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Abstract 

Means to increase water resources are essential in regions grappling with water scarcity and growing 

populations. Soil aquifer treatment (SAT) is a cheap, low maintenance, low-energy method to supply 

water for irrigation of crops consumed raw or even for drinking purposes. However, the most expensive 

cost-component of SATs is the land use, the infiltration basins the area of which is inversely 

proportional to the infiltration rate, the most important characteristic of SAT basins design and 

operation, which until now was believed to be time-dependent and, therefore, difficult to predict. 

Focusing on the Shafdan SAT in Israel as a showcase and using a decade's worth of data from 50 

recharge basins, we study the time dependence of the infiltration rates. The study reveals a noteworthy 

consistency in the decline of effluent levels during the drainage phase across various flooding events, 

signifying a constant, head-independent infiltration rate. 97% of over 40,000 flooding events showed 

this behavior. Furthermore, the infiltration rate calculated in this manner provides good predictions of 

the average infiltration rate during the entire wetting phase. 

The water-level-independent infiltration rate is a general feature. It was found in all the 50 studied 

basins, regardless of the soil sand content, commissioning year, operation conditions and season. The 

constant infiltration rate law revealed in this study simplifies the prediction of the flooding cycle 

duration and will facilitate simplified predictive modeling of multiple basins SAT systems. Our research 

may extend beyond SAT systems, offering insights applicable to other managed aquifer recharge 

methods, crucial for effective water resource management, ensuring environmental compatibility.  

This data-driven, large-scale study confirmed several conventions, usually accepted by water recharge 

practitioners but lacking statistical background. These include the seasonal variation of the infiltration 

rate, whereby the infiltration rate in the summer is much higher than in winter.  
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Introduction  

As cities in arid and semi-arid areas with growing populations face water shortages and frequent 

droughts, recycling wastewater transcends mere pollution control to an additional water resource (Grant 

et al., 2012; Schwabe et al., 2020). Soil Aquifer Treatment, SAT is long recognized as a reliable and 

sustainable means of effluent treatment, enabling wastewater recycling and safeguarding precious water 

resources with minimal use of manpower, energy, chemical consumption, and waste generation (Banin 

et al., 2002; Dillon, 2005; Dillon et al., 2019; Elkayam, 2019; Grinshpan et al., 2021; Kümmerer et al., 

2018; Mansell & Drewes, 2004; Ying et al., 2003). The process involves flooding recharge basins with 

treated wastewater (TW), which then infiltrates into the aquifer. As it infiltrates through the unsaturated 

zone and flows through the saturated zone, contaminants are gradually removed and the TW is cleaned 

(Elkayam, Michail, et al., 2015; Elkayam, Sopliniak, et al., 2015; Grinshpan et al., 2021). The water is 

mostly reclaimed for reuse, and in some cases, it can be used for unlimited irrigation of crops eaten raw 

without additional treatment(Elkayam et al., 2018). The frequency and duration of the intermittent 

flooding of the recharge basins determine the infiltrated effluent capacity and, consequently, the size of 

the basins, which is the most costly resource in SATs. In addition to shedding light on effluent treatment 

mechanisms, the study of SAT systems offers insight into natural water recharge processes. In this 

context, it is notable that the Shafdan SAT system recharges over 100 meters of water annually (Barkay-

Arbel et al., 2022), a significant figure given that Israel's average annual precipitation is about 0.6 meters 

(Hochman et al., 2020). Thus, the Shafdan system serves as a case study of artificial aquifer recharge, 

offering a unique opportunity to examine natural aquifer recharge phenomena on an accelerated scale. 

This becomes particularly significant in light of global warming, which induces extreme weather 

conditions and floods — challenges that can be alleviated by diverting excess water to artificial aquifer 

recharge systems. (Bergeson et al., 2022; Hossain-Anni et al., 2020; Li et al., 2022; Mahapatra et al., 

2020). 

The primary objective of this study is to conduct a meticulous analysis of the Infiltration rate (Ir) within 

an artificial recharge basin across a long specified time frame. To achieve this goal, we will utilize a 

comprehensive dataset spanning a decade, encompassing information from all the 50 regularly 

monitored recharge basins within the Shafdan SAT system.  

Our central aim is to establish a compelling case that, for each individual basin during every flooding 

event, the infiltration rate remains constant throughout the entire drainage time and can accurately 

predict the average infiltration rate for the entire event. We demonstrate that during each flooding event, 

as drainage occurs, the decrease in effluent levels follows a linear pattern, suggesting a consistently 

constant soaking rate. However, variations in the infiltration rate can occur across different flooding 

events and infiltration basins. We assert that the dynamically evolving clogging layer on the topsoil of 



the recharge basins, which affects the seepage rate(Bouwer, 2002), is responsible for the sustaining the 

constant infiltration rate.   

 Infiltration rate. The aquifer recharge by surface spreading involves three phases (Figure 1). Once the 

flooding phase begins, the water level in the recharge basin rises until it reaches a target level 

(alternatively, the flooding rate is kept equal to the infiltration rate to maintain a constant effluent level). 

Subsequently, the water feed to the basin is terminated, marking the end of the flooding phase and the 

beginning of the drainage phase. The water level decreases at the infiltration rate since there is no inflow 

to the basin. After the water level reaches zero, the drying phase begins, and the moisture level decreases 

at the topsoil. Once cycle and drying times are set, the average infiltration rate is proportional to the 

average water loading, i.e., the average water feed per surface area, and is therefore proportional to the 

capacity of the basin or SAT system. The average infiltration rate is therefore inversely proportional to 

the size of the basin required to treat a given effluent feed to the SAT. The synchronization of the 

beginning and ending of the floodings, and the distribution of the incoming flow from the Waste Water 

Treatment Plant (WWTP) among the basins, are based on the expected infiltration rates of all the basins. 

The infiltration rate through a basin may vary by almost an order of magnitude depending on ambient 

conditions and basin history. The extensive research dedicated to theoretical prediction of SAT 

infiltration rates is, therefore, fully justified. However, this stands in contrast to the limited amount of 

validation studies of predictive models based on large, basin-wide SAT systems.  

 



Figure 1: A. Schematic operation regime for a recharge basin with the notations used in the article. 

The cycle comprises of  three steps: (i) flooding, (ii) draining, and (iii) drying with Irf, Ird 
 infiltration 

rates. 𝐼𝑟𝑤
̅̅ ̅̅ ̅  is defined as the average infiltration rate during the wetting (i.e., flooding and draining) 

phase, 𝐼𝑟𝑤̅̅ ̅̅ =
(∫ (𝑄 𝐴⁄ )𝑑𝑡

𝐹𝑇
0

)

𝑊𝑇

⁄ . The infiltration rates during flooding and drainage are also 

schematically shown in frame B. Three trends of the infiltration rate (Ir) are schematically depicted: 

'GA' represents the Green and Ampt model (see text), ‘C' represents a constant (head-indifferent) 

infiltration rate. 

The most comprehensive method to calculate the infiltration rate is by numerical solution of the non-

linear Richards equation (Raats & Knight, 2018; Richards, 1931). However, this approach is time-

consuming and more useful for the simulation of specific cases rather than formulating generalized 

rules on the infiltration rate through SAT spreading basins. Another useful approach is to calculate the 

infiltration rate using the Green and Ampt (GA) model (Green & Ampt, 1911) and its many modifications 

(Chen et al., 2019; Cui & Zhu, 2018). The GA model assumes a water saturation front propagating from 

the topsoil downward during the flooding and drainage phases. The water concentration front in the 

soil ranges between the soil water content prevailing below the front and the water saturation content. 

The depth of the water front is determined by the water balance, where the amount of effluent above 

ground and the added effluent down to the propagating front equal the amount of effluent that was 

pumped to the infiltration basin from the beginning of the flooding cycle divided by the basin’s area 

(Green & Ampt, 1911; Tokunaga, 2020; Warrick et al., 2005). The driving force for the propagation of 

the saturated water zone downward is therefore the sum of the water head above ground (H), the water 

front depth below ground (L), and the capillary suction (h) immediately below the propagating front. As 

the flow is saturated, the infiltration rate (Ir) can be calculated by applying Darcy's equation (Bouwer, 

1963, 2002; Lee et al., 2015): 

The most comprehensive method to calculate the infiltration rate is by numerical solution of the non-

linear Richards equation (Raats & Knight, 2018; Richards, 1931). However, this approach is time - 

consuming and more useful for simulation of specific cases rather than formulating generalized rules 

on the infiltration rate through SAT spreading basins. Another useful approach is to calculate the 

infiltration rate by the Green and Ampt (GA) model (Green & Ampt, 1911) and its many modifications 

(Chen et al., 2019; Cui & Zhu, 2018).The GA model assumes a water saturation front propagating from 

the topsoil downward during the flooding and drainage phases. The water concentration front in the soil 

ranges between the soil water content prevailing below the front and the water saturation content. The 

depth of the water front is determined by water balance, where the amount of effluent above ground 

and the added effluent down to the propagating front equal to the amount of effluent that was pumped 

to the infiltration basin from the beginning of the flooding cycle divided by the basin’s area (Green & 



Ampt, 1911; Tokunaga, 2020; Warrick et al., 2005). The driving force for the propagation of the 

saturated water zone downward is therefore the sum of the water head above ground (H), the water front 

depth below ground (L), and the capillary suction (h) immediately below the propagating front. As the 

flow is saturated, the infiltration rate (Ir) can be calculated by applying Darcy's equation (Bouwer, 1963, 

2002; Lee et al., 2015): 

𝐼𝑟 = 𝐾𝑠
𝐻 + 𝐿 + ℎ

𝐿
                       (1) 

𝐼𝑟 = 𝐾𝑠
𝑑𝐻′

𝑑𝐿
                                   (2) 

All the parameters in equations 1 and 2 are expressed in absolute values: Ks is the hydraulic conductivity 

at saturation, and H' is the pressure driving force (in meters). L is determined by the cumulative water 

feed per basin area from the beginning of the flooding cycle divided by the difference between water 

saturation and the initial water content. All the variables in equations 1 and 2 are time-dependent (the 

subscript, t, is omitted for simplicity). For a constant Ks, the GA model predicts that the infiltration rate 

will gradually decrease during the drainage phase since as H decreases, L increases to maintain water 

mass balance. Eventually, Ir should approach gravity drainage, where Ir equals Ks. The higher the water 

head above ground, the higher the infiltration rate (Furman et al., 2006; Philip, 1969). Several 

modifications of the GA model were proposed. The most notable modifications include multiple 

propagating fronts, each involving a (nearly) step change in water content. However, in all these 

modifications, when Ks and h are kept constant, the infiltration rate (Ir) increases as H increases. Adding 

to this complexity, entrapped gas impedes the infiltration rate (Mizrahi et al., 2016), making the 

prediction of Ir even more challenging. 

Another approach to simplify the modeling is to use semi-empirical models where the infiltration rate, 

under constant head, is fitted by a time-dependent unction  (Horton. R. E, 1940; Kostiakov A.N., 1932; 

Philip, 1969; Talsma & Parlange, 1972). These models involve 2 or 3 parameters that provide useful 

interpretation of ring infiltrometer tests. However, these approaches are less useful for predicting the 

duration of the infiltration cycle, as they only consider the dependence of Ir on time under constant 

head. Moreover, these models are usually compared based on short time scale, and only local infiltration 

rate is studied by the infiltrometers (Girei et al., 2019; Lake et al., 2009; Shukla et al., 2003). Finally, 

the models require two or three adjustable parameters, making real-life modeling, involving the effects 

of many ambient conditions on each fitted parameter excessively challenging.  

An entirely different mechanism involves modeling the infiltration rate as a function of biological film 

formation at the topsoil and its evolution during the infiltration process. The model was thoroughly 

investigated by Herman Bouwer, a pioneer of managed water recharge and SAT research (Bouwer, 

1991, 2002; Bouwer et al., 2014; Rice & Bouwer, 2013).  Bouwer observed that the infiltration rate is 



often determined by a thin biological clogging layer, ranging in thickness from less than 1 mm to one 

cm (Bouwer, 2002). The infiltration rate can be calculated by the one dimensional integral form of 

Darcy's law.   

Ir = Kf H’f/Lf                       (3) 

In this case, the hydraulic conductivity, Kf and film thickness, Lf depend on the cumulative infiltration 

rate from the beginning of the flooding cycle and the prevailing water head. As the film is deformable, 

Kf  is time and head-dependent.  

In this study, we used data of over 40,000 effluent recharge cycles accumulated over a decade of 

operation of 50 Shafdan SAT basins. Our findings indicate that the water level decline during drainage 

follows a linear pattern (see Figure 1b), revealing a constant, head-independent infiltration rate. 

Furthermore, we demonstrate that the infiltration rate during drainage, Ird can be used to predict the 

average infiltration rate during the entire wetting phase. This constitutes a crucial step towards data-

driven modeling of the infiltration rate under variable ambient conditions and different water recharge 

operational histories. However, it is important to note that this does not imply that the infiltration rate 

does not vary between the different flooding events and across different seasons.  

Methods 

 Study Site Description. The study area is the Shafdan SAT system, a large-scale wastewater 

reclamation plant (see Figure 2). The plant processes approximately 140 million cubic meters of 

wastewater annually, which flows from the Shafdan wastewater treatment plant (WWTP) and 

distributed to 70 infiltration basins covering a total area of 1.1 km2 (Barkay-Arbel et al., 2022; Elkayam, 

Michail, et al., 2015). In this study,  

We utilize a comprehensive dataset spanning a decade, which includes data from 50 out of the 70 

recharge basins within the Shafdan SAT system. These 50 basins are continuously monitored using IoT 

devices, while the remaining 20 basins are operated manually without sophisticated monitoring. 

More information on the Shafdan SAT is provided in the Supplementary Information (SI). Briefly, the 

first spreading lagoons in the Soreq-1 field (Figure 2) were constructed in 1977 and consisted of 19 

recharge basins. An additional five multi-basin recharge fields (Yavne 1-4 and Soreq 2) were gradually 

commissioned in the next 15 years. The SAT was constructed in the rolling sand dunes above the Israeli 

coastal aquifer. Their upper layers comprise of fine sand underlain by low-density layer of less than 1 

m due to frequent tillage. Like most SAT treatments in the world, the Shafdan SAT are located in 

sedimentary soil and their upper layer is mostly fine sand. Figure S1 in the SI shows that the lithology 

of the basins varies considerably. According to Mienis and Mualem (Mienis, 2013)  it varies sometimes 

even within the same basin.  



The lithology mostly comprises of layers of different mixtures of fine sand, silt, marl, and calcareous 

soil interrupted by thin clayey aquitards with varying levels. In some basins, the clayey layers are 

situated in the upper few meters, corresponding to the intermittently saturated layer described by the 

GA model (vide supra), while in others, these layers are found only at deeper locations. The lithological 

variability results in widely different infiltration rates ranging between less than 1 and over 10 cm/h, 

depending on the season and operational conditions. The widely different lithology and infiltration rates 

in the different basins underscores the robustness of the conclusions based on the Shafdan SAT studies.  

Data Collection. The data source for this research was the Shafdan database, which has accumulated 

over four decades of operational knowledge regarding the Shafdan SAT reclamation systems. This 

dataset includes historical records of flowrates to the basins and the effluent levels in the basin, as well 

as operational parameters for 50 recharge basins. We utilized operational data from the recharge basins 

spanning ten years, focusing on time series data comprising the level, flowrate, and valve status for each 

time step within each recharge basin. The data underwent preprocessing to ensure quality and 

consistency, involving the identification and removal of anomalies or errors resulting in the rejection of 

702 cases of anomalous data. More details and examples of rejected cycles are provided in the SI (Figure 

S2).  

Data Analysis. A flooding event was defined as the time period between two consecutive openings of 

the inlet valve to an infiltration basin, corresponding to the initiation of the consecutive flooding cycles. 

Within each event, time series measurements of the effluent level were categorized as "Flooding", 

"Drainage", and "Drying", based on the status of the flooding valve and flow conditions. In the 

"Flooding" phase, the inlet valve to the basin is open, and the flow exceeds zero. The "Drainage" phase 

is characterized by closed inlet valve and non-zero effluent level in the basin, H > 0.  The "Drying" 

phase was characterized by a closed inlet valve and the effluent level, H equals 0. Accordingly, the 

wetting phase duration (WT) equals the flooding duration (FT) plus the drainage duration (DT). The 

drying duration, denoted by subscript p, (for parched), completes the flooding cycle time (CT), where 

FT+ DT= WT, and CT= WT + PT.      



 

Figure 2: Location Map of the Recharge Basins. Displays the geographical locations of the Shafdan 

recharge basins: Soreq 1, Soreq 2, Yavne 1, Yavne 2, Yavne 3, and Yavne 4. The inset map provides 

an overview of their locations in Israel. 

Infiltration Rate during the Drainage Phase (Ird): For each flooding event, the infiltration rate (in cm/h) 

was calculated based on the rate of decrease in water level during the basin drainage. The relative error 

in the measurement of H close to zero water level is excessively high due to several reasons: i) there is 

a small difference of the soil level at the two opposite sides of the basin; ii) the soil level is uneven due 

to tillage-induced ramps; and iii) there is some water level inaccuracy and imprecision due to 

instrumental errors. It should be noted that the level gauges are infrequently calibrated in the Shafdan 

SAT, and there is no record of inaccuracies found in the calibrations. Therefore, the calculations of the 

infiltration rate during the drainage phase was conducted only for H>14 cm. The instantaneous 

infiltration rate during drainage, Ird, was calculated based on the slope of the water level over time, 

starting from the initiation of the drainage phase. Linear regression analysis was applied to the dataset. 

A linear dependence of the water level on time with high Coefficient Of Determination, COD (R2) 

values suggest a head-independent infiltration rate.  

Infiltration rate during the flooding phase (Irf):  In theory, it would have been equally straightforward 

to calculate the infiltration rate during the flooding phase by fitting the data to the linear expression in 

equation 5:  



Irf,t = Qt/A – (dH/dt)t      (5) 

Equation 5 represents a mass balance, similar to the method used to evaluate Ird, but it incorporates the 

non-zero, variable inlet flowrate to the basin (Qt). The subscript, t underscores the temporal nature of 

this mass balance. However, the accuracy of the prediction of Irf depends on the quality and resolution 

of the flowrate vs. time dataset, which, for the Shafdan SAT, is poorer than the water level vs. time 

dataset, and, unfortunately, both dependencies are needed for Irf determination by equation 5. Moreover, 

the acquisition of water level and inlet flowrate (i.e., Ht and Qt) is not synchronized in the Shafdan SAT, 

as these outputs were designed to fulfill different, unrelated functions. Therefore, Qt and Ht refer to 

slightly different times. Finally, the flow to each of the infiltration basins is distributed from a central 

pipeline network, and therefore, opening or closing an inlet valve to one of the basins changes the 

flowrate to all other basins that are filled simultaneously.  

Several examples of Qt during a few typical flooding cycles are delineated in Figure S3 in the SI to 

demonstrate how fast the flowrates to the basins change in time. More generally, Figure S4 in the SI 

shows several histograms of the relative standard deviations of Qi,t normalized to the average Qi at the 

ith flooding cycle. The distributions of the flowrates confirm and generalize the observations provided 

in Figure S2 and show that the flowrates vary considerably during the flooding cycles. The high intra-

cycle variability of Q in Figures S3 and S4 demonstrates why a high-resolution time series is vital for 

the accurate evaluation of Irf by equation 5.  

Therefore, we had to resort to different approaches for the prediction of the average infiltration rate 

during the wetting phases based on Ird. We investigated whether Ird (which is head-independent and 

therefore also time-independent) would enable us to predict the average infiltration rate during the entire 

wetting phases, 𝑰𝒓𝒘̅̅ ̅̅ ̅. It is desirable to obtain a confirmation that  𝑰𝒓𝒘̅̅ ̅̅ ̅ can be approximated by Ird. Note, 

that this requirement is much less stringent than the requirements that Irf is time -independent and equal 

to Ird, which, theoretically, could be verified by equation 5. A second approach would be to set a basin-

specific but season- and year-invariable correlation between 𝑰𝒓𝒘̅̅ ̅̅ ̅. and Ird, (e.g., in the form of equation 

6).   

         𝑰𝒓𝒘̅̅ ̅̅ ̅ =   𝒌𝟏 ∙   𝑰𝒓𝒅    + 𝒌𝟐                                                        (𝟔)   

This would be sufficient to compute the wetting time (WT) required to infiltrate a given hydraulic 

loading per cycle (HL) based on accurate prediction of one parameter, Ird.  HL is defined as the total 

effluent volume per area that is fed to a basin during a cycle divided by the cycle time. HL is given by 

the integral of the flowrate to the basin (Qt) over the flooding time (FT) divided by the basin area (A) 

and cycle time, CT, 

 

HL = 
1

𝐶𝑇
∫

𝑄𝑡

𝐴
𝑑𝑡

𝑡=𝐹𝑇
0

 =  𝐼𝑟𝑤̅̅ ̅̅ 𝑊𝑇 𝐶𝑇       (7) 



 

 Results 

Outliers: Throughout our analysis, we encountered several outliers in the basin operation data, mostly 

due to faulty meters and communication errors. Typical abnormal behaviors that could be classified as 

outliers are presented in Figure S2 in the SI. For example, instances such as 24-hour flooding periods 

that do not constitute proper flooding events due to rapid fluctuations of the water level, faults in the 

level measuring instrument, communication faults resulting in frozen values in the basin level 

measurements, insignificant level rise during the flooding events, and valve status faults that contradict 

the water level changes. For each drainage dataset corresponding to a specific flooding event, we  took 

into account all  descending sequences that lasted greater than 3 hours. Sequences that didn't comply 

with this constraint were removed. The number of removed cycles was 702, constituting 1.5% of the 

examined cycles.  As for the flow measurements, although there were not many events, the deviations 

were significant, often reaching hundreds of percent of the physical value that could flow through a 

pipe of the feed diameter. Therefore, we smoothed the deviations by replacing each flow measurement 

that exceeded the 99.9th percentile with the previous value. 

Effluent Level Trends in Recharge Basins: Figure 3 illustrates a sample of the effluent level changes 

over time in three recharge basins during different seasons. Each time step is categorized according to 

its operational status, namely, 'flooding,' 'drainage,' and 'drying’ and assigned a different color. The 

figure demonstrates a consistent linear trend in the decline of effluent levels during drainage (in green). 

Visual examination of the decline of the water level in time revealed that the decline was always linear 

regardless of the season and operational conditions, such as the duration of flooding, the frequency of 

floodings, and the duration of drying periods between consecutive floodings. These observations 

prompted further investigation to confirm the hypothesis of a linear level decrease. 

 



Figure 3: Effluent level trends in three recharge basins. The effluent level trends over time in three 

recharge basins during January, May, and August are demonstrated. Operational statuses (flooding, 

drainage, drying) are classified at each time step, highlighting a consistent linear decline in effluent 

levels (shown in green) across varying operational conditions. 

Infiltration Rate Analysis. The comprehensive investigation of all flooding cycles from all infiltration 

basins, spanning ten years, yielded a total of 45,218 flooding events available for analysis after rejection 

of 702 abnormal cycles (1.5%). Within each of these events, data points classified under the 'Drainage' 

status were subjected to individual linear regression analysis. The results, as depicted in Figure 4, 

showed that linear effluent level decline, corresponding to time and head-independent infiltration rate, 

describe the data very well. 91% and 95% of the data cycles exhibited linear level decline with 

coefficient of determination, R2 larger than 0.95 and 0.9, respectively. This is remarkably high, 

especially considering that there was no effort to screen out outlier data points (any descending sequence 

was acceptable), which are rather common in large-scale operations exposed to extreme ambient 

conditions. This is notable also since the raw data are solely used for the immediate control room 

operation and are not processed in the Shafdan afterward.  

 

 

Figure 4: Results of linear regression analyses conducted on the effluent level decline during the 

drainage phase. The data reveal a strong linear relationship, with 98% of the cycles displaying linear 

decrease of H, with R2 values exceeding 0.7 and 91% surpassing 0.95.  

Top-Down Mechanistic insight: The fact that the head-dependent model fits the time-trace data so well 

does not necessarily imply that it is the best mechanistic model. True, the obtained fit is good enough 

to base predictive simulations of the infiltration rate on the linear decline rate, but the unprecedented 

availability of comprehensive field data provides good opportunity to obtain top-down mechanistic 



insight as well. Instead of postulating a mechanism, deriving a model and investigating its validity by 

field-observations, we followed an opposite approach by examining the best head-infiltration rate 

dependency. To that end, we investigated the logarithmic dependence in equation 8.  

Log (Ird,t)   = C1 + C2 Log (Ht)    (8) 

Where C1 and C2 are fitting constants, representing the coefficient and the power of a power function, 

Ird,t=C1 Ht
C2. Note, that C2 = 0 corresponds to a head-independent infiltration rate, C2 = 0.5 corresponds 

to models in which potential energy (e.g., water head) is converted to kinetic energy (depending on the 

square of the velocity), and C2 = 1 corresponds to models in which the flow through a constant hydraulic 

barrier takes place. The statistics of all the basins are presented in Table S1 in the SI, including the 

average, minimum, and maximum of C2 obtained in the linear correlations of all the flooding cycles in 

the various basins. Figure 5 depicts the histogram of the average C2 for each of the 50 basins. It is 

remarkable to note that the values of C2 in all 42,000 studied cycles span a narrow range,  -00039 (in 

basin 4201) > C2 > -0.06 (in basin 6203). The average C2 spans an even narrower range,  -0.006 (in 

basin 4202) >C2> -0.02 (in basin 5202), confirming that the GA model and the intuitive positive 

dependence of the infiltration rate on the water level above the bottom of the basin failed to represent 

the showcase of 42,000 cycles in the 50 basins of Shafdan SAT. The negative values of all the computed 

pre-logarithmic coefficients, C2 indicate that the infiltration rate depends on the depth of the impounded 

effluent, but, surprisingly, the dependence is opposite to the prediction of the GA model, higher water 

level correlates with (slightly) lower infiltration rate. Due to the large amount of data, despite the 

absolute low level of C2, the negative sign is statistically significant (refer to Table S1 in the SI section). 

First, the average COD, R2 of the linear correlations of all the cycles in all the basins was greater than 

0.98. Secondly, the p-value for rejecting the null hypothesis of positive head dependency or truly head-

independent rate (i.e., averaged C2 ≥ 0) in any of the basins is surprisingly small, less than 10-5, 

indicating that the negative correlation is not a coincidence. However, the negative effect is very small 

and holds no practical significance. For instance, an increase of 10 cm in water level reduces the 

infiltration rate, on average, by 2%, which is lower than the statistical margin of error of our level 

measurements. 



 

Figure 5: Histograms of (A) the average coefficient, C2 in equation 8 in all the studied infiltration 

basins, and (B) Histogram of the average COD for the 50 studied basins. All the values are >0.980 

indicating strong logarithmic dependence, with very low dependence on the water head, H.   

Seasonal variation of the infiltration rate: As an example for the usefulness of the linear level decrease 

approximation, consider the seasonal variation of the infiltration rate during drainage. The fact that the 

infiltration rate is constant in each cycle allows for easy analysis of trends in the permeability of the 

lagoons during different seasons over a decade. The left frames in Figure 6 provide examples of the 

fitted Ird variation over time, categorized by seasons. A close examination of the infiltration rate time-

series in the figure reveals consistent patterns observed across most cases. Each season exhibits lower 

infiltration rates during the winter months, with Ird gradually increasing, reaching peak infiltration rates 

during the summer season. Subsequently, there is a reduction in Ird as winter returns. This cyclic pattern 

is evident in the left frames of Figure 6, highlighting the influence of seasonal weather fluctuations on 

infiltration rates and demonstrating the enduring impact of seasonal variation on infiltration rates in 

specific basins. However, when considering multi-year trends, such as the winter of 2017 in basin 3201 

or the winter of 2019 in Basin 5102 (watermarked), it can be observed that within the same basin, values 

of the infiltration rate in the winter can be as high as those observed in the summer of other years (e.g., 

2015, 2021). The right side of Figure 6 illustrates the distribution of Ird values by season. Within this 

distribution, the summer season stands out with a distinct cluster of higher Ird values, emphasizing the 

influence of meteorological factors on the infiltration rates. Similar observations showing that 

infiltration rate is higher in the summer were reported before (Jaynes, 1990; Lin et al., 2003), including 

reports on seasonal trends in the Shafdan SAT itself, though never before showing such consistency 

and based on such a large database. In addition, it’s evident that while seasonality plays a significant 

role, other basin-specific factors contribute to the observed variability. Figure 6 reveals a large range in 

Ird values across the recharge basins, spanning from 1 to 8 cm/h, indicating significant variability in the 



infiltration rates. These variations highlight the complex interplay between seasonal weather patterns, 

basin characteristics, and operational factors in determining infiltration rates. 

Prediction of  𝑰𝒓𝒘̅̅ ̅̅ ̅  by Ird. It could be anticipated that if the infiltration rate is time- and head-independent 

during the drainage phase, it would be likely be head-independent for most of the wetting phase as well. 

Therefore, 𝑰𝒓𝒘̅̅ ̅̅ ̅  should be roughly equal to Ird  or at least highly correlated with it, which would provide 

means to estimate 𝑰𝒓𝒘̅̅ ̅̅ ̅   based on Ird.  Figure 7 presents the time trace of Ird  (in blue dots) and 𝑰𝒓𝒘̅̅ ̅̅ ̅ (in 

pink) in 9 basins, qualitatively confirming that the infiltration rates in the drainage and the wetting 

phases in each cycle are indeed close to each other. It can be observed that the differences in magntude 

between the blue and pink dots are considerably smaller than the value of Ird. Therefore, we verified 

the validity of the relationship 

𝑰𝒓𝒘̅̅ ̅̅ ̅   = k . Ird           (9) 

where k is a proportionality constant that ideally should be close to 1. 
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means to estimate 𝑰𝒓𝒘̅̅ ̅̅ ̅   based on Ird.  Figure 7 presents the time trace of Ird  (in blue dots) and 𝑰𝒓𝒘̅̅ ̅̅ ̅ (in 

pink) in 9 basins, confirming qualitatively that the infiltration rates in the drainage and the wetting 

phases in each cycle are indeed close to each other. It can be observed that the differences between the 

blue and pink dots are considerably smaller than the value of Ird. Therefore, we verified the validity of 

the relationship 

𝑰𝒓𝒘̅̅ ̅̅ ̅   = k . Ird           (9) 

where k is a proportionality constant that ideally should be close to 1. 

 

 



 

Figure 6: Seasonal variation of the infiltration rate, showcasing the dynamic range of the Ir values 

over time.  A1-A3:  Distribution of Ir values as a function of time. Blue watermarks highlight the 

winter seasons of the years 2017 and 2019 in basin 3201 and 5102, respectively. B1-B3: 

Presentations of the distribution of infiltration rates during the different seasons (the symbol colors fit 

the colors of the bars in A1-A3). The average infiltration rate in the summer is highest and in the 

winter it is lowest, but there is overlap between the distributions.  

The accuracy of equation 9 was evaluated by examining the ratio of Ird to  𝑰𝒓𝒘̅̅ ̅̅ ̅  for all flooding events 

across all recharge basins. 𝑰𝒓𝒘̅̅ ̅̅ ̅ was calculated from the actual water load during each cycle (𝑰𝒓𝒘̅̅ ̅̅ ̅ 

=
1

𝑊𝑇
∫ (𝑄 𝐴⁄ )
𝑡=𝐹𝑇
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𝑑𝑡). Given that the relative errors in flowrate measurements are much larger than in 

water level measurements, we employed an additional technique for outliers’ removal at this stage. 

However, we endeavored to avoid introducing bias by not removing an excessive number of flooding 

events and maintaining statistically valid rules for the assignment of outliers. First, we checked  whether 

the ratio between 𝑰𝒓𝒘̅̅ ̅̅ ̅  and Ird  was normally distributed by the Shapiro-Wilk normal distribution test 

(Shapiro & Wilk, 1965). In all the basins, (except for basins 7302 and 7303) the Shapiro-Wilk test 

revealed that it is statistically justified to reject the null hypothesis that the population of the infiltration 

rate ratios is taken from a normally distributed population (last columns of Table S2 in the SI). 

Therefore, the Tukey’s interquartile range method (Beyer, 1981; Vinutha et al., 2018) for outliers 

rejection, which is applicable for populations that are not normally distributed, was used. According to 

this method, the interquartile range (IQR) between the first (Q1) and third (Q3) quartiles is used to set 

outlier thresholds (fences). Data points falling above Q3 +1.5.IQR or below Q1-1.5.IQR are classified 

as outliers. These criteria led to the exclusion of almost 9% of the data points. Detailed information on 

the removal of outliers in each recharge basin can be found in Table S2 of the SI. Figure 8 displays the 

linear correlations between  𝑰𝒓𝒘̅̅ ̅̅ ̅  and Ird in 9 basins. The dashed correlation lines were constrained to 



pass through the origin (as in equation 9) and the dotted lines represent the unconstrained correlations.  

A table depicting all the slopes of the linear correlations and the corresponding coefficients of 

determination, along with additional information about the number of outliers, are delineated in Table 

S2 in the SI. The average slope, k of the constrained correlation was 0.97, with an average relative 

standard deviation of 0.11, remarkably close to the expected identity slope, particularly considering the 

large variability of Ird
  (refer e.g., to Figure 6).  The 50 basins exhibited a good correlation between  𝑰𝒓𝒘̅̅ ̅̅ ̅  

and Ird, with an average R2 value higher than 0.8, and a standard deviation of 0.09. Only one basin 

exhibited an R2 <0.6. Histograms of the average observed slopes and R2 for each basin are depicted in 

Figure S5 in the SI. The highest R2 encountered in any basin was 0.93, observed in basin 3203 in the 

Soreq field. It is notable, that for this basin, the outlier removal accounted for only 1%. Basins with 

lower correlation values were either in older fields that tend to have less accurate flowmeters or in 

basins where a high percentage of outliers removed, indicating poorer data quality.   

Figure 7 shows that in certain basins, such as basin 7101, the Ird values are higher than the 𝑰𝒓𝒘̅̅ ̅̅ ̅ values, 

corresponding to k>1, while in others, such as basin 6303, the opposite trend is observed. We observed 

that in only 16 recharge basins, the 𝑰𝒓𝒘̅̅ ̅̅ ̅  was larger than the Ird, suggesting that Irf   should also be larger 

than Ird. This observation implies that the infiltration rate decreases with time during the wetting phases, 

as expected based on GA, and Horton models, which predict decreased infiltration rate with time (Green 

& Ampt, 1911; Horton. R. E, 1940). However, in 34 recharge basins, the Ird was larger than the  𝑰𝒓𝒘̅̅ ̅̅ ̅, 

suggesting that Irf was lower than the Ird. Chen and his team  (Arye et al., 2011; Nadav et al., 2012) 

anticipated that, unlike freshwater, treated wastewater infiltration rate should increase with time, due to 

the higher water repellency of the hydrophobic biological film on the topsoil. The increased infiltration 

rate with time in water repellent soils was documented also in other sites with impounded TW (Arye et 

al., 2011; Feng et al., 2001; Magesan et al., 1999).  However, the observation that, on the average, Ird 

is larger than the  𝑰𝒓𝒘̅̅ ̅̅ ̅ is not significant statistically, the standard deviation of k in the 50 basins is 0.11, 

much larger than the deviation of the average of k (0.97) from 1.  

Basin-specific correlations of  𝑰𝒓𝒘̅̅ ̅̅ ̅ based on Ird: In order to improve the prediction of  𝑰𝒓𝒘̅̅ ̅̅ ̅ based on Ird 

, we examined the linear correlations between the two variables without imposing the pass-through-the-

origin constraint. However, this analysis failed to improve the correlations significantly. The distinction 

between the dotted and dashed lines in figure 8 is minimal in most cases. Table S2 in the supplementary 

materials presents the complete data for the 50 examined basins which further underscore this 

observation. The average COD for the two parameter fit was 0.83, only marginally improved over the 

constrained fit (0.81).  We attribute the very small intercept, averaging only 0.08 ± 0.26 cm/h, to 

systematic errors that are proportionate to Ir, such as inaccuracies in estimating the basins areas and 

inlet flowrates. These errors tend to have little or no impact on the deviation from Ird  values close to 

zero. The analysis of mean square error in Table S2 allows us to glean insight into the quality of the 

prediction of average Ir throughout the wetting section. It is possible to calculate a measure for the 



average relative error by taking the square root of the mean square error, MSE divided by the mean 

infiltration rate in each basin (indicated as srMSE in Table S2), the average srMSE for all 50 basins is 

only 16%, and can be as low as 9% in cases where the data quality is very good, such as in basins 3203 

and 3204 in the Soreq field. It is notable, that the constrained and unconstrained correlation exhibited 

the same relative srMSE, when written with two figures.  

 

Figure 7: Time trace of Ird (blue) and Irw (pink) in the last decade in 9 infiltration basins.   

 

Figure 8: Linear correlations between the average infiltration rate during the wetting phases, 𝐼𝑟𝑤̅̅ ̅̅  and 

the head-independent infiltration rates during the drainage phase, Ird. The dashed trend lines were 

constrained to pass through the origin. The dotted lines represented unconstrained linear 



correlations. In many cases, the two lines overlap. The R2 value presented on the figure indicates a 

strong correlation between 𝐼𝑟𝑤̅̅ ̅̅  and Ird. 

Discussion 

The research provides a large-scale empirical evidence supporting linear decline in water levels during 

the drainage phase in recharge basins, confirming head-independent infiltration rate. The approach 

taken is data-driven, and the evidence is derived from a comprehensive dataset spanning ten years, 50 

different recharge basins, and over 40,000 flooding cycles. This large-scale analysis is incomparable in 

magnitude to customary infiltration rate studies, which focus on one or a few sites, sometimes within a 

single basin (mostly by infiltrometer studies) or on a few basins in a single season (Barry et al., 2017; 

Goren et al., 2014; Haaken et al., 2016; Nadav et al., 2012; Racz et al., 2012). The vast database provides 

generality and robustness, despite having a larger scatter of the data points. While it is widely 

recognized that the infiltration rates are influenced by the water level  (Horton. R. E, 1940; Kostiakov, 

1932; Philip, 1969; Talsma & Parlange, 1972), the study reveals an almost head-independent infiltration 

rate. The linear correlation studies of the rates of water level decline were confirmed by a through 

regression analysis of log(Ir) against log(H). We observed a statistically significant (p-value ~ 0) 

negative correlation between the impounding water level in all recharge basins and the infiltration rate 

during drainage. However, we believe that the magnitude of the pre-logarithmic coefficient is so low 

that the negative dependency is only a theoretical issue and has little or no practical significance. 

Furthermore, we demonstrated that the average infiltration rate throughout the wetting phase, and for 

that matter, also throughout the wetting cycle, can be computed by a basin-specific correlation between 

the average infiltration rate and the observed infiltration rate during drainage. The water loading (per 

square meter), the most important characteristic of an infiltration basin, can be easily computed based 

on the average infiltration rate during the drainage phase. Several issues regarding the generality of the 

conclusions, the compatibility, qualitative mechanistic explanation, and the significance of the 

conclusion warrant a brief additional discussion. 

Applicability: The applicability domain of the research results pertains only to surface spreading SATs 

operated in flooding-drying cycles, and it is restricted to shallow, <90 cm SATs operating in a few-day 

flooding-drying cycles. However, the research results shed light on the mechanisms involved in 

infiltration processes and may offer insights into related processes, such as surface spreading lagoons 

operating under long cycles with a constant effluent level or managed aquifer recharge for stormwater 

capture.     

Generality. Most SATs in the world are installed in sedimentary soils with fine sand over-layer, (Brito 

et al., 2009; Maliva, 2020; Page et al., 2018; Zheng et al., 2021). The showcase study examined nearly 

ten years of operation. It included 50 surface-spreading basins with vadose-zone lithology that varied 



considerably. The studied basins were constructed over a long period, 20 – 35 years before the 

beginning of the studied time frame. Finally, the infiltration rates also span a very large range, 1-10 

cm/h, and even the average infiltration range in the basins varied considerable (see Figures 6,7). Despite 

this variability, all the basins followed the same trends irrespective of the soil sand and clay content, 

season, dry or wet years, commissioning year, and operation conditions including tillage. This wide 

range of attributes and the robust head-independent observation attest to the generality of the observed 

trends and research conclusions. Moreover, the research suggests that agreed concepts regarding 

infiltration rate vs head in managed aquifer recharge, including freshwater storage and storm-water 

capture and recharge, should not be taken for granted in view of the head-independent, time-invariant 

infiltration rate observed in this research.   

Prospects for a predictive modelling of the infiltration rate: Two unexpected and related aspects that 

were found in this research offer promise for predictive modeling of the infiltration rate: i) the 

infiltration rate remains constant during the entire drainage phase, and ii) the existence of basin-specific 

correlation between the infiltration rate during drainage and the average infiltration rate throughout the 

cycle (equation 9). Specific predictive equations with high COD values for each basin are introduced 

in columns 11 and 12 of Table S2 in the SI. The average relative error in prediction of  𝐼𝑟𝑤̅̅ ̅̅  by  Ird
  is 

only 16%.  Moreover, it was observed that the average infiltration rate during the entire wetting phase 

closely matches the drainage infiltration rate, differing, on average, by only 3%  (i.e., 𝐼𝑟𝑤̅̅ ̅̅  =  Ird , 

corresponding to k=1 in equation 9). This difference is very small compared to the large variability of 

the observed infiltration rates within the same basin. Therefore, unlike previously proposed models for 

the infiltration rate (e.g., Furman et al., 2006; Horton. R. E, 1940; Kostiakov A.N., 1932; Sihag, 2018), 

a single parameter is sufficient to describe the infiltration rate, which simplifies prospective modeling. 

Compliance of the head – independent infiltration rate with hydraulic principles: The time-invariant, 

head-independent infiltration rate during drainage deviates from previous infiltration model predictions. 

The Horton model (Horton, 1940) and the modified Kostiakov model (Sihag et al., 2017) predict a 

constant infiltration rate after prolonged drainage at constant head. The GA model (Green and Ampt, 

1911) predicts that as H deceases in equation 2, L will increase due to water balance, and eventually, 

the infiltration rate will decrease and gradually approach the hydraulic conductivity, Ks. In contrast, the 

constant Ir in our study pertains to the entire drainage phase, including the highest water levels.  

Mathematical modelling of the head–independent infiltration rate is beyond the scope of this data-

driven analysis. However, it is easy to formulate a two - resistance model, by combining the GA model 

(Eq. 1) and the clogging film over-layer (equation 3). Adding the two hydraulic resistances in series, 

under a total pressure head, (H+L+Lf+h), with the same water flux, Ir, passing through the two 

resistances, and assuming that the thickness of the film, Lf is much smaller than the depth of the 

propagating water front, yields the relationship expressed in equation 4,     



𝐼𝑟 =
(𝐿 + 𝐻 + ℎ)

𝐿
𝐾𝑆

+ 
𝐿𝑓
𝐾𝑓

              (𝟒) 

The total driving head (L+H+h) in the numerator increases from the beginning of the cycle. The 

denominator also increases, but in a more complex manner than in the GA model. In the GA model 

(equation 1), the resistance increases as the water saturation front travels downward and L increases. 

The denominator grows even faster than the numerator, and eventually, as H decreases, the infiltration 

rate decreases and eventually approaches Ks. The denominator in the two-resistance model incorporates 

an additional non-linear contribution of the hydraulic resistance of the clogging film (Lf/Kf). The 

clogging film thickness increases with the cumulative infiltrated effluent passing through it due to 

biological growth and accumulation of suspended matter in and on the film.  

The hydraulic conductivity of the film, Kf is affected by conformational changes. Since the film is partly 

elastic, its hydraulic conductivity depends on the applied pressure. The compressing pressure constitutes 

only a fraction of the total pressure drop (H+L+h) over the saturated soil, and is practically always 

smaller than H. Thus, the resistivity of the film increases at the beginning of the cycle due to 

compression, deformation of the biofilm, and flattening of the biological material. However, it then 

reaches a maximum, and as H starts to decrease, the resistivity decreases accordingly. In this phase, i) 

the portion of the total pressure drop on the growing saturated zone (L) is increased, ii) the semi-elastic 

film expands, and iii) there is a plausible release of entrapped suspended solids from the film. All three 

factors together compensate for the decrease of the water level and contribute to achieving the observed 

constant infiltration rate. Thus, surprisingly, the elasticity-induced, auto-regulation that is commonly 

found in water flow restrictors, arterial blood flow, pulmonology, etc., regulates the infiltration rate in 

SAT soils as well.  

Examination of the time trends presented in this research (e.g., in figure 6 and 7) and the postulated 

mechanism responsible for the head-independent infiltration rate underscores the importance of the 

biological control of the infiltration rate. Only a responsive biological system (presumably, the clogging 

film) can allow constant infiltration rate during a cycle with such wide variability of intra-basin and 

inter-basin infiltration rates. This also underscores the importance of the qualitative understanding of 

the constraining action of the clogging biofilm throughout the SAT operation.  

Infiltration Dynamics: Our findings demonstrate diverse trends of 𝑰𝒓𝒘̅̅ ̅̅ ̅ vs Ird, indicating the 

simultaneous presence of two distinct mechanistic models within the same system: i) forecasts from the 

Green & Ampt (1911) and Horton (1940) models, suggesting a decline in infiltration rate over time; 

and ii) infiltration rates increase over time in water-repellent soils infiltrated with treated wastewater as 

predicted by Chen and colleagues (Arye et al., 2011; Nadav et al., 2012). Because of the frequent cycle 

time (i.e., a few days rather than weeks), we were able to identify these coexisting models before other 



mechanisms, such as suspended solids accumulation, emerged (Bancolé et al., 2004; Katznelson, 1989; 

Rice & Rice, 2013). In this context, we can explain the coexistence of these models by the semi-elastic 

film auto-regulation, which, in some cases, drives the system to behave more like the first model and in 

other cases like the second model. In our results, we observe the entire spectrum (Table 2 in the SI), 

ranging from basins where we documented only 1% of flooding events with 𝑰𝒓𝒘̅̅ ̅̅ ̅ higher than Ird over 

ten years (7301) to basins where 97% of flooding events exhibited 𝑰𝒓𝒘̅̅ ̅̅ ̅ higher than Ird over the same 

period (3204). Gleaning deeper insight into why different basins behave differently should involve 

incorporating many more parameters that influence the infiltration rate into a predictive model. The 

revelation that the infiltration rate is constant through the drainage phase and can be approximated by 

Ird throughout the entire flooding cycle marks an important step towards developing such a model.  

Conclusions   

This study carries significant methodological and fundamental implications. It underscores the critical 

role of data-driven analysis in comprehending complex surface-spreading water recharge systems. 

Through data-driven analysis, patterns can be discerned even within fluctuating, noisy systems, such as 

soil aquifer treatment with its distributed basins and high operational and weather variability. This 

enabled us to confidently identify the head-independent infiltration rate law. The observation that only 

one parameter, Ird, remains constant during the drainage phase challenges traditional infiltration models. 

The realization that only one parameter has to be predicted opens the door for machine learning to 

analyze the dependence of the infiltration rate on past and prevailing ambient and operational 

conditions. It is now just a matter of time before machine learning tools can be applied to accurately 

predict SAT performance. 

Future research should aim to meticulously dissect meteorological and operational conditions to identify 

the factors that promote the formation of a less resistive thin layer, thereby maximizing infiltration rates. 

This investigation holds the key to unlocking a deeper understanding of the dynamics governing 

infiltration rates across various flooding events and basins. 

he implications of this research may extend beyond artificial treated wastewater recharge methods to 

encompass Managed Aquifer Recharge (MAR) systems and Flood Management strategies. By directly 

measuring infiltration rates, we can enhance the management of recharge systems, ensuring their long-

term effectiveness and environmental compatibility. As a result, this research can have broader 

significance in addressing global water resource challenges. 

Acknowledgement  

The authors are grateful for the financial support of Mekorot, Water Company Ltd and The Hebrew 

University.   



 

Supporting Information 

Supporting information includes lithological information of the Shafdan SAT lagoons, and tables and 

figures providing more statistical data.     

   

References  

Arye, G., Tarchitzky, J., & Chen, Y. (2011). Treated wastewater effects on water repellency and soil 

hydraulic properties of soil aquifer treatment infiltration basins. Journal of Hydrology, 397(1–2), 

136–145. https://doi.org/10.1016/j.jhydrol.2010.11.046 

Bancolé, A., Brissaud, F., & Gnagne, T. (2004). Oxidation processes and clogging in intermittent 

unsaturated infiltration. Water Science and Technology, 48(11–12), 139–146. 

Banin, A., Lin, C., Eshel, G., Roehl, K. E., Negev, I., Greenwald, D., Shachar, Y., & Yablekovitch, Y. 

(2002). Geochemical processes in recharge basin soils used for municipal effluents reclamation 

by the soil-aquifer treatment (SAT) system. Management of Aquifer Recharge for Sustainability. 

Proc. 4th Int. Symp. of Artifical Recharge (ISAR4). AA Blakema, Rotterdam, The Netherlands, 

327–332. 

Barkay-Arbel, Y., Kohen, E., Megidish, E., Nadler, D., & Amran, S. (2022). “Mey Ezor Dan” 

Agricultural Cooperative Water Society Ltd. Dan Region Wastewater Project Soreq Mechanical 

Biological Wastewater Treatment Plant Operation - 2021. 

Barry, K., Vanderzalm, J., Miotlinski, K., & Dillon, P. (2017). Assessing the Impact of Recycled 

Water Quality and Clogging on Infiltration Rates at A Pioneering Soil Aquifer Treatment (SAT) 

Site in Alice Springs, Northern Territory (NT), Australia. Water, 9(3), 179. 

https://doi.org/10.3390/w9030179 

Bergeson, C. B., Martin, K. L., Doll, B., & Cutts, B. B. (2022). Soil infiltration rates are 

underestimated by models in an urban watershed in central North Carolina, USA. Journal of 

Environmental Management, 313, 115004. https://doi.org/10.1016/j.jenvman.2022.115004 

Beyer, H. (1981). Tukey, John W.: Exploratory Data Analysis. Addison‐Wesley Publishing Company 

Reading, Mass. — Menlo Park, Cal., London, Amsterdam, Don Mills, Ontario, Sydney 1977, 

XVI, 688 S. Biometrical Journal, 23(4), 413–414. https://doi.org/10.1002/bimj.4710230408 

Bouwer, H. (1963). Theoretical effect of unequal water levels on the infiltration rate determined with 

buffered cylinder infiltrometers. Journal of Hydrology, 1(1), 29–34. 

https://doi.org/10.1016/0022-1694(63)90030-1 



Bouwer, H. (1991). Role of groundwater recharge in treatment and storage of wastewater for reuse. 

Water Science and Technology, 24(9), 295–302. 

Bouwer, H. (2002). Artificial recharge of groundwater: Hydrogeology and engineering. Hydrogeology 

Journal, 10, 121–142. https://doi.org/10.1007/s10040-001-0182-4 

Bouwer, H., Lance, J. C., & Riggs, M. S. (2014). All use subject to JSTOR Terms and Conditions II : 

Water land treatment of the aspects quality and economic Flushing Meadows project. 46(5), 

844–859. 

Brito, Gracieli, L. M., Schuster, Hans, D., Srinivasan, & Vajapeyam, S. (2009). Estimation of Annual 

Ground Water Recharge in The Sedimentary Basin of The River Peixe, Paraíba, Brazil. In 

Advances in Water Resources and Hydraulic Engineering (pp. 269–274). Springer Berlin 

Heidelberg. https://doi.org/10.1007/978-3-540-89465-0_50 

Chen, S., Mao, X., & Wang, C. (2019). A Modified Green-Ampt Model and Parameter Determination 

for Water Infiltration in Fine-textured Soil with Coarse Interlayer. Water, 11(4), 787. 

https://doi.org/10.3390/w11040787 

Cui, G., & Zhu, J. (2018). Infiltration Model Based on Traveling Characteristics of Wetting Front. 

Soil Science Society of America Journal, 82(1), 45–55. 

https://doi.org/10.2136/sssaj2017.08.0303 

Dillon, P. (2005). Future management of aquifer recharge. Hydrogeology Journal, 13(1), 313–316. 

https://doi.org/10.1007/s10040-004-0413-6 

Dillon, P., Stuyfzand, P., Grischek, T., Lluria, M., Pyne, R. D. G., Jain, R. C., Bear, J., Schwarz, J., 

Wang, W., Fernandez, E., Stefan, C., Pettenati, M., van der Gun, J., Sprenger, C., Massmann, 

G., Scanlon, B. R., Xanke, J., Jokela, P., Zheng, Y., … Sapiano, M. (2019). Sixty years of global 

progress in managed aquifer recharge. Hydrogeology Journal, 27(1), 1–30. 

https://doi.org/10.1007/s10040-018-1841-z 

Elkayam, R. (2019). Shafdan Soil Aquifer Treatment System; Process Assessment & Improvement. the 

Hebrew university of Jerusalem. 

Elkayam, R., Aharoni, A., Vaizel-Ohayon, D., Sued, O., Katz, Y., Negev, I., Marano, R. B. M., 

Cytryn, E., Shtrasler, L., & Lev, O. (2018). Viral and Microbial Pathogens, Indicator 

Microorganisms, Microbial Source Tracking Indicators, and Antibiotic Resistance Genes in a 

Confined Managed Effluent Recharge System. Journal of Environmental Engineering (United 

States), 144(3). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001334 



Elkayam, R., Michail, M., Mienis, O., Kraitzer, T., Tal, N., & Lev, O. (2015). Soil Aquifer Treatment 

as Disinfection Unit. Journal of Environmental Engineering (United States), 141(12). 

https://doi.org/10.1061/(ASCE)EE.1943-7870.0000992 

Elkayam, R., Sopliniak, A., Gasser, G., Pankratov, I., & Lev, O. (2015). Oxidizer demand in the 

unsaturated zone of a surface-spreading soil aquifer treatment system. Vadose Zone Journal, 

14(11). https://doi.org/10.2136/vzj2015.03.0047 

Feng, G. L., Letey, J., & Wu, L. (2001). Water Ponding Depths Affect Temporal Infiltration Rates in 

a Water‐Repellent Sand. Soil Science Society of America Journal, 65(2), 315–320. 

https://doi.org/10.2136/sssaj2001.652315x 

Furman, A., Warrick, A. W., Zerihun, D., & Sanchez, C. A. (2006). Modified Kostiakov Infiltration 

Function: Accounting for Initial and Boundary Conditions. Journal of Irrigation and Drainage 

Engineering, 132(6), 587–596. https://doi.org/10.1061/(ASCE)0733-9437(2006)132:6(587) 

Girei, A., Nabayi, A., Aliyu, J., Garba, J., Hashim, S., Alasinri, S., & Abdullahi, M. (2019). 

Performance of Horton Infiltration model in Predicting the Infiltration Capacity of some Soils of 

the Sudan Savanna of Nigeria. Nigerian Journal of Soil Science, 10–16. 

https://doi.org/10.36265/njss.2019.290102 

Goren, O., Burg, A., Gavrieli, I., Negev, I., Guttman, J., Kraitzer, T., Kloppmann, W., & Lazar, B. 

(2014). Biogeochemical processes in infiltration basins and their impact on the recharging 

effluent, the soil aquifer treatment (SAT) system of the Shafdan plant, Israel. Applied 

Geochemistry, 48, 58–69. https://doi.org/10.1016/j.apgeochem.2014.06.017 

Grant, S. B., Saphores, J.-D., Feldman, D. L., Hamilton, A. J., Fletcher, T. D., Cook, P. L. M., 

Stewardson, M., Sanders, B. F., Levin, L. A., Ambrose, R. F., Deletic, A., Brown, R., Jiang, S. 

C., Rosso, D., Cooper, W. J., & Marusic, I. (2012). Taking the “Waste” Out of “Wastewater” for 

Human Water Security and Ecosystem Sustainability. Science, 337(6095), 681–686. 

https://doi.org/10.1126/science.1216852 

Green, W. H., & Ampt, G. (1911). Studies on Soil Phyics. The Journal of Agricultural Science, 4(1), 

1–24. 

Grinshpan, M., Furman, A., Dahlke, H. E., Raveh, E., & Weisbrod, N. (2021). From managed aquifer 

recharge to soil aquifer treatment on agricultural soils: Concepts and challenges. Agricultural 

Water Management, 255, 106991. https://doi.org/10.1016/j.agwat.2021.106991 

Haaken, K., Furman, A., Weisbrod, N., & Kemna, A. (2016). Time‐Lapse Electrical Imaging of 

Water Infiltration in the Context of Soil Aquifer Treatment. Vadose Zone Journal, 15(11), 1–12. 

https://doi.org/10.2136/vzj2016.04.0028 



Hochman, A., Kunin, P., Alpert, P., Harpaz, T., Saaroni, H., & Rostkier‐Edelstein, D. (2020). 

Weather regimes and analogues downscaling of seasonal precipitation for the 21st century: A 

case study over Israel. International Journal of Climatology, 40(4), 2062–2077. 

https://doi.org/10.1002/joc.6318 

Horton. R. E. (1940). The infiltration‐theory of surface‐runoff. Eos, Transactions American 

Geophysical Union, 21(2), 541–541. https://doi.org/10.1029/TR021i002p00541-1 

Hossain-Anni, A., Cohen, S., & Praskievicz, S. (2020). Sensitivity of urban flood simulations to 

stormwater infrastructure and soil infiltration. Journal of Hydrology, 588, 125028. 

https://doi.org/10.1016/j.jhydrol.2020.125028 

Katznelson, R. (1989). Clogging of groundwater recharge basins by cyanobacterial mats. FEMS 

Microbiology Letters, 62(4), 231–242. https://doi.org/10.1016/0378-1097(89)90247-4 

Kostiakov A.N. (1932). On the dynamics of the coefficient of  water percolation in soils and on the 

necessity for studying  it from a dynamic point of view for purposes of  amelioration. 6(17–21). 

Kümmerer, K., Dionysiou, D. D., Olsson, O., & Fatta-Kassinos, D. (2018). A path to clean water. 

Science, 361(6399), 222–224. https://doi.org/10.1126/science.aau2405 

Lake, H. R., Akbarzadeh, A., & Mehrjardi, R. T. (2009). Development of pedo transfer functions 

(PTFs) to predict soil physico-chemical and hydrological characteristics in southern coastal 

zones of the Caspian Sea. Journal of Ecology and the Natural Environment, 1(7), 160–172. 

Lee, B.-J., Lee, J.-H., Yoon, H., & Lee, E. (2015). Hydraulic Experiments for Determination of In-situ 

Hydraulic Conductivity of Submerged Sediments. Scientific Reports, 5(1), 7917. 

https://doi.org/10.1038/srep07917 

Li, Z., Chen, M., Gao, S., Wen, Y., Gourley, J. J., Yang, T., Kolar, R., & Hong, Y. (2022). Can re-

infiltration process be ignored for flood inundation mapping and prediction during extreme 

storms? A case study in Texas Gulf Coast region. Environmental Modelling & Software, 155, 

105450. https://doi.org/10.1016/j.envsoft.2022.105450 

Magesan, G. N., Dalgety, J., Lee, R., Luo, J., & van Oostrom, A. J. (1999). Preferential Flow and 

Water Quality in Two New Zealand Soils Previously Irrigated with Wastewater. Journal of 

Environmental Quality, 28(5), 1528–1532. 

https://doi.org/10.2134/jeq1999.00472425002800050018x 

Mahapatra, S., Jha, M. K., Biswal, S., & Senapati, D. (2020). Assessing Variability of Infiltration 

Characteristics and Reliability of Infiltration Models in a Tropical Sub-humid Region of India. 

Scientific Reports, 10(1), 1515. https://doi.org/10.1038/s41598-020-58333-8 



Maliva, R. G. (2020). Anthropogenic Aquifer Recharge and Water Quality (pp. 133–164). 

https://doi.org/10.1007/978-3-030-11084-0_6 

Mansell, J., & Drewes, J. E. (2004). Fate of Steroidal Hormones During Soil-aquifer Treatment. 

Gorund Water Monitoring e Remediation, 24(2), 94–101. https://doi.org/10.1111/j.1745-

6592.2004.tb00717.x 

Mienis, O. (2013). The influence of operative parameters on infiltration in infiltration field of 

secondary effluent (In Hebrew). The Hebrew University of Jerusalem. 

Mizrahi, G., Furman, A., & Weisbrod, N. (2016). Infiltration under Confined Air Conditions: Impact 

of Inclined Soil Surface. Vadose Zone Journal, 15(9), 1–8. 

https://doi.org/10.2136/vzj2016.04.0034 

Nadav, I., Tarchitzky, J., & Chen, Y. (2012). Soil cultivation for enhanced wastewater infiltration in 

soil aquifer treatment (SAT). Journal of Hydrology, 470–471, 75–81. 

https://doi.org/10.1016/j.jhydrol.2012.08.013 

Page, D., Bekele, E., Vanderzalm, J., & Sidhu, J. (2018). Managed Aquifer Recharge (MAR) in 

Sustainable Urban Water Management. Water, 10(3), 239. https://doi.org/10.3390/w10030239 

Philip, J. R. (1969). Theory of Infiltration (pp. 215–296). https://doi.org/10.1016/B978-1-4831-9936-

8.50010-6 

Raats, P. A. C., & Knight, J. H. (2018). The Contributions of Lewis Fry Richardson to Drainage 

Theory, Soil Physics, and the Soil-Plant-Atmosphere Continuum. Frontiers in Environmental 

Science, 6. https://doi.org/10.3389/fenvs.2018.00013 

Racz, A. J., Fisher, A. T., Schmidt, C. M., Lockwood, B. S., & Huertos, M. L. (2012). Spatial and 

Temporal Infiltration Dynamics During Managed Aquifer Recharge. Groundwater, 50(4), 562–

570. https://doi.org/10.1111/j.1745-6584.2011.00875.x 

Rice, R. C., & Bouwer, H. (2013). Soil aquifer treatment using primary effluent. Water Environment 

Federation. 

Rice, R. C., & Rice, C. (2013). Soil Clogging during Infiltration of Secondary Effluent. 46(4), 708–

716. 

Richards, L. A. (1931). Capillary Conduction of Liquids Through Porous Mediums. Physics, 1(5), 

318–333. https://doi.org/10.1063/1.1745010 

Schwabe, K., Nemati, M., Amin, R., Tran, Q., & Jassby, D. (2020). Unintended consequences of 

water conservation on the use of treated municipal wastewater. Nature Sustainability, 3(8), 628–

635. https://doi.org/10.1038/s41893-020-0529-2 



Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). 

Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591 

Shukla, M. K., Lal, R., & Unkefer, P. (2003). Experimental Evaluation of Infiltration Models for 

Various Land Use and Soil Management Systems. Soil Science, 168(3), 178–191. 

https://doi.org/10.1097/01.ss.0000058890.60072.7c 

Sihag, P. (2018). Prediction of unsaturated hydraulic conductivity using fuzzy logic and artificial 

neural network. Modeling Earth Systems and Environment, 4(1), 189--198. 

Sihag, P., Tiwari, N. K., & Ranjan, S. (2017). Estimation and inter-comparison of infiltration models. 

Water Science, 31(1), 34–43. https://doi.org/10.1016/j.wsj.2017.03.001 

Talsma, T., & Parlange, J. (1972). One dimensional vertical infiltration. Soil Research, 10(2), 143. 

https://doi.org/10.1071/SR9720143 

Tokunaga, T. K. (2020). Simplified Green‐Ampt Model, Imbibition‐Based Estimates of Permeability, 

and Implications for Leak‐off in Hydraulic Fracturing. Water Resources Research, 56(4). 

https://doi.org/10.1029/2019WR026919 

Vinutha, H. P., Poornima, B., & Sagar, B. M. (2018). Detection of Outliers Using Interquartile Range 

Technique from Intrusion Dataset (pp. 511–518). https://doi.org/10.1007/978-981-10-7563-6_53 

Warrick, A. W., Zerihun, D., Sanchez, C. A., & Furman, A. (2005). Infiltration under Variable 

Ponding Depths of Water. Journal of Irrigation and Drainage Engineering, 131(4), 358–363. 

https://doi.org/10.1061/(ASCE)0733-9437(2005)131:4(358) 

Ying, G.-G., Kookana, R. S., & Dillon, P. (2003). Sorption and degradation of selected five endocrine 

disrupting chemicals in aquifer material. Water Research, 37(15), 3785–3791. 

https://doi.org/10.1016/S0043-1354(03)00261-6 

Zheng, Y., Ross, A., Villholth, K. G., & Dillon, P. (2021). Managing aquifer recharge: a showcase 

for resilience and sustainability. UNESCO, IAH, and GRIPP. 

  

 

 

 

 



 

SUPPLEMENTARY INFORMATION 

Head-Independent Time-Invariant Infiltration Rate in Aquifer Recharge with Treated 

Municipal Wastewater    

 

Roy Elkayam∗,†,‡ and Ovadia Lev‡ 

†Mekorot Water Company, Lincoln Street, Tel-Aviv – Yafo, 6492105, Israel. 

The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel 

E-mail: relkayam@mekorot.co.il 

 

Content  

S1: Overview of the Israeli Coastal Aquifer and Shafdan SAT System: 

Figures  

Figure S1: Lithology of observation wells drilled in several lagoons in the Shafdan SAT.   

Figure S2: Examples of Outliers in Basin Operation Data. 

Figure S3: Flow rate fluctuations to the Shafdan SAT basins during typical flooding sessions. 

Figure S4: Typical distribution of the relative standard deviations. 

Figure S5:  Histograms of the distributions of the slope and coefficient of determination of the 

relationship 

Tables  

Table S1:  Statistical attributes of the linear dependence of Ird on H during the drainage phases 

in all 50 studied lagoons for the last decade 

Table S2:  Linear correlations between the average infiltration rate during the wetting phases 

Irw̅̅ ̅̅  and the head-independent infiltration rates during the drainage phase, Ird in all 50 studied 

basins for the last decade 

  

S1: Overview of the Israeli Coastal Aquifer and Shafdan SAT System: 

 



The Israeli coastal aquifer, which stretches along the Mediterranean Sea in the western part of the 

country, is composed of Pleistocene-age rocks from a coastal environment, mainly consisting of 

calcareous sandstone (the Kurkar group). This aquifer developed through a series of depositional cycles 

and is distinguished by the alternation of sandstone layers with lenses of marine and continental clay, 

silt, and shale. These represent the fluctuating sea level stages during the glacial and interglacial periods 

of the Pleistocene epoch. 1,2  The sandstone formation of the Kurkar Group continues to accumulate on 

the shallow continental shelf today 3. 

      The coastal aquifer overlies the late Eocene to early Pleistocene Saqiye Group, a thick, impermeable 

clayish unit sloping westward. As a result, the overlying aquifer attains its maximum thickness (180–

200 m) along the coastline and gradually thins out eastward, disappearing about 10–15 km inland. The 

vadose zone beneath the infiltration ponds is approximately 30–40 m thick. 

Three north–south trending, sub-parallel calcareous sandstone (kurkar) ridges, located roughly 0.5–0.7, 

1.3–2, and 3–3.5 km east of the coastline and separated by clayey elongated basins, dominate the 

aquifer's morphology. The recharge ponds are predominantly constructed on the Eastern Ridge. In 

certain areas, thicker marine clay layers divide the aquifer into sub-horizontal sections. This division is 

more pronounced toward the coast and affects the western parts of the aquifer. Despite its irregularity, 

four main sub-aquifers, situated on top of each other, can be identified from top to bottom as A–D. 

The Shafdan SAT system predominantly draws water from sub-aquifer B, which is typically 60–80 m 

thick and characterized mainly by sandstone and conglomerate with relatively high hydraulic 

conductivities. Typically, the conductivity is in the range of 4–10 m/s4.  

The recharge wells (RWs) are arranged in a double-ring structure around the percolation ponds. The 

inner ring pumps 100% treated effluent, while the outer ring pumps 70–85% of treated effluent along 

with a complementary amount of natural, regional aquifer water. The number, locations, capacities, 

screen positions, and other features of the wells were designed to establish a closed Subsurface-Aeration 

Trenches (SAT) system, which is isolated from the surrounding freshwater aquifer and does not impact 

its chemical quality. 

      The first infiltration basins (Soreq) were established west of Rishon Lezion in 1977.5 They were 

designed to treat 50 Mm3/year of effluent. The SAT system has expanded continuously to meet demand, 

with additional facilities constructed west of Yavne and north of Ashdod (Fig. 2 in the main article). 

Currently, the overall recharge of secondary effluent is approximately 130 Mm3/year, while reclaimed 

water totals around 145 Mm3/year and is pumped by about 150 recovery wells6. 

 



 

Figure S1: Lithology of observation wells drilled in several lagoons in the Shafdan SAT.   
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Figure S2: Examples of Outliers in Basin Operation Data. A) A 24-hour flooding period that does not 

sum up to a proper flooding event, possibly due to an insignificant change in basin water level or a 

fault in the level measuring instrument. B+C) Instances indicating a potential fault in the level 

measuring instrument. D+E) Insignificant flooding events or potential faults in the level measuring 

instrument. F) A valve status fault showing the basin as open when the data clearly indicates a 

flooding event, with identifiable flooding and drainage statuses. G+H+I) Cases where communication 

faults result in frozen values in the basin level measurements. 

 

 

 

 



 

Figure S3: Flow rate fluctuations to the Shafdan SAT basins during typical flooding sessions. The 

fluctuations are not necessarily intentional, they can be caused by opening and closing of inlet valves 

to other basins.   

 

Figure S4: Typical distribution of the relative standard deviations (normalized by the average flow 

rate during each cycle) of the flow rates (m3/m2) to the respective basins in all the proper cycles 

during the studied decade.   

  



 

 

 

Figure S5:  Histograms of the distributions of the slope and coefficient of determination of the 

relationship (𝑟�̅̅̅� = k Ird.  Upper frame, distribution of observed slope, k. Lower frame distribution of 

the coefficients of determination, R2.     

 



Table S1:  Statistical attributes of the linear dependence of Ird on H during the drainage phases in all 50 studied lagoons for the last decade. 

Basin 
 

N 
Coefficient Of Determination, R2   C2, Pre-logarithmic constant in equation 8 p-value for average C2 <0  

Max  Min  Avg  Std  Max  Min  Avg  Std    p-value, Avg p-value, Std 

3201 701 0.998 0.940 0.982 0.016 -0.004 -0.038 -0.015 0.005   3E-06 3E-05 

3202 955 0.998 0.940 0.989 0.011 -0.005 -0.050 -0.019 0.006   4E-06 4E-05 

3203 1131 0.998 0.941 0.993 0.005 -0.004 -0.042 -0.018 0.006   3E-07 7E-06 

3204 1090 0.998 0.941 0.985 0.009 -0.006 -0.035 -0.017 0.005   2E-06 2E-05 

4101 751 0.999 0.940 0.993 0.007 -0.001 -0.024 -0.007 0.003   2E-10 5E-09 

4102 830 0.998 0.940 0.989 0.010 -0.001 -0.030 -0.009 0.004   3E-06 3E-05 

4103 619 0.998 0.940 0.984 0.014 -0.002 -0.026 -0.010 0.004   1E-06 1E-05 

4104 653 0.999 0.942 0.992 0.010 -0.002 -0.011 -0.005 0.001   5E-08 1E-06 

4201 827 0.999 0.943 0.991 0.011 -0.0004 -0.021 -0.008 0.004   2E-11 5E-10 

4202 838 0.998 0.946 0.990 0.007 -0.002 -0.014 -0.006 0.002   4E-08 1E-06 

4203 691 0.999 0.953 0.992 0.005 -0.001 -0.025 -0.007 0.004   8E-08 1E-06 

4204 803 0.999 0.954 0.992 0.005 -0.002 -0.026 -0.008 0.004   6E-13 8E-12 

4301 918 0.998 0.942 0.991 0.008 -0.003 -0.030 -0.011 0.005   3E-09 9E-08 

4302 892 0.998 0.941 0.984 0.013 -0.002 -0.023 -0.012 0.004   3E-09 8E-08 

4303 501 0.999 0.943 0.989 0.007 -0.001 -0.013 -0.003 0.001   4E-09 1E-07 

4304 566 0.998 0.943 0.990 0.008 -0.001 -0.008 -0.003 0.001   1E-16 2E-15 

4401 882 0.999 0.941 0.992 0.008 -0.002 -0.030 -0.010 0.005   2E-08 6E-07 

4402 777 0.999 0.940 0.985 0.013 -0.001 -0.032 -0.011 0.004   8E-08 2E-06 

4403 807 0.999 0.942 0.995 0.006 -0.001 -0.023 -0.006 0.003   4E-07 9E-06 

4404 637 0.999 0.950 0.993 0.005 -0.001 -0.027 -0.004 0.002   1E-12 3E-11 

5101 1026 0.998 0.947 0.993 0.005 -0.003 -0.028 -0.012 0.004   5E-08 1E-06 

5102 903 0.999 0.945 0.994 0.005 -0.004 -0.030 -0.012 0.004   2E-07 4E-06 

5103 746 0.999 0.941 0.995 0.007 -0.003 -0.034 -0.011 0.005   5E-07 1E-05 

5201 955 0.998 0.940 0.989 0.010 -0.003 -0.043 -0.014 0.006   7E-07 1E-05 

5202 990 0.996 0.941 0.985 0.009 -0.006 -0.044 -0.020 0.007   1E-06 1E-05 

5203 781 0.998 0.940 0.990 0.010 -0.003 -0.034 -0.011 0.004   7E-07 1E-05 

5301 725 0.999 0.942 0.993 0.008 -0.001 -0.017 -0.006 0.002   4E-07 1E-05 



5302 686 0.999 0.941 0.993 0.010 -0.002 -0.037 -0.007 0.003   9E-08 2E-06 

5303 949 0.998 0.940 0.990 0.007 -0.006 -0.030 -0.016 0.004   6E-07 9E-06 

6101 696 0.998 0.941 0.988 0.013 -0.005 -0.033 -0.016 0.006   3E-06 2E-05 

6102 1035 0.999 0.943 0.995 0.005 -0.004 -0.036 -0.014 0.006   1E-07 3E-06 

6103 819 0.999 0.946 0.993 0.006 -0.003 -0.040 -0.012 0.005   4E-07 1E-05 

6201 760 0.999 0.941 0.993 0.007 -0.002 -0.038 -0.012 0.006   9E-07 2E-05 

6202 757 0.999 0.940 0.991 0.010 -0.003 -0.033 -0.013 0.006   2E-06 2E-05 

6203 608 0.998 0.942 0.988 0.011 -0.004 -0.060 -0.014 0.007   2E-06 2E-05 

6301 521 0.998 0.941 0.991 0.011 -0.003 -0.035 -0.013 0.006   3E-06 2E-05 

6302 715 0.999 0.941 0.994 0.007 -0.004 -0.032 -0.011 0.005   2E-07 3E-06 

6303 643 0.999 0.941 0.992 0.008 -0.003 -0.025 -0.010 0.005   2E-06 2E-05 

7101 810 0.999 0.941 0.994 0.008 -0.004 -0.034 -0.012 0.005   1E-06 2E-05 

7102 251 0.999 0.947 0.991 0.010 -0.001 -0.005 -0.002 0.001   1E-19 2E-18 

7103 519 0.999 0.940 0.989 0.011 -0.001 -0.013 -0.003 0.001   5E-07 1E-05 

7201 449 0.999 0.944 0.995 0.006 -0.001 -0.007 -0.003 0.001   2E-26 4E-25 

7202 518 0.997 0.941 0.987 0.011 -0.001 -0.006 -0.002 0.001   2E-15 5E-14 

7203 367 0.998 0.943 0.988 0.010 -0.001 -0.009 -0.003 0.001   1E-14 3E-13 

7301 604 0.999 0.946 0.993 0.006 -0.001 -0.010 -0.005 0.002   5E-13 1E-11 

7302 648 0.998 0.941 0.981 0.015 -0.003 -0.034 -0.012 0.006   2E-06 2E-05 

7303 642 0.999 0.941 0.991 0.011 -0.001 -0.032 -0.005 0.003   6E-07 1E-05 

7401 729 0.999 0.944 0.993 0.009 -0.001 -0.014 -0.005 0.002   2E-09 5E-08 

7402 854 0.999 0.941 0.990 0.012 -0.004 -0.037 -0.014 0.006   3E-06 3E-05 

7403 801 0.998 0.941 0.984 0.013 -0.004 -0.039 -0.012 0.005   3E-07 4E-06 

 

The columns depict the maximal, minimal, average COD, R2 and its standards deviation, obtained in the logarithmic fit of log (Ird) vs. log (H) (Equation 8) 

for each of 50 examined basins. The statistical characteristics of C2 are also depicted with the maximal, minimal, average and standard deviation of the slope 

of the logarithmic dependencies in each basin. p-value avg. represents p-values of rejecting the null hypothesis of average C2 ≥0 for each basin. p-value, Std 

values represent the standard deviations of p-value in all the studied cycles of each basin.   

.



Table S2:  Linear correlations between the average infiltration rate during the wetting phases (𝑰𝒓𝒘̅̅ ̅̅ ̅) and the head-independent infiltration rates 

during the drainage phase, Ird in all 50 studied basins for the last decade. 

 
Field 

 
Basin  Outliers 

Linear correlation  
(Irw = slope.Ird + Y-intercept) 

Constrained fit  
(Irw = slope.Ird) 

 
 

Shapiro-Wilk  
Normality test 

N 
Events 

Event Removal % slope Y-intercept std error srMSE R2 slope srMSE R2  Statistic  p-value 

Soreq  

3201 1068 63 6% 0.590 1.047 0.014 0.138 0.639 0.843 0.160 0.513 0.725 1.11E-38 

3202 1176 18 2% 0.838 0.689 0.012 0.115 0.811 0.961 0.121 0.793 0.306 0.00E+00 

3203 1270 7 1% 0.979 0.192 0.008 0.087 0.925 1.011 0.088 0.923 0.807 2.11E-36 

3204 1263 12 1% 0.999 0.727 0.012 0.093 0.851 1.185 0.103 0.819 0.809 3.31E-36 

Yavne 1 

4101 891 60 7% 1.052 0.025 0.013 0.136 0.892 1.061 0.136 0.891 0.717 2.88E-36 

4102 1051 92 9% 1.172 0.017 0.017 0.183 0.826 1.178 0.183 0.826 0.841 3.99E-31 

4103 890 101 11% 0.693 0.559 0.015 0.168 0.733 0.853 0.182 0.689 0.927 2.53E-20 

4104 781 30 4% 0.956 0.242 0.023 0.178 0.692 1.104 0.183 0.674 0.906 1.49E-21 

4201 957 71 7% 1.099 -0.112 0.010 0.110 0.933 1.061 0.111 0.932 0.660 6.18E-40 

4202 963 136 14% 1.231 -0.376 0.020 0.178 0.818 1.083 0.184 0.805 0.759 2.74E-35 

4203 784 39 5% 1.008 0.016 0.012 0.140 0.900 1.013 0.140 0.900 0.542 6.28E-41 

4204 900 24 3% 1.308 -0.284 0.014 0.135 0.909 1.217 0.139 0.904 0.065 0.00E+00 

4301 1221 176 14% 0.990 0.107 0.016 0.188 0.795 1.014 0.188 0.794 0.355 0.00E+00 

4302 1181 120 10% 1.091 -0.011 0.014 0.159 0.853 1.088 0.159 0.853 0.189 0.00E+00 

4303 566 51 9% 1.012 -0.060 0.023 0.199 0.786 0.969 0.199 0.785 0.056 0.00E+00 

4304 648 103 16% 0.817 0.081 0.028 0.201 0.603 0.893 0.202 0.597 0.970 3.08E-10 

4401 1034 85 8% 0.990 -0.039 0.014 0.218 0.845 0.980 0.218 0.845 0.064 0.00E+00 

4402 1029 114 11% 0.812 0.350 0.021 0.249 0.618 0.904 0.252 0.609 0.600 1.77E-43 

4403 913 202 22% 0.775 0.088 0.022 0.260 0.633 0.808 0.260 0.632 0.126 0.00E+00 

4404 747 98 13% 0.900 0.018 0.022 0.271 0.718 0.912 0.271 0.718 0.639 6.92E-37 

Yavne 2 

5101 1169 52 4% 1.081 -0.275 0.010 0.107 0.918 0.989 0.112 0.910 0.793 4.27E-36 

5102 1015 32 3% 1.087 -0.072 0.010 0.097 0.925 1.067 0.097 0.924 0.355 0.00E+00 

5103 856 23 3% 1.078 -0.224 0.012 0.136 0.901 1.015 0.139 0.897 0.866 2.24E-26 



5201 1209 85 7% 1.001 -0.024 0.011 0.166 0.877 0.996 0.166 0.876 0.272 0.00E+00 

5202 1195 214 18% 0.934 -0.084 0.013 0.157 0.850 0.918 0.157 0.850 0.914 1.79E-25 

5203 976 48 5% 0.963 0.225 0.013 0.169 0.855 1.024 0.172 0.851 0.773 1.10E-34 

5301 824 104 13% 1.080 -0.112 0.015 0.131 0.878 1.028 0.132 0.876 0.104 0.00E+00 

5302 887 120 14% 0.972 0.077 0.017 0.157 0.814 1.006 0.157 0.813 0.731 1.72E-35 

5303 1108 172 16% 1.025 -0.170 0.021 0.145 0.716 0.982 0.146 0.715 0.682 2.41E-41 

Yavne 3 

6101 883 60 7% 0.851 0.519 0.021 0.145 0.670 0.973 0.148 0.656 0.171 0.00E+00 
6102 1175 26 2% 0.920 0.007 0.010 0.134 0.883 0.921 0.134 0.883 0.769 1.06E-37 
6103 934 29 3% 1.016 0.022 0.011 0.129 0.898 1.022 0.129 0.898 0.836 6.41E-30 
6201 943 56 6% 0.910 0.113 0.010 0.147 0.907 0.938 0.148 0.906 0.601 5.39E-42 
6202 877 29 3% 0.885 0.118 0.011 0.122 0.877 0.916 0.123 0.876 0.693 3.89E-37 
6203 751 35 5% 0.867 0.252 0.018 0.159 0.761 0.936 0.161 0.756 0.202 0.00E+00 
6301 635 24 4% 0.982 0.083 0.018 0.134 0.838 1.003 0.134 0.837 0.379 7.55E-42 
6302 820 24 3% 1.000 -0.042 0.011 0.121 0.907 0.988 0.121 0.906 0.197 0.00E+00 
6303 741 23 3% 1.179 -0.082 0.016 0.117 0.880 1.150 0.117 0.879 0.651 2.67E-36 

Yavne 4 

7101 958 114 12% 0.807 -0.179 0.012 0.155 0.841 0.753 0.157 0.837 0.631 4.02E-41 

7102 293 37 13% 0.902 -0.016 0.025 0.175 0.835 0.877 0.175 0.834 0.861 1.43E-15 

7103 611 104 17% 0.796 0.012 0.022 0.179 0.730 0.814 0.179 0.730 0.948 8.95E-14 

7201 519 40 8% 0.942 -0.013 0.016 0.169 0.879 0.930 0.169 0.879 0.842 2.34E-22 

7202 641 113 18% 0.840 -0.019 0.017 0.150 0.815 0.807 0.151 0.813 0.919 5.43E-18 

7203 425 115 27% 0.757 0.003 0.017 0.157 0.867 0.761 0.157 0.867 0.879 9.54E-18 

7301 690 60 9% 0.873 -0.080 0.011 0.126 0.910 0.801 0.131 0.903 0.475 8.49E-41 

7302 996 236 24% 0.676 0.178 0.013 0.150 0.789 0.733 0.152 0.783 0.889 3.72E-26 

7303 832 82 10% 0.983 0.043 0.018 0.257 0.797 1.009 0.258 0.796 0.903 1.63E-22 

7401 869 60 7% 1.005 -0.149 0.018 0.144 0.787 0.896 0.147 0.778 0.374 0.00E+00 

7402 1039 56 5% 0.789 0.100 0.010 0.114 0.866 0.818 0.115 0.865 0.411 0.00E+00 

7403 1006 56 6% 1.033 0.292 0.019 0.158 0.753 1.127 0.161 0.746 0.368 0.00E+00 

The columns depict (left to right) the field and basin name/number, the original number of samples (N Event), the number of outliers removed, correlation 

results for the unconstrained regression (slope, constant, standard error, srMSE, and R2), correlation results for the constrained regression (slope, srMSE, 

and R2). The Shapiro –Wilk normality test statistic and p-value (for rejecting the null hypothesis that the sample is taken from a normally distributed 

population) are given in the last columns. 

srMSE = the average relative error by taking the square root of the mean square error, MSE divided by the mean infiltration rat 
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