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Abstract

Characterizing complex many-body phases of matter has been a central question in quantum

physics for decades. Numerical methods built around approximations of the renormalization group

(RG) flow equations have offered reliable and systematically improvable answers to the initial

question – what simple physics drives quantum order and disorder? The flow equations are a

very high dimensional set of coupled nonlinear equations whose solution is the two particle vertex

function, a function of three continuous momenta that describes particle-particle scattering and

encodes much of the low energy physics including whether the system exhibits various forms of

long ranged order. In this work, we take a simple and interpretable data-driven approach to

the open question of compressing the two-particle vertex. We use principal component analysis

(PCA) and an autoencoder neural network to derive compact, low-dimensional representations

of underlying physics for the case of interacting fermions on a lattice. We quantify errors in

the representations by multiple metrics and show that a simple linear PCA offers more physical

insight and better out-of-distribution (zero-shot) generalization than the nominally more expressive

nonlinear models. Even with a modest number of principal components (∼ 10 − 20), we find

excellent reconstruction of vertex functions across the phase diagram. This result suggests that

many other many-body functions may be similarly compressible, potentially allowing for efficient

computation of observables. Finally, we identify principal component subspaces that are shared

between known phases, offering new physical insight. We find that the vertex functions needed to

describe the ferromagnetic state are not contained in the low rank description of the Fermi liquid

state, whereas the vertex functions needed to describe antiferromagnetic and superconducting

states are, suggesting that the latter two states emerge by amplification of pre-existing fluctuations

in the Fermi liquid state while the onset of ferromagnetism is driven by a different process. These

results can potentially be used in future RG calculations as a simple postprocessing step, enabling

data-driven discoveries with no parameter tuning or costly training.

I. INTRODUCTION

One of the grand computational challenges in present-day quantum many-body physics

is understanding large systems of interacting particles. Quantum physics is naturally for-

mulated as a theory of linear operators acting on a Hilbert space whose dimension grows
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exponentially with the number of degrees of freedom. Exact diagonalization of any many-

body Hamiltonian in this space quickly becomes unfeasible. Likewise, the infamous sign

problem prevents statistically accurate solutions of generic fermionic models by means of

quantum Monte Carlo methods [1] and it is generally believed that the solution of a general

fermionic quantum many-body problem is NP hard [2]. An alternative approach to the

problem is via diagrammatic methods, in which the two-particle vertex Γ (called the vertex

function) plays a crucial role. The vertex function generally depends on three momenta ki

and three frequencies νi and can be written as Γ (k1, k2, k3) where ki = (ki, νi) denotes a

frequency-momentum four-vector. The vertex function Γ describes the two-particle scat-

tering from the initial states k2 and k4 = k1 + k3 − k2 into the final states k1 and k3 and

may also be viewed as describing the scattering of a particle-hole pair of total momentum

q = k2−k1 and relative momentum 2p+q = k1+k2 into another pair also of total momentum

q but of relative momentum 2p′ + q = k3 + k4; this latter “particle-hole” representation is

shown in Fig. 1 (a). Knowledge of the vertex function enables insights into the many-body

properties of the system, including its response to external fields as well as its tendency

to develop long-range order [1, 3–6]. However, the vertex function is in general difficult to

calculate and, although not exponentially large, demands large computational and memory

resources with increasing system size and decreasing temperature. While there has been

recent progress on compressing the frequency structure of single-particle [7, 8] and also two-

particle Green’s functions [9, 10], low-dimensional representation of the full vertex function

remains an open question [11]. Deep learning approaches have recently had success in con-

structing such compact latent representations of the vertex function. Authors in Ref. [12]

have used an encoder-decoder structure on top of neural ordinary differential equations [13].

A latent space is learned that can represent the entire renormalization group at a fraction

of the original computational cost. This naturally raises the question: is there a concise

representation of the momentum structure of Γ?

In this paper, we use principal component analysis (PCA) and a deep convolutional au-

toencoder [14] to address this question by compressing a large dataset of vertex functions

assembled from functional renormalization group (fRG) calculations [15] for the 2D Hub-

bard model [16]. To determine the fidelity of the compressed representation we compute

the pointwise mean square difference between the true and reconstructed vertices, and we

compute physical quantities related to generalized susceptibilities and to the tendency of the
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system to order into different phases. We find in general that very low dimensional repre-

sentations suffice to capture the physics accurately, suggesting the existence of a heretofore

unsuspected simple underlying structure for the vertex function. We also find that PCA is

markedly superior to the autoencoder in achieving the lowest possible reconstruction error

for a fixed dimensionality of the representation.

Further, quantum many-body systems may be in ordered states (for example, ferromag-

netic, antiferromagnetic or superconducting) or may be in quantum disordered states such

as the conventional Fermi liquid. One may ask whether the different forms of order emerge

from the Fermi liquid state by an amplification of pre-existing correlations as interaction

parameters are varied, or whether an order emerges via the introduction of new physics not

manifest in the Fermi liquid. Our analysis enables us to address this question by quan-

tifying the overlap of principal components of different states. Surprisingly, we find that

the ferromagnetic state is not naturally contained in the Fermi liquid state, in the sense

that the minimal number of principal components (4-20) that describe the Fermi liquid with

good accuracy do not provide an accurate description of the ferromagnetic state vertex. On

the other hand the vertex functions appropriate to the antiferromagnetic and superconduct-

ing states can be described within the same minimal basis that describes the Fermi liquid

vertices. Our findings suggest that quantum many-body physics has hitherto unsuspected

structure that may allow it to be reformulated in a compact and computationally efficient

basis , and shows how comparing machine-learning-based data compressions across regimes

of different physics and potentially across different systems may provide new insights. Our

findings forge a path towards refining the computation of vertex functions, offering potential

advantages in computational efficiency and physics discovery.

The rest of this paper is organized as follows. In Section II we present the model and

methods. In Section III we introduce measures of the accuracy of the compression and use

them to compare the reconstruction loss for PCA and autoencoder. In Section IV we study

the reconstruction of ordered states using the information contained in Fermi Liquid states.

In Section V we give a summary, conclusion and outlook.
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FIG. 1. (a) Representation of full vertex function Γ (k1, k2, k3) scattering between incoming elec-

trons (lines with arrows pointing toward the vertex) and outgoing electrons (incoming holes) (lines

with arrows pointing away from the vertex) of different momenta. The vertex is presented in

particle-hole notation as Γq(p,p
′) with q = k2−k1, p = k1 and p′ = k1+k3−k2 highlighting the

scattering of a particle-hole pair with net momentum q and relative momentum 2p+q into another

pair, also of net momentum q but relative momentum 2p′ + q. Contracting the outgoing pair with

respect to an order parameter ∆q(p
′) probes tendency to particle-hole ordering with order param-

eter ∆. If the vertex develops long-range order at some fixed q, its eigenvectors (gap functions)

∆q yield additional insights into the symmetries of the ordered phase. (b) Phase diagram of the

model studied in this paper in the plane of chemical potential µ (controlling carrier concentration)

and second neighbor hopping t′ controlling the electron band structure. The shaded regions denote

parameter regimes in which antiferromagnetic (blue), superconducting (yellow) and ferromagnetic

(red) order occurs. The dashed lines indicate trajectories where fRG data were collected to probe

different phases. (c) Momentum resolved vertex functions Γ (k1,k2,k3) (full fermionic notation)

at k3 = 0 for different regimes of the phase diagram, indicated by black dot symbols in panel (b).

II. MODEL AND METHODS

We employ the two-dimensional square lattice Hubbard model, a paradigmatic model of

interacting electrons on a lattice, as a test bed for our methodology. The model may be
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written in standard second quantized notation using a mixed momentum (k) and lattice site

(i) representation as

H =
∑
k,s

ξkc
†
kscks − µ

∑
i,s

nis + U
∑
i

ni↑ni↓ . (1)

Here, c†ks creates an electron with momentum k and spin s; ξk = −2t[cos(kx) + cos(ky)] −

4t′cos(kx)cos(ky) describes how electrons move on the lattice (t and t′ are respectively the

quantum mechanical amplitudes for electrons to move from one site to its first or second

neighbor), nis = c†iscis yields the number of electrons on site i, µ is the chemical potential that

controls the electron density, and U > 0 is a repulsive interaction that correlates electron

motion by disfavoring configurations with two electrons per site. In this paper, we focus on

U = 3t with t = 1 as our unit of energy.

For generic µ and t′ the model is in a non-ordered Fermi liquid state. However, for each t′

there is a value of µ at which the Fermi surface passes through a “van Hove” point at which

the non-interacting electron density of states diverges. For chemical potentials near this

point, the large density of states leads to an ordered state. Fig. 1(b) shows the ground state

phase diagram. The solid line shows the locus of van Hove points; i.e. the t′ dependence

of the chemical potential value at which the non-interacting density of states diverges. For

chemical potentials far from this line, one has a non-ordered Fermi liquid (FL) phase, and in

the vicinity of the line the model exhibits either antiferromagnetic (AFM), superconducting

(SC), or ferromagnetic (FM) order, depending on the value of t′. To probe the different

phases illustrated in Fig. 1(b), we study the evolution of the vertex function along four

specific trajectories: one follows the van Hove singularity along µ = 4t′ for t′ ranging from

0 to 0.5, depicted as a solid line; the other three track changes in µ, from −2 + 4t′ to 4t′,

at fixed t′ values of 0.0, 0.25, and 0.5, represented by dashed lines. For each trajectory, we

take 50 data points at intervals of ∆µ = 0.04, resulting in a total of 200 data points.

To calculate vertex functions for the model, we employ the functional renormalization

group method [16, 17], an established computational tool for studying Fermi surface insta-

bilities of low-dimensional interacting electron systems. At the core of the fRG method is

a set of coupled non-linear differential flow equations whose solution determines the flow of

the vertex as function of the RG scale. If momentum space is discretized into Nk tiles along

each dimension of d-dimensions, Γ is specified by N3d
k complex numbers determined by the

solution of N3d
k coupled nonlinear equations (as common practice in fRG we only consider
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the lowest frequency component of the vertex). In this work, we chose Nk = 24, such that

the vertex functions extracted at the end of the fRG flow are notably high-dimensional ar-

rays with 246 ≈ 2 × 108 entries in total. To enable a comparison between PCA and the

autoencoder without excessive computational costs, we down-sampled the vertex to reduce

the dimension to a more manageable 1443, ensuring efficiency while preserving a substantial

dimensionality of about 106. Details about the generation of the input data are shown in

the supplemental material. Sample results, presented as two dimensional heat maps of a

particular slice of the three argument vertex are shown in Fig. 1(c). It is noteworthy that

the vertices have very substantial, nearly singular, k dependence, appearing as stripes in the

plots.

The calculated vertices enable one to infer the phase structure of the model via a cal-

culation of the eigenvalues of the vertex in that particular channel where long-range order

emerges. One defines an ordering eigenvector as the expectation value of a fermion particle-

hole or particle particle bilinear ⟨c†k1ck2⟩ or ⟨ck1ck2⟩ (spin indices not explicitly notated) and

forms an eigenvalue equation by contracting this object with appropriate indices of Γ as

shown in Fig. 1(a). The onset of order is signalled by a divergent eigenvalue and the bi-

linear with the most divergent eigenvalue λ determines the preferred order parameter. In

our fRG calculations we stop the renormalization group flow if the magnitude of the vertex

function exceeds some preset multiple of the electronic bandwidth D (we choose 4D as the

threshold) and calculate the eigenvalues and eigenvectors for different long-range orders in a

post-processing step. It is important to note that in the computational basis the divergence

in the eigenvalue arises not from a divergence in a few entries of the matrix but rather from

the coherent combination of a sum over many elements, and yet the combination of elements

that produces a divergent eigenvalue is identified by the dimensional reduction procedure.

We executed PCA using a randomized SVD solver [18]. This linear method identifies the

principal components, or axes, that maximize variance, thereby transforming the original

data into a new coordinate system. The significance of each coordinate is ranked by the

amount of variance in the data which can be captured. In effect, retaining the M most sig-

nificant SVD principal components defines a M dimensional subspace of the 106 dimensional

space of all possible vertices spanned by vertices Γ1...M (each with a complicated internal

structure) and the compression is the approximation that any physical vertex Γ can be

represented to sufficient accuracy as Γ̂ =
∑

i=1..M aiΓi.
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Conversely, the autoencoder is a non-linear method designed to efficiently encode a given

set of data. It compresses the data into a low-dimensional latent space by applying a flexi-

ble parametrized transformation (the encoder). A second model (the decoder) is trained to

reconstruct the original dataset as accurately as possible. The vertex is then approximated

as a nonlinear function (specified by the decoder) of a number of parameters equal to the

latent space dimension. We use a five-layer convolutional neural-network (CNN, [19]) archi-

tecture for both the encoder and decoder with layer norms and GeLU activations [20]. In

addition to transposed convolutions, we use non-parametric upsampling after each layer.The

reconstruction error, defined in Eq. 2, serves as the cost function. Each autoencoder was

trained with approximately 4 GPU-hours on a single Nvidia A100 card.

III. COMPRESSION LOSS: COMPARISON BETWEEN PCA AND THE AU-

TOENCODER

In this section we introduce measures of the accuracy of the compression. we use three

error metrics: the direct (pointwise) reconstruction error of the vertex, given by

ϵ =
||Γ̂ − Γ ||2
||Γ ||2

, (2)

the reconstruction accuracy of the leading eigenvalue λ [21] for several instability channels,

and the Landau parameters, averages over the Fermi surface of the vertex functions weighted

by angular and spin factors (see Appendix for details). For simplicity, we restrict our study

to the ordered states only, which is along the van Hove trajectory of µ = 4t′. But the

results are similar for non-ordered states. We use 50 vertex functions with t′ ranging from

0 to 0.5 in increments of ∆t′ = 0.01 and took a random 80/20 train/test split of the input

data, and subsequently evaluate the error metrics utilizing the entire dataset. To assess

the quality of the compression As shown in Fig. 2(a), PCA shows decreasing reconstruction

errors with increasing latent dimension d, whereas the autoencoder’s error remains roughly

constant across different d values. Fig. 2(b) shows the eigenvalues associated with AFM,

SC, and FM order along the van Hove trajectory, with the smallest eigenvalues indicating

the system’s propensity towards the respective ground state. Transition points are marked

by dashed vertical lines. For PCA, transitions in the reconstruction data align well with

the original calculations when the latent dimension exceeds d = 4, and the accuracy keeps
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FIG. 2. (a) The reconstruction error ϵ (Eq. 2) at different t′ for PCA and the autoencoder (AE),

each with varying latent dimension d. (b) The eigenvalues associated with different physical orders

calculated along the van Hove trajectory. Vertical grey lines denote the boundaries between differ-

ent phases as indicated by a change in the lowest-lying λ. We compare the eigenvalues calculated

from the original vertex with those obtained after reconstructing it from AE and PCA at different

d. (c) Visual comparison between the original vertex at fixed k3 = 0.0 and t′ = 0.0 and its recon-

structions. (d) Landau Parameters for spin and charge channels calculated from the original and

the reconstructed vertices.

improving with higher d, becoming comparable to the autoendocder errors for d ≥ 4 and

clearly superior to the autoencoder errors for d ≥ 16. In contrast, the autoencoder maintains

roughly the same accuracy across various d.

Fig. 2(d) shows the Landau parameters l for spin and charge channels. The Landau

parameters [3] are canonical quantities defined in the theory of the Fermi liquid that are
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related to susceptibilities and collective mode frequencies. For PCA, the amplitude and

tendency of l are correctly captured even at d = 1, indicating that the first PCA axis

contains substantial information about the development of the Landau parameter, which

suggests the presence of ferromagnetic states. However, the accuracy of l is significantly

higher for d = 8 compared to d = 1. For the autoencoder, the accuracy remains high for

different d.

Lastly, Fig. 2(c) presents a side-by-side comparison of a test slice of the original vertex

function Γ (k1,k2,k3) and its reconstructions at k3 = 0 and t′ = 0. We see that a relatively

small number of dimensions is sufficient to represent both the vertex and physical quantities,

including those relating to divergences of particular eigenvalues. As noted above, in the

computational basis the divergent eigenvalues do not arise from divergences in the entries in

the Γ matrix. Our findings strongly suggest that a limited number of dimensions is sufficient

to gather the essential information contained in the vertex, including information about its

singularities.

The exact reason behind the superior performance of the PCA when compared against

a parameterized autoencoder neural network remains an open question. While we leave

an exhaustive search over possible architecture choices for future research, our experiments

with convolutional networks in three dimensions suggest that local filters fail to capture

essential features in interaction vertices with a strong global sparsity structure. In contrast,

performing a global linear rotation, PCA is able to capture global patterns. For other tasks

on larger vertex datasets, we conjecture that using PCA as a preprocessing or input layer

would result in a more expressive model.

IV. FERMI LIQUID AND ORDERED STATES

An interesting physics question concerns whether an ordered state may be understood as

arising from an interaction-driven enhancement of fluctuations that are already present in

the Fermi Liquid state, or whether the onset of the ordered state signals new physics not

evident from an analysis of the Fermi Liquid state. The compression methods introduced

here offer a new perspective on this question. We use the PCA methodology to obtain a

reduced dimension subspace that accurately represents the Fermi liquid vertices (117 vertices

in total). We then assess the accuracy with which the vertices in the ordered state regions
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FIG. 3. (a) Reconstruction error ϵ (Eq. 2) for all ordered states along van Hove trajectory (t′ =

0− 0.5) as a function of the latent dimension number d of PCA bases derived from all FL states.

The data points are color-coded to indicate their association with FM, SC and AFM states. (b, c)

The eigenvalues associated with different physical orders and Landau parameters calculated along

the van Hove trajectory. It compares the original vertex data with the FL PCA reconstruction

that utilize different number (20, 50, 100) of bases.

of the phase diagram may be represented within the subspace defined from the Fermi liquid

phase.

Panel (a) of Fig. 3 shows the pointwise reconstruction error ϵ as a function of the size of

d of the PCA subspace used to represent the Fermi liquid vertices computed along the van

Hove line for a large number of t′ values, shown as different lines color-coded according to

the relevant type of order. We see that for relatively small d ≤ 10 the Fermi-Liquid-defined

subspace provides a relatively poor compression of the ordered state vertices, but that as the

subspace dimension is increased the vertices in the antiferromagentic and superconducting

phases become relatively well represented while the vertices in the ferromagnetic region

remain very poorly described. This analysis indicates that none of the ordered states are

accurately represented by the leading terms of Fermi Liquid state, but that considering

the vertex function’s high dimension (∼ 106), the superconducting and antiferromagnetic

states are moderately well represented in terms of smaller but non-negligible contributions
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to the state. On the other hand, the ferromagnetic state vertex function appears to require

qualitatively new components: the structure learned or inferred from the Fermi Liquid

phase does not transfer well to the ferromagnetic phase. Additionally, the errors indicate a

separation at about t′ = 0.34t, coinciding with the FM and SC state transition.

Fig. 3(b) presents the eigenvalues from the original and reconstructed vertices for various

d. We see that the leading eigenvalue of the AFM phase is very well represented even at

d = 20 consistent with the lower ϵ but that for the SC vertex the representation derived

from the FL phase, while qualitatively reasonable at d = 20 only begins to become accurate

by d = 50. The FM eigenvalue is qualitatively incorrect at d = 20 and becomes correct

for d = 50. Fig. 3(c) presents Landau parameters from the original and reconstructed

vertices. The Landau parameter in the spin channel initially presents inaccuracies at d = 20,

attaining precision only when d ≥ 50, similar to the behavior observed for the FM eigenvalue.

Conversely, in the charge channel, while the parameter is approximately correct starting

from d = 20, it fails to achieve high precision even at d = 100. This observation confirms

that a low dimensional representation of the Fermi liquid vertices does not transfer well to

a representation of physically relevant quantities such as pairing eigenvalues and Landau

parameters.

In Fig. 4 we present a more refined analysis. We consider a sequence of Fermi Liquid states

defined by varying µ within the Fermi liquid regime at fixed t′ = 0.0, 0.25, 0.5 (vertical lines

in Fig. 1(b)). The three sequences of µ terminate in different ordered states, so we expect

that the sequence of Fermi liquid states will be characterized by a growth of fluctuations in

a given channel, leading eventually to the divergent fluctuations implying order, and that

the evolution of the vertex will reflect this growth. We then define a PCA subspace for each

sequence, and ask how well the ordered state vertices are described within the PCA subspace.

We find that the reconstruction errors are larger than those obtained from PCA subspaces

constructed from the entire Fermi liquid data set. Specifically, for bases constructed from

vertices at t′ = 0.0, i.e. in the vicinity of AFM order, SC ordered states exhibit the lowest

reconstruction error compared to AFM and FM orders. Similarly, for bases constructed

from t′ = 0.25, which is close to superconducting order, AFM ordered states yield the

smallest ϵ. To develop a qualitative understanding of this circumstance, we calculate the

eigenvalues of different orders along the Fermi liquid to ordered state transition as shown

in Fig.4(b). For t′ = 0.0 and t′ = 0.25, we observe, that concomitantly with the incipient
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FIG. 4. (a) Reconstruction error ϵ (Eq. 2) for the ordered states along the van Hove trajectory

as a function of the latent dimension d of PCA bases derived from FL states at t′=0.0, 0.25 and

0.5. The data points are color-coded to indicate their association with FM, SC and AFM states.

(b) The eigenvalues corresponding to different physical orders calculated along the Fermi liquid to

ordered state transition at t′=0.0, 0.25, and 0.5. The vertical dashed line in each figure marks the

onset of an ordered state in the fRG calculation, with the dataset on the left-hand side of these

lines being employed for the PCA analysis carried out in (a). The dashed cruves represent the

calculations using the reconstructed vertex with d = 20.

order at the van Hove line (µ = 4t′), i.e. AFM order or singlet-pairing, the respective other

ordering channel also shows an increase in the absolute value of λ. This indicates, that some

fingerprint of fluctuations in a competing channel must be present in the vertex function,

which apparently allows the PCA analysis to extract some information about the vertices

in the ordered phase from the FL data. Note that this is not the case for t′ = 0.5 (see

the righmost panel of Fig.4(b)), where the AFM and SC eigenvalues decrease in absolute

magnitude when ferromagnetic order starts to set in.
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V. OUTLOOK

In this paper, we have shown that the two-particle vertex obtained from fRG calculations

on the two dimensional Hubbard model, is well represented by a point in a low (i.e. 4-12)

dimensional latent space derived from PCA or from an autoencoder. We observe that the

sharp structures in the exactly calculated vertices even in the Fermi liquid state show that

the success of the compression does not arise simply because the vertices are smooth (and

hence approximated by a few low-order polynomials), and that the successful calculation of

the pairing eigenvalues means that the compression can capture singularities arising from

coherent sums over many non-divergent terms in the computational basis form of the vertex.

The fact that the three-fold momentum dependence of the vertex can be so strongly com-

pressed suggests that there is a hitherto unsuspected structure in the vertex functions and

perhaps more generally in the correlation functions of the Hubbard model at moderate inter-

action strength, and also offers the hope that much more computationally efficient schemes

for calculating the vertex can be devised. Our findings thus call for further investigation in

this direction.

Note that the compression achieved with the two data-driven approaches discussed in

this manuscript is even more efficient than some of the known techniques in the fRG lit-

erature. The truncated-unity (TU) approximation [11, 16], for example, assumes a weak-

dependence of Γ on the two fermionic momenta in the particle-particle or particle-hole mo-

mentum/frequency convention and, consequently, represents it by a set of analytical form

factors. Although the number of form factors required to converge TU-fRG calculations is

usually small (order 10) [22, 23], fine resolution in the transfer momentum is required to re-

solve incipient long-range orders, resulting in many more degrees of freedom than identified

in our data-driven analysis.

We also found that a low-rank representation of a Fermi liquid state was not always trans-

ferable to the ordered states, suggesting that the ordered phases do not evolve in a simple

way from structures of the non-ordered Fermi liquid. The non-transferability was particular

acute in the ferromagnetic phase, suggesting that this physics is simply qualitatively dif-

ferent from the physics of the Fermi liquid phase. One important long-term goal would be

the direct calculation of vertex functions in the compressed basis that we unraveled in this

manuscript. This would require the projection of the fRG or other many-body equations
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into the basis suggested by the PCA analysis. Further, our finding that the PCA methods

provide a substantially more efficient representation than the standard autoencoder methods

suggests that research into the optimizations required in the autoencoder method may be

beneficial.
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