
1 

 

Józef Kuśba1 
Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 80-952 Gdańsk, Poland 

(Dated: 12 March 2024) 

 

Abstract 
Previously obtained expressions describing the intensity of stationary fluorescence emitted by a multicomponent solution were 

significantly improved by using matrix calculus. Then, using a similar technique, new expressions describing the decay of the 

fluorescence intensity of the multicomponent system after pulsed excitation were found. In both of these cases, the effects of the 

internal filter, the effects of multistep radiative transfer of excitation energy, the possibility of radiative back-transfer, as well as 

the possibility of changes in the quantum yield of individual components due to radiationless transfer of excitation energy were 

taken into account. The cases of one-, two- and three-component systems were discussed in detail. 

Abbreviations 

MCS multicomponent solution  PDF probability density function 

MEE molecular electronic excitation  RET radiative energy transfer 

NET nonradiative excitation transfer  SPDF subnormalized probability density function 

Symbols and notation 
Latin letters 

ic  concentration of molecules of the ith component. Eqs. (23), (24) 

ex em( , )C    factor to account for the effect of light absorption in the sample. Eqs. (22) 

( )

ex( , )E t   SPDF vector of effective fluorescence of the order ( )  Eqs. (45), (51), (55) 

em( )F   vector of emission spectrum values. Eq. (14)  

 g optical geometry factor. Eq. (21) 

nI  identity matrix of dimension n n . Eq. (37) 

δ ex em( , , )I t   fluorescence intensity produced by δ-pulse excitation. Eqs. (48), (56) 

exI  photon flux density of the continuous excitation beam. Eqs. (21), (39)  

ss ex em( , )I    fluorescence intensity produced by continuous excitation. Eq. (21) 

exJ  photon density of the excitation pulse. Eq. (48) 

( )ik   absorption coefficient of the ith component. Eq. (10) 

ex em( , , )K t   time-dependent one-step radiative transfer matrix. Eq. (65) 

l  thickness of the cuvette. Eqs. (23), (24) 

ex em( , , )M     function needed to calculate the matrix ex em( , )   . Eqs. (31), (35) 

n  number of components in the considered fluorescent solution. Sect. 2 

rn  refractive index of the medium. Eq. (22) 

abs

iN  number of photons absorbed by the ith component. Eq. (1) 

em

iN  number of photons emitted by the ith component. Eq. (1) 

em

ijN  number of photons emitted by the jth component due to excitation of the ith component. Eq. (17) 

ex

iN  number of excited molecules of the ith component produced by the excitation beam. Eq. (3) 

exR  cross-sectional radius of the excitation beam. Sect. 3 

s  Laplace variable. Eq. (60) 
t  time. Eq. (42) 

 
1 Retired. Electronic mail: jozkusba@pg.edu.pl 

Multistep reversible excitation transfer in a 
multicomponent rigid solution: I. Calculation of 
steady-state and time-resolved fluorescence 
intensities 

mailto:jozkusba@gmail.com


2 

 

ex( )X   vector of relative absorption coefficients. Eqs. (8), (10) 

ex( )X   vector of relative excitabilities. Eq. (11) 

Greek letters 
  Napierian absorbance at ex  wavelength. Eq. (22) 

  Napierian absorbance at em  wavelength. Eq. (22) 

( )i   molar absorption coefficient of the ith component. Eqs. (23), (24), (36) 

( )

ex( )   vector of effective quantum yields of fluorescence of the order ( ) . Eqs. (19), (26), (38) 

ex em( , )    one-step radiative transfer matrix. Eq. (26) 

D  diagonal part of the   matrix. Eq. (87) 

U  upper triangular part of the   matrix. Eq. (85) 

  wavelength of light. Sect. 2 

ex  excitation wavelength. Sect. 2 

em  fluorescence observation wavelength. Eq. (14) 

  reflective loss coefficient. Eq. (22) 

  matrix of photon emission probabilities. Eq. (16) 

0  matrix of absolute quantum yields. Eq. (18) 

app ( )i   apparent absolute quantum yield of the ith component. Eq. (2) 

ex( )   matrix of probabilities of active photon absorption. Eq. (12) 

( )t  SPDF matrix of photon emission. Eq. (42) 

ex em( , )    multistep radiative transfer matrix. Eq. (39) 

ex em( , , )Ω t   time-dependent multistep radiative transfer matrix. Eq. (61) 

 

 

 

1. Introduction 

A multicomponent solution (MCS) typically refers to a 

mixture or solution that contains more than one distinct 

component or substance. A fluorescent MCS, which we will 

also call a fluorescent system, is a solution that contains a 

solvent and two or more fluorescent solutes (fluorophores or 

fluorescent molecules) dissolved in it. Depending on the type of 

solvent and the current physical conditions, the fluorescent 

molecules have more or less mobility. We classify a given MCS 

as rigid if the diffusive displacements of the fluorescent 

molecules during their fluorescence lifetime are so small that 

they do not affect the observed fluorescence properties of the 

system. Fluorescent MCSs arouse our interest because we either 

encounter them as already existing in nature, or they appear in 

certain chemical processes, or they are intentionally created 

because of their specific properties. 

If a multicomponent mixture already exists, we are often 

interested in its chemical analysis by determining both the types 

of individual components and their percentages in the mixture. 

If the components of the mixture are fluorescent, then important 

information about its composition can be obtained by studying 

the fluorescence light of the mixture. Many papers have been 

devoted to this issue [1-6]. One of the main goals of these 

considerations is to extract pure emission spectra and 

concentrations of individual components from the recorded 

data. A comprehensive review of the experimental and 

computational methods used here is given in [7,8].  

Another important reason for analyzing the fluorescence 

intensity of multicomponent solutions is to study the 

phenomena of nonradiative transfer of excitation energy 

between fluorescent molecules. The investigation procedure 

here usually involves comparing the fluorescence intensity of a 

multicomponent solution predicted theoretically with the 

corresponding intensity observed experimentally. In the case of 

binary systems, the fluorescence intensity of the excitation 

energy donor and/or acceptor is studied [9-12]. The occurrence 

of reversible radiationless excitation energy transfer has also 

been studied in such systems [13,14]. Binary and ternary 

solutions of organic dyes are often used as lasing media [15-

22]. Compared to single-component solutions, this has in many 

cases achieved a significant improvement in performance and 

extension of the spectral range of dye lasers. 

The description of the fluorescence intensity emitted by a 

system of interacting sets of fluorescent molecules is a difficult 

and complicated undertaking. This is because the fluorescence 

of each component individually depends on many parameters, 

and taking into account the interaction of these components 

further multiplies their number. The primary effect of the 

interaction of the components is the radiative and nonradiative 

transfer of excitation energy between them. As a rule, the 

fluorescence properties of a multicomponent solution are not 

expressed by linear combinations of the properties of the 

individual components, but rather their complex functions. In 

light of the classification given in [8], the MCSs considered in 

this work should be classified as complex multifluorometric 

systems. 
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Early works on the theoretical description of the 

fluorescence intensity of solutions refer mainly to single-

component solutions and observations made at steady state, 

which is produced by excitation with light of constant intensity. 

More advanced studies of this issue also deal with the 

description of the intensity of fluorescence emitted after 

excitation with a short pulse of light, the so-called time-resolved 

fluorescence. In theoretical considerations, it is important here 

to take into account the effects of the inner filter. The basic 

works in this area belong to Lommel [23,24], Duseberg [25], 

Jablonski [26], Weber [27]. Inner filter correction is also the 

subject of works [28-31]. A basic expression that takes into 

account the inner filter effect relating to finding quantum 

efficiency can be found in Förster's monograph [32]. An 

analogous expression aimed at finding emission spectra was 

given by Bączyński and Czajkowski [33] for frontal 

observation and any possible angles of incidence and 

observation. A good description of the factors affecting the 

intensity of steady-state and time-resolved fluorescence can be 

found in [34]. Among the results of the inner filter effect, the 

formation of secondary fluorescence and higher order emission 

are important. Simple calculations of the effect of secondary 

effects on the mean lifetime and fluorescence anisotropy are in 

the work of Galanin [35], while a deeper analysis of the RET 

phenomenon was the subject of works [36-44]. A 

comprehensive review of the work on the effect of RET on the 

fluorescence of single-component systems is also given in [45]. 

The first attempts to describe the spectral distribution of 

the fluorescence intensity of solutions containing more than one 

fluorescing component were made in the early 1930s. We refer 

to the expression describing the fluorescence of binary 

solutions given by K. Weber [27]. Later, expressions aimed at 

describing the fluorescence spectra of such solutions involving 

energy transfer between components were obtained in works  

[46-48]. Particularly noteworthy here is the work of 

Ketskeméty [49], which addressed the RET issue in detail. The 

expressions obtained in this work were extended to the case of 

ternary solutions [50], and these in the next step [51] were 

combined with the results of the work of Bojarski and Domsta 

[52] on the effect of nonradiative excitation transfer (NET). In 

another approach to describe the fluorescence properties of the 

ternary solution [53], the results of the work of [51] were used 

in the NET part, and the method described in [54] was used in 

the RET part. The fluorescence properties of the ternary 

solution were also the subject of the work [6], where methods 

for decomposing the fluorescence spectrum of such a solution 

in the presence of a quencher were analyzed. 

A natural extension of the description of the fluorescence 

properties of binary and ternary solutions is the description of 

the fluorescence properties of solutions with any number of 

components. A simple expression for the fluorescence intensity 

emitted by a mixture of mutually non-interacting n components 

is given in Förster's monograph [32], while a description of 

steady-state fluorescence intensity in a multicomponent system 

taking into account the transfer of excitation energy between the 

components is given in [55]. Many aspects of research related 

to fluorescence analysis of multicomponent systems are 

addressed in the works of Warner and co-workers. These works 

include methods for rapid scanning of spectra [56], methods for 

analysis of multicomponent fluorescence data [1,57], and 

strategies for data interpretation analysis [3]. A generalized 

model predicting the fluorescence spectra of a multicomponent 

system was also proposed in [58]. A review of work related to 

fluorescence analysis of complex multifluorophore mixtures is 

given in [7] and [8]. 

2. Relevant parameters of individual 
components 

The subject of our consideration is the fluorescence 

properties of a solution of n different fluorescent components 

(fluorophores) dissolved in an optically inactive solvent. We 

assume that the fluorophores do not react with each other, and 

that each fluorophore individually exhibits a single-exponential 

fluorescence decay. In our calculations, we will neglect the 

presence of polarization effects. That is, the results obtained 

will be applicable in the presence of strong rotational 

depolarization and/or under "magic angle" excitation-

observation conditions. For theoretical considerations, the 

components are numbered from 1 to n. Excitation energy can 

be exchanged between components through processes such as 

NET and/or RET. We assume that both of these energy transfer 

processes in any pair of solution components can be reversible. 

That is, in our considerations for any pair of components i and 

j (where j i  or j i= ), we take into account both the forward 

transfer of molecular electronic excitation (MEE) from 

component i to component j and the backward transfer from 

component j to component i. In addition, we also take into 

account the fact that the transfer of MEE between components 

i and j can be either single-step or multi-step, often taking place 

with the participation of the other components of the solution. 

In the latter case, we consider all possible transfer pathways 

formed by various combinations of fluorophores mediating the 

transfer of MEE from component i to component j. The 

concentrations of the individual components are ic , their 

absolute quantum yields are 0i , their fluorescence lifetimes are 

0i , and their molar absorption coefficients for light with a   

wavelength are ( )i  . 

The fluorescent system described above can be excited 

either with a beam of light of constant intensity or with short 

pulses of light (δ-pulses), whose duration is much shorter than 

the fluorescence duration of each MCS component. In either 

case, we assume that the excitation light is monochromatic and 

its wavelength is ex . We understand the absolute quantum 

yields 0i  of individual components as ratios of the number of 

em

iN  quanta emitted by the ith component to the number of 

abs

iN  molecules absorbed by that component [59].  

 

em

0 abs

i

i

i

N

N
 =  (1) 

The underlining in the symbols em

iN  and abs

iN  means that these 

quantities refer to the situation when there are no interactions 

between the molecules of the ith component and with the 

molecules of other components of the solution. According to 

Vavilov's law, the quantum yield 0i  remains independent of 
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the wavelength of the excitation light. However, in practice, it 

is often found that the quantum yield values measured 

according to expression (1) depend on ex  [51,60-62]. Under 

such conditions, the efficiency calculated using expression (1) 

does not meet the conditions for absolute quantum efficiency. 

For our purposes, we will call it apparent absolute quantum 

yield and denote it by app ( )i   

 

em

app

abs

( )
( )

( )

i

i

i

N

N


 


=  (2) 

It can be assumed that the dependence of app ( )i   on the 

wavelength of the excitation light is a result of the fact that at 

certain wavelength ranges the number of excited molecules 

formed, ex

iN , is smaller than the number of absorbed quanta of 

excitation light, abs

iN . This leads to a modified definition of 0i  

 

em

0 ex

i

i

i

N

N
 =  (3) 

After inserting (3) into (2), we obtain 

 

ex

app

0 0abs

( )
( ) ( )

( )

i

i i i i

i

N

N


     


= =  (4) 

Where the magnitude of ( )i   given by the expression 

 

ex

abs

( )
( )

( )

i

i

i

N

N


 


=  (5) 

represents the probability that absorption of a quantum of light 

from the excitation beam through a molecule of component i 

will result in the formation of an excited molecule of that 

component. We will assume that the values of app ( )i   over a 

sufficiently wide range of wavelengths are known, and that the 

maximum value of app ( )i   corresponds to ( ) 1i  = . Hence, 

based on (4), we can write 

 ( )app

0 max ( )i i  =  (6) 

On the other hand, after inserting (6) into (4), we get 

 
( )

app

app

( )
( )

max ( )

i

i

i

 
 

 
=  (7) 

The extraction of two quantities from the apparent absolute 

quantum yield app ( )i  : the pure absolute quantum yield 0i  

and the excitation yield ( )i   is important, because only 

excited molecules can emit photons, or participate in the NET 

process. 

To describe the fluorescence intensity of MCS, we will 

use a notation in which the properties pertaining to the 

individual components are expressed by row vectors of 

dimension 1 n , or by diagonal matrices of dimension n n , 

while the properties pertaining to the transfer of MEE between 

these components are expressed by elements of full square 

matrices of dimension n n . When modeling the process of 

converting the energy of photons of excitation light into the 

excitation energy of molecules of individual components, it 

should be noted that, in general, this process must be treated as 

a complex process, for which it is allowed that not every photon 

absorbed by a given MCS component results in the formation 

of an excited molecule of that component. Thus, the probability 

that a photon absorbed by an MCS was in fact absorbed by the 

ith component of the MCS can be understood as a component 

of some n-dimensional vector ex( )X   of the form 

  ex ex 1
( ) ( )i n

X X 


=  (8) 

The values of the individual components ex( )iX   of this vector 

can be expressed by the absorption coefficients ex( )ik   of the 

individual components 

 ex ex( ) ln(10) ( )i i ik c  =  (9) 

according to equation 

 ex

ex

ex

1

( )
( )

( )

i

i n

i

i

k
X

k





=

=


 (10) 

The probabilities of the appearance of excited states on the 

molecules of individual MCS components after the act of 

absorption of a photon from the excitation beam will be 

determined by the vector 

 
ex ex 1

( ) ( )i n
X X 


 =    (11) 

such that the value of the ith component of this vector is equal 

to the probability that the absorption of a photon by MCS from 

light of wavelength ex  will result in the formation of an 

excited state on a molecule belonging to the ith component of 

MCS. Therefore, this vector can be called the vector of relative 

excitabilities of individual components. The vector ex( )X   is 

related to the vector ex( )X   by equation 

 ex ex ex( ) ( ) ( )X X   =  (12) 

where the matrix ex( )   is diagonal  

 ( )ex 1 ex 2 ex ex( ) diag ( ) , ( ) , , ( )n       =  (13) 

and the values of ex( )i   are defined by expressions (5) and 

(7). 

Experimental studies typically measure the fluorescence 

intensity at a selected em  wavelength. This intensity depends 

on the values of the emission spectra of all components defined 

for em , that is, on the n-dimensional vector em( )F   defined as 

  em em 1
( ) ( )i n

F F 


=  (14) 

We assume here that the individual emission spectra ( )iF   are 

normalized to unity 

 
0

( ) 1iF d 


=  (15) 

In this sense, the emission spectrum ( )iF   can be understood 

as a probability density function (PDF) having the meaning that 

the product ( )iF d   represents the probability that the photon 

emitted by ith MCS component has a wavelength in the interval 

( , )d  + . 
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3. MCS fluorescence intensity generated by 
continuous excitation 

In this section we find an expression describing the 

intensity, ex em( , )ssI   , of the fluorescence reaching the 

detector and emitted by the MCS under excitation with light of 

constant intensity. To begin with, let us note a very important 

quantity in this context, which is the n-by-n   matrix of the 

form 

 
ij n n

 


     (16) 

In this matrix, the element 
ij  denotes the probability that MEE 

produced on the ith component molecule will be emitted as a 

light quantum by the jth component molecule. We assume here, 

the concentrations of the components can be arbitrary, and that 

probability ij  is influenced by the processes of spontaneous 

emission, internal conversion, and NET. For example, if the 

number of component i molecules excited directly by the 

excitation beam is equal to ex

iN , and then the number 

em ex

ij iN N  of these excitations is emitted by component j 

molecules in the form of photons, then 

 

em

ij

ij ex

i

N

N
 =  (17) 

When the concentrations of individual MCS components 

become very small, the   matrix becomes the same as the 0  

diagonal matrix containing the absolute quantum yields of these 

components 

 ( )0 01 02 0
0

1, ,

lim diag , , ,
i

n
c

i n

    
→

=

= =  (18) 

In this work, we will consider that the current values of the ij  

elements of the   matrix are known. Expressions to calculate 

the values of ij  for assumed values of parameters 

characterizing a system with any number of components can be 

found in few works [63,64]. The most common are such 

expressions for binary systems [12,65-69]. The application of 

the Markov chain technique to find the values of ij  elements 

for MCSs containing an arbitrary number of components is the 

subject of our work [70]. 

When constructing an expression describing the intensity 

of fluorescence emitted by MCS, it is necessary to take into 

account the possibility of radiative energy transfer (RET) in the 

described system. The mechanism of RET is that a certain 

portion of the primary fluorescence light does not go outside the 

sample, but is absorbed inside it. This is the well-known 

phenomenon of reabsorption. The reabsorbed primary 

fluorescence generates new excited states, and these are the 

source of additional emission called secondary fluorescence. 

This process can be repeated many times, so that in general the 

observed fluorescence of ex em( , )ssI    is the sum of primary 

fluorescence of 
(I)

ss ex em( , )I   , secondary fluorescence of 

(II)

ss ex em( , )I   , tertiary fluorescence of (III)

ss ex em( , )I   , 

quaternary fluorescence of 
(IV)

ss ex em( , )I   , etc. In the case of 

small concentrations of components of a given MCS, combined 

with the small geometric size of the test sample, it can be 

assumed that the contribution of the intensity of secondary 

emission and higher order emission to the total fluorescence 

intensity is negligibly small. However, the only way to confirm 

the validity of this assumption is to compare the theoretically 

estimated magnitudes of these intensities.  

Our calculations of the magnitudes of the fluorescence 

intensities of the various orders emitted by MCS will begin with 

a description of the magnitude of the primary fluorescence 

intensity. Of importance here is the vector of the effective 

primary fluorescence quantum yield of the form 

 (I) (I)

ex ex 1
( ) ( )i n

   


 =    (19) 

The value of the (I)

ex( )i   component of this vector is equal to 

the probability that the absorption of a photon by the entire 

system from an excitation beam of wavelength ex  will result 

in the emission of a photon of primary fluorescence by any of 

the molecules of the component i. As in [51] and [55], we will 

refer to the quantity (I)

ex( )i   as the effective fluorescence 

quantum yield of the ith component. Note that in earlier work 

this quantity was called the “apparent quantum yield of the ith 

component” [60], or “partial quantum yield of the ith 

component” [71]. From the above definitions of (I)

ex( )  , 

ex( )X  , and  , it follows that 

 (I)

ex ex ex

1 1

( ) ( ) ( )
n

j ji

j n

X X     
= 

 
= = 
 
  (20) 

Taking into account previous approaches to the problem 

[32,49,55] we can write an expression describing the intensity 

of primary fluorescence (I)

ss ex em( , )I    reaching from MCS to 

the detector under continuous excitation 

  (I) (I)

ss ex em ex ex em ex em( , ) ( , ) ( ) ( )
T

I g I C F      =  (21) 

In this expression, g  is a constant, exI  is the photon flux density 

(photons/m2/s) in the excitation beam, and ex em( , )C    is a 

factor that takes into account the absorptive properties of the 

sample and the geometry of the measurement system recording 

ss ex em( , )I   . From Eq. (21) we see that ssI  is the fluorescence 

photon flux density per unit wavelength interval 

(photons/s/m3). The expressions for ex em( , )C    corresponding 

to the most commonly used excitation-observation 

configuration, that is, for front face observation, rear face 

observation, and right angle observation, can be found in [32] 

and [39]. In our discussion, we will focus mainly on the frontal 

observations, since samples of any absorbance value can be 

examined in this geometry. If a sample of the MCS under test 

is placed in a parallel-sided cuvette of thickness l, then the 

expression describing the multiplier ex em( , )C    takes the form 

[39] 

  ( )ex em 2
( , ) 1 exp ( )

r

C
n

 
   

 
= − − +

+
 (22) 

where   is the coefficient describing the reflection loss of the 

excitation beam on the front face of the cuvette, rn  is the 
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refractive index of the medium, and   and   are the 

Napierian absorbances of the sample for the excitation and 

observation light, respectively. If we know the absorption 

spectra and the concentrations of the solution components, then 

  and   can be calculated using the expressions 

 ex

1

ln(10) ( )
cos

n

i i

i

l
c  

 =

=   (23) 

 em

1

ln(10) ( )
n

i i

i

l c  
=

=   (24) 

In expression (23), the presence of the cos  factor is due to the 

approximate consideration of the non-perpendicularity of the 

incident excitation beam on the cuvette proposed in [39]. This 

assumes that the angle between the perpendicular to the front 

wall of the sample and the excitation beam inside the sample is 

small and equal to  . 

An expression describing the intensity of the secondary 

fluorescence in the case of two-component solution under 

steady-state conditions was derived by Ketskeméty [49]. His 

result can be easily generalized to the case of n components, if 

a matrix notation similar to that used in Eq. (21) is applied. Then 

we can write 

  (II) (II)

ss ex em ex ex em ex em em( , ) ( , ) ( , ) ( )
T

I g I C F       =  (25) 

where (II)

ex em( , )    is the vector of effective quantum yields 

of secondary fluorescence. Analogous to (I)

ex( )i  , the value of 

the (II)

ex em( , )i    element is equal to the probability that the 

absorption of a photon by the entire system from an excitation 

beam with a wavelength of ex  will result in the emission of a 

secondary fluorescence photon by any of the component i 

molecules. According to [49], the vector (II)

ex em( , )    can be 

written in the form 

 (II) (I)

ex em ex ex em( , ) ( ) ( , )       =  (26) 

where the matrix 

 
ex em ex em( , ) ( , )ij n n

     


 =    (27) 

describes the extent of the one-step radiative transfer of MEE 

between the components of the solution. The physical meaning 

ex em( , )    matrix elements can be determined by analyzing the 

interrelationships of selected components of expressions (21) 

and (25). Details of this analysis can be found in Appendix A. 

It turns out that a given 
ex em( , )ij    element can be interpreted 

based on two expressions: 

 

(II) (I)

ss ex em ex

ex em (I) (I)

ss ex em ex

( , ) ( )
( , )

( , ) ( )

ij j

ij

j i

I

I

   
  

   
=  (28) 

and 

 

(II)

ss ex em em

ex em (I)

emss ex em

( , ) ( )
( , )

( )( , )

ij i

ij

ji

I F

FI

  
  

 
=  (29) 

In both expressions, (II)

ss ex em( , )ijI    is that part of the total 

secondary emission intensity that is emitted by component j as 

a result of RET from component i. The (I)

ss ex em( , )jI    and 

(I)

ss ex em( , )iI    appearing in the denominators of these 

expressions denote that portion of the total primary emission 

intensity that is emitted by component j or i, respectively. When 

RET occurs between molecules of the same component ( )j i=  

both (28) and (29) take the same form given in [38] 

 

(II)

ss ex em

ex em (I)

ss ex em

( , )
( , )

( , )

ii

ii

i

I

I

 
  

 
=  (30) 

From this we see that the ex em( , )ij    coefficients are ratios of 

selected fractions of the observed intensity of primary and 

secondary fluorescence emitted by the ith and jth components, 

however, taking into account the individual absorption or 

emission capacities of these components. From the works 

[36,38,49,55]  it follows that the kappa matrix can be calculated 

using the expression 

   (I)

ex em ex em

0

( , ) ( ) ( ) ( , , )
T

F M d         


=   (31) 

where according to (20) 

 (I) ( ) ( )X   =  (32) 

while the function ex em( , , )M     determines the spectral 

probability distribution of the conversion of primary 

fluorescence quanta to secondary fluorescence quanta under 

given excitation and observation conditions. Equations (31) and 

(32) allow the ex em( , )ij    matrix to be represented as 

 ex em ex em( , ) ( , )R     =  (33) 

Where the matrix ex em( , )R   is given by the expression 

  ex em ex em

0

( , ) ( ) ( ) ( , , )
T

R F X M d       


=   (34) 

The results of the work [38] allow us to conclude that if the 

MCS sample is placed in a flat-parallel cuvette of thickness l 

and is excited by a cylindrically shaped light beam of radius 

exR  then, in the case of observation of the frontal central part 

of the excitation area, the function ex em( , , )M     is equivalent 

to the function ( , , , )M m    given by 

 

( ) ( )

0

1 1

( )

0 0

2 2

0 0 0

( , , , )
21

Ei ( ) Ei | |

u uM m e e
e

m u u u u du du

 

 

  
  

 

− −

− +

+
=

−

  − + − − − −
  

 
 (35) 

where   and   depend on ex  and em  through equations (23) 

and (24), respectively, while   depends on   through equation 

 
1

( ) ln(10) ( )
n

i i

i

l c   
=

=   (36) 

In equation (35), the parameter m is equal to the ratio of the 

cross-sectional radius of the excitation beam to the thickness of 

the sample, ex /m R l= . Relevant information on the 

applicability of the function ( , , , )M m    and how to calculate 

it can be found in [45]. Although the expression (35) may seem 

complicated, the calculation of its value is not difficult. The 

simplest procedure here may be to numerically evaluate the 

double integral occurring in (35). If in our measurement 

conditions we have 8m , then the values of ( , , , )M m    

can be calculated much faster by using expressions obtained by 
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analytical transformations of Eq. (35)  [41,45]. The source code 

of the procedures to calculate ( , , , )M m   , written in 

FORTRAN and Mathcad is included in the supplementary 

materials to this article. An example of the results of calculating 

the function ( , , , )M m    is shown in Figure 1. 

 

 
Figure 1. The course of the function ( , , , )M m    for 5 =  and 10m =  

 

As can be seen, the variations of this function throughout the 

area of applicability are smooth. Additional calculations show 

that for other real values of the parameters   and m , the values 

of the ( , , , )M m    function change, but the general nature of 

its course remains the same. 

If the radiative transfer in the considered MCS is not very 

large, then in the expression describing the fluorescence 

intensity it is sufficient to consider only primary and secondary 

emission. Then after summing the expressions (21) and (25), 

and taking into account (26), we can write 

 
  

(I+II) (I)

ss ex em ex ex em ex

ex em em

( , ) ( , ) ( )

( , ) ( )
T

n

I g I C

I F

     

   

=

 +
 (37) 

where nI  is an identity matrix of dimension n n . Under 

conditions where the dimensions of the test sample and/or the 

concentrations of the fluorescing components therein are not 

sufficiently small, a significant contribution of higher order 

emissions such as tertiary fluorescence, quaternary 

fluorescence, etc. can be expected in the observed emission. 

Accurate calculation of the intensity of these higher order 

emissions is difficult. However, it is relatively easy to make 

approximate calculations here. For small values of the 

parameters  ,  , and  , for example, it can be assumed [38] 

that the vector of effective emission probabilities of order ( ) , 

where {III, IV, }  , is expressed by the vector of effective 

quantum yields of fluorescence of the order ( I) −  according 

to the recursive equation  

 
( ) ( I)

ex em ex em ex em( , ) ( , ) ( , )         −=  (38) 

where (II)

ex em( , )    is given by Eq. (26), and the ex em( , )    

matrix for all orders of emission is the same as for secondary 

emission. If we express the observed total fluorescence 

intensity ss ex em( , )I    as the sum of the fluorescence intensities 

of all orders, then after using (38) we can write 

 
 

ss ex em ex ex em

(I)

ex ex em em

( , ) ( , )

( ) ( , ) ( )
T

I g I C

F

   

     

=


 (39) 

where the n n  matrix ex em( , )    is a sum of the geometric 

series generated by consecutive powers of the ex em( , )    

matrix 

 
ex em ex em

2 3

ex em ex em

( , ) ( , )

( , ) ( , ) ...

nI     

     

= +

+ + +
 (40) 

It is worth noting that the ex em( , )    matrix defined in this way 

ensures that all possible paths of radiative transfer of excitation 

energy between the components of the considered MCS can be 

included in the calculations. In some works [72-74], the series 

(40) is called the Neumann series. Calculations based on 

experimental data show that all elements of the matrix 

ex obs( , )    are nonnegative and less than unity. This makes it 

possible to suppose that in many experimental cases lim 0k

k


→
=  

may occur, which is a condition for the convergence of series 

(40). Under such conditions, the series (40) can be written in 

the closed form as [75] 

  
1

ex em ex em( , ) ( , )nI     
−

= −  (41) 

Both expressions (40) and (41) are new in describing the effect 

of radiative transfer of excitation energy on the fluorescence 

intensity of a multicomponent system under steady-state 

conditions. Of particular value here seems to be expression (41) 

which takes into account the effect of fluorescence of all orders 

in a simple way. The ex em( , )    matrix has not yet been used 

in describing experimental data on MCSs. However, there are a 

few papers in the literature that used a description of 

fluorescence intensity consistent with a limited number of 

initial terms of the series (40). A deeper analysis of this issue 

can be found in Appendix B. 

4. Time-dependent intensity of fluorescence 
generated by δ-pulse excitation 

In the previous section, the use of vector-matrix calculus 

made it possible to include the contribution of all-order 

emission in the description of the fluorescence intensity of MCS 

upon excitation with light of constant intensity. The purpose of 

this section is, using the same methods, to find an expression 

describing the time course of the intensity δ ex em( , , )I t   of the 

fluorescence emitted by the MCS and observed by the 

photodetector after δ-pulse excitation. Under pulsed excitation 

conditions, we assume that at time 0t =  the MCS under study 

is illuminated with a δ-pulse of light of wavelength ex . We 

will assume that immediately before entering the sample, the 

surface photon density (photons/m2) in this pulse is exJ . The 

function δ ex em( , , )I t   determines the temporal distribution of 

the number of photons emitted toward the detector after the 

excitation pulse. To achieve our goal, let us first note that a very 
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important function characterizing the temporal distribution of 

MCS fluorescence is the matrix function ( )t  of the form 

 ( ) ( )ij n n
t t 


 =    (42) 

The elements ( )ij t  are functions of time having such a 

meaning that the product ( )ij t dt  is equal to the probability 

that the excitation of the component i at 0t =  will result in the 

emission of a photon by molecules of the component j at the 

time interval ( , )t t dt+ . The functions ( )ij t  are supported on 

the interval [0, )  and by definition are zero for 0t  . In 

determining the value of the function ( )ij t  one should take 

into account the processes of multistep reversible nonradiative 

energy transfer, including both heterotransfer and 

homotransfer. We will assume here that the function ( )t  does 

not contain information about the effect of radiative transfer on 

the fluorescence of the considered system. For a given MCS, 

the functions ( )ij t  can be determined experimentally only in 

very simple systems with a minimum number of components 

and for certain wavelength ranges of ex  and em . In general, 

it can be assumed that the courses of these functions can be 

determined theoretically, after adopting an appropriate 

excitation energy transfer mechanism and using an appropriate 

computational model. Potentially, the resulting expressions can 

also take into account the presence of material diffusion in the 

MCS under consideration. Such calculations, can be found, for 

example, in works [52,64,66-68]. A new approach to 

calculating the function ( )ij t  using the formalism of Markov 

processes is presented in our next work [70]. In the framework 

of the present work, we will assume that the matrix function 

( )t  is known. Note that the functions ( )ij t  describe 

probability density distributions but are not normalized to unity. 

It follows from the above assumptions that their normalization 

constants are the 
ij  elements of the matrix   defined by (16), 

that is, we can write 

 
0

( )ij ijt dt 


=  (43) 

or in matrix form 

 
0

( ) ij n n
t dt  




 = =    (44) 

We classify ( )ij t  functions as subnormalized PDFs (SPDFs), 

due to the fact that they have all PDF attributes except the 

condition of normalization to unity. In the rest of this paper, the 

( )ij t  functions will be referred to as emission SPDFs. The 

unit of ( )ij t  is 1/s. 

After defining the matrix ( )t , to describe MCS 

fluorescence, we can introduce the SPDF vector of effective 

primary fluorescence, (I)

ex( , )E t , of the form 

 (I) (I)

ex ex 1
( , ) ( , )i n

E t E t 


 =    (45) 

The elements 
(I)

ex( , )iE t  of this vector are such that the product 

(I)

ex( , )iE t dt  is equal to the probability that a photon absorbed 

by MCS from an excitation light beam of wavelength ex  at 

time 0t = , will cause a quantum of light to be emitted by 

component molecule i in the time interval ( , )t t dt+ . From the 

above definitions of (I)

ex( , )E t , ex( )X  , and ( )t , it follows 

that 

 (I)

ex ex ex

1 1

( , ) ( ) ( ) ( ) ( )
n

j ji

j n

E t X t X t    
= 

 
= = 
 
  (46) 

Given equations (44) and (20), it is easy to see that the integral 

of the element (I)

ex( , )iE t  taken over time from zero to infinity 

is equal to (I)

ex( )i   

 (I) (I)

ex ex

0

( , ) ( )i iE t dt  


=  (47) 

As in the case up to ( )ij t , the unit of (I)

ex( , )iE t  is 1/s. 

We will begin the construction of the expression for the 

function δ ex em( , , )I t   with the much simpler case involving 

only primary fluorescence described by the function 
(I)

δ ex em( , , )I t  . It can be predicted that the structure of the 

expression for the function (I)

δ ex em( , , )I t   corresponds to the 

structure of the expression (21), in which the photon flux 

density of the excitation beam exI  is replaced by the photon 

density of the excitation pulse exJ , and the vector (I)

ex( )   is 

replaced by the time-dependent vector (I)

ex( , )E t  

  (I) (I)

δ ex em ex ex em ex em( , , ) ( , ) ( , ) ( )
T

I t g J C E t F     =  (48) 

Since the unit of exJ  is photon/m2, so we see here that, as with 

(I)

ss ex em( , )I   , the (I)

δ ex em( , , )I t   fluorescence intensity is 

expressed in photons/s/m3. Note that the expressions (48) and 

(21) satisfy the relation  

 ex

δ ex em ss ex em

ex0

( , , ) ( , )
J

I t dt I
I

   


=  (49) 

found in Appendix C. On the same principle, we predict that the 

expression describing the time course of secondary 

fluorescence is given by expression 

 
 

(II)

δ ex em ex ex em

(II)

ex em em

( , , ) ( , )

( , , ) ( )
T

I t g J C

E t F

   

  

=


 (50) 

where the vector (II)

ex em( , , )E t   we call the SPDF vector of 

effective secondary fluorescence is defined by the equation 

analogous to (26) 

 ( )(II) (I)

ex em ex ex em( , , ) ( , ) ( , , ) ( )*E t E K t    =    (51) 

It is worth noting that after replacing (I)

ex( )   by (I)

ex( , )E t  

and ex em( , )    by ex em( , , )K t  , the resulting product of time-

dependent functions is treated as convolution of these functions. 

Such a procedure ensures that the time integral of equation (51) 

taken from zero to infinity gives equation (26). The matrix 

ex em( , , )K t   describes the temporal effect of radiative transfer 

of MEE on the course of MCS fluorescence decay and is 

defined analogously to the ex em( , )    matrix in Eq. (31) 
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   (I)

ex em ex em

0

( , , ) ( ) ( , ) ( , , )
T

K t F E t M d       


=   (52) 

Taking into account Eq. (46), it is easy to see that equation (52) 

can also be written in the form of 

 ex em ex em( , , ) ( , ) ( )K t R t    =  (53) 

where the matrix ex em( , )R    is given by Eq. (34). From Eqs. 

(52), (47), and (31) also follows the relation 

 ex em ex em

0

( , , ) ( , )K t dt    


=  (54) 

To determine the fluorescence intensities of the higher orders, 

that is, when III  , we will use recursive approximations for 

the vector of SPDFs of effective fluorescence of order ( )  

analogous to those described by equation (38) 

 ( )( ) ( I)

ex em ex em ex em( , , ) ( , , ) ( , , ) ( )*
o oE t E K t     −=    (55) 

where (II)

ex em( , , )E t   is given by Eq. (51).The observed 

fluorescence intensity course is the sum of the intensity courses 

of the individual orders. As a result of this summation, we 

obtain 

 
( )  

δ ex em ex ex em

(I)

ex ex em em

( , , ) ( , )

( , ) ( , , ) ( ) ( )*
T

I t g J C

E Ω t F

   

   

=

  
 (56) 

where 

 
ex em ex em

2 3

ex em ex em

( , , ) ( ) ( , , )

* *( , , ) ( , , )

nΩ t I t K t

K t K t

    

   

= +

+ + +
 (57) 

In Eq. (57), ex em
* ( , , )kK t   is the kth convolution power of the 

matrix ex em( , , )K t  .  

 ( )
ex em

ex em ex em ex em

* ( , , )

( , , ) ( , , ) ( , , ) ( )

k

k

K t

K K K t

 

           

members

 (58) 

Based on (57), (54), and (40), we also have 

 ex em ex em

0

( , , ) ( , )Ω t dt    


=  (59) 

The procedure for calculating the function δ ex em( , , )I t  , 

illustrated by equations (56), (57), and (51), is greatly simplified 

if, instead of a time-dependent function, one first calculates the 

Laplace transform  δ ex em δ ex em
ˆ ( , , ) ( , , )I s I t    , where 

 ( )
0

ˆ( ) ( ) exp( ) ( )f t f s st f t dt


= = −  (60) 

In Laplace space, equation (56) takes the form 

 
 

δ ex em ex ex em

(I)

ex ex em em

ˆ ( , , ) ( , )

ˆˆ ( , ) ( , , ) ( )
T

I s g J C

E s Ω s F

   

   

=


 (61) 

where (I)

ex
ˆ ( , )E s  is the Laplace transform of the vector 

(I)

ex( , )E t  defined by Eq. (46) 

 (I)

ex ex
ˆ ˆ( , ) ( ) ( )E s X s  =  (62) 

From Eqs. (47) and (60), we also see that 

 (I) (1)

ex ex
ˆ ( , 0) ( )E s  = =  (63) 

In Eq. (61), ex em
ˆ ( , , )Ω s   is the Laplace transform of the matrix 

ex em( , , )Ω t   defined by Eq. (57). After the Laplace 

transformation, the convolution powers reduce to ordinary 

powers, so that we can write 

 ex em ex em

2 3

ex em ex em

ˆ ˆ( , , ) ( , , )

ˆ ˆ( , , ) ( , , )

nΩ s I K s

K s K s

   

   

= +

+ + +
 (64) 

where  

 (I)

ex em ex em

0

ˆ ˆ( , , ) ( ) ( , ) ( , , )K s F E s M d       


=   (65) 

From Eqs. (65), (63), and (31), it follows that there is a relation 

 ex em ex em
ˆ ( , , 0) ( , )K s    = =  (66) 

Taking into account the fact that functions ex em
ˆ ( , , )K s   

decrease with an increase in the variable s, and considering the 

discussion of the values of the elements of the ex em( , )    

matrix given after equation (40), we conclude that under typical 

experimental conditions, for any value of s, the series (64) 

converges. Then, as in the case of series (40), we can write 

 
1

ex em ex em
ˆ ˆ( , , ) ( , , )nΩ s I K s   

−

 = −
 

 (67) 

Note that due to the nature of the fluorescence phenomenon, the 

functions ( )ij t  contained in the matrix ( )t  and in the vector 

(I)

ex( , )E t , functions ex em( , , )ijK t  , as well as the entire 

function δ ex em( , , )I t   must be bounded, nonnegative, and 

should decrease to zero when t goes to infinity. Thus, one can 

assume that Laplace transforms of these functions exist. 

By calculating ex em
ˆ ( , , )Ω s   from Eq. (67) and inserting 

the resulting values into equation (61), we find the values of the 

Laplace transform of the intensity of δ ex em
ˆ ( , , )I s   taking into 

account the primary emission and emissions of all higher 

orders. These values can then be inverted to time space using 

any of the numerical methods [76]. Expressions (61)-(67) are 

fundamental to the theoretical calculation of the time course of 

the fluorescence intensity of MCS. All parameters appearing on 

its right-hand side can be determined either directly 

experimentally or after some additional theoretical 

considerations. 

In the particular case of a homogeneous system, consisting 

of just one component, equation (61) after taking into account 

(67), (65), (46), (31), and (20) reduces to 

δ ex em ex ex em

11

1 ex 1 em

11 ex em 11 11

ˆ ( , , ) ( , )

ˆ ( )
( ) ( )

ˆ1 ( , ) ( )

I s g J C

s
F

s

   


  

    

=


−

 (68) 

which, as shown in Appendix D, is consistent with the 

previously obtained equation (30) in [45]. Relationships (44) 

and (59) can also be written as 

 ˆ ( 0)s = =  (69) 

 ex em ex em
ˆ( , ) ( , , 0)Ω s    = =  (70) 

The latter equations, together with equation (63), become useful 

for calculating steady-state fluorescence parameters when the 
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Laplace transforms of the time characteristics of the 

fluorescence emitted after δ-pulse excitation are known. 

5. Summary 

The most important achievements of this work are 

equations (39) and (61). Equation (39) describes the MCS 

fluorescence intensity under excitation by a beam of light of 

constant intensity, and equation (61) describes the MCS 

fluorescence intensity under excitation by delta pulses. In both 

cases, the possibility of both radiative and non-radiative 

excitation energy transfer in the described system was taken 

into account. Almost all the data needed for the calculations 

come from direct measurements. The exceptions here are the 

quantities ij  and/or 
11
ˆ ( )s , which depend on the nonradiative 

transfer. These must be obtained from additional calculations, 

such as those described in [70]. The application of the matrix 

formalism to the description of RET in MCS has made it 

possible to obtain expressions that more completely than before 

describe the effect of higher-order fluorescence on the observed 

total fluorescence intensity of the system. 

The expression (39) is a supplemented and improved 

version of the equation given earlier [55]. A block diagram of 

all the calculations that need to be performed before finally 

using equation (39) is shown in Fig. 2. The calculations 

illustrated by the block located in the lower left corner of the 

diagram (C, Eq. (22)) refer to the internal filter effect, the 

calculations illustrated by the blocks located in the upper right 

part of the diagram refer to primary fluorescence, and the 

calculations contained in the blocks located on the diagonal of 

the diagram refer to secondary fluorescence. 

 

 
 

Figure. 2. Block diagram of the course of calculation of ex em( , )ssI    values 

according to expression (39). The blue slanted quadrangles represent 

experimentally determined data, the green circle – the values of the elements of 

the   matrix possible to calculate by the methods discussed in the paper [70].  

Green rectangles illustrate the expressions provided in this paper. 

 

The expression (61) is new. It shows for the first time what 

is the simultaneous effect of RET and NET on the observed 

time courses of MCS fluorescence intensity after pulsed 

excitation. A block diagram of the calculations that need to be 

performed to use this equation is shown in Fig. 3. These 

calculations are very similar to those needed to calculate ssI . In 

particular, the values of the function ( , , , )M m    in both 

cases are calculated in the same way. The values of the 

functions calculated in the orange blocks are the values of the 

corresponding Laplace transforms, but the difficulty of these 

calculations is no greater than in the analogous blocks shown in 

Fig. 2. 

 

 
 

Figure 3. Block diagram of the course of δ ex em
ˆ ( , , )I s   calculations according 

to expression (61). The blue slanted quadrangles represent experimentally 

determined data. The orange circle contains the values of the ˆ ( )ij s  function 

that can be calculated by the methods discussed in the paper [70]. The green 

rectangles illustrate the expressions provided in this paper, which are the same 

as those used to calculate ex em( , )ssI   . Orange rectangles indicate expressions 

that relate to the calculation of Laplace transforms of the time courses of the 

quantities (I) ( )E t , ( )K t , ( )Ω t  and δ ( )I t . 

 

In order to find δ ( )I t  values from the calculated δ
ˆ ( )I s  values, 

one can use any of the numerical methods for inverting Laplace 

transforms. An exhaustive overview of these methods is given, 

for example, in [76]. From our preliminary calculations, it 

appears that the method developed by Stehfest [77,78] may be 

relatively easy and sufficiently accurate here. 

6. Appendices 

1.1 Appendix A: Physical meaning of the quantity κij 

Expression (21) can be rewritten as 

 
(I) (I)

ss ex em ss ex em

1

( , ) ( , )
n

k

k

I I   
=

=  (71) 

where (I)

ss ex em( , )kI    is that part of the primary emission 

intensity of the system that is emitted by the molecules of the 

kth component  

 (I) (I)

ss ex em ex em ex em( , ) ( , ) ( ) ( )k k kI W F      =  (72) 

and ex em ex ex em( , ) ( , )W g I C   = . Similarly, expression (25) 

can be rewritten as 

 
(II) (II)

ss ex em ss ex em

1 1

( , ) ( , )
n n

ij

i j

I I   
= =

=  (73) 

where (II)

ss ex em( , )ijI    is that part of the secondary emission of 

the system which is emitted by molecules of the jth component 

due to RET from molecules of the ith component 

 (II) (I)

ss ex em ex em ex ex em em( , ) ( , ) ( ) ( , ) ( )ij i ij jI W F         =  (74) 
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If k j= , then it follows from expressions (72) and (74) that 

 

(II) (I)

ss ex em ex

ex em (I) (I)

ss ex em ex

( , ) ( )
( , )

( , ) ( )

ij j

ij

j i

I

I

   
  

   
=  (75) 

If k i= , then it follows from expressions (72) and (74) that 

 

(II)

ss ex em em

ex em (I)

emss ex em

( , ) ( )
( , )

( )( , )

ij i

ij

ji

I F

FI

  
  

 
=  (76) 

 

1.2 Appendix B: Forms of the ω matrix for the 
simplest systems 

1.2.1 One-component system 

For a one-component system, the   matrix contains only 

one element 11  , which means that the   matrix also 

contains only one element of the form 

 
1

1



=

−
 (77) 

Here we have a full agreement of equation (77) with the form 

of the omega matrix which for the same case follows from the 

work of Budó and Ketskeméty [37].  

1.2.2 Two-component system 

For a binary system, the   matrix contains four elements 

 
11 12

21 22

 


 

 
=  
 

 (78) 

and the   matrix calculated from Eq. (41) takes the form 

 
22 12

21 1111 22 12 21

11

1(1 )(1 )

 


    

− 
=  

−− − −  
 (79) 

From the paper [49] devoted to the same issue, we conclude that 

instead of the   matrix there was used the   matrix of the 

form 

 
11 12

21 22

1

1

 


 

+ 
 =  

+ 
 (80) 

It is easy to see that the reason for the inconsistency of 

expressions (80) and (79) is that only the first two components 

of the series (40) were considered in determining the   matrix 

 (I II)

2I  + = = +  (81) 

Matrix (81) was also used to describe the fluorescence intensity 

of the binary solution in paper [71].  

1.2.3 Ternary system  

In the case of ternary system, the   matrix contains nine 

elements 

 

11 12 13

21 22 23

31 32 33

  

   

  

 
 

=
 
  

 (82) 

and then, according to expression (41), the   matrix takes a 

form 
3 3ij 


 =   , where 

 

1
(1 )(1 )

, , 1,2,3

1
(1 )

ii jj kk jk kj

ij ij kk ik kj

i j kd

k j i

d

    

    


 = − − −  =


  = − +  

 (83) 

and 

 

11 22 33

11 23 32 22 13 31 33 12 21

12 23 31 13 32 21

(1 )(1 )(1 )

(1 ) (1 ) (1 )

d   

        

     

= − − −

− − − − − −

− −

 (84) 

The matrix (83) is new and therefore has not yet been used when 

describing experimental data on the fluorescence intensity of a 

ternary solution. 

In papers [50] and [51], the fluorescence of specific 

ternary systems was studied, in which energy transfer from 

component i to component j was not possible if i j . Under 

such conditions, the kappa matrix takes the form of upper 

triangular matrix U  

 

11 12 13

U 22 23

33

0

0 0

  

  



 
 

=
 
  

 (85) 

In the paper [50], instead of the full   matrix, the   matrix 

containing only the two initial terms of the series (40) was used 

 

11 12 13

22 23 3 U

33

1

0 1

0 0 1

I

  

   



+ 
  = + = +
 
 + 

 (86) 

In the paper [51], the   matrix is approximated by an   

matrix of the form 

 

13 11 33

12 11 22

12 2311

23 22 33

22

33

2 3 4 5

3 U U D D D

(1 )1
(1 )

1

1
0 (1 )

1

1
0 0

1

...I

  
  

 

   




    

+ + 
+ + 

+− 
 

 = + + 
− 

 
 

−  

= + + + + + +

 (87) 

where ( )D 11 22 33diag , ,   = . The approximation of the   

matrix using the   matrix is better than using the   matrix, 

but it is still worse than using the full   matrix. This is because 

the D  matrix is used instead of the U  matrix in the higher 

expressions of expansion (87). 

1.3 Appendix C: Relation between Iss and Iδ(t)  

Excitation of fluorescence with continuous light of photon 

flux density exI  is equivalent to excitation with a compact 

sequence of rectangular pulses, each of small width t  and 

photon density exJ . The values of exJ  and exI  are related by 

the expression 

 ex exJ I t=   (88) 

The fluorescence intensity ssI  observed with conditions 

excitation is as if all fluorescence quanta generated by each 
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individual excitation pulse were emitted within a single t  

time segment 

 δ

0

1
( )ssI I t dt

t



=
   (89) 

Finally, after taking into account (88), we can write 

 ex

δ

ex0

( ) ss

J
I t dt I

I



=  (90) 

1.4 Appendix D: Consistency of expression (68) with 
an earlier expression obtained in the paper [45]   

If the solution contains only one component, the matrix 

( )t  reduces to a single element 11( )t . Defined in [45], the 

function (I) ( )S t  has the meaning of an excitation survival 

function among the originally excited molecules component 1, 

which means that 

 
11(I)

11

( )
( )

(0)

t
S t




=  (91) 

Hence, we have 

 (I)

11 11
ˆˆ ( ) (0) ( )s S s =  (92) 

Given that from equation (43) follows 
11 11

ˆ ( 0)s = = , we can 

write 

 (I)

11 11
ˆ(0) ( 0)S s = =  (93) 

Thus, there is a relation 

 
(I)

11 11 (I)

ˆ ( )ˆ ( )
ˆ ( 0)

S s
s

S s
 =

=
 (94) 

After inserting (92) and (94) into (68) we get 

 

(I)

11

δ ex 1 1 (I)

11 (I)

ˆ(0) ( )
ˆ ( )

ˆ ( )
1

ˆ ( 0)

S s
I s g J C F

S s

S s






=

−
=

 (95) 

If we consider only the primary fluorescence of this system, 

then based on equation (48) we can write 

 (I)

δ ex 1 1 11( ) ( )I t g J C F t =  (96) 

Hence, we see that 

 δ0 ex 1 1 11( 0)I g J C F t = =  (97) 

is the value of (I)

δ ( )I t  at 0t = . The same value of δ0I  is also 

the initial value in expression (95), since taking into account 

secondary and higher order emissions does not affect the 

fluorescence intensity at 0t = . This allows equation (95) and 

thus equation (68) to be written in the form of 

 
(I)

δ δ0 (I) (I)

11

ˆ ( )ˆ ( )
ˆ ˆ1 ( ) ( 0)

S s
I s I

S s S s
=

− =
 (98) 

which is consistent with equation (30) in the paper [45]. 

References 

 

[1] I.M. Warner, G.D. Christian, E.R. Davidson, and J.B. Callis, Analysis 

of multicomponent fluorescence data. Anal. Chem. 49 (1977) 564-563. 

doi:https://doi.org/10.1021/ac50012a016 

[2] F.J. Knorr, and J.M. Harris, Resolution of multicomponent fluorescence 

spectra by an emission wavelength-decay time data matrix. Anal. 

Chem. 53 (1981) 272-276. doi:https://doi.org/10.1021/ac00225a033 

[3] I.M. Warner, S.L. Neal, and T.M. Rossi, Strategies for the reduction 

and interpretation of multicomponent spectral data. J. Res. NBS 90 

(1985) 487-493. doi:https://doi.org/10.6028/jres.090.047 

[4] D.S. Burdick, X.M. Tu, L.B. McGovan, and D.W. Millican, Resolution 

of multicomponent fluorescent mixtures by analysis of the excitation-

emission-frequency array. J. Chemometrics 4 (1990) 15-28. 

doi:https://doi.org/10.1002/cem.1180040104 

[5] A.S.R. Koti, and N. Periasamy, Application of time resolved area 

normalized emission spectroscopy to multicomponent systems. J. 

Chem. Phys. 115 (2001) 7094-7099. 

doi:https://doi.org/10.1063/1.1405017 

[6] A.J. Kałka, and A.M. Turek, Fast decomposition of three-component 

spectra of fluorescence quenching by white and grey methods of data 

modeling. J. Fluoresc. 28 (2018) 615-632. 

doi:https://doi.org/10.1007/s10895-018-2224-5 

[7] I.M. Warner, L.B. McGown, and G.D. Christian, Recent advances in 

multicomponent fluorescence analysis. CRC Crit. Rev. Anal. Chem. 13 

(1982) 155-222. doi:https://doi.org/10.1080/10408348208542752 

[8] K. Kumar, M. Tarai, and A.K. Mishra, Unconventional steady-state 

fluorescence spectroscopy as an analytical technique for analyses of 

complex-multifluorophoric mixtures. Trends in Analytical Chemistry 

97 (2017) 216-243. doi:https://doi.org/10.1016/j.trac.2017.09.004 

[9] M. Hauser, R. Frey, U.K.A. Klein, and U. Gösele, Time dependence of 

long-range energy transfer. Acta Phys. et Chem. Szeged 23 (1977) 21-

32. url:http://acta.bibl.u-szeged.hu/id/eprint/39343 

[10] M.A. Ali, S.A. Ahmed, and A.S. Chokhavatia, Examination of a 

generalized model for radiationless energy transfer in dyes. 

Comparisons of theory and experiments. J. Chem. Phys. 91 (1989) 

2892-2897. doi:https://doi.org/10.1063/1.456959 

[11] N.S. Bamini, A. Ramalingam, and V.S. Gowri, Effect of different 

donors and a polymer environment on photophysical and energy 

transfer studies using C540 as the acceptor. J. Phys. 79 (2012) 1503-

1524. doi:https://doi.org/10.1007/s12043-012-0348-8 

[12] E.N. Bodunov, Sensitized luminescence kinetics as a tool for 

identification of nonradiative energy transfer. Opt. Spectrosc. 129 

(2021) 205-211. doi:https://doi.org/10.1134/S0030400X2102003X 

[13] P. Bojarski, L. Kułak, and J. Kubicki, Donor fluorescence decay in the 

presence of forward and reverse excitation energy transport in two-

component disordered systems. Chem. Phys. Lett. 318 (2000) 379-384. 

doi:https://doi.org/10.1016/S0009-2614(00)00060-9 

[14] S.G. Fedorenko, and A.I. Burshtein, Reversible energy quenching and 

conservation. Chem. Phys. 370 (2010) 208-214. 

doi:https://doi.org/10.1016/j.chemphys.2010.02.002 

[15] B.M. Sivaram, A. Ramalingam, T. Govindanunny, and P.K. 

Palanisamy, Energy transfer rates in a 7-diethylamino-4-

methylcoumarin-rhodamine 6G binary dye mixture laser. J. Photochem. 

37 (1987) 41-48. doi:https://doi.org/10.1016/0047-2670(87)85025-6 

[16] M.A. Ali, B. Panoutsopoulos, and S.A. Ahmed, Potential and 

limitations of energy-transfer processes in pulsed and cw dye laser 

mixtures: comparison of theory and experiments. Appl. Opt. 31 (1992) 

7100-7107. doi:https://doi.org/10.1364/AO.31.007100 

[17] B. Panoutsopoulos, M. Ali, and S.A. Ahmed, Experimental verification 

of a theoretical model for continuous wave energy transfer dye mixture 

lasers in the near infrared. Appl. Opt. 31 (1992) 1213-1216. 

doi:https://doi.org/10.1364/AO.31.001213 

[18] S. Sanghi, D. Mohan, and R.D. Singh, Gain measurements in binary 

and ternary dye mixture solutions under nitrogen laser excitation. 

Spectrochim. Acta A 53 (1997) 713-720. 

doi:https://doi.org/10.1016/S1386-1425(96)01829-X 

[19] B. Ahamed, R.G.G. Mani, and G. Vijayaraghavan, Tunable energy 

transfer distributed feedback dye laser using pyronin B and crystal 

violet dye mixture. Laser Opt. 22 (2012) 1469-1475. 

doi:https://doi.org/10.1134/S1054660X12100027 

[20] R.G.G. Mani, and M.B. Ahamed, Laser performance of rhodamine B 

and methyl violet B base dye mixture in solid and liquid media. J. 

Nonlin. Opt. Phys. Mater. 23 (2014) 1450053. 

doi:https://doi.org/10.1142/S0218863514500532 

[21] G.V. Vijayaraghavan, and M.B. Ahamed, Tunable distributed feedback 

dye laser using neutral red and crystal violet dye mixture. Int. J. Chem. 

Tech. Res. 8 (2015) 1088-1095 

[22] K. Parafiniuk, L. Sznitko, and M. Zelechowska, Near-infrared 

distributed feedback laser emission based on cascade Förster resonance 

https://doi.org/10.1021/ac50012a016
https://doi.org/10.1021/ac00225a033
https://doi.org/10.6028/jres.090.047
https://doi.org/10.1002/cem.1180040104
https://doi.org/10.1063/1.1405017
https://doi.org/10.1007/s10895-018-2224-5
https://doi.org/10.1080/10408348208542752
https://doi.org/10.1016/j.trac.2017.09.004
http://acta.bibl.u-szeged.hu/id/eprint/39343
https://doi.org/10.1063/1.456959
https://doi.org/10.1007/s12043-012-0348-8
https://doi.org/10.1134/S0030400X2102003X
https://doi.org/10.1016/S0009-2614(00)00060-9
https://doi.org/10.1016/j.chemphys.2010.02.002
https://doi.org/10.1016/0047-2670(87)85025-6
https://doi.org/10.1364/AO.31.007100
https://doi.org/10.1364/AO.31.001213
https://doi.org/10.1016/S1386-1425(96)01829-X
https://doi.org/10.1134/S1054660X12100027
https://doi.org/10.1142/S0218863514500532


13 

 

energy transfer to Nile Blue aggregates. Organic Electroncs 33 (2016) 

121-127. doi:https://doi.org/10.1016/j.orgel.2016.03.007 

[23] E. Lommel, Ueber Fluorescenz (On fluorescence). Ann. Physik 246 

(1880) 449-472. doi:https://doi.org/10.1002/andp.18802460707 

[24] E. Lommel, Ueber Fluorescenz (Fortsetzung von p. 472) (On 

fluorescence (continued from p. 472.)). Ann. Physik 246 (1880) 631-

654. doi:https://doi.org/10.1002/andp.18792460809 

[25] T. Duseberg, Über die Absorption von Fluoreszenzlicht in der 

emittierenden Substanz (On the absorption of fluorescence light in the 

emitting substance). Phys. Z. 26 (1925) 157-166 

[26] A. Jabłoński, Niezależność rozkładu natężeń w widmie fluorescencji od 

długości fali światła pobudzającego (Independence of the intensity 

distribution in the fluorescence spectrum from the wavelength of the 

excitation light). Sprwozdania i Prace PTF 2 (1926) 1-19 

[27] K. Weber, Über die Absorptionsverteilung in Lösungen mit zwei 

absorbierenden Komponenten (About the absorption distribution in 

solutions with two absorbing components). J. Physik. Chem. B 19 

(1932) 30-34. doi:https://doi.org/10.1515/zpch-1932-1904 

[28] A.V. Fonin, A.I. Sulatskaya, I.M. Kuznetsova, and K.K. Turoverov, 

Fluorescence of dyes in solutions with high absorbance. Inner filter 

effect correction. PLOS ONE 9 (2014) e103878. 

doi:https://doi.org/10.1371/journal.pone.0103878 

[29] T. Wang, L.-H. Zeng, and D.-L. Li, A review on the methods for 

correcting the fluorescence inner-filter effect of fluorescence spectrum. 

Appl. Spectrosc. Rev. 52 (2017) 883-908. 

doi:https://doi.org/10.1080/05704928.2017.1345758 

[30] J. Kimball, J. Chavez, L. Ceresa, E. Kitchner, Z. Nurekeyev, H. Doan, 

M. Szabelski, J. Borejdo, I. Gryczynski, and Z. Gryczynski, On the 

origin and correction for inner filter effects in fluorescence. Part I: 

Primary inner filter effect - the proper approach for sample absorbance 

correction. Meth. Appl. Fluoresc. 8 (2020) 033002. 

doi:https://doi.org/10.1088/2050-6120/ab947c 

[31] L. Ceresa, J. Kimball, J. Chavez, E. Kitchner, Z. Nurekeyev, H. Doan, 

J. Borejdo, I. Gryczynski, and Z. Gryczynski, On the origin and 

correction for inner filter effects in fluorescence. Part II: secondary 

inner filter effect -the proper use of front-face configuration for highly 

absorbing and scattering samples. Meth. Appl. Fluoresc. 9 (2021) 

035005. doi:https://doi.org/10.1088/2050-6120/ac0243 

[32] T. Förster, Fluoreszenz organischer verbindungen (Fluorescence of 

organic compounds), Vanenhoeck und Ruprecht, Göttingen, 1951. 

doi:https://doi.org/10.1007/978-3-662-25777-7_9. 

[33] A. Bączyński, and M. Czajkowki, Über die Konzentrationsabhängigkeit 

der Lumineszenzspektren von Organophosphoren (On the 

concentration dependence of the luminescence spectra of 

organophosphors). Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys. 8 

(1960) 651-654 

[34] U. Resch-Genger, (Ed.), Standardization and Quality Assurance in 

Fluorescence Measurements I. Techniques, Springer, Berlin, 2008. 

doi:https://doi.org/10.1007/978-3-540-75207-3. 

[35] M.D. Galanin, Время возбужденного состояния молекул и свойства 

флуоресценции растворов (Duration of the excitation state of 

molecules and fluorescence properties of solutions). Trudy FIAN SSSR 

5 (1950) 341-386 

[36] A. Budó, and I. Ketskeméty, Influence of secondary fluorescence on 

the emission spectra of luminescent solutions. J. Chem. Phys. 25 (1956) 

595-596. doi:https://doi.org/10.1063/1.1742993 

[37] A. Budó, J. Dombi, and L. Szöllösy, Über die Bestimmung der 

absoluten Quantenausbeute fluoreszierender Lösungen (On the 

determination of the absolute quantum yield of fluorescent solutions). 

Acta Phys. et Chem. Szeged. 2 (1956) 18-27. url:http://acta.bibl.u-

szeged.hu/id/eprint/39298 

[38] A. Budó, and I. Ketskeméty, Über den Einfluss der Sekndärfluorszenz 

auf die Emisionsspektren fluorescierenden Lösungen (On the influence 

of the secondary fluorescence on the emission spectra of fluorescent 

solutions). Acta Phys. Hung. 7 (1957) 207-223. 

doi:https://doi.org/10.1007/BF03156333 

[39] A. Budó, J. Dombi, and R. Horvai, Baiträge zur Frage der spektralen 

Wirkung der Sekundärfluoreszenz (Contributions to the question of the 

spectral effect of the secondary fluorescence). Acta Phys. et Chem. 

Szeged. 3 (1957) 3-15. url:http://acta.bibl.u-szeged.hu/id/eprint/39299 

[40] A. Budó, I. Ketskeméty, E. Salkovits, and L. Gargya, Über die 

Bestimmung des wahren polarisationsgrades des Fluoreszenzlichtes 

von Lösungen (On the evaluation of the true polarisation degrees of 

fluorescence light of solutions). Acta Phys. Hung. 8 (1957) 181-193. 

doi:https://doi.org/10.1007/BF03156863 

[41] A. Budó, and I. Ketskeméty, Energietransporterscheinungen im Falle 

der molekularen Fluoreszenz (Energy transport phenomena in the case 

of molecular fluorescence). Acta Phys. Hung. 14 (1962) 167-176. 

doi:https://doi.org/10.1007/BF03158555 

[42] A. Budó, and L. Szalay, Über die wahre Abklingdauer der Fluoreszenz 

von Lösungen (About the true decay time of the fluorescence of 

solutions). Z. Naturforsch. 18a (1963) 90-91. 

doi:https://doi.org/10.1515/ZNA-1963-0119 

[43] P.R. Hammond, Self-absorption of molecular fluorescence, the design 

of equipment for measurement of fluorescence decay, and the decay 

times of some laser dyes. J. Chem. Phys. 70 (1979) 3884-3894. 

doi:https://doi.org/10.1063/1.437940 

[44] J. Baumann, G. Calzaferri, and T. Hugentobler, Self-absorption and re-

emission in wavelength-dependent fluorescence decay. Chem. Phys. 

Lett. 116 (1985) 66-72. doi:https://doi.org/10.1016/0009-

2614(85)80127-5 

[45] J. Kuśba, H. Grajek, and I. Gryczynski, Secondary emission influenced 

fluorescence decay of a homogeneous fluorophore solution. Meth. 

Appl. Fluoresc. 2 (2014) 015001. doi:https://doi.org/10.1088/2050-

6120/2/1/015001 

[46] W.F. Watson, and R. Livingston, Self-quenching and sensitization of 

fluorescence of chlorophyll solutions. J. Chem. Phys. 18 (1950) 802-

809. doi:https://doi.org/10.1063/1.1747779 

[47] E.D. Bowen, and R. Livingston, An experimental study of the transfer 

of energy of excitation between unlike molecules in liquid solutions. J. 

Amer. Chem. Soc. 76 (1954) 6300-6304. 

doi:https://doi.org/10.1021/ja01653a018 

[48] J.B. Birks, and A.J.W. Cameron, Energy transfer in organic systems I: 

Photofluorescence of terphenyl-toluene solutions. Proc. Phys. Soc. 72 

(1958) 53-64. doi:https://doi.org/10.1088/0370-1328/72/1/309 

[49] I. Ketskeméty, Über die sensibilisierte fluoreszenz von Mischlösungen 

(On the sensibilited fluorescence of mixed solutions). Acta Phys. Hung. 

10 (1959) 429-439. doi:https://doi.org/10.1007/bf03159827 

[50] A.N. Shibistyi, I. Ketskeméty, L. Kozma, and E. Hun, Перенос 

энергии в трехкомпонентных смешанных растворах (Energy 

transfer in three-component mixed solutions). Izv. Acad. Nauk SSSR, 

Ser. Fiz. 37 (1973) 765-767 

[51] I. Ketskeméty, and J. Kuśba, Übertragung von Anregungsenergie in 

Dreikomponentenlösungen (Excitation energy transfer in three-

component solutions). Acta Phys. et Chem. Szeged 20 (1974) 239-250. 

url:http://acta.bibl.u-szeged.hu/id/eprint/39337 

[52] C. Bojarski, and J. Domsta, Theory of influence of concentration on the 

luminescence of solid solutions. Acta Phys. Hung. 30 (1971) 145-166. 

doi:https://doi.org/10.1007/BF03157854 

[53] P. Zhao, and S. Rodriguez, Fluorescence spectroscopic studies on the 

multicomponent system coumarin 1/fluorescein/rhodamine B in 

ethanol. J. Fluoresc. 7 (1997) 121-130. 

doi:https://doi.org/10.1007/BF02760503 

[54] J.M.G. Martinho, and J.C. Conte, Radiative energy transfer II. The 

effect of radiative transfer on the monomer to excimer ratio in a binary 

system. J. Lumin. 22 (1981) 285-296. doi:https://doi.org/10.1016/0022-

2313(81)90025-9 

[55] I. Ketskeméty, and J. Kuśba, Excitation energy transfer in multi-

component luminescent systems. Acta Phys. et Chem. Szeged. 23 

(1977) 375-382. url:http://acta.bibl.u-szeged.hu/id/eprint/39345 

[56] I.M. Warner, J.B. Callis, E.R. Davidson, and G.D. Christian, 

Multicomponent analysis in clinical chemistry by use of rapid scanning 

fluorescence spectroscopy. Clinical Chem. 22 (1976) 1483-1492. 

doi:https://doi.org/10.1093/clinchem/22.9.1483 

[57] I.M. Warner, J.B. Callis, E.R. Davidson, M. Gouterman, and G.D. 

Christian, Fluorescence analysis: A new approach. Anal. Lett. 8 (1975) 

665-681. doi:https://doi.org/10.1080/00032717508059038 

[58] N.S. Wang, and M.B. Simons, Fluorescence modeling in a 

multicomponent system. Bitech. Bioeng. 38 (1991) 907-922. 

doi:https://doi.org/10.1002/bit.260380812 

[59] U. Resch-Genger, and K. Rurack, Determination of the 

photoluminescence quantum yield of dilute dye solutions (IUPAC 

Technical Report). Pure Appl. Chem. 85 (2013) 2005-2026. 

doi:https://doi.org/10.1351/PAC-REP-12-03-03 

[60] J. Dombi, Energy transfer processes in luminescent mixed solutions. 

Acta Phys. Hung. 25 (1968) 287-305. 

doi:https://doi.org/10.1007/BF03156792 

[61] I. Ketskeméty, L. Kozma, and É. Farkas, Spectrophotometric 

investigations of solutions of organic dyes in the far antistokes region. 

https://doi.org/10.1016/j.orgel.2016.03.007
https://doi.org/10.1002/andp.18802460707
https://doi.org/10.1002/andp.18792460809
https://doi.org/10.1515/zpch-1932-1904
https://doi.org/10.1371/journal.pone.0103878
https://doi.org/10.1080/05704928.2017.1345758
https://doi.org/10.1088/2050-6120/ab947c
https://doi.org/10.1088/2050-6120/ac0243
https://doi.org/10.1007/978-3-662-25777-7_9
https://doi.org/10.1007/978-3-540-75207-3
https://doi.org/10.1063/1.1742993
http://acta.bibl.u-szeged.hu/id/eprint/39298
http://acta.bibl.u-szeged.hu/id/eprint/39298
https://doi.org/10.1007/BF03156333
http://acta.bibl.u-szeged.hu/id/eprint/39299
https://doi.org/10.1007/BF03156863
https://doi.org/10.1007/BF03158555
https://doi.org/10.1515/ZNA-1963-0119
https://doi.org/10.1063/1.437940
https://doi.org/10.1016/0009-2614(85)80127-5
https://doi.org/10.1016/0009-2614(85)80127-5
https://doi.org/10.1088/2050-6120/2/1/015001
https://doi.org/10.1088/2050-6120/2/1/015001
https://doi.org/10.1063/1.1747779
https://doi.org/10.1021/ja01653a018
https://doi.org/10.1088/0370-1328/72/1/309
https://doi.org/10.1007/bf03159827
http://acta.bibl.u-szeged.hu/id/eprint/39337
https://doi.org/10.1007/BF03157854
https://doi.org/10.1007/BF02760503
https://doi.org/10.1016/0022-2313(81)90025-9
https://doi.org/10.1016/0022-2313(81)90025-9
http://acta.bibl.u-szeged.hu/id/eprint/39345
https://doi.org/10.1093/clinchem/22.9.1483
https://doi.org/10.1080/00032717508059038
https://doi.org/10.1002/bit.260380812
https://doi.org/10.1351/PAC-REP-12-03-03
https://doi.org/10.1007/BF03156792


14 

 

J. Appl. Spectrosc. 17 (1972) 877-882. 

doi:https://doi.org/10.1007/BF00607695 

[62] D. Geissler, C. Würth, C. Wolter, H. Weller, and U. Resch-Genger, 

Excitation wavelength dependence of the photoluminescence quantum 

yield and decay behavior of CdSe/CdS quantum dot/quantum rods with 

different aspect ratios. Phys. Chem. Chem. Phys. (2017) 12509-12516. 

doi:https://doi.org/10.1039/C7CP02142A 

[63] J. Kuśba, and C. Bojarski, Non-radiative transfer of electronic 

excitation energy in multi-component luminescent systems. J. Lumin. 

20 (1979) 73-81. doi:https://doi.org/10.1016/0022-2313(79)90025-5 

[64] R. Twardowski, and J. Kuśba, Reversible energy transfer and 

fluorescence decay in solid solutions. Z. Naturforsch. 43a (1988) 627-

632. doi:https://doi.org/10.1515/zna-1988-0703 

[65] M. Hauser, U.K.A. Klein, and U. Gösele, Extension of Förster's theory 

of long-range energy transfer do donor-acceptor pairs in systems of 

molecular dimensions. Z. Phys. Chem. NF 101 (1976) 255-266 

[66] K. Sienicki, and M.A. Winnik, Donor-acceptor kinetics in the presence 

of energy migration. Forward and reverse energy transfer. Chem. Phys. 

121 (1988) 163-174. doi:https://doi.org/10.1016/0301-0104(88)90024-9 

[67] L. Kułak, and C. Bojarski, Forward and reverse electronic energy 

transport and trapping in solution. I. Theory. Chem. Phys. 191 (1995) 

43-66. doi:https://doi.org/10.1016/0301-0104(94)00326-6 

[68] L. Kułak, and C. Bojarski, Forward and reverse electronic energy 

transport and trapping in solution. II. Numerical results and Monte 

Carlo simulations. Chem. Phys. 191 (1995) 67-86. 

doi:https://doi.org/10.1016/0301-0104(94)00327-7 

[69] M.K.Y. Hughes, S.M. Ameer–Beg, M. Peter, and T. Ng, Use of 

acceptor fluorescence for determining FRET lifetimes. Proc. SPIE 5139 

(2003) 88-89. doi:https://doi.org/10.1364/ECBO.2003.5139_88 

[70] J. Kuśba, Multistep reversible excitation transfer in a multicomponent 

rigid solution: II. Modeling the dynamics of radiationless transfer as a 

time-resolved Markov chain. arXiv:xxxx (2024) 1-22. 

url:https://arxiv.org/ 

[71] A.N. Shibistyi, Перенос энергии возбуждения в двухкомонентных 

растворах (Excitation energy transfer in two-component solutions). 

Ukr. Fiz. Zh. 19 (1974) 211-215 

[72] C.D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 

Philadelphia, 2000. 

[73] S. Friedland, Matrices. Algebra, Analysis and Applications, World 

Scientific, Singapore, 2016. doi:https://doi.org/10.1142/9567. 

[74] V.S. Dimitrov, and D.F.G. Coelho, On the computation of Neumann 

series. arXiv:1707.05846v1 (2017) 1-11. 

doi:https://doi.org/10.48550/arXiv.1707.05846 

[75] G.A.F. Seber, A Matrix Handbook for Statisticians, Wiley, Hoboken, 

2008. doi:https://doi.org/10.1002/9780470226797. 

[76] A.M. Cohen, Numerical Methods for Laplace Transform Inversion, 

Springer, 2007. doi:https://doi.org/10.1007/978-0-387-68855-8. 

[77] H. Stehfest, Algorithm 386. Numerical inversion of Laplace transforms. 

Commun. ACM 13 (1970) 47-49. 

doi:https://doi.org/10.1145/361953.361969 

[78] H. Stehfest, Remark on algorithm 368. Numerical inversion of Laplace 

transforms. Commun. ACM 13 (1970) 624. 

doi:https://doi.org/10.1145/355598.362787 

 

 

https://doi.org/10.1007/BF00607695
https://doi.org/10.1039/C7CP02142A
https://doi.org/10.1016/0022-2313(79)90025-5
https://doi.org/10.1515/zna-1988-0703
https://doi.org/10.1016/0301-0104(88)90024-9
https://doi.org/10.1016/0301-0104(94)00326-6
https://doi.org/10.1016/0301-0104(94)00327-7
https://doi.org/10.1364/ECBO.2003.5139_88
https://arxiv.org/
https://doi.org/10.1142/9567
https://doi.org/10.48550/arXiv.1707.05846
https://doi.org/10.1002/9780470226797
https://doi.org/10.1007/978-0-387-68855-8
https://doi.org/10.1145/361953.361969
https://doi.org/10.1145/355598.362787


Supplementary materials to the work: 
“Multistep reversible excitation transfer in a multicomponent 
rigid solution: I. Calculation of steady-state and time-
resolved fluorescence intensities” 
 

Józef Kuśba 

Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 80-952 Gdańsk, Poland 
(Dated: 13 March 2024) 

 

 

 

 

 

1 FORTRAN code for calculation the function M(α,β,γ,m) defined by Eq. (35) 

1.1 Function MP(alpha,beta,gamma,m) 

 
real(8) function MP(alpha,beta,gamma,m) 
    ! calculates values of the function M according to the formulae given in 
    ! A. Budo and I. Ketskemety, Acta Phys. Hung. 14 (1962) 167-176. 
    use exprl_int 
    use ei_int 
    implicit none 
    real(8),intent(in)      :: alpha    ! Napierian absorbance of the sample for the excitation 
                                        ! wavelength 
    real(8),intent(in)      :: beta     ! Napierian absorbance of the sample for the observation 
                                        ! wavelength 
    real(8),intent(in)      :: gamma    ! Napierian absorbance of the sample for given wavelength 
                                        ! from the spectra overlapping area 
    real(8),intent(in)      :: m        ! R/l 
    real(8)                 :: w1,w2,ea,eb,eab1 
    real(8),external        :: chi,psi   !  
    if (gamma.eq.0d0) then 
        MP=0d0 
        return 
    endif     
    ea=dexp(-alpha) 
    eb=dexp(-beta) 
    eab1=1d0-ea*eb 
    ! exprl(x)=(exp(x)-1)/x     function from IMSL library 
    ! Ei    function from IMSL library 
    ! chi   function from file chi.f90 
    ! psi   function from file psi.f90 
    w1=exprl(-alpha)*exprl(-beta)*gamma/exprl(-alpha-beta)*(Ei(-m*gamma)-Ei(-gamma)) 
    w2=(chi(alpha,gamma)+chi(beta,gamma)+eb*psi(alpha,gamma)+ea*psi(beta,gamma))/eab1 
    MP=(w1+w2)/2d0 
    end function MP 
! 
! 
  



1.2 Function chi(x,y) 

 

 
real(8) function chi(x,y) 
    use ei_int 
    implicit none 
    real(8),intent(in)      :: x,y 
    if (y.eq.0d0) then 
        chi=0d0 
    elseif (x.eq.0d0) then 
        chi=1.0d0-dexp(-y) 
    else 
        chi=y/x*(Ei(-y)-Ei(-x-y)-dlog(y)+dlog(x+y)) 
    endif 
    return 
    end function chi 
 
 

 

1.3 Function psi(x,y) 

 

 
real(8) function psi(x,y) 
    use ei_int 
    implicit none 
    real(8),intent(in)      :: x,y 
    integer                 :: n 
    real(8)                 :: w1,w2,s 
    if (y.eq.0d0) then 
        psi=0d0 
    elseif (x.eq.0d0) then 
        psi=dexp(-y)-1d0 
    elseif (x.eq.y) then 
        if (x.gt.4d1) then 
            psi=0d0 
        else 
            n=1 
            s=1d0 
            w1=0d0 
            w2=1d0 
            do while (dabs(w1-w2).ge.1.0d-10) 
                w2=w1 
                s=-s*y/n 
                w1=w1+s/n 
                n=n+1 
            enddo 
            psi=w1*dexp(-y) 
        endif 
    else 
        psi=y/x*dexp(-x)*(Ei(-y)-Ei(x-y)+dlog(dabs(x-y))-dlog(y)) 
    endif 
    return 
end function psi 
 

  



2 MATHCAD code for calculation the function M(α,β,γ,m) defined by Eq. (35) 

2.1 Function MP(alpha,beta,gamma,m) 

 

 
 

 

2.2 Function exprl(x) 

 

 
 

  



2.3 Function chi(x,y) 

 

 
 

2.4 Function psi(x,y) 

 

 
  



2.5 Function Ei(x) 
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