential operators with point interactions
are routinely used to obtain exactly soluble quantum
mechanical models [10]. One-dimensional point in-
teractions have been discussed from a variety of per-
spectives [11, 12, 13, 14, 15, 16], with an increasing
slant toward physics phenomenology. More recent
work has investigated novel applications concerning
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confined systems [17, 18]. A particularly lucid intro-
duction to self-adjoint extensions of Hamiltonians is
contained in Ref. [19], which additionally details an
interesting application to supersymmetric quantum
descendants.

Contact operators afford a complementary descrip-
tion of short-range interactions. In one dimension,
the δ(x) potential is a staple problem of introduc-
tory quantum mechanics. Higher-dimensional con-
tact operators, however, require regularization and
renormalization.1 The very singular δ′′(x) potential,
for example, has been considered using various tech-
niques. In Ref. [21], for example, the interaction
was treated by means of a hard momentum cutoff,2

for which the equivalence to a delta-function poten-
tial has been exhibited in the strict limit of an infi-
nite cutoff. This quantum mechanical result demon-
strates a well-known feature of renormalization the-
ory: the δ′′(x) potential is an irrelevant operator, and
the lower dimensional δ(x) potential is a relevant op-
erator. No symmetry protects the generation of the
delta-function potential under renormalization group
evolution.3

A more curious interaction is provided by the δ′(x)
potential,4 which is a marginal operator. In one di-
mension, the Hamiltonian with such a potential has
a classical scale symmetry, for which the generation
of a δ(x) operator under renormalization group evo-
lution would ordinarily be forbidden. There is, how-
ever, a scale anomaly in relativistic quantum field

1For an introduction to regularization and renormalization
in the context of quantum mechanics, see Ref. [20].

2A different treatment of the δ′′(x) interaction based on
the theory of discontinuous distributions is given in Ref. [22].
These results can be obtained with the NDR scheme described
in Appendix B.

3Symmetry properties of second-derivative contact interac-
tions are discussed in Sec. 4. In particular, Eq. (72) shows that
the renormalization of δ′′(x) is complicated by its coupling to
both symmetric and antisymmetric waves. Furthermore, only
the coupling to antisymmetric waves is described by a self-
adjoint operator.

4When discussing point interactions, one must be careful to
distinguish this interaction δ′(x) = d

dx
δ(x), from the unfortu-

nately named δ′-interaction. For the latter, the prime is used
in the sense of an alternative rather than to denote differenti-
ation.

theory [23, 24], which also appears in non-relativistic
quantum mechanics, see, for example, Refs. [25, 26].
The classical symmetry is not a symmetry at the
quantum level, and the relevant δ(x) operator is
generated by renormalization group evolution. This
is a rephrasing of the results originally obtained in
Ref. [27]. The result is also illustrated as a prelim-
inary example in Ref. [28], and given further expo-
sition using the language of effective field theory in
Ref. [29].

From a renormalization group perspective, it does
not make sense to consider theories with marginal
and irrelevant operators without also including the
relevant δ(x) potential. Previous work demonstrates
that it will be generated under renormalization group
evolution. As we show below, its inclusion is addi-
tionally justified on the grounds of renormalizability;
otherwise, the scattering matrix is renormalization
scale dependent, albeit possessing a finite limit as
the renormalization scale is taken to infinity. This
treatment, moreover, accommodates results obtained
from defining singular interactions from discontinu-
ous distributions [30], such as those of Refs. [31, 32],
which are particular examples of the most general
self-adjoint extension of the free-particle Hamiltonian
on the punctured line.

Our presentation is organized as follows. First in
Sec. 2, we review the impenetrable self-adjoint ex-
tensions that describe the relative radial problem of
two particles with a short-range s-wave interaction.
Robin boundary conditions are shown to incorporate
the scattering length. This well-known result is then
applied to reproduce the spectrum of harmonically
trapped two-particle states. In Sec. 3, self-adjoint ex-
tensions on the punctured line are reviewed. These
give rise to the most general one-dimensional point
interaction, for which we detail its properties under
symmetry transformations. Scattering from a point
interaction is solved in terms of the S-matrix, with
the general point interaction exhibiting partial-wave
mixing and a relative phase. The analogues of par-
tial waves in one dimension are symmetric and an-
tisymmetric waves; scattering of such parity waves
is detailed in Appendix A. Various limiting cases
of the scattering solution for a point interaction are
discussed, including a few curious results.
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The task of reproducing the behavior of the general
point interaction from an effective theory is under-
taken in Sec. 4. All contact interactions up to second-
derivative order are enumerated, along with their
properties under symmetry transformations. The
scattering problem is solved in momentum space, for
which technical details concerning regularization ap-
pear in Appendix B. Renormalized results for parity-
even and parity-odd interactions are contrasted in
two regularization schemes. Using the four energy-
independent contact interactions with näıve dimen-
sional regularization, we obtain the relations between
coefficients of contact operators and the self-adjoint
extension parameters. A final application is pursued
in Sec. 5, where the one-dimensional problem of two
harmonically trapped particles with a general point
interaction is solved. Our results indirectly confirm
the quantum scale anomaly. A final summary of key
results and remaining questions is given in Sec. 6.

2. Impenetrable Self-Adjoint Extensions

We use the relative problem of two particles with
s-wave interactions to review the impenetrable self-
adjoint extension. At sufficiently low energies, such
short-range interactions can be parameterized by a
tower of contact interactions

VS(r) = c0 δ
(3)(r⃗ ) + c2

{
∇2, δ(3)(r⃗ )

}
+ · · · , (1)

regardless of the system under consideration. This is
because the wavelength of the probe cannot resolve
the detailed short-range structure of the interaction.
In Eq. (1), we have exhibited the leading energy-
independent contact interaction, along with the first
energy-dependent term. In coordinate space, this is
a derivative expansion with omitted terms having at
least four derivatives. Due to ultraviolet divergences,
these interactions require regularization, and the pa-
rameters c0, c2, · · · , consequently become scale- and
scheme-dependent running couplings. Physical prop-
erties are rendered scale and scheme independent af-
ter enforcing renormalization conditions. The short-
range interactions are assumed strong, so that VS(r)
is not amenable to perturbation theory.

In a low-energy description, exclusion of the origin
removes the short-range interaction. With r ̸= 0, the
reduced radial Hamiltonian for s-waves is

H0

(
r>0

)
= − 1

2m

d2

dr2
+ VL(r), (2)

where m is the reduced mass, ℏ = 1 in the units
we employ throughout, and we have additionally in-
cluded a rotationally invariant long-range potential
VL(r).

5 Extension of the Hamiltonian to r = 0 can be
achieved by general principles, namely by requiring
that H0 be self adjoint. On the half line r > 0, the
physical requirement resulting from the self-adjoint
extension is that the probability current vanishes at
the origin. This is the so-called impenetrable self-
adjoint extension. The reduced-radial energy eigen-
functions uk(r), satisfy the eigenvalue equation

H0

(
r>0

)
uk(r) = E uk(r), (3)

with the energy eigenvalue written as E = k2

2m , where
k > 0 is the scattering momentum. For such solu-
tions, the radial probability current is

Jk(r) =
1

m
Im
[
u∗k(r)u

′
k(r)

]
, (4)

where the prime denotes differentiation with respect
to r. The most general boundary condition leading
to a vanishing probability current

Jk(ε) = 0 for ε→ 0+, (5)

is the homogeneous Robin boundary condition

u′k(ε)− β uk(ε) = 0, (6)

where β is the real-valued self-adjoint extension pa-
rameter. As the boundary condition must be energy
independent to ensure orthogonality of the eigen-
states,6 the self-adjoint extension accounts for the
energy-independent contact interaction in Eq. (1).

5This form of the Hamiltonian assumes that the separa-
tion of long- and short-range contributions emerges in the low-
energy limit, and is discussed further below.

6Related problems with Hermiticity were noted long ago in
the context of energy-dependent pseudo-potentials [33]. For an
analysis of energy-dependent point interactions, see Refs. [34,
35]. Because such interactions are not self-adjoint, they lie
outside the scope of our investigation.
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2.1. Scattering

For the case of scattering off a short-range poten-
tial, we assume the long-range potential vanishes. On
account of unitarity, the s-wave scattering amplitude
takes the general form

f0(k) =
1

k cot δ0 − ik
, (7)

where δ0 = δ0(k) is the s-wave phase shift. At low
energies, one has a well-behaved expansion of the par-
ticular combination

k cot δ0 = −1

a
+

1

2
r0 k

2 +O(k4), (8)

where a is the scattering length (using the nuclear
physics sign convention) and r0 is the effective range.
Higher-order terms become relevant as the energy in-
creases.
To describe s-wave scattering at low energies, we

exclude the origin, for which the reduced radial
Hamiltonian is simply

H0

(
r>0

)
= − 1

2m

d2

dr2
. (9)

Including short-range interactions can be achieved
with a self-adjoint extension of the kinetic energy
operator on the half line. With the standard elas-
tic scattering solution written in terms of the s-wave
phase shift

uk(r) = N sin(kr + δ0), (10)

one obtains the self-adjoint extension ofH0 by enforc-
ing the Robin boundary condition in Eq. (6). This
immediately leads to

β = −1

a
. (11)

The scattering-length contribution to the effective-
range expansion Eq. (8) emerges from the self-adjoint
extension of the reduced radial Hamiltonian.
With divergences stemming from r = 0 ex-

cluded, the self-adjoint extension of the Hamiltonian
sidesteps regulating the short-range interaction. In-
cluding the origin, on the other hand, generally leads

to power-law divergences from contact interactions.
Once they are regulated, renormalization is carried
out by matching the low-energy behavior of the scat-
tering amplitude Eq. (7). In effective field theory,
power-counting schemes have been devised to carry
out such matching in systematically improvable ways.
The above toy model with a large scattering length,
for example, was considered in Refs. [36, 37] as a pre-
lude to addressing the two-nucleon system. Large
range corrections can additionally be summed, and
higher-order calculations simplified by employing an
efficacious basis for higher-dimensional contact in-
teractions [38]. Such energy-dependent corrections,
however, lie outside our consideration of the self-
adjoint extension of Eq. (9).

2.2. Harmonic Confinement

In an isotropic harmonic trap, the long-range po-
tential is VL(r) =

1
2mω

2r2. With the origin excluded,
the reduced radial Hamiltonian for s-waves reads

H0

(
r>0

)
= − 1

2m

d2

dr2
+

1

2
mω2r2. (12)

In parallel to the previous case, we obtain the so-
lution for the energy eigenfunction uE(r) on the half
line r > 0, and then enforce the Robin boundary con-
dition Eq. (6) to obtain the self-adjoint extension of
H0. There is a crucial feature relevant to this anal-
ysis. The harmonic potential vanishes at the origin;
thus, it is completely absent from the low-energy de-
scription of the short-range potential. Consequently,
the self-adjoint extension parameter β is independent
of the harmonic frequency ω, and is determined from
Eq. (11). The problem of harmonically trapped par-
ticles with s-wave interactions at low energies should
have a clear separation between the long-range and
short-range effects,7 as shown in Fig. 1.

In the region r > 0, the normalizable solution to
the radial equation posed by H0 in Eq. (12) is given
by

uE(r) = N U
(
−E

ω ,
√
2mω r

)
, (13)

7This assumption can be violated by increasing the strength
of the confining potential, such as was observed from detailed
microscopic calculations of alkali atoms in a strong trap [39].
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Figure 1: Schematic atom-atom radial potential in terms of
long- and short-range contributions. On top is a depiction of
a short-range potential and a long-range harmonic trap. The
harmonic potential approximately vanishes at short range. On
the bottom, the short-range potential has been replaced by a
contact interaction assuming the separation of length scales.

where U(a, z) is a parabolic cylinder function, which
accordingly satisfies U

(
a, z→∞

)
= 0. Enforcing the

Robin boundary condition at the origin leads to

β =
√
2mω

U ′(−E
ω , 0

)
U
(
−E

ω , 0
) , (14)

where the prime denotes differentiation with respect
to the second argument. Values of the parabolic
cylinder function and its derivative at the origin
are [40, Eqs. (12.2.6) and (12.2.7)]

U(a, 0) =
2−

1
4−

a
2
√
π

Γ
(
3
4 + a

2

) and U ′(a, 0) = − 2
1
4−

a
2
√
π

Γ
(
1
4 + a

2

) .
(15)

Combining these results, we arrive at the spectrum

condition

−1

a
= −2

√
mω

Γ
(
3
4 − E

2ω

)
Γ
(
1
4 − E

2ω

) . (16)

Without explicitly regulating divergences, the self-
adjoint extension of the Hamiltonian introduces the
relevant physics, which is the s-wave scattering length
in the absence of the harmonic trap. The crucial
feature is the vanishing of the oscillator potential near
the origin, as it leads to separation between the long-
range and short-range physics in the low-energy limit.

The above transcendental equation for the spec-
trum was first derived in Ref. [41] using a pseudo-
potential method. That approximation was later
scrutinized by a detailed microscopic calculation of
the short-range interaction in a strong trap [39]. Var-
ious investigations [42, 43, 44] improved upon the
approximation using an effective scattering-length
model or an energy-dependent pseudo-potential.
These approaches lead to the replacement of − 1

a in
Eq. (16) with the quantity k cot δ0. An effective field
theory calculation of this result appears to have been
carried out first in Ref. [45]. As the energy depen-
dence of k cot δ0 requires energy-dependent point in-
teractions, the improved formula lies outside our con-
sideration of the self-adjoint extension of Eq. (12).

3. General Point Interaction in One Dimen-
sion

The above examples are one-dimensional problems
formulated on the half line r > 0, and utilize the
impenetrable self-adjoint extensions to r = 0. By
contrast, one-dimensional problems on the punctured
line x ∈ R/{0} actually represent a greater challenge,
for which we begin our investigation with a vanishing
long-range potential. The self-adjoint extensions now
allow for transmission through the origin in addition
to reflection. These extensions we discuss in Sec. 3.1,
and the scattering problem is solved in Sec. 3.2. Fi-
nally, the solution is investigated in various limiting
cases in Sec. 3.3.
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3.1. Self-Adjoint Extension for a Point Interaction
in One Dimension

For the one-dimensional kinetic energy operator

H = − 1

2m

d2

dx2
, (17)

defined on the punctured line x ∈ R/{0}, the most
general joining conditions for the coordinate-space
wavefunction ψ(x) across the origin ε→ 0+ are writ-
ten as (

ψ′(ε)

ψ(ε)

)
= M

(
ψ′(−ε)
ψ(−ε)

)
, (18)

where, in the notation of Ref. [15], the transfer matrix
M takes the form

M = eiϕ

(
α β

δ γ

)
. (19)

In the parameterization of M, all parameters are real
valued and satisfy the constraint

αγ − β δ = 1. (20)

To avoid redundancy, the phase is restricted to ϕ ∈
(−π

2 ,
π
2 ]. The parameters α and γ are dimensionless,

whereas β−1 and δ are lengths. These joining con-
ditions on the wavefunction and its derivative are a
consequence of the self-adjoint extension of H. Phys-
ically, they enforce that the probability current is
the same on both sides of the origin, at which the
wavefunction need be neither continuous nor differ-
entiable. This behavior at the origin is said to result
from a point interaction.
Properties of the general point interaction un-

der parity, time-reversal, and scaling transformations
were investigated in Ref. [46]. To describe the prop-
erties of M under transformations, we find it conve-
nient to employ the matrices

Σ1=

(
0 1

1 0

)
, Σ2=

(
0 −i
i 0

)
, Σ3=

(
1 0

0 −1

)
.

(21)
The joining conditions in Eq. (18) can equivalently
be written by traversing the origin in the opposite

direction, for which we have(
ψ′(−ε)
ψ(−ε)

)
= M−1

(
ψ′(ε)

ψ(ε)

)
. (22)

The inverse matrix M−1 satisfies the conjugacy rela-
tion

M−1 = Σ2 M† Σ2. (23)

Consequently, the matrix M will be be unitary pro-
vided [M,Σ2] = 0. For arbitrary ϕ,8 this can only
be achieved by requiring β = δ = 0 and α = γ = ±1,
for which the matrix M is simply the identity matrix
times a phase. In this special case, the wavefunction
and its derivative are continuous up to (the same)
phase, leading to a continuous logarithmic derivative
at the origin.

Under time reversal, the wavefunction has the an-
tilinear transformation ψ(x) → ψ∗(x); consequently,
from Eq. (18), the matrix M also has an antilinear
transformation M → M∗. This transformation can
be achieved simply by the replacement ϕ→ −ϕ, from
which we infer that ϕ is time-reversal odd and all
other parameters are time-reversal even.

A parity reflection about the origin produces the
interchange(

ψ′(−ε)
ψ(−ε)

)
→ Σ1Σ3Σ1

(
ψ′(ε)

ψ(ε)

)
, (24)

which takes into account the behavior of the deriva-
tive d

dx → − d
dx under spatial reflection. A parity

transformation consequently affects the joining con-
ditions through

M → Σ3 M−1 Σ3. (25)

In terms of parameters of the self-adjoint extension,
parity invokes the transformation α ↔ γ and ϕ →

8There is another possibility exclusive to the particular
value ϕ = π

2
. One must first redefine the matrix M to be

dimensionless, for example, by multiplying ψ′(±ε) by a char-
acteristic length in Eq. (18). Unitarity of M is then possible
for any value of ξ, where cos ξ ≡ α = γ and sin ξ ≡ δ = −β.
The latter condition is only possible when β and δ are dimen-
sionless. The value ϕ = π

2
is peculiar, as is briefly addressed

in Sec. 3.3.2.
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−ϕ. Demanding that the joining conditions respect
parity invariance leads to the conjugacy relation

M = Σ1 M† Σ1, (26)

where we have combined the parity transformation
with the form of the inverse written in Eq. (23). Not
surprisingly, parity invariance of the point interaction
requires α = γ and ϕ = 0. For a point interaction
that is invariant after the combined parity and time-
reversal (PT ) transformations, one requires M∗ =
Σ1 M† Σ1. This less restrictive condition is met for
α = γ, but for arbitrary values of ϕ. The parameter
ϕ is both parity and time-reversal odd, hence, PT
even.

Finally, under the scale transformation x → λx,
the wavefunction obeys ψ(x) → ψ(λx) = λ1/2 ψ(x).
The joining conditions consequently have the scale
transformation

M →

(
1 0

0 λ−1

)
M

(
1 0

0 λ

)
. (27)

A scale-invariant point interaction thus requires β =
δ = 0, which is not surprising given that each of these
parameters carries physical dimensions. In this case,
the constraint in Eq. (20) requires γ = α−1, for which
α and ϕ are free parameters. If one further demands
parity invariance, then ϕ = 0 and α = ±1; or, if one
demands PT invariance, then α = ±1 for arbitrary
ϕ. Both of these cases correspond to a unitary matrix
M.

3.2. Scattering From a Point Interaction

Having spelled out the possible self-adjoint exten-
sions on the punctured line, it is elementary to solve
the quantum mechanical scattering problem subject
to Eq. (18). Beyond amplitudes for reflection and
transmission, we obtain the S-matrix in the partial-
wave basis. Details concerning scattering theory in
one dimension are presented in Appendix A. Note
that for a point interaction, exclusion of the origin au-
tomatically puts one in the asymptotic region, where
the solutions are free-particle waves.

For incoming right- and left-traveling waves (de-
noted by ± superscripts), the reflected and transmit-
ted amplitudes are [14, 15, 16]

R(±) =
k2δ ± ik(α− γ) + β

k2δ + ik(α+ γ)− β
,

T (±) =
2ik e±iϕ

k2δ + ik(α+ γ)− β
, (28)

respectively. Note that these amplitudes are related
by the parity transformation of the self-adjoint ex-

tension parameters from above, so that R(+) P→ R(−)

and T (+) P→ T (−). Despite the lack of continuity and
differentiability at the origin, probability is conserved
|R(±)|2+|T (±)|2 = 1. This is a necessary consequence
of the physics underlying the self-adjoint extension.

To simplify the resulting expressions below, note
that all amplitudes in Eqs. (28) share the same de-
nominator

D ≡ k2δ+ ik(α+γ)−β = δ (k− iκ+)(k− iκ−), (29)

which has (imaginary) roots

κ± =
−(α+ γ)±

√
(α− γ)2 + 4

2δ
. (30)

Using the reflected and transmitted amplitudes, the
partial-wave S-matrix Eq. (A.7) for the general point
interaction can be determined. It can be cast in the
form

S = T 1 +
B⃗ · Σ⃗
D

, (31)

where we have repurposed the matrices Σ⃗ =
(Σ1,Σ2,Σ3) defined in Eq. (21), 1 denotes the iden-
tity matrix, and the vector

B⃗ =
(
− 2k sinϕ, −k(α− γ), β + k2δ

)
, (32)

has three real components. The mixing of par-
tial waves due to a parity and time-reversal break-
ing point interaction is therefore mathematically the
problem of spin-half in a magnetic field. A non-
vanishing component of the field along the second
direction leads to breaking of parity symmetry, while
a component along the first direction leads to break-
ing of both parity and time-reversal.

7



Writing the mathematical analogue of the mag-
netic field in terms of its magnitude and direction
B⃗ = |B⃗ | B̂, the eigenvalues of the S-matrix are thus

T ± |B⃗ |/D. Using the roots defined in Eq. (30), we
can express the magnitude squared as

|B⃗ |2 = δ2(k2 + κ2+)(k
2 + κ2−)− 4k2 cos2 ϕ, (33)

from which the S-matrix eigenvalues can be written
in the form

e2iδ± =
2ik cosϕ± |B⃗ |

δ (k − iκ+)(k − iκ−)
. (34)

Explicit computation confirms that these eigenvalues
are unimodular, in accordance with the unitarity of
S. For this reason, the eigenvalues have been written
in terms of phases angles δ±.

The direction of B⃗ can be expressed as the location
of a point on a unit sphere. Instead of the azimuthal
angle φ, it is convenient to use a rotated version Φ =
φ+ π

2 and the express the direction as

B̂ =
(
sinΦ sinΘ, − cosΦ sinΘ, cosΘ

)
. (35)

With this decomposition, the eigenvectors of S math-
ematically correspond to spin up and spin down along
the B̂ axis, and are given by

|+B̂ ⟩ =

(
cos Θ

2

−ieiΦ sin Θ
2

)
, |−B̂ ⟩ =

(
sin Θ

2

ieiΦ cos Θ
2

)
.

(36)
These are column representations in the symmetric
and antisymmetric basis; thus, there is an angle Θ
related to mixing, and a relative phase Φ between
partial waves. These angles are determined by

k cotΘ = − β + k2δ√
(α− γ)2 + 4 sin2 ϕ

,

tanΦ = −2 sinϕ

α− γ
, (37)

where the latter is time-reversal odd and parity even.
The non-standard convention employed for the az-
imuthal angle Φ, moreover, has the feature that ϕ = 0
corresponds to Φ = 0modπ, which is the require-
ment of a time-reversal even point interaction. For

a parity-even point interaction, there is a similar re-
quirement on the mixing angle, namely Θ = 0modπ.
Note that the quantity k cotΘ is a linear function
of the scattering energy k2 = 2mE, and has a finite
limit at threshold k = 0.

Finally, we utilize all of these relations to param-
eterize the scattering T -matrix Eq. (A.11). Employ-
ing the eigenstate scattering amplitudes f±, which
are defined by

f± =
e2iδ± − 1

2i
=

1

cot δ± − i
, (38)

the T -matrix in the partial-wave basis can be written
in the form

T =

(
f +∆f cosΘ ∆f ie−iΦ sinΘ

−∆f ieiΦ sinΘ f −∆f cosΘ

)
, (39)

where

f =
1

2
(f+ + f−), and ∆f =

1

2
(f+ − f−). (40)

This constitutes the full solution to the problem of
scattering from a finite-range interaction. The phase
shifts δ±(k) are determined from the eigenvectors of
T via Eq. (38), while the mixing angle and relative
phase follow from the relations

e2iΦ = −T10

T01
, and tan2 Θ =

4T01T10

(T00 − T11)
2 . (41)

In turn, these quantities are related to the self-adjoint
extension parameters of the general point interaction
through Eqs. (34) and (37).

3.3. Limiting Cases

Various limiting cases of Eq. (39) enable better un-
derstanding of the scattering matrix with a general
point interaction. We consider parity-even interac-
tions, time-reversal even interactions, and PT -even
interactions. Three special cases are also considered:
maximal time-reversal violation, decoupling of one
pole, and the case of scale-invariant point interac-
tions.
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3.3.1. Parity-Even Interaction

A parity-even point interaction represents a im-
portant limiting case to detail fully. In this case,
the self-adjoint extension parameters satisfy α = γ
and ϕ = 0. Consequently, Θ has two possible val-
ues Θ = 0 or π. The second possibility corresponds
to an inversion of B̂ about the third direction, which
would only result in a permutation of the eigenvec-
tors in Eq. (36). Without loss of generality, we take
Θ = 0, so that the up (down) eigenvector corresponds
to the symmetric (antisymmetric) partial wave. For a
parity-even interaction, Φ in Eq. (37) becomes unde-
fined without further specification of how the limits
γ → α and ϕ → 0 are taken. This is of no con-
sequence, however, because the scattering matrix in
Eq. (39) becomes independent of Φ, namely

T = diag
(
f+, f−

)
. (42)

From the T -matrix, we see that the partial-wave am-
plitudes are identical to the eigenstate amplitudes.
We thus identify the phase shifts as those of the sym-
metric and antisymmetric partial waves δ0 = δ+ and
δ1 = δ−. Note that for a parity-even interaction,
one has κ± = (−α± 1)/δ from Eq. (30). Turning to
Eq. (34), we obtain the phase shifts in the form

e2iδ± = ± k + iκ±
k − iκ±

, (43)

which are appropriately unimodular.
The partial-wave scattering amplitudes can be ex-

pressed in terms of phase shifts in a way that exhibits
their low-energy behavior. For the symmetric ampli-
tude, we write it in the form

f0 =
−ik tan δ0

−k tan δ0 − ik
, (44)

to expose that its poles in the complex momentum
plane are determined by −k tan δ0. The low-energy
behavior of this quantity is expected to have a well-
behaved expansion

−k tan δ0 = − 1

a0
+

1

2
r0 k

2 +O(k4), (45)

in comparison with the three-dimensional effective-
range expansion. For the parity-even point interac-

tion Eq. (43), we have

−k tan δ0 = −κ+, (46)

which leads to the identification of the ℓ = 0 scatter-
ing length

a0 =
δ

1− α
, (47)

in terms of the self-adjoint extension parameters.
The antisymmetric scattering amplitude, by con-

trast, is written in the form

f1 =
k

k cot δ1 − ik
, (48)

to expose that its poles in the complex momentum
plane are determined by k cot δ1, which is assumed
to have the well-behaved low-energy limit

k cot δ1 = − 1

a1
+

1

2
r1 k

2 +O(k4). (49)

The ℓ = 1 effective-range expansion in one dimension
is of the same form as the expansion for ℓ = 0 in three
dimensions.9 For the parity-even point interaction
Eq. (43), we have

k cot δ1 = −κ−, (50)

which leads to the identification of the ℓ = 1 scatter-
ing length

a1 = − δ

1 + α
. (51)

In the case of a parity-even point interaction, the
two independent self-adjoint extension parameters α
and δ thus determine the scattering lengths of the
uncoupled s- and p-waves.

3.3.2. Time-Reversal–Even Interaction

In the case of a point interaction that is time-
reversal even, the self-adjoint extension parameter ϕ
vanishes, leaving three unconstrained parameters. As

9For reference, behavior of the ℓ = 1 scattering amplitude in

three dimensions is exhibited by writing f1(k) =
k2

k3 cot δ1−ik3 ,

and noting that the quantity k3 cot δ1 = − 1
(a1)3

+ 1
2r1

k2 +

O(k4) is amenable to a low-energy expansion [47].
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a consequence, the phase Φ in Eq. (37) has the value
Φ = 0modπ, so that cosΦ = ±1, with the sign de-
termined by sign(α− γ) = ±1. As parity is generally
still broken, there is mixing between partial waves;
and, the mixing angle becomes Θ, up to a constant
of proportionality. For simplicity, we consider the
case Φ = 0; the formulas for Φ = π differ only by the
sign of Θ, which could be absorbed by redefining the
mixing angle.

The partial-wave T -matrix in Eq. (39) can be used
to find the scattering amplitude for an incoming
right-traveling wave to be found as a symmetric out-
going wave

f
(+)
0 = e

iΘ
2

[
f+ cos Θ

2 − if− sin Θ
2

]
, (52)

as well as an antisymmetric outgoing wave

f
(+)
1 = e

iΘ
2

[
f− cos Θ

2 − if+ sin Θ
2

]
. (53)

For each of these partial-wave amplitudes, the
modulus-squared coefficients sum to unity, and the
mixing angle can be identified as Θ

2 . If one is inter-
ested solely with the scattering of an incoming right-
traveling wave, the identical overall phases are irrel-
evant. One must be careful, however, because the
scattering amplitudes for an incoming left-traveling
wave are related by a parity transformation to those
above, namely

f
(−)
ℓ = f

(+)
ℓ

∣∣∣
Θ→−Θ

. (54)

3.3.3. PT-Even Interaction

In the case of a PT -even interaction, we have α = γ
for any value of the PT -symmetric parameter ϕ. As a
consequence, the relative phase satisfies Φ = ∓π

2 , the
value of which depends on sign(ϕ) = ±1. For simplic-
ity, we consider only the case Φ = −π

2 ; the formulas
for Φ = π

2 differ only by the sign of Θ, which could be
absorbed by merely redefining this angle. Mixing in
this case is solely due to parity violation introduced
by ϕ. Using the T -matrix in the partial-wave basis
Eq. (39), the scattering amplitude for an incoming
right-traveling wave to be found as a symmetric out-

going wave is

f
(+)
0 = cos Θ

2

[
f+ cos Θ

2

(
1− tan Θ

2

)
+ f− sin Θ

2

(
1 + tan Θ

2

) ]
, (55)

while that for an antisymmetric outgoing wave is

f
(+)
1 = cos Θ

2

[
f− cos Θ

2

(
1 + tan Θ

2

)
− f+ sin Θ

2

(
1− tan Θ

2

) ]
. (56)

The partial-wave scattering amplitudes for an incom-
ing left-traveling wave are related by the parity trans-
formation in Eq. (54).

There is a complicated feature of the mixing
present in this case that is also shared by the general
case. The modulus-squared coefficients of the two
eigenstate scattering amplitudes do not sum to unity
in each partial wave. Instead, the sum of all four
(over both partial waves) is unity, which is consistent
with probability conservation. There is conventional
mixing between the eigenstate basis and the partial-
wave basis, not between the right- and left-traveling
basis and the partial-wave basis. For example, the f−
amplitude in Eqs. (55) and (56) has the same overall
factor cos Θ

2

(
1 + tan Θ

2

)
, but is additionally accom-

panied by sin Θ
2 in the symmetric wave, and cos Θ

2 in
the antisymmetric wave. The down eigenstate thus
mixes with an angle of Θ

2 into the partial-wave basis.
This more intricate pattern of mixing occurs when
time-reversal is broken.

3.3.4. Maximal Time-Reversal Violation

There is curious behavior in the case of maxi-
mal time-reversal violation, which is attained when
ϕ = π

2 . Larger values of ϕ are redundant because the
range of ϕ can be reduced to (−π

2 ,
π
2 ] by adjusting

the signs of the other self-adjoint extension parame-
ters. In the case of maximal time-reversal violation,
the eigenvalues of the S-matrix become

e2iδ± = ±

√
(k + iκ+)(k + iκ−)

(k − iκ+)(k − iκ−)
. (57)
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Strikingly, there are no longer poles of the S-matrix
on the imaginary momentum axis; instead, the for-
mer pole locations have become branch points. There
is no conflict with unitarity, as each eigenvalue of S
is manifestly unimodular. For all momenta k, fur-
thermore, the eigenstate phase shifts always differ in
phase by π

2 .
Supposing that κ+ is positive, for example, there

will be a bound state.10 For algebraic simplicity, we
take α = γ in what follows, but note that adopting
PT symmetry is not necessary. Up to normalization,
the coordinate wavefunction of the bound state can
be obtained by taking the residue of the incoming
right- or left-traveling solutions in Eq. (A.3) at k =
iκ+. Taking residues of both solutions leads to the
same bound-state wavefunction

ψE(x) =
√

κ+

2 e−κ+|x|[1 + i sign(x)
]
, (58)

up to an overall phase. With a real phase convention
chosen, the wavefunction is invariant under the PT
transformation [ψE(−x)]∗ = ψE(x). This normal-
ized wavefunction satisfies the boundary conditions in

Eq. (18), and has the bound-state energy E = − κ2
+

2m .
Maximal time-reversal violation, however, seems to
be a case for which bound states do not appear as
poles of the S-matrix.

3.3.5. One Pole Decouples

Each S-matrix eigenvalue in Eq. (34) generally ex-
hibits one pole. Specifically, κ± is the pole location
of the eigenvalue e2iδ± .11 When κ± > 0, the state
will be a bound state in the spectrum of H; while,
for κ± < 0, the pole is on the unphysical sheet and

10In the case of negative values, there will be antibound
states (also called virtual states or virtual bound states).
While such non-normalizable solutions do not correspond to
physical states, they too show up as poles of the S-matrix and
can have a sizable effect on low-energy scattering near thresh-
old. The S-matrix in Eq. (57), however, does not exhibit any
poles.

11To analytically continue the numerator to k = iκ±, we

choose the branch of |B⃗ | so that the eigenvalues are continu-
ously connected to those in the parity-even limit Eq. (43). This

requires |B⃗ | → ∓2κ± cosϕ, and establishes that each S-matrix
eigenvalue has only one pole.

corresponds to an antibound state. Only for a parity-
even point interaction is each S-matrix pole associ-
ated with a symmetric or antisymmetric state. When
parity is broken, each state is a superposition having
indefinite parity.

A possible scenario at low energies is that one pole
is closer to threshold, and the other decouples. Re-
turning to Eq. (29), this will be the case when either
δ = 0 or β = 0.12 Due to the constraint in Eq. (20),
one must have γ = α−1 for both of these possibilities.

For the first possibility, we restrict to δ = 0, for
which the denominator D has one root located at
k = iκ0, where

κ0 = − β

α+ α−1
. (59)

Consequently, the eigenstate scattering amplitudes
become

f±=
2ik cosϕ+i β

κ0
(k−iκ0)∓

√
β2

κ2
0
(k2+κ20)−4k2 cos2 ϕ

2 β
κ0
(k − iκ0)

,

(60)
but only f+ has a pole at k = iκ0. Due to break-
ing of parity and time reversal, the mixing angle and
relative phase are generally non-vanishing

k cotΘ = − β√
(α− α−1)2 + 4 sin2 ϕ

,

tanΦ = − 2 sinϕ

α− α−1
. (61)

Note that the pole location alone does not fix
these quantities. The energy of the bound-state (or
antibound-state) pole is necessarily a parity even and
time-reversal even quantity. The scattering matrix is
required to glean information about the breaking of
parity and time-reversal. If one takes the limit of par-
ity and time-reversal invariance, Θ → 0 along with
f− → 0, and only then is the pole exclusively an
s-wave.

12When both vanish, there are no poles. This case is that of
the scale-invariant point interaction addressed in Sec. 3.3.6.
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For the other possibility, we restrict to β = 0, for
which there will be a pole at k = iκ1, where

κ1 = −α+ α−1

δ
. (62)

Note that while D has a root at threshold, the eigen-
state scattering amplitudes remain finite at k = 0.
These amplitudes have the form

f±=
2i cosϕ− δ(k − iκ1)±

√
δ2(k2 + κ21)−4 cos2 ϕ

2iδ(k − iκ1)
,

(63)
and f− exhibits the pole. When one takes the limit
of parity and time-reversal invariance, then Θ → 0
along with f+ → 0, and the pole in f− becomes ex-
clusively p-wave. The mixing angle and relative phase
in the β = 0 case are given by

k tanΘ = −

√
(α− α−1)2 + 4 sin2 ϕ

δ
,

tanΦ = − 2 sinϕ

α− α−1
. (64)

The two possibilities δ = 0 and β = 0 can be dis-
tinguished, for example, by the markedly different
behavior of the mixing angle near threshold.

3.3.6. Scale-Invariant Interaction

For a scale-invariant point interaction,13 both di-
mensionful parameters vanish β = δ = 0, and the S-
matrix does not have poles on the imaginary momen-
tum axis. This can be argued on physical grounds,
because a pole would imply the existence of an en-
ergy scale. To obtain the scattering matrix for this
special case, we take the δ → 0 limit of the β = 0
result in Eq. (63). With a scale-invariant point inter-
action, the eigenstate scattering amplitudes have the
form

f± =
2 cosϕ− (α+ α−1)±

√
4 cos2 ϕ−(α+ α−1)2

2i(α+ α−1)
,

(65)

13For a scale-invariant point interaction, the scaling property
of the HamiltonianH → λ−2H cannot be modified by the self-
adjoint extension to x = 0. A scale-invariant interaction thus
preserves the scale transformation of the Hamiltonian.

which are momentum independent and anomalous at
threshold. The formula for the relative phase is un-
changed from Eq. (64), while the mixing angle curi-
ously satisfies Θ

2 = sign(α) π
4 , for all momenta.

To make the connection with Levinson’s theorem
in one dimension, one requires a parity-even interac-
tion. This imposes ϕ = 0 and α = ±1, for all values
of k. Consequently, results agree with Levinson’s the-
orem as δℓ(0) = 0 or π

2 depending on sign(α). The
former result is that of a free particle, while the lat-
ter result merely reflects the overall reversal of sign at
the origin; these cases are trivial point interactions.
Classical scale symmetry is present in the low-energy
effective theory Sec. 4 only for two possible contact
interactions that are however, parity odd.

4. Contact Interactions in One Dimension

The general point interaction must be describable
in terms of a low-energy effective theory of contact
interactions. The zero-range effective interaction V
in one dimension has the general form

V = − 1

m

∞∑
j=0

Oj , (66)

and contains infinitely many contributions that are
indexed by j, which is the number of derivatives (mo-
mentum operators) appearing in the various terms of
each contribution Oj . Such terms are restricted by
Hermiticity, and our interest is only with those that
are additionally self adjoint. Note that for algebraic
convenience, we have factored out −m−1 from all
contributions. Operator coefficients are real valued in
what follows. These are generally running couplings,
and contributions from the corresponding terms ofOj

are regulated. The regularization schemes we employ
are detailed in Appendix B.

To discuss properties of contact operators with re-
spect to the partial-wave basis, we use the parity op-
erator P, which satisfies P2 = 1. In the partial-
wave basis, the symmetric and antisymmetric waves
are even- and odd-parity eigenstates, so that P |ℓ⟩ =
(−1)ℓ |ℓ⟩. Positive and negative parity projection op-
erators are defined by P± = 1

2 (1± P), and accord-
ingly satisfy the relations P2

± = P± and P± P∓ = 0.
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In one dimension, the operator P+ projects onto s-
waves, while P− projects onto p-waves. The parity-
odd transformations of the position and momentum
operators are encoded in the anticommutation rela-
tions {P, x} = {P, p} = 0. Consequently, parity-odd
operators, such as the position operator x, have the
property xP± = P∓ x.

With zero derivatives, the contributionO0 has only
one term

O0 = c0 δ(x), (67)

which is the Dirac delta-function interaction. This
term has even parity [P, δ(x) ] = 0, which leads to
the decomposition

δ(x) = P+ δ(x)P+ + P− δ(x)P− −→ P+ δ(x)P+.
(68)

Note that the second term in this decomposition can
be dropped. It couples only to antisymmetric waves,
and these vanish at the origin ⟨ℓ=1| δ(x) |ℓ=1⟩ = 0.
For the contribution O1, there are two terms with

one derivative

O1 = c1 i [ p, δ(x) ] + c̃1 {p, δ(x)} . (69)

The first term i [ p, δ(x) ] = δ′(x) is simply the deriva-
tive of the delta-function interaction. Both terms of
O1 have odd parity, and they mediate transitions be-
tween symmetric and antisymmetric waves, which is
manifest in the identity O1 = P+ O1 P−+P− O1 P+.
The term with coefficient c1 is time-reversal even,
while the term with coefficient c̃1 is time-reversal odd,
hence PT even. Under scaling x → λx, these terms
have the transformation O1 → λ−2 O1, using that
p → λ−1 p. Excluding all other contributions to V ,

the Hamiltonian H = p2

2m − 1
mO1 has the scale trans-

formationH → λ−2H. In this respect, the two terms
in O1 are unique.
Terms contributing at the next order have two

derivatives, which can be systematically generated
from the three building blocks p2δ(x), δ(x) p2, and
p δ(x) p. Two Hermitian combinations can be formed
from the first two

{
p2, δ(x)

}
and i

[
p2, δ(x)

]
, while

the third building block is already Hermitian. Thus,
we choose the basis of second-derivative operators

O2 = c
(p)
2 p δ(x) p+c2

{
p2, δ(x)

}
+c̃2 i

[
p2, δ(x)

]
. (70)

The first two terms of O2 are even under time re-
versal, while the last term is odd. All three terms
are even under parity, which is made manifest by the
identity O2 = P+ O2 P+ + P− O2 P−. As these op-
erators involve contact interactions, moreover, they
exhibit further selectivity in the partial-wave basis.
Using the property that antisymmetric waves vanish
at the origin, we observe that

O2 = c
(p)
2 P− p δ(x) pP− + c2 P+

{
p2, δ(x)

}
P+

+ c̃2 P+ i
[
p2, δ(x)

]
P+. (71)

The operator with coefficient c
(p)
2 couples only to p-

waves, while the operators with coefficients c2 and c̃2
couple only to s-waves.

Any additional second-derivative terms are re-
dundant due to relations that exist between oper-
ators. For example, the operator

{
p, δ′(x)

}
is al-

ready accounted for in Eq. (70), due to the relation{
p, δ′(x)

}
= i
[
p2, δ(x)

]
. Concerning the δ′′(x) oper-

ator, note that the identity

δ′′(x) = −
[
p, [ p, δ(x) ]

]
= 2p δ(x) p−

{
p2, δ(x)

}
,

(72)
establishes its linear dependence. From Eq. (71),
moreover, we see that δ′′(x) contributes to interac-
tions of both s- and p-waves.
Up to second-derivative order, a total of six con-

tact interactions appear in the effective Hamiltonian.
These are collected in Table 1, but not all are self
adjoint. Once regulated, the second-derivative oper-
ators with coefficients c2 and c̃2 correspond to energy-
dependent point interactions. Accordingly, these op-
erators are omitted in the calculations that follow,14

leaving four self-adjoint contact interactions.

14The operator with coefficient c̃2 can be ruled out based on
symmetry, because there is no parity-even point interaction
that is time-reversal odd. Additionally due to its structure,
the operator cannot modify the renormalized scattering am-
plitudes. In field theory parlance, it constitutes an equation-
of-motion operator, and such operators are redundant. Us-
ing the effective Hamiltonian H, we can write [ p2, δ(x) ] =
2m
[
H−E, δ(x)

]
+ singular, where E is the energy eigenvalue,

and singular represents terms that have a product of two delta
functions. Such singular contributions will always be absorbed
by a renormalization condition. After renormalization, the op-
erator with coefficient c̃2 will thus make a vanishing contri-
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Operator ℓ P T Scale Adj

c0 δ(x) s + + λ−1 ✓

c1 i
[
p, δ(x)

]
s↔p − + λ−2 ✓

c̃1 {p, δ(x)} s↔p − − λ−2 ✓

c
(p)
2 p δ(x) p p + + λ−3 ✓

c2
{
p2, δ(x)

}
s + + λ−3 ✗

c̃2 i
[
p2, δ(x)

]
s + − λ−3 ✗

Table 1: Contact interactions up to second-derivative order,
and their symmetry properties. Relevant partial waves are
denoted by ℓ, while parity P and time-reversal T properties are
also listed (+ for even, − for odd). Scale refers to the operator’s
transformation under the rescaling x → λx. The operator
with coefficient c1 is simply δ′(x), while the operator with
coefficient c2 is the linear combination of δ′′(x) and p δ(x) p
shown in Eq. (72). The last column lists whether the operator
is self adjoint, and computations are carried out only for the
self-adjoint operators.

4.1. Momentum-Space Scattering Solutions

Given the momentum dependence of the contact
interactions, it is natural to reformulate solutions to
the scattering problem directly in momentum space.
Employing the Fourier transform of the wavefunction

ϕ(p) =

∫ +∞

−∞
dx e−ipxψ(x), (73)

we can write the momentum-space solutions for in-
coming symmetric and antisymmetric waves scatter-
ing off contact interactions as15

ϕℓ(p) = ϕℓ,inc(p) + ϕℓ,out(p), (74)

bution to any eigenstate matrix elements. The redundancy
of equation-of-motion operators in quantum field theory holds
on shell (for eigenstates) as well as off shell (for Green’s func-
tions) [48]. The commutator identity also shows that the renor-
malized contributions from this operator also vanish when act-
ing between time-independent Green’s functions. This is due
to the defining equation (H − E)GE(x, 0) = δ(x), and the fact
that δ(x) commutes with itself.

15There is an additional term needed in the most general
solution, which takes the form of a polynomial in momentum
ϕℓ,short(p) =

∑∞
n=0 gn ℓ (ip)

n. In coordinate space, this poly-
nomial generates short-distance contributions to the wavefunc-
tion ψℓ,short(x) =

∑∞
n=0 gn ℓ δ

(n)(x), which ultimately require
a regularization scheme to handle consistently. While such con-
tributions are absent from the asymptotic scattering states,

where the solutions are labeled by ℓ = 0 (ℓ = 1)
for the symmetric (antisymmetric) incoming waves.
In momentum space, delta functions describe the in-
coming waves

ϕℓ,inc(p) = 2π
δ(p− k)+(−1)ℓδ(p+ k)

2
, (75)

where k is the magnitude of the scattering momen-
tum. The incoming waves are solutions to the ho-
mogeneous momentum-space Schrödinger equation
(p2 − k2)ϕℓ,inc(p) = 0. The outgoing momentum-
space wavefunction has the form

ϕℓ,out(p) = 2
k T0 ℓ + pT1 ℓ

p2 − k2 − iϵ
. (76)

The inverse Fourier transform of ϕℓ(p) exposes the
significance of terms appearing in the decomposition
of the momentum-space solution. The corresponding
coordinate wavefunction is

ψℓ(x) = iℓ cos
(
kx− ℓπ

2

)
+ i eik|x|

[
T0 ℓ + sign(x)T1 ℓ

]
. (77)

The first term arises from the sum and difference of
momentum-space delta-functions, which produce the
incoming symmetric and antisymmetric waves, re-
spectively. Terms of the momentum-space wavefunc-
tion ϕℓ,out(p) with amplitudes T0 ℓ and T1 ℓ produce
the outgoing symmetric and antisymmetric waves
in the form of Eq. (A.14). These amplitudes are
T -matrix elements in the partial-wave basis, see
Eq. (A.11).

With contact interactions, the momentum-space
Schrödinger equation

(p2−k2)ϕℓ(p) = −2m

∫ ∞

−∞
dx e−ipx V (x)ψ(x), (78)

leads to an expression for ϕℓ(p) in terms of regulated
values of the coordinate wavefunction and its deriva-
tives at the origin ψ

(n)
ℓ (0). From Eq. (76), one iden-

tifies the T -matrix elements in terms of these origin

they are required to obtain solutions for the T -matrix ele-
ments. In the calculations that follow, however, the coefficients
gn ℓ = 0, because only energy-dependent contact interactions
can produce ϕℓ,short(p). For this reason, the short-distance
contribution is omitted from Eq. (74).
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values. Equations for the regulated origin values are
then obtained by taking moments of the momentum-
space wavefunction in Eq. (74), namely

ψ
(n)
ℓ (0) =

∫
dp

2π
(ip)nϕℓ(p). (79)

This procedure results in a system of linear equations

for the ψ
(n)
ℓ (0), the algebraic solution of which en-

ables determination of T. In evaluating the wavefunc-
tion (77) at x = 0, we are confronted with sign(0),
which is regularization scheme dependent. Consis-
tency with Eq. (76) requires

i sign(0) =

∫
dp

2π

2p

p2 − k2 − iϵ
≡ 0, (80)

which is essentially zero by definition in any parity-
preserving regularization scheme, including those
that we employ.16 Note that derivatives of the co-
ordinate wavefunction at the origin (79) require the
regulator-dependent values of δ(n)(0) discussed in
Appendix B.
In light of these technical points, we can obtain

expressions for the origin values ψ
(n)
ℓ (0) using the

general form of the momentum-space scattering so-
lution Eq. (74). With the set of energy-independent
contact interactions, only the lowest two moments of
the momentum wavefunction are required. Perform-
ing the momentum integrals in Eq. (79) results in the
relations

ψℓ(0) = δ0 ℓ + iT0 ℓ,

ψ′
ℓ(0) = ik δ1 ℓ + 2iT1 ℓ I2(k). (81)

16The scheme-dependent value sign(0) = 0 implies that a
discontinuous function of the form f(x) = f0(x)+sign(x) f1(x)
has the origin value f(0) = f0(0) =

1
2
[f(ε) + f(−ε)], which is

identical to its average across the discontinuity. The derivative
of this function f ′(x) = f ′0(x)+ sign(x) f ′1(x)+2 δ(x)f1(0) has
an additional δ(0) contribution at the origin that requires regu-
larization. The identification of origin values as averages across
the discontinuity proposed in Ref. [49] omitted the regulariza-
tion scale and scheme dependence, but was later reconsidered
with a counterexample [50]. Näıve dimensional regularization
actually provides a scheme in which all of the results of Ref. [49]
hold and likely underlies the theory of discontinuous distribu-
tions of Ref. [30]; however, the NDR scheme is not necessarily
appropriate for every problem.

The integral I2(k) is defined and regulated in Ap-
pendix B. The relations in Eq. (81) are employed
below to obtain the scattering matrix for contact in-
teractions.

4.2. Parity-Even Contact Interactions

To illustrate how the procedure works, we begin
by computing the T -matrix for scattering mediated
by the two energy-independent, parity-even contact
interactions in Table 1. The computation is straight-
forward to perform using a hard momentum cutoff Λ,
and we show that equivalent renormalized results are
obtained with the NDR scheme. Scattering ampli-
tudes are compared to those of the parity-even point
interaction detailed in Sec. 3.3.1.

With these two parity-even contact interactions,
the momentum-space Schrödinger equation (78) pro-
duces

ϕℓ(p) = ϕℓ,inc(p) + 2
c0ψℓ(0)− ip c

(p)
2 ψ′

ℓ(0)

p2 − k2 − iϵ
. (82)

Comparing with the general solution given in
Eq. (74), we readily identify the partial-wave T -
matrix elements

k T0 ℓ = c0ψℓ(0),

T1 ℓ = −ic(p)2 ψ′
ℓ(0). (83)

These quantities depend on values of the wavefunc-
tion and its derivative at the origin, which from
Eq. (81), in turn, depend on the unknowns T0 ℓ, T1 ℓ.
Eliminating the origin values of the wavefunction and
its derivative, we obtain the uncoupled equations

k T0 ℓ = c0 [δ0 ℓ + iT0 ℓ] ,

T1 ℓ = −ic(p)2

[
ik δ1 ℓ + 2iT1 ℓ I2(k)

]
, (84)

for each value of ℓ. Using either a hard momentum
cutoff Λ or in NDR, the function I2(k) is replaced
with its regulated value ik

2 + δ(0), see Eqs. (B.4) and
(B.11).

In solving the above equations, notice that the T -
matrix has the form T = diag (T00,T11), from which
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the diagonal elements are the partial-wave scatter-
ing amplitudes f0 and f1 of Eq. (A.15), respectively.
These amplitudes are found to be

f0(k)=
−ic0

−c0 − ik
(85)

for the s-wave, and

f1(k) =
k[

c
(p)
2

]−1−2δ(0)− ik
, (86)

for the p-wave. While the latter requires renormaliza-
tion, the former is the scale- and scheme-independent
result

−k tan δ0 = −c0, (87)

obtained by comparing f0(k) with Eq. (44). This
comparison enables identification of the coefficient
c0 = (a0)

−1 in terms of the s-wave scattering length
from Eq. (45).
To renormalize the p-wave amplitude Eq. (86), we

first adopt hard momentum cutoff regularization, for
which the required regulated value from Eq. (B.5) is
δ(0) = Λ

π . Renormalization is carried out by com-
paring f1(k) with the general amplitude in Eq. (48),
and matching to the p-wave scattering length a1 in
Eq. (49). The result is the running coupling

c
(p)
2 (Λ) =

(
2Λ

π
− 1

a1

)−1

. (88)

This running is required to maintain the Λ-
independence of the scattering length a1.
With NDR, the renormalization is simpler due to

the regulated value δ(0) = 0 from Eq. (B.10). The

c
(p)
2 coefficient is finite in this scheme, and must have

the value c
(p)
2 = −(a1)

−1 to match the p-wave scat-
tering amplitude. In NDR, we thus have simple scale-
independent relations between coefficients of contact
operators and the self-adjoint extension parameters
of a parity-even point interaction

c0 =
1− α

δ
and c

(p)
2 =

δ

1 + α
. (89)

4.3. Parity-Odd Contact Interactions

Next, we compute the T -matrix for the set of
parity-odd contact interactions in Table 1. We also

include the delta-function in the set, because renor-
malization will generate this interaction even when its
bare coupling vanishes. The computation is carried
out using two different DR schemes, and connection
is made with some earlier results for parity-violating
point interactions.

For the set of parity-odd contact interactions plus
the delta-function interaction, the momentum-space
Schrödinger equation (78) produces

ϕℓ(p) = ϕℓ,inc(p) + 2
c0ψℓ(0)−c1ψ′

ℓ(0)+ip c∗1ψℓ(0)

p2 − k2 − iϵ
,

(90)
which has been compactly written using the complex
combination of coefficients

c1 = c1 + i c̃1. (91)

Using Eq. (76), we identify the partial-wave T -matrix
elements as

k T0 ℓ = c0ψℓ(0)− c1ψ
′
ℓ(0) and T1 ℓ = i c∗1ψℓ(0).

(92)
These involve linear combinations of the wavefunc-
tion and its derivative at the origin, which themselves
are related to the T -matrix elements by Eq. (81).
Eliminating the wavefunction and its derivative at
the origin, we obtain the set of two equations

k T0 ℓ = c0
(
δ0 ℓ + iT0 ℓ

)
− c1

[
ik δ1 ℓ + 2iT1 ℓ I2(k)

]
,

T1 ℓ = i c∗1 (δ0 ℓ + iT0 ℓ) , (93)

for the unknown T -matrix elements, where there is
one set for each value of ℓ. Solving these linear equa-
tions, we deduce the partial-wave T -matrix

T=
1

k−i
[
c0+2|c1|2 I2(k)

] (c0+2|c1|2 I2(k) −ikc1
ik c∗1 ik|c1|2

)
.

(94)

Before carrying out renormalization in specific reg-
ularization schemes, note that the angle Φ is de-
termined by a scheme-independent relation. From
Eq. (41), we have

Φ = − arg c1 = − tan−1 c̃1
c1
. (95)
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The same is not true of the mixing angle, because it
satisfies the relation

k cotΘ =
c0 + 2|c1|2

[
I2(k)− ik

2

]
2|c1|

, (96)

which depends on the scheme used to regulate the
integral I2(k).

4.3.1. Renormalization with Dimensional Regular-
ization

In dimensional regularization with the PDS
scheme, Eq. (B.17) shows that IPDS

2 (k) = ik
2 + µ,

where µ is the dimensional regularization scale.17

The three running couplings c0(µ), c1(µ), and c̃1(µ)
of the effective theory require renormalization con-
ditions. The T -matrix maintains only a single pole,
and a natural choice is to fix the energy of the pole

E0 = − κ2
0

2m . From Eq. (94), this renormalization con-
dition translates into

κ0 =
c0(µ) + 2µ |c1(µ)|2

1 + |c1(µ)|2
. (97)

Note that κ0 need not be positive; a bound-state pole
and an antibound-state pole are both possible renor-
malization conditions. The time-reversal violating
phase Φ is a physical parameter that can be deduced
from knowledge of the scattering matrix, thus we ad-
ditionally enforce Eq. (95) as a renormalization con-
dition. Finally, the mixing angle is another physical
parameter, for which we enforce the condition

k cotΘ ≡ 1

aΘ
+ · · · = c0(µ) + 2µ |c1(µ)|2

2|c1(µ)|
. (98)

Here, we have introduced the mixing length aΘ as an
abbreviation, but also to emphasize its momentum
independence. These three conditions enable us to

17As the T -matrix in Eq. (94) depends only on I2(k), its
renormalization using the PDS scheme is consequently the
same as with a hard momentum cutoff Λ, provided we make
the substitution µ→ Λ

π
, see Eqs. (B.4) and (B.17).

determine the coefficients

c0(µ) = κ0 +
κ0 − 2µ

(κ0 aΘ)
2

[
1−

√
1− (κ0 aΘ)

2

]2
,

c1 =
e−iΦ

κ0 aΘ

[
1−

√
1− (κ0 aΘ)

2

]
, (99)

where only c0(µ) is required to be a running cou-
pling to keep the T -matrix µ independent.18 Given
the matching conditions, moreover, the condition
|κ0 aΘ| ≤ 1 is required for a non-perturbative solu-
tion.

Explicit computation of the the renormalized T -
matrix produces

T =
1

k
κ0

− i

(
1 + ik

2κ0
A −ie−iΦ k aΘ

2

ieiΦ k aΘ

2
ik
2κ0

A

)
, (100)

where A = 1 −
√
1− (κ0 aΘ)2. The corresponding

eigenstate scattering amplitudes are

f± =
κ0

[
1±
√

1+(k aΘ)2
]
+ik

[
1−
√
1−(κ0 aΘ)2

]
2 (k − iκ0)

.

(101)
In accordance with the δ = 0 results of Sec. 3.3.5, only
f+ maintains a pole at k = iκ0; and, with aΘ → 0
specifying the limit of a parity-even interaction, the
other amplitude vanishes f− → 0 in that limit. The
wavefunction at the pole can be found (up to a con-
stant of proportionality) from taking the residue of

18Note that an additional set of solutions has been ruled
out by requiring c1 → 0 in the limit that Θ → 0 mod π, or
equivalently when aΘ → 0.
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ψ(+)(x) at k = iκ0, which leads to19

Ψ(x) ∝ e−κ0|x|
[√

1− (κ0 aΘ)2 + 1 + κ0 aΘ e
−iΦ

+ sign(x)
(√

1− (κ0 aΘ)2 − 1− κ0 aΘ e
iΦ
) ]
,

(102)

and is a superposition of parity eigenstates provided
aΘ ̸= 0. When κ0 > 0, the wavefunction can be nor-
malized, and the pole corresponds to a bound state;
whereas, for κ0 < 0, the pole corresponds to an anti-
bound state.
Renormalization using the NDR scheme is very

similar and reproduces T above. From Eq. (B.11), we
note that INDR

2 (k) = ik
2 , and readily obtain the NDR

results from those in the PDS scheme by setting µ =
0. The only modification is thus cNDR

0 = cPDS
0 (µ=0)

in Eq. (99). Without scale dependence, moreover,
we can directly relate the coefficients of contact op-
erators to the self-adjoint extension parameters. We
have already determined δ = 0 by comparing with
Sec. 3.3.5, which is further confirmed by noting that
k cotΘ is non-zero at threshold. The renormalization
conditions provide three non-linear equations relating
the coefficients of contact operators to the three inde-
pendent self-adjoint extension parameters α, β, and
ϕ. In NDR, we find

c0 = − 2β

α+ α−1 + 2 cosϕ
,

c1 =
α− α−1

α+ α−1 + 2 cosϕ
,

c̃1 =
2 sinϕ

α+ α−1 + 2 cosϕ
. (103)

From the multiple solutions, we choose the set based

19Either the right- or left-traveling solution ψ(±)(x) can be
used to deduce the wavefunction at the pole. That obtained
from the left-traveling solution agrees with Eq. (102) up to a
complex-valued constant of proportionality. Additionally, the
wavefunction agrees with the one obtained by directly enforc-
ing the joining conditions in Eq. (18) on a bound-state solution
Ψ(x). In terms of the self-adjoint extension parameters, one
readily finds Ψ(x) ∝ e−κ0|x|

[
θ(−x)α+ θ(x) eiϕ

]
, and can be

rewritten in the form of Eq. (102) by utilizing the relations in
Eq. (61).

on the limit of an interaction that is parity even and
time-reversal even, for which c0 = −β

2 .
20

4.3.2. Classical Scale Symmetry

Now we restrict to the case c0 = 0, and retain the
two parity-odd operators with coefficients c1 and c̃1
in Table 1. At the classical level, the Hamiltonian
has a homogeneous scale transformation. Quantum
mechanically, the higher-dimensional operators will
renormalize lower dimensional ones, unless protected
by a symmetry. As the scale symmetry is anomalous
at the quantum level, the delta-function interaction
should be generated in renormalizing the theory, even
though the bare coupling c0 was chosen to vanish.
This is a way to rephrase the findings of Refs. [27,
28, 29]. Indeed starting with such a vanishing bare
coupling, we have the renormalization condition for
the pole location as

κ0 =
2µ|c1(µ)|2

1 + |c1(µ)|2
, (104)

in the PDS scheme.21 This form excludes the possi-
bility of an antibound-state pole, because only κ0 >
0 is permitted. The relative phase is scheme in-
dependent as before, which translates to c1(µ) =
e−iΦ|c1(µ)|. The running of the modulus coupling
is given by

|c1(µ)| =
√

κ0
2µ− κ0

. (105)

This running coupling then renders the mixing angle
in the form

k cotΘ = µ

√
κ0

2µ− κ0
, (106)

20Even after this choice, there is an overall sign ambiguity so
that the related set {c0,−c1,−c̃1} is also a solution. The signs
of both parity-odd coefficients can be flipped by redefining the
x-axis to be reflected about the origin.

21With c0 = 0 in the NDR scheme, classical scale symmetry
is preserved. Consequently, the scattering matrix does not
possess a pole and the scattering amplitudes are anomalous,
see Sec. 3.3.6. It is a tacit assumption that such behavior is
excluded by the renormalization conditions. When c0 ̸= 0,
by contrast, there is no scale symmetry and NDR provides a
perfectly reasonable regularization scheme.
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which is, however, scale dependent. Consequently,
the T -matrix for the theory with c1(µ) and c̃1(µ) can-
not be renormalized.22 An additional interaction is
required with a running coupling that can render the
scattering matrix to be scale independent.

Curiously, Ref. [29] does not obtain a scattering
matrix that is invariant under renormalization group
evolution; instead, the limit µ → ∞ is taken.23

With the running coupling in Eq. (105), the bound-
state pole remains fixed in this limit by design. The
mixing angle in Eq. (106), however, has the limit
Θ (µ→∞) = 0, for which parity invariance emerges.
The corresponding limit of the partial-wave T -matrix

T (µ→∞) =
1

k
κ0

− i

(
1 0

0 0

)
, (107)

is that of an energy-independent s-wave contact in-
teraction. The correct conclusion is that the parity-
violating operators evolve to a parity conserving δ(x)
interaction as µ→ ∞. This is the missing interaction
needed to renormalize the theory, which is clear from
renormalization theory: the higher-dimensional op-
erators renormalize lower-dimensional ones. Once we
accept that the scale symmetry is anomalous, a delta-
function interaction cannot be omitted in the renor-
malization of the scattering matrix. In Sec. 4.3.1, a
scale-independent scattering matrix Eq. (100) is ob-
tained with inclusion of the delta-function interac-
tion; and, parity sensibly remains broken.

22The same conclusion can be reached by alternately enforc-
ing the renormalization condition for the mixing angle first. In
this case, we arrive at a running coupling |c1(µ)| ∝ µ−1. With
this coupling, the pole of the T -matrix remains µ dependent
and the scattering matrix also cannot be renormalized.

23In an even number of dimensions, residual logarithmic de-
pendence on the renormalization scale would obviously pre-
clude taking this limit. While there are no logarithms in odd
dimensions, renormalization scale dependence still signals the
need for an additional operator to renormalize the scattering
matrix. The running couplings in Eq. (99) exhibit that the
coefficient of the delta-function interaction is relevant, while
those of the first-derivative interactions are marginal. With-
out logarithmic running, the marginal operators have a finite,
scale-independent renormalization.

4.4. Contact Interactions up to Second-Derivative
Order

Lastly, the scattering solution is obtained using the
set of four energy-independent contact interactions
shown in Table 1. While the calculation can be per-
formed in any regularization scheme, the expressions
are rather cumbersome to display in all but the NDR
scheme. This scheme automatically subtracts power-
law divergences, for which the coefficients of contact
operators are finite.

The momentum-space Schrödinger equation (78)
now includes all terms in Eqs. (82) and (90). The
partial-wave T -matrix elements are thus given by

k T0 ℓ = c0ψℓ(0)− c1ψ
′
ℓ(0),

T1 ℓ = i c∗1ψℓ(0)− i c
(p)
2 ψ′

ℓ(0). (108)

Eliminating the origin values of the wavefunction and
its derivative using Eq. (81), we obtain the equations

k T0 ℓ = c0(δ0 ℓ + iT0 ℓ)− c1(ik δ1 ℓ − k T1 ℓ),

T1 ℓ = i c∗1
(
δ0 ℓ + iT0 ℓ

)
− i c

(p)
2 (ik δ1 ℓ − k T1 ℓ),

(109)

where we have used Eq. (B.11) for the momentum
integral in NDR. Solutions of Eq. (109) for the T -
matrix elements can be written as

T0 ℓ =

[(
1− ik c

(p)
2

)
c0 + ik|c1|2

]
δ0 ℓ − ik c1δ1 ℓ(

1− ik c
(p)
2

)
(k − ic0) + k|c1|2

,

T1 ℓ =
ik c∗1δ0 ℓ +

[
k c

(p)
2 (k − ic0) + ik|c1|2

]
δ1 ℓ(

1− ik c
(p)
2

)
(k − ic0) + k|c1|2

.

(110)

As the breaking of parity and time-reversal is solely
due to c1, it is not surprising that the relative phase
is determined by the same condition as in Sec. 4.3.1.
Thus, we have

c1 = e−iΦ|c1| and
c̃1
c1

=
2 sinϕ

α− γ
, (111)

where the former equation expresses the phase of c1
in terms of the physically measurable parameter Φ,
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and the latter equation gives the relation between the
coefficients of contact operators and the self-adjoint
extension parameters of the general point interaction.
Going further, the mixing angle can be determined
from Eq. (41), from which we find

k cotΘ =
c0 − k2 c

(p)
2

2|c1|
, (112)

and is appropriately a linear function of the energy.
The locations of the poles of the scattering matrix
provide the final renormalization conditions. From
Eq. (110), the common denominator of all T -matrix
elements is proportional to [k − iκ+] [k − ik−], where

κ± = −1 + |c1|2 − c
(p)
2 c0

2 c
(p)
2

±

√[
1 + |c1|2 − c

(p)
2 c0

]2
+ 4c

(p)
2 c0

2 c
(p)
2

. (113)

Thus, all T -matrix elements have two poles, and the
associated bound or antibound states are of indefi-
nite parity. In turn, Eqs. (30) and (37) allow us to
deduce the coefficients of contact operators in terms
of the self-adjoint extension parameters. Straightfor-
ward algebra reveals the sought-after relations24

c0 = − 2β

α+ γ + 2 cosϕ
, c

(p)
2 =

2δ

α+ γ + 2 cosϕ
,

c1 =
α− γ

α+ γ + 2 cosϕ
, c̃1 =

2 sinϕ

α+ γ + 2 cosϕ
.

(114)

5. Harmonic Trap with a Point Interaction in
One Dimension

Having treated one-dimensional scattering from a
general point interaction in the absence of a long-
range potential, we add a harmonic oscillator po-
tential. This is a straightforward application of the

24As with Eq. (103) above, there is a second set of solutions
differing only by c1 and c̃1 both multiplied by −1.

methods from Sec. 2.2 and Sec. 3.1. The Hamiltonian
is taken to be

H =
p2

2m
+

1

2
mω2x2, (115)

on the punctured line x ∈ R/{0}. The self-adjoint
extension to x = 0 is made through the joining con-
ditions in Eq. (18). We assume the separation of
long- and short-range interactions, so that the oscil-
lator potential has no effect on the physics producing
the point interaction, see Fig. 1 for the analogous sit-
uation on the half line. As a result, the self-adjoint
extension parameters take on their values for ω = 0.
These values give a complete characterization of the
one-dimensional scattering problem at low energies.
The scattering lengths, mixing pattern, and time-
reversal violating phase are encoded in the extension
parameters.

On the punctured line, the normalizable solutions
to the Schrödinger eigenvalue problem HψE(x) =
E ψE(x) must be of the form

ψE(x) = θ(−x)N− U
(
−E

ω ,−
√
2mω x

)
+ θ(x)N+ U

(
−E

ω ,
√
2mω x

)
, (116)

where U(a, z) is the parabolic cylinder function em-
ployed in Sec. 2.2. The amplitudes on either side of
the origin are N±, which are generally complex num-
bers. The solution introduces four real parameters,
however, the normalization condition on the wave-
function and the overall phase convention reduce the
number of free parameters to two. The amplitudes
must be determined by enforcing the joining condi-
tion in Eq. (18). As there are four self-adjoint exten-
sion parameters in the general point interaction, we
can anticipate that the solution is over determined,
leading to a quantization condition on the energy E.

For the oscillator solution defined piecewise in
Eq. (116), the joining conditions translate into the
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pair of equations

N+

(√
2mω U ′ (−E

ω , 0
)

U
(
−E

ω , 0
) )

=

eiϕN−

(
−α

√
2mω U ′ (−E

ω , 0
)
+ β U

(
−E

ω , 0
)

−δ
√
2mω U ′ (−E

ω , 0
)
+ γ U

(
−E

ω , 0
)) .
(117)

From these equations and the function values in
Eq. (15), one finds the spectrum condition

α+ γ = − β

2
√
mω

Γ
(
1
4−

E
2ω

)
Γ
(
3
4−

E
2ω

) − 2
√
mω δ

Γ
(
3
4−

E
2ω

)
Γ
(
1
4−

E
2ω

) .
(118)

Solutions of this transcendental equation determine
the energy E. Notice that such solutions are inde-
pendent of the time-reversal violating parameter ϕ,
which therefore only enters the wavefunction.
As written above, the spectrum condition depends

on three independent self-adjoint extension parame-
ters, which can be chosen as α, γ, and δ, using the
relation in Eq. (20). In turn, these parameters can
be expressed in terms of quantities accessible from
the scattering matrix. Using the latter relations, the
equation for the spectrum becomes[

Γ
(
3
4 − E

2ω

)
− κ+

2
√
mω

Γ
(
1
4 − E

2ω

)]
×
[
Γ
(
3
4 − E

2ω

)
− κ−

2
√
mω

Γ
(
1
4 − E

2ω

)]
= 0, (119)

which is independent of the pattern of mixing be-
tween partial waves and the relative phase between
them. Only the two poles of the S-matrix, κ± given
in Eq. (30), are required.
To further exhibit the solution, it is useful to inves-

tigate limiting cases. For the parity-even point inter-
action detailed in Sec. 3.3.1, each pole of the S-matrix
is determined by a partial-wave scattering length. In
terms of scattering lengths, the spectrum condition
for the parity-even point interaction is satisfied when
either

2
√
mω

Γ
(
3
4 − E

2ω

)
Γ
(
1
4 − E

2ω

) =
1

a0
, or

1

a1
. (120)

These formulas are analogous to the three-
dimensional case Eq. (16). The three-dimensional
case, however, has only s-wave interactions between
particles; whereas, the one-dimensional case above in-
cludes both s- and p-wave interactions in uncoupled
channels.25

As a curiosity, the final limit we take is that of the
scale-invariant point interaction Sec. 3.3.6 in the har-
monic oscillator potential.26 Accordingly, we restrict
the self-adjoint extension parameter γ = α−1, and
attempt to set β = δ = 0. From Eq. (118), however,
the equation determining the spectrum would seem
to produce a contradiction

α+ α−1

Γ
(
1
4−

E
2ω

)
Γ
(
3
4−

E
2ω

) = −
β

2
√
mω

Γ
(
3
4−

E
2ω

)2− 2
√
mω δ

Γ
(
1
4−

E
2ω

)2 ,
(121)

because the right-hand side vanishes, whereas α+α−1

cannot vanish. The spectrum condition can only be
satisfied at particular energies E at which the denom-
inator has a pole. The gamma-function duplication
formula [40, Eq. (5.5.5)]

Γ(z)Γ
(
1
2 + z

)
=

√
π 21−2z Γ(2z), (122)

allows us to focus on a single gamma function rather
than the product of two. With β = δ = 0, the equa-
tion for the spectrum becomes

α+ α−1

Γ
(
1
2 − E

ω

) = 0, (123)

and can thus be satisfied when 1
2 − E

ω = −n for
n ∈ Z+. Of course, the condition E = ω(n+ 1

2 ) yields

25For the delta-function interaction V = − c0
m
δ(x), the

self-adjoint extension parameters are given by α = γ = 1,
δ = ϕ = 0, and β = −2c0, with the scattering length
a0 = (c0)−1. The spectrum from Eq. (118) is then determined

by c0 = 2
√
mω

Γ( 3
4
− E

2ω )
Γ( 1

4
− E

2ω )
, which is the one-dimensional for-

mula derived in Ref. [41].
26While the harmonic oscillator introduces a scale, there is a

dynamical SO(2, 1) symmetry [51]. The spectrum-generating
algebra, for example, leads to evenly spaced levels with ∆E =
2ω. This is essentially a classical scale symmetry that is bro-
ken by quantum effects, and our results indirectly confirm the
anomaly.
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the spectrum of the harmonic oscillator without any
point interaction. Consistency of the quantum me-
chanical eigenvalue equation thus implies that the
only scale-invariant point interaction must be trivial.

6. Summary

We explore connections between low-energy scat-
tering, self-adjoint extensions, and contact interac-
tions. To conclude, we summarize the major re-
sults and indicate a few remaining questions. The
case of short-range s-wave interactions is reviewed in
terms of the impenetrable self-adjoint extension of
the reduced-radial Hamiltonian in Sec. 2. The self-
adjoint extension parameter accounts for the scatter-
ing length. As a simple application, we extend the
analysis to harmonically confined particles. These
introductory considerations pave the way to consider
self-adjoint extensions on the punctured line in Sec. 3.
The general S-matrix for a particle scattering from
finite-range potential is detailed in Eq. (39). The
result is written in terms of eigenstate scattering am-
plitudes f±, a mixing angle Θ, and a relative phase Φ.
These quantities are related to the self-adjoint exten-
sion parameters of the one-dimensional point inter-
action through Eqs. (34) and (37). In particular, the
quantity k cotΘ is found to be a linear function of the
energy. The formulation of one-dimensional scatter-
ing in terms of waves of definite parity is elaborated
on in Appendix A.
Short-range interactions can be described by a po-

tential consisting of a tower of contact interactions,
provided the calculations are regulated and renormal-
ized. In one dimension, all such contact interactions
up to second-derivative order are given in Table 1.
The partial-wave basis is utilized for these operators,
and their properties are shown. The Schrödinger
equation is solved for sets of energy-independent
contact interactions by generalizing the momentum-
space method of Ref. [6]. The hard momentum
cutoff regularization and dimensional regularization
schemes that we employ are detailed in Appendix B.
As an example, all four energy-independent contact
interactions are used to determine the T -matrix using
the NDR scheme in Sec. 4.4. The physical parame-
ters of the scattering matrix are related to the coeffi-

cients of contact operators in Eqs. (111)–(113). Ad-
ditionally, we provide the dictionary that translates
between the self-adjoint extension parameters and co-
efficients of contact operators in Eq. (114). When in-
cluding higher-dimensional (marginal and irrelevant)
contact operators, we emphasize that suitable renor-
malization conditions must be enforced to arrive at
a scale-independent scattering matrix. In particular,
the single-derivative operators of Sec. 4.3 introduce
mixing of parity that has not been previously ad-
dressed.

There are a few points of interest for further work.
With only two channels, the pattern of mixing in one-
dimensional scattering is considerably simpler than
in two and three dimensions. This simplicity sug-
gests that there may be a form of Levinson’s the-
orem for the eigenstate phase shifts of parity non-
symmetric interactions. In another direction, self-
adjoint extensions on the punctured line with max-
imal time-reversal violation lead to the very curious
behavior of S-matrix elements in Eq. (57). In this
limit, the theory can support a bound state, for ex-
ample, without the S-matrix exhibiting a pole. It is
not clear whether a low-energy theory of contact in-
teractions can reproduce such behavior, and further
work exploring the consequences of time-reversal vi-
olation seems warranted. Lastly, our analysis is re-
stricted to those contact operators that are addition-
ally self-adjoint, which excludes those with energy
dependence. The description of low-energy scattering
in effective theories can be improved, however, by in-
cluding energy-dependent contact interactions, such
as the interaction that generates an effective range.
In strict terms, a positive effective range cannot be
treated non-perturbatively [52, 7]. For contact in-
teractions, this is a reflection of Wigner’s causality
bound [53, 54, 55, 56, 57, 58]. The topic of energy-
dependent point interactions has received renewed at-
tention [59, 60, 61], and there might be insight gained
from comparing the perspectives of effective field the-
ory and mathematical physics.

Nevertheless, we present a comprehensive modern
perspective on quantum mechanics with short-range
interactions formulated in one dimension. We show
that contact interactions can provide a complemen-
tary description to self-adjoint extensions, provided
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the former are suitably regulated and renormalized.
We hope that these topics become a natural supple-
ment to introductory quantum mechanics courses, in
preparation for more advanced treatment using quan-
tum field theory.
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Appendix A. Scattering in One Dimension

Scattering theory in one dimension is reviewed.
The S-matrix is first formulated in the basis of
right- and left-traveling waves, then converted to the
partial-wave basis. The case of a parity-even interac-
tion is detailed.

Appendix A.1. S-Matrix in One Dimension

The S-matrix provides the most economical de-
scription of scattering. In one dimension, asymptotic
incoming and outgoing waves are superpositions of
right- and left-traveling waves

Ψin(x)
k|x|≫1
= θ(−x)Ψ(+)

in e+ikx+θ(x)Ψ
(−)
in e−ikx,

Ψout(x)
k|x|≫1
= θ(−x)Ψ(−)

out e
−ikx+θ(x)Ψ

(+)
out e

+ikx.

(A.1)

The outgoing amplitudes are related to the incoming
amplitudes by operation with the S-matrix27(

Ψ
(+)
out

Ψ
(−)
out

)
= S

(
Ψ

(+)
in

Ψ
(−)
in

)
. (A.2)

The energy of these asymptotic free-particle solutions

is defined to be E = k2

2m , with k > 0 as the scattering
momentum. This follows from the assumption that
the potential is of finite range.

For a parity-even interaction, an incoming wave
that is reflected about the origin Ψin(−x) must have
the corresponding outgoing solution Ψout(−x) ob-
tained from Eq. (A.1). This will be the case provided
the S-matrix has the property S = Σ1S Σ1, where
Σ1 is defined in Eq. (21). On the other hand, im-
posing time-reversal invariance requires the relation[
Ψin(x)

]∗
= Ψout(x) between incoming and outgoing

waves. The S-matrix must then obey the relation
ST = Σ1S Σ1, where we have used the unitarity con-
dition to identify (S∗)−1 = ST .

Due to linearity, the matrix elements of S can
be obtained by considering incoming right- and left-
traveling waves separately. For incoming waves with
unit amplitude, the asymptotic scattering solutions
are

ψ(±)(x)
k|x|≫1
= θ(∓x)

[
e±ikx +R(±) e∓ikx

]
+ θ(±x)T (±)e±ikx, (A.3)

which depend on amplitudes R(±) for reflection, and
T (±) for transmission. With these parameterizations
of the solutions for incoming right- and left-traveling

27Note that the right-traveling (left-traveling) wave is thus
incident from the left (right). We label these waves by their
propagation direction not location, which is then similarly
done for the outgoing waves. Tracking instead by location, one
would be inclined to write the transformation (in our notation)

as

(
Ψ

(−)
out

Ψ
(+)
out

)
= Σ1S

(
Ψ

(+)
in

Ψ
(−)
in

)
, as suggested in Refs. [62, 63].

While the resulting matrix S̃ = Σ1S is unitary, it is neither
unitarily equivalent to S, nor does it reduce to the identity
matrix for a free particle.
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waves, the form of the S-matrix is

S =

(
T (+) R(−)

R(+) T (−)

)
. (A.4)

Unitarity of the S-matrix hinges on probability con-
servation and orthogonality. The conditions |R(±)|2+
|T (±)|2 = 1 produce unity along the diagonal of S†S.
Its off-diagonal elements vanish due to orthogonal-
ity of the asymptotic right- and left-traveling scat-
tering states

(
R(−)

)∗
T (+) +

(
T (−)

)∗
R(+) = 0. For

a parity-even interaction, the condition S = Σ1S Σ1

translates into the requirements R(+) = R(−) and
T (+) = T (−). With a time-reversal even interaction,
the condition ST = Σ1S Σ1 only imposes the require-
ment that T (+) = T (−).

Appendix A.2. Partial Waves in One Dimension

Eigenvalues of the S-matrix encode the scattering
phase shifts. To compare with scattering theory, we
need a one-dimensional analogue of the partial-wave
expansion. This naturally takes on a rather simple
form,28 which has been given in Ref. [65]. The ana-
logues of partial waves in one dimension are symmet-
ric and antisymmetric waves, which arise from the
basic fact that every function can be written as a
sum of symmetric and antisymmetric combinations.
The general point interaction, however, is not par-
ity invariant. As a result, the symmetric and anti-
symmetric waves are coupled [66, 67]. To expose the
coupling of partial waves, we transform the S-matrix
from the basis of right- and left-traveling waves to
that of symmetric and antisymmetric waves. Noting,
for example, that the outgoing wave can be written in
terms of symmetric and antisymmetric combinations
in the form

Ψout(x) =
1√
2

[
Ψ

(+)
out +Ψ

(−)
out√

2

+ sign(x)
Ψ

(+)
out −Ψ

(−)
out√

2

]
e−ik|x| (A.5)

28Despite the simplicity, there can be subtleties in practice,
such as an unusual form for Levinson’s theorem and the related
Beth-Uhlenbeck formula for the second virial coefficient [64].

we infer a transformation to the partial-wave basis(
Ψ

(s)
out

Ψ
(p)
out

)
= U

(
Ψ

(+)
out

Ψ
(−)
out

)
, (A.6)

where (s) denotes the symmetric and (p) the an-
tisymmetric wave amplitudes. The unitary ma-
trix that carries out the transformation is U =

1√
2

(
1 1

1 −1

)
. In the partial-wave basis, the S-

matrix from Eq. (A.4) transforms into

S ≡ U S U† =

(
T +R ∆T +∆R

∆T −∆R T −R

)
, (A.7)

where barred quantities are defined to be averages

O =
1

2

(
O(+) +O(−)

)
, and

∆O = 1
2

(
O(+) −O(−)

)
, (A.8)

are half of the differences.
For a parity-even interaction, we have ∆R = ∆T =

0. Consequently the S-matrix Eq. (A.7) becomes di-
agonal in the partial-wave basis. With an interaction
that is time-reversal invariant, ∆T = 0 and S be-
comes an antisymmetric matrix. It can be diagonal-
ized in terms of a mixing angle between symmetric
and antisymmetric waves [67]. With breaking of both
parity and time reversal, the situation becomes more
intricate. As S ∈ U(2), the partial-wave mixing can
generally be diagonalized with an SU(2) transforma-
tion.

In the main text, we work in the partial-wave basis.
The solutions for incoming right- and left-traveling
waves Eq. (A.3) can be decomposed into symmetric
and antisymmetric outgoing waves

ψ(±)(x)
k|x|≫1
= e±ikx + i eik|x|

[
f
(±)
0 ± sign(x) f

(±)
1

]
.

(A.9)
The symmetric wave is analogous to an s-wave,
while the antisymmetric wave is analogous to a p-
wave. Note that the first Legendre polynomial is
P1(cos θ) = cos θ, while the scattering angle is re-
stricted to satisfy cos θ = ±1 and accordingly obeys
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the formula cos θ = sign(x). The reflected and trans-
mitted amplitudes in Eq. (A.3) are related to the

partial-wave amplitudes f
(±)
ℓ through the relations

R(±) = i
(
f
(±)
0 − f

(±)
1

)
,

T (±) = 1 + i
(
f
(±)
0 + f

(±)
1

)
. (A.10)

The latter are convenient for expressing the scatter-
ing T -matrix, which is defined as

T =
S − 1
2i

. (A.11)

In the partial-wave basis, it has the explicit form

T =

(
f0 ∆f0
∆f1 f1

)
, (A.12)

where the barred and difference quantities are defined
as in Eq. (A.8). To fully utilize the partial-wave basis,
one should employ incoming waves that are symmet-
ric and antisymmetric

ψℓ(x) ≡
ψ(+)(x) + (−1)ℓ ψ(−)(x)

2
, (A.13)

where ℓ = 0 or 1. From Eq. (A.9), these scattering
solutions have the asymptotic k|x| ≫ 1 behavior

ψℓ(x) = iℓ cos
(
kx− ℓπ

2

)
+i eik|x|

[
T0 ℓ+sign(x)T1 ℓ

]
,

(A.14)
and have outgoing amplitudes that are T -matrix ele-
ments in the partial-wave basis Eq. (A.12).

Appendix A.3. Parity-Even Interaction

For a parity-even interaction, we can connect with
the partial-wave analysis of Ref. [65]. In this case, the
asymptotic scattering solutions must be related by
a parity transformation ψ(+)(−x) = ψ(−)(x), which

leads to the requirement f
(+)
ℓ = f

(−)
ℓ , and conse-

quently
T = diag (f0, f1) . (A.15)

With parity symmetry, we need only consider an in-
coming right-traveling wave, for example, and all ±
superscripts become unnecessary. Written in terms

of phase shifts δℓ, the asymptotic scattering solution
becomes

ψ(x)
k|x|≫1
= eiδ0 cos

(
k|x|+ δ0

)
+ ieiδ1 sign(x) cos

(
k|x| − π

2 + δ1
)
. (A.16)

When both phase shifts vanish, we recover only the
incident right-traveling wave, which justifies their in-
terpretation as shifts in phase due to an interaction.
Matching the two forms of the asymptotic solution
in Eqs. (A.9) and (A.16) leads to expressions for the
partial-wave amplitudes in terms of the phase shifts

fℓ =
1

cot δℓ − i
. (A.17)

From the T -matrix, we obtain the S-matrix via
Eq. (A.11), which is similarly diagonal on account
of parity invariance

S = diag
(
e2iδ0 , e2iδ1

)
. (A.18)

For the S-matrix to have unimodular eigenvalues, the
δℓ must be real valued.

Note that for a parity-even interaction, Eq. (A.10)
yields the relations

f0 =
T +R− 1

2i
and f1 =

T − (1 +R)

2i
. (A.19)

In particular, the antisymmetric amplitude for a
point interaction is proportional to the discontinu-
ity of the wavefunction across the origin. From
these amplitudes, we obtain the S-matrix elements
in Eq. (A.18)

e2iδ0 = T +R and e2iδ1 = T −R, (A.20)

which also directly follow from restricting Eq. (A.7)
to a parity-even interaction. In Sec. 3.3.1, the ma-
chinery to diagonalize the S-matrix for a parity-
even point interaction is unnecessary. With α = γ
and ϕ = 0, the mathematical analogue of the mag-
netic field B⃗ in Eq. (32) points in the third direc-
tion, which renders S diagonal. As a result of parity
invariance, the amplitudes in Eq. (28) indeed sat-
isfy R(+) = R(−) ≡ R and T (+) = T (−) ≡ T ,
and the partial-wave phase shifts are identified as in
Eq. (A.20). Using the expressions for T and R, more-
over, we recover the phase shifts in Eq. (43).
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Appendix B. Regularization Schemes

The contact interactions in Sec. 4 requires regular-
ization and renormalization. The scattering problem
is formulated in momentum space, for which calcula-
tions require integrals of the form

I2n(k) =

∫
dp

2π

p2n

p2 − k2 − iϵ
, (B.1)

where n ∈ Z+ and k > 0 is the scattering momentum.
The integral for n = 0 is convergent with I0(k) =

i
2k ,

and must not be altered by the regularization scheme.
For odd powers, the related integrals I2n+1(k) vanish
in any parity-preserving regularization scheme. We
employ two different regulators: a hard momentum
cutoff and dimensional regularization. These are de-
tailed below; and, for the latter, we employ two dif-
ferent schemes.

Appendix B.1. Momentum Cutoff

A straightforward way to tame ultraviolet diver-
gences is to introduce a hard momentum cutoff Λ,
beyond which there are no momentum modes. This
results in a simple definition of the regulated integrals
in terms of the allowed modes |p| < Λ, namely

IΛ2n(k) ≡
∫ +Λ

−Λ

dp

2π

p2n

p2 − k2 − iϵ

= k2n−1
[
b0 +

n∑
j=1

bj
(
Λ
k

)2j−1
+O

(
k
Λ

) ]
, (B.2)

where the maximum power of the cutoff is 2n − 1,
which is the degree of divergence of the integral. Note
that logarithmic dependence on Λ will not be encoun-
tered. In the case of n = 0, we have b0(k) =

i
2 and

the cutoff dependence of the integral is proportional
to Λ−1. Taking Λ/k ≫ 1, we appropriately arrive at
IΛ0 (k) =

i
2k .

To compute IΛ2 (k), note that the identity

p2

p2 − k2 − iϵ
=

k2

p2 − k2 − iϵ
+ 1, (B.3)

can be applied to the integrand. With the momentum
cutoff regulating the integral, the integral of the sum

is the sum of the integrals, namely

IΛ2 (k) = k2 IΛ0 (k) + IΛ2 (0) =
ik

2
+

Λ

π
. (B.4)

The latter factor appearing above is the hard cutoff
regularization of the delta function at the origin

δ(0) −→ IΛ2 (0) =

∫ +Λ

−Λ

dp

2π
1 =

Λ

π
. (B.5)

The identity Eq. (B.3) can be applied iteratively to
reduce numerators containing higher powers of p2.
With a hard momentum cutoff, the derivative of the
delta function at the origin is

δ′(0) −→
∫ +Λ

−Λ

dp

2π
ip = 0, (B.6)

and vanishes due to parity.

Appendix B.2. Dimensional Regularization

In dimensional regularization (DR), divergent in-
tegrals are regulated by altering the number of di-
mensions, and then performing an analytic continua-
tion in d. Logarithmic divergences show up as poles,
which must be subtracted; whereas, power-law diver-
gences are automatically renormalized. The power-
divergence subtraction (PDS) scheme was devised to
circumvent the automatic renormalization of power-
law divergences [36, 37]. With parity-violating oper-
ators in one dimension there is an additional feature.
The single derivative d

dx does not have an obvious
generalization to d dimensions. We employ two dif-
ferent schemes to handle this feature.

Appendix B.2.1. Näıve Dimensional Regularization

The first DR scheme is one that ignores features
specific to one dimension. For this reason, we call it
näıve DR (NDR). We define the dimensionally regu-
lated integrals Eq. (B.1) in the näıve scheme as

INDR
2n (k) = µ1−d

∫
ddp

(2π)d
p2n

p2 − k2 − iϵ
, (B.7)

where we have introduced the DR scale µ so that the
integral in d dimensions maintains the same physical
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units as in one dimension. This definition merely re-
places the one-dimensional momentum integral with
a d-dimensional momentum integral. The integration
ranges over the full d-dimensional momentum space.

Evaluation of the integral in d dimensions yields

INDR
2n (k) =

πi

sin
(
πd
2

) k2n−1
(

µ
−ik

)1−d

(4π)d/2 Γ
(
d
2

) , (B.8)

having used that n ∈ Z+. Because there are no log-
arithmic divergences, the regulated integral is finite
when evaluated in d = 1. Thus, we have

INDR
2n (k)

d=1
=

i

2
k2n−1. (B.9)

In particular, the result for n = 0 is INDR
0 (k) = i

2k ,
which agrees with the direct evaluation of this finite
integral. For n = 1, we have the result INDR

2 (k) =
ik
2 , which implies the regulated value for the delta
function at the origin is

δ(0) −→ INDR
2 (0) = 0. (B.10)

This vanishing is similarly true of δ′(0) (although due
to parity), δ′′(0), etc. The value of INDR

2 (k) can also
be consistently found from the regulated recursion
relation obtained from integrating Eq. (B.3)

INDR
2 (k) = δ(0) + k2I0(k) =

ik

2
. (B.11)

Compared to the hard momentum cutoff, the auto-
matic subtraction of power-law divergences in NDR
leads to the relation INDR

2n (k) = IΛ2n(k)
∣∣
Λ=0

.

Appendix B.2.2. One-Dimensional PDS Scheme

The NDR scheme is perfectly fine in most situ-
ations but potentially presents an issue for parity-
odd operators, for example, those contributing to
O1 in Eq. (69). These operators possess a classical
scale symmetry, and the scale symmetry is respected
within NDR. The regulated integrals in Eq. (B.9), for
example, naturally maintain µ independence. The
quantum anomaly, however, should physically intro-
duce a scale. The PDS scheme is ideal for introducing
a renormalization scale by subtracting the divergence

in one dimension lower; however, the NDR integral in
Eq. (B.8) does not have a pole in d = 0 dimensions.
Instead, it has the finite value

INDR
2n (k)

∣∣∣
d=0

= −µ (k2)n−1. (B.12)

To apply a PDS scheme, we must be careful to ex-
tend the integrals to d dimensions. Each factor of
momentum in the numerator of the one-dimensional
integral in Eq. (B.1) results from the action of d

dx .
Extending the integrand to d dimensions using NDR,
factors of p2 are treated as the magnitude-squared
momentum. To define our PDS scheme, the kinetic
energy is taken as d dimensional, but the contact in-
teractions are defined using only derivatives with re-
spect to x, i.e. the first component of a d-dimensional
position vector. As an illustration, the Hamiltonian
with only the derivative of the delta-function inter-
action in d dimensions is taken to be

H =
p⃗ 2

2m
− c1
m

d

dx
δ(r⃗). (B.13)

For this and similar interactions, we are thus led to
define the integrals in DR as

IDR
2n (k) = µ1−d

∫
ddp

(2π)d
(px)

2n

p2 − k2 − iϵ
. (B.14)

Finally, the regulated value in the PDS scheme is
obtained by subtracting the analytical form of the
pole near d = 0, but evaluated in d = 1

IPDS
2n (k) ≡

[
IDR
2n (k)− IDR

2n (k)
∣∣
d≈0

]
d=1

. (B.15)

To employ the PDS scheme to evaluate the DR
integrals required in Sec. 4, we first note that for n =
0, the values are the same in DR and NDR, IDR

0 (k) =
INDR
0 (k). Because there is no pole in INDR

0 (k) as d
nears zero, there is nothing to subtract in Eq. (B.15).
Consequently, we obtain IPDS

0 (k) = i
2k . Differences

appear once n ̸= 0.
For n = 1, appealing to SO(d) rotational invari-

ance allows us to relate the DR and NDR integrals

IDR
2 (k) =

1

d
INDR
2 (k), (B.16)
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and the former has a pole in d = 0 given the finite
limit in Eq. (B.12) of the latter. The value of the
integral in the PDS scheme Eq. (B.15) is

IPDS
2 (k) =

[
IDR
2 (k) +

µ

d

]
d=1

=
ik

2
+ µ, (B.17)

which should be compared with Eqs. (B.4) and
(B.11). Note that in the PDS scheme, the simple
identity in Eq. (B.3) does not immediately appear
in calculations. Only after appealing to SO(d) rota-
tional invariance can the identity be used in practice.
This is being taken into account, however, by the re-
lation in Eq. (B.16).
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