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Early efforts to realize exotic quantum ground states in frustrated magnets focused
on frustration arising from the lattice geometry alone. Attention has shifted to bond-
dependent anisotropic interactions, as well as further-neighbor interactions, on non-
geometrically-frustrated lattices due to their greater versatility. The honeycomb mag-
net BaCo2(AsO4)2 recently emerged as a candidate host for both bond-dependent (e.g.
Kitaev) and third-neighbor (J3) interactions, and has become a model experimental
system due to its relatively low levels of disorder. Understanding the relative im-
portance of different exchange interactions holds the key to achieving novel ground
states, such as quantum spin liquids. Here, we use the magnetotropic susceptibil-
ity to map out the intermediate and high-field phase diagram of BaCo2(AsO4)2 as a
function of the out-of-plane magnetic field direction at T = 1.6 K. We show that the
experimental data are qualitatively consistent with classical Monte Carlo results of
the XXZ-J1-J3 model with small Kitaev and off-diagonal exchange couplings included.
However, the calculated critical fields are systematically larger than the experimen-
tal values. Infinite-DMRG computations on the quantum model reveal that quantum
corrections from a nearby ferromagnetic state are likely responsible for the suppressed
critical fields. Together, our experiment and theory analyses demonstrate that, while
quantum fluctuations play an important role in determining the phase diagram, most
of the physics of BaCo2(AsO4)2 can be understood in terms of the classical dynamics
of long-range ordered states, leaving little room for the possibility of a quantum spin
liquid.

Introduction

The spin-orbit entangled Jeff = 1/2 local moments in Co-based frustrated magnets offer novel routes to achieve
exotic quantum ground states, such as a quantum spin liquid (QSL). One example is BaCo2(AsO4)2, with a low-
disorder honeycomb lattice and an ordering temperature that is suppressed well below the exchange energy scale [1].
The lattice geometry and spin-orbit coupling allow for bond-dependent interactions, such as the Kitaev interaction,
and third nearest-neighbour exchange interactions, both of which lead to significant magnetic frustration. Recently
explored in the context of Kitaev magnetism [2–6], BaCo2(AsO4)2 is likely better described by the XXZ-J1-J3 model
where the XXZ anisotropy comes from the local trigonal distortion of the oxygen octahedra [7–13]. In addition,
the inclusion of small anisotropic interactions is required to explain the gap in the magnon spectrum [14]. The rich
field-temperature phase diagram of BaCo2(AsO4)2 makes it an ideal test of our ability to model frustrated spin-1/2
systems [1, 15, 16]. Furthermore, terahertz measurements recently reported the emergence of an excitation continuum
with the application of a magnetic field perpendicular to the basal plane [17]. This continuum was interpreted as a
signature of a field-induced QSL, and calls for a critical examination of the potential stabilization of exotic ground
states in BaCo2(AsO4)2 through the application of an out-of-plane magnetic field.

Classical Monte Carlo and molecular dynamics simulations were previously used to determine a minimal spin model
by fitting neutron scattering and thermodynamic data [14]. The resulting XXZ-J1-J3 spin Hamiltonian provides an
excellent description of the dynamical spin structure factor in zero magnetic fields and in the high-field polarized state.
The classical model further captures the incommensurate ordering wave vector |qc| = 0.27 along the Γ → M direction
of the zero-field ground state, and the intermediate commensurate field-induced phase with |qc| = 1/3 observed
experimentally for an in-plane field between Bc1 = 0.33 T and Bc2 = 0.55 T [1, 14–16, 18]. This intermediate phase is
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stabilized in the classical model by weak bond-dependent interactions [14]. Despite this success, the classical model’s
ability to capture the system’s behaviour upon the application of a field with an out-of-plane component has yet to be
tested. Indeed, if the field-induced QSL suggested in Ref. [17] is realized, significant qualitative discrepancies between
the classical model and experimental observations are expected as the QSL cannot be realized in the classical model.
This discourse calls for sensitive measurements of the magnetic response as a function of the external magnetic field’s
direction. Detailed angular information can further provide invaluable information in determining the correct values of
the small anisotropic terms, which play a crucial role when a large number of states are in close energetic competition,
such as in BaCo2(AsO4)2. Moreover, these subleading interactions may be important to understand the short-range
quasi-collinear (double-zig-zag-like) correlations in the incommensurate ordered state observed in spherical neutron
polarimetry experiments [16]. Currently, only an incommensurate spiral and the commensurate double zig-zag state
with |qc| = 1/4 are realized in relevant classical and quantum models, respectively [8, 14, 19].
In this work, we measure the magnetotropic susceptibility – the second derivative of the free energy with respect

to magnetic field angle – of BaCo2(AsO4)2 at T = 1.6 K [20, 21]. Through precise angle-dependent measurements,
we map out the critical fields for both the incommensurate to commensurate transition, Bc1, and the commensurate
to field-polarized transition, Bc2 (Figure 1). While the Monte Carlo results of the classical XXZ-J1-J3 model capture
the qualitative features of the field-angle phase diagram, and the ratio Bc2/Bc1, for a wide range of angles, they
overestimate the overall critical field scale by a factor of roughly 1.6. Using infinite density matrix renormalization
group (iDMRG) [22–26], we obtain an incommensurate ground state that is stable over a much-reduced parameter
regime than predicted classically. Hence, quantum corrections to the ground state energies are likely responsible for
the overestimation of the critical fields in the classical calculations.

Experiment

We use resonant torsion magnetometry [20] to measure the magnetotropic susceptibility of BaCo2(AsO4)2 [21].
Samples were prepared as reported in Ferrenti et al. [27] (see SI I for additional details). Small single crystals are cut
with focused-ion beam (FIB) lithography and aligned with electron back-scattered diffraction (EBSD) (see Figure 3
and the SI). These samples are welded onto a silicon micro-cantilever with FIB-deposited platinum. Measurements
on FIB’ed samples were cross-checked against measurements on larger, non-FIB’ed, single crystals. Measurement on
FIB’ed crystals is advantageous since their smaller size reduces the signal and thus allows us to access the entire
field-angle phase diagram of a system with large magnetic anisotropy.

We measure the resonant frequency of the sample-cantilever system at its fundamental mechanical mode (Figure 3).
Changing the magnetic field and field angle leads to shifts in the system’s resonant frequency due to the magnetic
anisotropy in the sample. These shifts are proportional to the second derivative of the free energy as a function
of magnetic field angle (i.e. the magnetotropic susceptibility [20, 21]). In the linear response regime (i.e. when
the magnetization grows linearly with magnetic field), the magnetotropic susceptibility is equal to k = µo(χii −
χjj)H

2 cos 2θ. Here, i and j reflect the principal axes of the magnetic susceptibility tensor that lie in the plane of
vibration, and θ defines the angle between the crystallographic c-direction and the magnetic field (see Figure 1).

Results

Establishing the correspondence between the magnetization and the magnetotropic susceptibility

The distinct regions of the temperature-magnetic field phase diagram of BaCo2(AsO4)2 have been extensively
studied under an in-plane magnetic field [1, 14–17, 28] and are in agreement with our data for a largely in-plane field
component in Figure 1B. BaCo2(AsO4)2 enters an incommensurate antiferromagnetic (AFM) phase at TN = 5.5 K at
zero magnetic field. Under an applied magnetic field, the incommensurate phase gives way to a commensurate phase
with an ↑↑↓ structure, consistent with the magnetization reaching 1/3 of the full saturated moment in the range from
0.2 T ≲ B ≲ 0.5 T (left axis of Figure 1A) [1, 14, 28]. At 1.5 K and above 0.5 T, an in-plane magnetic field polarizes
the spins and saturates the magnetization at 2.5 µB per Co2+ — consistent with the calculated g-factor [1].

The step in the magnetization that marks the transition into the field-polarized phase correlates with a dip in
the magnetotropic susceptibility (right axis of Figure 1A). This feature is expected because k is proportional to the
anisotropic susceptibility, which itself is a field-derivative of the magnetization. We identify this feature as Bc2. The
amplitude of the change in k at Bc2 goes to zero along the high symmetry directions of the phase boundary (i.e.
where ∂TN/∂θ → 0, see the inset of Figure 2B). We therefore show the magnetotropic data for θ = 75◦ in order to
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FIG. 1. Established in-plane phase diagram of BaCo2(AsO4)2. A) Magnetization (left axis) and magnetotropic susceptibility (right axis)
measured for a nearly in-plane magnetic field (θ = 75◦) to show how features correlate across different measurements techniques. Hysteresis is
observed around the incommensurate to commensurate transition, Bc1, in both curves. The sharp increase to saturated magnetization at 0.5
T corresponds to a minimum in the magnetotropic susceptibility, with the slight mismatch in field position due to the small angular difference.
The inset shows the honeycomb network of cobalt ions highlighting the first- and third-neighbor interactions, J1 and J3, respectively. The
crystallographic axes a, b, c are shown with respect to the honeycomb bonds and θ is defined as the angle between the magnetic field direction and
the c-axis. B) The temperature-magnetic field phase diagram of BaCo2(AsO4)2 for θ = 75◦ constructed from magnetization and magnetotropic
susceptibility data (IS = incommensurate state).

highlight Bc2. From field sweeps of k (black curve in Figure 2B), we also identify a region of hysteresis around a
change in slope at Bc1 that corresponds to the transition between the incommensurate and commensurate phases.
Bc1, however, is much sharper when k is measured as a function of field angle (pink curve in Figure 2B). We therefore
use the angle-sweep data to identify Bc1 and Bc2 in constructing the field-angle phase diagram of BaCo2(AsO4)2.

Mapping the phase boundaries with angle

We now identify the magnetic phase transitions as the field is rotated from the in-plane direction (θ = 90◦) towards
the c-axis (θ = 0◦). The magnetic easy-axes lie in the honeycomb plane. Thus, Bc2 is pushed to higher magnetic fields
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FIG. 2. The out-of-plane magnetotropic susceptibility. A) The magnetotropic susceptibility as a function of magnetic field
applied along several directions near the c-axis. Bc2 is highly anisotropic for magnetic fields near the c-axis. The maximum Bc2 observed is ∼ 13.5
T. Fits to the position of the minima as a function of angle are used to extract a c-axis critical field of 15 T. The inset shows similar data for field
angles approaching the in-plane direction. B) The magnetotropic susceptibility measured as a function of the magnetic field at fixed angle (black
curve) and as a function of angle in a fixed magnetic field (pink curve). We define the in-plane component of field as B|| ≡ B sin θ. Bc1 and Bc2

appear as minima at 0.25 T and 0.5 T, respectively, in both data sets when plotted versus B||. The inset schematically shows how the AFM phase
boundary is traversed for both measurements.

for larger out-of-plane field components (Figure 2A). Figure 2B shows two curves that cut through the schematic phase
boundary as a function of both magnetic field orientation and magnetic field strength. Since the phase boundaries in
BaCo2(AsO4)2 are predominantly sensitive to the in-plane field component, we plot the data as a function of B sin θ
and find that both magnetic phase transitions scale approximately as Bc(θ) = Bc(90

◦)/| sin θ|.
We find that Bc1 is more pronounced in measurements of k as a function of magnetic field orientation, rather than

field strength (Figure 2B). We therefore use angle-dependent measurements to map both critical fields across the entire
phase diagram. Figure 3 shows the magnetotropic susceptibility at T = 1.6 K on two different samples: low-field
measurements (up to 3 T) on the larger bulk crystal provide higher resolution of the intermediate field-induced phase,
and the smaller FIB’ed crystal is used to track the large shift in resonant frequency through Bc2 to higher magnetic
fields (from B = 5 to 14 T). Both critical fields are plotted as a function of field angle in Figure 4.

Figure 3 illustrates that the critical fields are almost entirely determined by the in-plane component of the magnetic
field. Only when the field is very close to the c-axis is the divergence of the critical field cut off to a finite value
(Figure 4). This behavior (for both Bc1 and Bc2) is captured by

Bc =
B0

c√
sin2 θ + 1

γ2 cos2 θ
, (1)

where B0
c ≡ Bc(θ = 90◦) is the in-plane critical field, and γ is the anisotropy parameter defined such that B0

cγ is the
out-of-plane critical field. We find γ = 31 for Bc2, which means that the correction to sinθ scaling is not resolvable
in the data until θ ≲ 2◦ (Figure 11). This is significantly more anisotropic than RuCl3, where γ is less than 10
[29, 30]. Bc1 cannot be tracked to low enough angle to obtain a reliable fit for γ. With the field-angle phase diagram
determined, we now investigate whether the XXZ-J1-J3 model can provide a good description of both its qualitative
and quantitative features.

Monte Carlo simulations of the classical model

Using classical Monte Carlo methods, we compute the magnetotropic susceptibility for various field strengths
and angles. We use an XXZ-J1-J3 model with small bond-dependent anisotropies presented by Halloran et al. [14]
with the addition of a Zeeman term coupling spins to the magnetic field. We write this Hamiltonian as H =
HXXZ +Hanisotropy +HZeeman.
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FIG. 3. Critical fields of BaCo2(AsO4)2 at T = 1.6 K. The magnetotropic susceptibility normalized by B2, plotted versus the in-plane
magnetic field B|| ≡ B sin θ, and offset for clarity. The large change in k near Bc2 for fields close to the c-axis limits our ability to track the
resonant frequency at high fields. Therefore, to reduce the signal to a measurable range across all field angles, we measured a FIB’ed crystal with
a volume ∼50 times smaller than the bulk sample for B ≥ 5 T. SEM images of the two measured samples are shown next to the corresponding
data. The lower-field data (≤ 3 T) has been multiplied by 3.5 for clarity on this scale (see SI for details on unit conversions and scaling factors
between cantilevers and crystals).
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∑
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where λ = {x, y, z} are labels for the three different first nearest-neighbour bond directions. The details of the bond-
dependent couplings, Dλ and Eλ, are presented in the SI VI. The exchange parameters used in the current work are
slightly different from those in Halloran et al. [14]. The refined parameter set is presented in the SI VI and provides
a better agreement with the magnetization data. Because all observables are largely independent of the angle ϕ
(measured away from the a-axis), both in experiments and in our simulations [14], we choose to explore ϕ = 0 for
simplicity. The calculations were performed at T = 1.6 K to match the experimental temperature.

We identify two minima in the magnetotropic susceptibility that correlate well with the transition to the 1/3
magnetization plateau and to the fully polarized state Figure 4A. This is qualitatively similar to the experimental
data. We further confirm these phases to be the incommensurate spiral (|qc| ≈ 0.29), the |qc| = 1/3 phase, and the
polarized paramagnet by examining the peaks in the static spin structure factor.

By tracking the two minima in the calculated magnetotropic susceptibility as a function of angle, we produce the
phase diagram shown in Figure 4B. The shapes of the resulting curves (Bc1(θ) and Bc2(θ)) match extremely well with
experiment. We also compute γ for Bc2 and find γ = 30. This is in agreement with the experimentally determined
value of 31 above. We note that while the qualitative features of the calculated phase diagram are in good agreement
with those of the experimental phase diagram, the overall calculated field scale is larger by more than 50%.
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FIG. 4. Comparison between experimental and theoretical results. A) The magnetotropic susceptibility of BaCo2(AsO4)2 at
T = 1.6 K and B = 0.9 T for rotation of magnetic field in two different crystal planes: the dashed blue line corresponds to rotation from the c-axis
(θ = 0◦) towards the b-axis (θ = 90◦), and the solid blue line shows rotation from the c-axis into the ab-plane at an angle ∼ 55◦ from the b-axis.
The colored arrows on the honeycomb (inset) illustrate the two planes of rotation. The solid blue data has been scaled by 3.5. The angle in the
Monte Carlo results has been scaled by 1/1.6, the same scaling factor needed to match the experimental and theoretical critical fields (Figure 11).
B) The pink points show the transition fields from Monte Carlo results plotted versus field angle. The blue points show Bc1 and Bc2 selected from
both angle sweep (Figure 3) and field sweep data (Figure 2). The black lines through the Bc2 data points are fits of the experimental (theoretical)
data to Equation 1 on the -θ (+θ) side. The calculations of the critical fields qualitatively capture the angle dependence of both Bc1 and Bc2, but
the overall field scale is 1.6 times larger than observed.

iDMRG quantum phase diagram

To investigate the quantitative discrepancy in the values of the critical fields between the experiment and Monte-
Carlo simulations, we use iDMRG [22–25] of the quantum model to study the nature of the ground state at zero
field. We simulate the XXZ-J1-J3 model without the Dλ and Eλ anisotropies (SI VI). These small bond-dependent
interactions are omitted to numerically leverage the continuous U(1) symmetry of the HXXZ Hamiltonian. A sim-
ilar model was recently investigated with DMRG [8], variational Monte-Carlo [10], and pseudo-Fermion functional
renormalization group [31]. Unlike DMRG on a finite slab, iDMRG on an infinite cylinder can capture incommensu-
rate orders with a continuously varying ordering wavevector, which is of particular relevance for the ground state of
BaCo2(AsO4)2.

Varying the ratio of first J
(1)
xy and third-nearest-neighbour in-plane coupling J

(3)
xy , we find magnetically ordered

phases that can be identified by tracking the position of the magnetic Bragg peak in the static spin structure factor.
In the quantum phase diagram shown in Figure 5A, we can clearly identify the ferromagnet (|qc| = 0.0), the zig-zag
(|qc| = 0.5), and the incommensurate ordered phases with peaks at continuously varying points |qc| along the Γ−M
direction (see inset). Compared with the classical phase boundaries in Figure 5B, the parameter regime where the
incommensurate order is stabilized is greatly reduced in the quantum model. In particular, we find that the quantum
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FIG. 5. Quantum Phase diagram using iDMRG (A) The position of the peak in the static spin structure factor |qc| is used to identify the
various phases: ferromagnet (FM, |qc| = 0.0), zig-zag (ZZ, |qc| = 0.5), and incommensurate state (IS) with |qc| at wavevectors between Γ − M
(along red arrow in inset). An XC cylindrical geometry was used in iDMRG with an MPS unit cell size Ly along the circumference, Lx along the
infinite direction, and a bond dimension χ. The BZ in the inset shows the momentum cuts along which the spin structure factor can be accessed

in this cylindrical geometry, dotted lines for Ly = 6, and dashed-dotted lines for both Ly = 3 and Ly = 6. We have used J(1)
z = −1.2 meV,

J(3)
z = −0.8 meV and the constraint J(1)

xy + J(3)
xy = −5.0 meV. At the best-fit classical parameter of J(1)

xy = −7.65 meV, the ground state (grey

diamond) is in the IS phase, but is close to the phase boundary between the FM and the IS. (B) The classical phase boundaries obtained using
variational single Q-ansatz and simulated annealing for the same parameters as in (A). The region of stability of the IS in the quantum phase
diagram is reduced compared to (B) due to quantum fluctuations.

ground state using the exchange couplings for HXXZ used in this work is incommensurate (SI VI), but in very close
proximity to the phase boundary of the ferromagnetic state. In addition, if we use the set of exchange parameters
(excluding small anisotropy terms) considered in a previous DMRG study [8], we obtain a ferromagnetic ground state.
This is consistent with their result and our conclusion of the proximity to the ferromagnetic state. Note that the
parameters in Jiang et al. [8] are slightly different from the original parameters in Halloran et al. [14], as well as the
refined set used in the current work. Detailed comparison between these results is discussed in the SI V. The clear
reduction of the incommensurate state’s stability suggests that quantum fluctuations of the ferromagnetic state may
suppress the critical fields of the nearby incommensurate state.

Discussion

The classical simulations reproduce several features of the experimental phase diagram. For example, the calculated
ratio of Bc2 to Bc1 is ∼1.9, which agrees well with the experimentally-determined value of ∼1.9 (SI III). The classical
simulations find that the anisotropy in Bc2 is γ = 30, again very close to the experimental value of γ = 31. Even
the structure of the simulated magnetotropic susceptibility data is qualitatively consistent with the measured data,
revealing two distinct peaks that correspond to phase transitions from the incommensurate phase to the |qc| = 1/3
phase and then from the |qc| = 1/3 phase to the polarized paramagnet. Further, the change in the magnitude of the
calculated magnetotropic susceptibility at Bc1 and Bc2 is within a factor of two of the measured values (Figure 4).
The most obvious discrepancy between the data and the Monte Carlo simulations of the classical model is that

the simulations overestimate the critical fields by roughly a factor of 1.6. The iDMRG results shed light on this
issue. We find that iDMRG simulations using roughly the same best-fit exchange parameters obtained from the
classical simulations find an incommensurate ordered state that is very close to the phase boundary with the nearby
ferromagnetic state (see Figure 5). The enhanced stability of the ferromagnetic state in the quantum model explains
the decrease in the critical fields in the experiment as likely due to quantum zero-point fluctuations in the ordered
phases.

The level of qualitative agreement between experiments and Monte Carlo simulations of the classical model indicates
that, even though quantum fluctuations are important in determining the quantitative position of the phase boundaries
and corresponding ground states, most of the physics can be understood in terms of classical dynamics of long-range
ordered states. Our measurement and analysis further suggest that the incommensurate state remains the ground
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state for an out-of-plane field up to more than B = 10 T. This observation is at odds with Ref. [17], where a field-
induced QSL was proposed to be stabilized for a magnetic field beyond B = 4.5 T. These considerations thus cast
doubt on previous claims of the realization of QSL physics in BaCo2(AsO4)2 for the explored parameter regime. Our
detailed phase diagram (Figure 4) is highly suggestive of the following interpretation: due to the gigantic easy-plane
anisotropy of BaCo2(AsO4)2, the slight misalignment of the crystal with respect to magnetic field identified by Zhang
et al. [17] causes the system to enter the intermediate |qc| = 1/3 phase, rather than the field-polarized phase, for a
field of approximately B = 4 T. Thus, the observed change in the terahertz spectrum at B = 4 T could correspond
to a change in the magnon gap as the system transitions from the incommensurate to the intermediate phase at
Bc1, rather than the appearance of a QSL at Bc2. This interpretation is supported by preliminary inelastic neutron
scattering experiments [32].

While many aspects of the BaCo2(AsO4)2 phase diagram are captured by the XXZ-J1-J3 model, the importance
of other symmetry-allowed anisotropic spin interactions remains an open question. For example, one feature of the
data that is not captured in the classical simulations is the asymmetry in the magnitude of k when rotating from
θ −→ −θ (Figure 4A). This asymmetry is not present in our MC calculations due to an underlying symmetry of the
model Hamiltonian. Specifically, note that taking θ −→ −θ is equivalent to taking Bx −→ −Bx and By −→ −By while
leaving Bz unchanged. The interacting part of our model Hamiltonian also has such an in-plane inversion symmetry
under (Sx, Sy) −→ (−Sx,−Sy). When taking θ −→ −θ, Sx can be re-labeled as −Sx and likewise for Sy, leaving the
partition function (and therefore the free energy and the magnetotropic susceptibility) unchanged. The asymmetric
measurements of k reveal the need for additional terms in the model Hamiltonian which couple the in-plane spin
components (Sx and Sy) to Sz.
While we expect all of the anisotropic interactions to be much smaller than the main XXZ exchange parameters, the

determination of these small interactions would provide the accurate estimation of the sub-leading bond-dependent
interactions such as the Kitaev and Γ interactions in the local spin coordinate. This would help us understand
potential avenues to enhance such bond-dependent interactions.
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Methods

I. Crystal synthesis

Polycrystalline samples of BaCo2(AsO4)2 were produced by the heating of well-ground mixtures of BaCO3 (Strem
Chemicals, 99.9%), Co3O4 (NOAH Technologies, 99.5%, 325 mesh), and NH4H2AsO4 (Alfa Aesar, 98%) in a 2.9 : 2
: 6 molar ratio. The mixture was placed in an uncovered alumina crucible in air, heated to 305°C, held for 12 hours,
heated to 875°C, held for 48 hours, cooled to room temperature, and finally heated to 925°C for 12 hours before again
cooling to room temperature. All ramp rates were set at 100°C per hour.

While BaCo2(AsO4)2 melts incongruently under most atmospheric conditions, we found that single crystals could
be grown via a modified Bridgeman technique. Polycrystalline samples were packed into a cylindrical alumina crucible
with a pointed tip, which was then sealed under vacuum in a 12mm ID, 16mm OD quartz tube. The tube was then
suspended in a vertical tube furnace, just above a hollowed block of firebrick. The sample was heated to 1175°C at a
rate of 100°C per hour and held for 12 hours without translation to ensure a homogeneous melt. The tube was then
translated downward through the firebrick at a nominal rate of 3.0 mm per hour until the entire crucible had passed
into the cooler zone. Furnace heating was then turned off and the sample was allowed to cool naturally within the
firebrick. The static vacuum atmosphere was found to be necessary to achieve congruent melting in this system. The
resulting mass of crystals was then pried from the crucible and mechanically separated along the cleavage planes.

II. Vibrating sample magnetometry (VSM) data

II.1. Nearly in-plane magnetization

Using vibrating sample magnetometry (VSM), we measured the magnetization of BaCo2(AsO4)2 at several tem-
peratures with the magnetic field applied at 75◦ from the c-axis (Figure 7) in order to compare with magnetotropic
measurements performed at the same field angle. A single crystal of BaCo2(AsO4)2 with an approximate volume of
0.41 mm3 (Figure 6A) contains approximately 4.8 × 1018 cobalt atoms. We used the VSM option of a Quantum
Design Dynacool Physical Property Measurement System (PPMS) with a 14 T magnet. The measured magnetization
is read in emu units (1 = 1.08 × 1020 µB), which was divided by the estimated number of cobalt above to obtain the
magnitude displayed in Figure 7A.

We find that the magnetization as a function of a nearly in-plane magnetic field is consistent with previous studies
done with magnetic field applied in the honeycomb plane. As the lowest temperatures of T = 1.8 K, the magnetization
saturates at B = 0.5 T with a magnetic moment of ∼2.5 µB per cobalt (Figure 7A). At low temperatures, there is also
a clear transition into the M = 1/3 plateau in the field range from roughly 0.2 to 0.5 T. As temperature increases,
the saturation field also increases. The field-derivatives of the magnetization curves in panel A are shown in panel
B of Figure 7. The positions of Bc1 and Bc2 used to construct the phase diagram in (Figure 1B) are indicated with
black and red points, respectively.

II.2. Out of plane magnetization of BaCo2(AsO4)2

We measured the magnetization of BaCo2(AsO4)2 for magnetic field applied along the c-axis. Using the Photonic
Science Laue X-ray Detector, we identified the c-axis of the sample and aligned it with the external magnetic field
with <0.15◦ of uncertainty. The c-axis magnetization measurements were performed on the sample in Figure 8, which
has a volume of 0.87 mm3 that consists of approximately 1 × 1019 cobalt atoms. The measured c-axis magnetization
in units of µB per cobalt is shown in Figure 9.

III. Magnetotropic measurements

III.1. Unit conversion

In resonant torsion magnetometry, we infer the anisotropic magnetic response of the sample by measuring a shift in
the resonant frequency of a cantilever as external parameters (temperature, magnetic field, field angle) are changed.
In order to have an intuitive understanding of the magnitude of the frequency shift (proportional to the magnetotropic
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FIG. 6. A) Single crystal of BaCo2(AsO4)2 B) Side view of the crystal in panel A mounted on a teflon wedge with a 15◦ angle using GE
varnish. VSM measurements were performed on this sample with magnetic field applied at an angle 15◦ from the honeycomb plane towards the
c-axis.
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FIG. 7. A) Temperature-dependent magnetization of BaCo2(AsO4)2 for field applied nearly in-plane (θ = 75◦). B) The field-derivatives of the
magnetization shown in panel A used to identify the positions of the critical fields, Bc1 and Bc2.
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A

B

C

D

FIG. 8. A) Large single crystal of BaCo2(AsO4)2 used for c-axis VSM measurements. B) The side view of the crystal in panel A mounted on
a cylinder. The thickness of the crystal is. C) Optical image of the top of the sample mounted on a cylinder for Laue diffraction. D) The white
points show the measured intensity of the diffraction pattern of BaCo2(AsO4)2 overlaid with the simulated c-axis spectra in green.
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FIG. 9. A) Temperature-dependent magnetization of BaCo2(AsO4)2 for field applied perpendicular to the honeycomb planes (θ = 0◦). The
inset shows critical field Bc2 as a function of temperature. B) The field-derivatives of the magnetization shown in panel A used to identify the
positions of the critical field, Bc2.

susceptibility, k), we calibrate the measured response in the linear regime by using the known anisotropic magnetic
susceptibility χii and χjj at T = 100 K.

To convert the frequency shift into energy units, we first find the molar concentration of cobalt atoms in the
measured sample by estimating the sample volume based on SEM images. The estimated volume of the FIB’ed
sample shown in Figure 3 is 161 µm3 and the unit cell size is 510 Å3, corresponding to 3.2×1011 unit cells. Each unit
cell contains 6 cobalt, leading to roughly 3.14 pmol of Co in the smaller FIB’ed sample. Estimates similarly obtained
for the larger bulk crystal (upper SEM image in Figure 3) give 98.4 pmol of Co.

Taking into account the relations k = ∂τ/∂θ, τ = M × B, and M = χH, the magnetotropic susceptibility in the
linear regime is:

k = (χc − χa)µ0H
2cos2θ, (3)

where χa and χc represent the a− and c−axis magnetic susceptibility, respectively.
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Given the magnetic susceptibility values obtained from Zhong et al. [1], we can calculate the magnetotropic suscepti-
bility in units of joules per mole. Figure 10 shows k as a function of angle at µ0H = 1 T and T = 100 K as calculated
using the known magnetic susceptibility (orange curve). The blue curve shows the raw frequency shift per mole at
the same field and temperature. The ratio of the orange curve to the blue curve provides the scaling factor that is
then applied to all data sets.

The FIB’ed sample (containing 3.14 pmol of cobalt atoms) shown in Figure 3 produces a frequency shift of ∼0.055
Hz at B = 1 T and T = 100 K. The ratio of the maximum values for each curve provide a scaling factor to convert
the frequency shift to joule unit. This scaling factor is 15.5 pJ per rad2 per Hz.
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Calculated
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FIG. 10. The magnetotropic susceptibility calculated from the known anisotropic magnetic susceptibility in the ac-plane [1].
The blue curve shows the measured frequency shift at the same field and temperature as the calculated orange curve. The
ratio in the amplitudes of the cosθ curves provides a scaling factor to convert the measured frequencies into energy units. We
find that 1 Hz = 15.5 pJ.

IV. Monte Carlo calculations

Our Monte Carlo (MC) calculations were performed using the Metropolis algorithm, employing parallel tempering
and overrelaxation sweeps allowing them to converge more rapidly. The metropolis algorithm updates spins by first
proposing a random change to a spin and then accepting that change with a probability min(e−β∆E , 1). We perform
this procedure for every spin in the simulation, thus performing a full Metropolis sweep. In addition to this type of
update, we also use overrelaxation sweeps. These involve flipping a spin across the local effective field at each site

Si −→ −Si + 2
2Si ·Beff

i

|Beff
i |2

Beff
i . (4)

These sweeps do not change the energy of the spin configuration and so allow us to more rapidly explore the space
of all possible spin configurations. We perform 10 of these overrelaxation sweeps for every Metropolis sweep. Fur-
thermore, we use parallel tempering wherein many different temperatures are simulated simultaneously and their
spin configurations are swapped with one another with probability min(e∆β∆E , 1). We propose such a swap between
adjacent temperature simulations every 20 MC sweeps. Monte Carlo calculations were performed using a 24× 24× 2
system size. After waiting 5 × 106 MC sweeps for the system to thermalize, 105 measurements were taken, waiting
100 sweeps between each measurement to avoid auto-correlation. For values of B and θ near the phase boundaries,
the results of up to 50 separate simulations were averaged together to improve accuracy. For other points, only a
single Markov chain was needed. Magnetotropic susceptibility was computed from the measured spin configurations
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FIG. 11. The experimental and calculated ratio of Bc2 to Bc1. The solid horizontal line is a guide to the eye at Bc2 /Bc1 = 1.9.
The calculated ratio drops near θ = 0◦: Bc1 is not visible in the experimental data at this angle.

using Equation 5.

k = (n×B) · (n×M)− (n×B)
T
χ (n×B) (5)

where n is the axis about which the rotation occurs. For the MC calculations performed here, B was kept strictly
in the ac-plane and therefore n is a unit vector perpendicular to this plane. This is the definition of magnetotropic
susceptibility comes from [21].

V. iDMRG calculations

iDMRG was implemented using the python package TeNPy [26]. In iDMRG a 1D Matrix Product State (MPS)
representation of the wavefunction is used to represent the 2D system by snaking around the MPS unit cell. iDMRG
variationally optimizes this MPS wavefunction into the ground state. For our simulations, an XC cylindrical geometry
was used. The MPS unit cell had a circumference length Ly and length Lx in the infinite direction. As iDMRG gives us
access to long-range correlations in the infinite direction, the XC geometry permits the computation of a high-density
cut of the spin structure factor between the Γ and M point in the Brillouin zone (see Figure 5 (a) inset).
The Hamiltonian HXXZ has a U(1) symmetry of rotations in the x-y plane, and this symmetry is encoded into its

MPS representation. Correspondingly, Sz
tot =

∑
i S

z
i is conserved as [Sz

tot, H] = 0. In this study, we have focused only
on the Sz

tot = 0 sector of the spin model.
For the iDMRG, we have followed a two-step routine. We start from an up/down product state and run a maximum

of 40 sweeps with the density matrix mixer turned on to escape from any local minima in the energy landscape. Then
we run a maximum of 100 sweeps or until ∆E = 10−8 with the density matrix mixer turned off to converge into the
ground state in the global minima basin.

As shown in Figure 5, we have performed our iDMRG simulations for different MPS unit cell sizes (Lx, Ly), and
different bond dimensions χ. Even though the phase boundaries weakly depend on these choices due to finite size
effects from wrapping around a cylinder and the truncation of less relevant entanglement information, the overall
structure of the phase diagram is unaffected.

For a consistency check with the finite slab DMRG simulations in [8], we used the same parameter set for the
XXZ-J1-J3 model without the bond-dependent anisotropies in an iDMRG simulation. The parameter set from [8]



14

0 15 30 45 60 75 900.0

0.5

1.0

1.5

2.0

2.5

M
 [

B 
/ C

o]
(a)

0 15 30 45 60 75 90
0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

k 
[m

eV
/(r

ad
2  

C
o)

]

(b)

FIG. 12. Results from Monte Carlo calculations shown at fixed temperature (T = 1.5 K) and magnetic field strength (B = 0.9 T)
as a function of applied field angle θ. (a) Shows magnetization per site, with the characteristic M = 1/3 plateau corresponding
to the commensurate q = 1/3 phase. (b) Shows magnetotropic susceptibility per site as a function of θ. The two peaks in k
coincide with the steep increase in magnetization thus we use these peaks to identify the phase boundaries.

corresponds to J
(1)
xy = −1.00, J

(1)
xy /J

(3)
xy = −3.00, J

(1)
z /J

(1)
xy = 0.13 and J

(3)
z /J

(3)
xy = −0.35. Even without the bond-

dependent anisotropies, we find a ferromagnetic ground state, this is in agreement with the results of [8]. However,

the ratios J
(1)
z /J

(1)
xy and J

(3)
z /J

(3)
xy used in the parameter set from [8] do not match with Eq 13 of Ref. [14] or our

more refined parameter set in Equation 7.

VI. Model Parameters in Monte Carlo and iDMRG simulations

The parameters Dλ and Eλ in Eq. 2 are explicitly

Dλ = D cos(2αλ)− E sin(2αλ)

Eλ = D sin(2αλ) + E cos(2αλ)
(6)

where αλ = +2π/3,−2π/3, 0 for λ = x, y, z respectively. The values of parameters used for all MC calculations are

J
(1)
xy = −7.65meV J

(3)
xy = +2.64meV

J
(1)
z = −1.20meV J

(3)
z = −0.81meV

D = +0.10meV E = −0.10meV
gab = 5.0 gc = 2.7

(7)

these are a refined version of the parameter set in [14], modified slightly to improve agreement with experimentally

observed critical fields. For the iDMRG simulations shown in Figure 5 (a), we have used J
(1)
z = −1.20 meV and

J
(3)
z = −0.80 meV. Further, we have used the constraint J

(1)
xy +J

(3)
xy = −5.00 meV to compare with the classical phase

diagram presented in Figure 6 e in Ref. [14].
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