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High-dimensional real-world systems can often be well characterized by a
small number of simultaneous low-complexity interactions. The analysis of
variance (ANOVA) decomposition and the anchored decomposition are typical
techniques to find sparse additive decompositions of functions. In this paper,
we are interested in a setting, where these decompositions are not directly
spare, but become so after an appropriate basis transform. Noting that the
sparsity of those additive function decompositions is equivalent to the fact that
most of its mixed partial derivatives vanish, we can exploit a connection to the
underlying function graphs to determine an orthogonal transform that realizes
the appropriate basis change. This is done in three steps: we apply singular
value decomposition to minimize the number of vertices of the function graph,
and joint block diagonalization techniques of families of matrices followed by
sparse minimization based on relaxations of the zero ”norm” for minimizing
the number of edges. For the latter one, we propose and analyze minimization
techniques over the manifold of special orthogonal matrices. Various numerical
examples illustrate the reliability of our approach for functions having, after a
basis transform, a sparse additive decomposition into summands with at most
two variables.

1. Introduction

The approximation of high-dimensional functions is a classical topic of mathematical
analysis with rich real-world applications. Due to new numerical techniques arising
from (stochastic) Fourier- and wavelet [7, 42, 35, 36] as well as kernel [39] methods
and deep learning approaches, the topic has recently attained increasing attention. For
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example, including information about the structure of the function class of interest into a
deep neural network architecture can improve its approximation quality [3, 17, 14]. In
particular, in [17] block sparse additive neural network architectures are developed with
sparsity patterns estimated from data. These block sparse additive neural networks show
increased training speed, better memory efficiency and improved generalization.
In this paper, we are interested in high-dimensional functions admitting an additive
decomposition into functions depending only on a few variables, i.e.,

f(x) =
∑
u∈S

fu(xu), xu := (xi)i∈u, (1)

where S consists of small subsets of {1, . . . , d}, and d ≫ 1 is the dimension of the problem.
Recently, we dealt with such decompositions in the context of multimarginal optimal
transport, where only special structured cost functions can be treated in an efficient way
[5, 8].

In general, decompositions of functions of the form (??) are not unique, but there exist
prominent examples in the literature having special desirable properties. So the analysis
of variance (ANOVA) decomposition [13, 43] and anchored [24, 25] decompositions and
their generalizations [32] arise in finance for option pricing, bond valuation and the pricing
of collateral mortgage-backed securities problems [18]. The ANOVA decomposition is
uniquely determined and the anchored decomposition up to a so-called anchored point.
Both decompositions make it possible to analyze the different dimensions and their
interactions, and to perform high dimensional integration [16, 19] using quadrature
methods as well as infinite-dimensional integration [6, 19, 31]. Further, in [23], we
proposed, inspired by the analysis of variance ANOVA decomposition of functions, a
Gaussian-Uniform mixture model on the high-dimensional torus which relies on the
assumption that the function we wish to approximate can be well explained by limited
variable interactions.

A further motivation for considering additive function decompositions comes from
probabilistic graphical models [47, Chapter 13]. According to the Hammersley-Clifford
theorem, the logarithm of a continuous density function ϕ of a random vector can be
decomposed as (1) for a certain class of sets S defined by conditional dependency between
the components of the random vector. Finding an appropriate additive decomposition
allows for inference on the interactions between the observed data, which naturally leads
to applications related to causality inference and complex systems that frequently appear
in computational biology [48], climate change [40], speech recognition [9, 10], predictive
modelling [28], energy systems [34] and many more.

One of the key features of ANOVA, anchored and Hammersley-Clifford decompositions
is their minimality in the number of elements u ∈ S. That is, for u ∈ S it is not possible
to find further decomposition fu(xu) =

∑
v⊊u fv(xv) consisting only of smaller subsets

of u. A composition with this minimality property is closely related to the structure of
the graph associated with f . For twice continuously differentiable f , an undirected graph
G(f) is defined by vertices and edges

V(f) = {i ∈ [d] : ∂xif ̸= 0} and E(f) = {(i, j) ∈ [d]2 : ∂2
xi,xj

f ̸= 0 and i ̸= j},
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respectively. Then, S for both ANOVA and anchored decomposition is a subset of the
cliques in C(f) of the graph. Furthermore, S in the Hammersley-Clifford decomposition
coincides with maximal cliques in C(f). We will use the relation between function graphs
and sparse additive function decompositions in Section 2.

In this paper, we are interested in the setting, where the function does only admit
a sparse additive decomposition after a basis transform. In other words, given (noisy)
values of the gradient and the Hessian of f , we aim to find an orthogonal matrix U ∈ O(d)
such that the graph of the function

fU := f(U ·)

has the smallest number of cliques. We propose a three-step procedure. First, we find
an orthogonal matrix U ∈ O(d) such that the graph of fU has the smallest number of
vertices |V(fU )|. We will see that this can be done by the singular value decomposition of
the matrix having the gradient of f at different values as columns. Then, in the second
and third steps, we aim to minimize the number of edges |E(fU )| by joint block diagonal
decomposition of the Hessians of f at the given points and subsequent sparsification of
the individual blocks. While we rely on results in [38, 37] for finding the joint blockdi-
agonalization, we apply recent sparse optimization methods with a relaxed 0 ”norm” to
further sparsify the single blocks. The third step requires the solution of a nonconvex
optimization problem over the manifold of special orthogonal matrices for which the
Riemannian gradient descent [11] or the Landing method [1] is employed in combination
with grid search.

Outline of the paper. In Section 2, we consider sparse additive decompositions. We
are interested in so-called minimal decompositions and recall that both the ANOVA and
anchored decomposition are of such minimal type. We address the relation between mini-
mal additive decompositions, first and second derivatives of functions and corresponding
function graphs. Finally, Theorem 2.6 gives an estimate of the influence of ∥∂vf∥∞ to
summands fu in the anchored and ANOVA decompositions for u ⊇ v. In Section 3, we
detail the three steps to obtain the desired basis transform towards a function which
has a sparse additive decomposition. Section 4, deals with the optimization problem
arising in Step 3, which requires optimization techniques over the special orthogonal
group. Numerical results for functions admitting, after an appropriate basis transform, a
sparse additive decomposition into summands depending at most on two variables are
given in Section 5. The appendix contains technical proofs, details on the algorithms and
gives additional numerical results.

2. Sparse additive decompositions and mixed derivatives

In the following, let [d] := {1, . . . , d}. We set D :=
⊗
i∈[d]

Ii, where Ii := [ai, bi], ai < bi.

For a subset u ⊆ [d], we use Du :=
⊗
i∈u

Ii. By λu, we denote the normalized Lebesgue

measure on Du and λ := λ[d]. Further, for u = {i1, . . . , ik} ⊆ [d], we use the abbreviation
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xu := (xi1 , . . . , xik) and
∂u := ∂|u|

xi1
,...,xik

.

By F , we denote an appropriate subspace of function f : D → R which will specified
later. We define projection operators on F fulfilling the following assumption:

Assumption I: The operators Pj , j ∈ [d] are commuting projections on F , i.e.,

PiPjf = PjPif for all f ∈ F ,

Pjf is independent of the j-th component xj and Pjf = f if f is independent of xj .

We set Pu :=
∏

j∈u Pj . Based on the above projection operators, Kuo et al. [32] defined
an additive decomposition of functions in F which fulfills a certain minimization property.

Theorem 2.1. Let Pj, j ∈ [d] fulfill Assumption I. Then any f ∈ F admits a decomposi-
tion

f(x) =
∑
u⊆[d]

fu(xu) (2)

with
fu :=

∏
j∈u

(Id − Pj)P[d]\uf =
∑
v⊆u

(−1)|u|−|v|P[d]\uf. (3)

This decomposition is minimal in the following sense: if for an arbitrary decomposition

f(x) =
∑
u⊆[d]

f̃u(xu),

we have f̃v = 0 for all v ⊇ u and some u ∈ [d], then also fv = 0 in (2).

To illustrate the role of the indices, we give an example.

Example 2.2. For d = 3, we have

f = f0 + f1 + f2 + f3 + f1,2 + f1,3f + f2,3 + f1,2,3

with f0 := f∅ = P1P2P3f = const and

f1 = (Id − P1)P2P3f = P2P3f − P1P2P3f,

f1,2 = (Id − P1)(Id − P2)P3f = P3f − P1P3f − P2P3f + P1P2P3f

f1,2,3 = (Id − P1)(Id − P2)(Id − P3)f

= f − P1f − P2f − P3f + P1P2f + P1P3f + P2P3f − P1P2P3f

and similarly for the other summands.

The concrete decomposition (2) depends on the chosen projection which must be well
defined on the space F . Two frequently addressed decompositions are the anchored and
the ANOVA decompositions, where both projections fulfill Assumption I:
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i) the anchored decomposition with anchor point c = (c1, . . . , cd) ∈ D is determined
for any f : D → R by

Pif = Pi,cf := f(x1, · · · , xi−1, ci, xi+1, · · · , xd), i ∈ [d], (4)

and we denote the corresponding decomposition (2) by

f(x) =
∑
u⊆[d]

fu,c(xu). (5)

ii) the analysis of variance (ANOVA) decomposition is given for absolutely integrable
functions f : D → R by

Pif = Pi,A :=
1

bi − ai

∫
Ii

f dxi, i ∈ [d],

and we use the notation

f(x) =
∑
u⊆[d]

fu,A(xu).

The relation between the anchor and ANOVA summands follows immediately by their
definition.

Proposition 2.3. For f : D → R be absolutely integrable and u ⊆ [d], we have

fu,A =

∫
D
fu,c(xu) dλ(c).

Proof. By (3), we obtain∫
D
fu,c(xu)dλ(c) =

∫
D

∑
v⊆u

(−1)|u|−|v|(P[d]\v,cf)(xv) dλ(c)

=
∑
v⊆u

(−1)|u|−|v|
∫
D
(P[d]\v,cf)(xv) dλ(c)

=
∑
v⊆u

(−1)|u|−|v|
∫
D[d]\v

f(xv, c[d]\v)dλ[d]\v(c)

=
∑
v⊆u

(−1)|u|−|v|P[d]\v,Af = fu,A(xu).

Next, we are interested in the relation between first- and second-order derivatives of
f ∈ C2(D) and minimal additive decompositions (2). For this, it appears to be useful to
consider the undirected graphs of functions.
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Definition 2.4 (Graph of a functions). To f ∈ C2(D), we assign the graph G(f) with
vertices

V(f) := {i ∈ [d] : ∂if ̸= 0} (6)

and edges
E(f) := {(i, j) ∈ [d]2 : ∂i,jf ̸= 0 for i ̸= j}.

A clique C(f) of G(f) is a subset of vertices of V(f) such that every two distinct vertices
are connected.

Then we have the following relation.

Theorem 2.5. Let f ∈ C2(D). Assume that ∂i,jf = 0 for some i ̸= j. Then we have in
(2) that fu = 0 for all u ∈ [d] with {i, j} ⊆ u. Moreover, it holds

f(x) =
∑

u⊆C(f)

fu(xu).

Proof. We will show that f has a decomposition

f =
∑
u⊆[d]

f̃u = Pi,cf + Pj,cf − P{i,j},cf. (7)

Then this decomposition fulfills f̃u = 0 whenever {i, j} ⊆ u, and Theorem 2.1 implies
that fu = 0. This gives the first part of the assertion. As a consequence, fu is zero unless
all pairs {i, j} ⊆ u admit (i, j) ∈ E(f), i.e., u is a clique and we are done.

It remains to prove (7). Without loss of generality, let ∂1,2f = 0. Then the Taylor
expansion at x̃ := (c1, c2, x3, . . . , xd) reads as

f(x) = f(x̃) + ∂1f(x̃)(x1 − c1) + ∂2f(x̃)(x2 − c2)

+R1,1(x1 − c1)
2 +R2,2(x2 − c2)

2 + 2R1,2(x1 − c1)(x2 − c2),

where

Ri,j :=

∫ 1

0
(1− t)∂i,jf(x̃+ t(x− x̃)) dt, i, j ∈ {1, 2}.

By the assumption, R1,2f = 0. Further, the Taylor expansion of P2,cf at x̃ is

P2,cf(x) = f(x̄) = f(x̃) + ∂1f(x̃)(x1 − c1) + R̄1,1(x1 − c1)
2

with x̄ := (x1, c2, x3, . . . , xd) and

R̄1,1 :=

∫ 1

0
(1− t)∂1,1f(x̃+ t(x̄− x̃)) dt,

and similarly for P1,cf . Since ∂1f is constant with respect to x2, the same holds true for
∂1,1f . Hence we conclude by their definition that R1,1 = R̄1,1. Consequently, we obtain

f(x) = P1,cf(x) + P2,cf(x)− f(x̃) = P1,cf(x) + P2,cf(x)− P{1,2},cf(x).

This finishes the proof.
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We have seen that ∂i,jf = 0 implies that all summands fu with u ⊇ {i, j} vanish in
(2). Next, we want to estimate the general influence of ∥∂vf∥∞ to summands fu,· in the
anchored and ANOVA decompositions for u ⊇ v.

Theorem 2.6. Let v ⊆ [d] and f ∈ C |v|(D). Then, for u ⊇ v, the following estimates
hold true in the anchor and ANOVA decompositions:

i) ∥fu,c∥∞ ≤ 2|u|−|v|∥∂xvf∥∞ λv(Dv),

ii) ∥fu,A∥∞ ≤ 2|u|−|v|∥∂xvf∥∞ λ(D)λv(Dv),

iii)
∥∥fu,A∥∥1 ≤ 2|u|−|v|∥∂xvf∥1 λu(Du)λv(Dv).

The proof is given in Appendix A.

3. Basis transforms towards sparse function decomposition

Decompositions of the form (2) can be applied for an efficient integration over high-
dimensional data if

i) the number of non-vanishing components u ∈ [d], and/or

ii) their cardinalities |u|

are small. In Theorem 2.5, we observed that these properties depend on the structure of
the underlying function graph G(f) and in particular on the set of cliques C(f). More
precisely G(f) should not contain large cliques.

In this section, we are interested in the case when the function f admits only a sparse
additive decomposition after an appropriate basis transform. We aim to determine such
a basis transform given the first and second partial derivatives of f at various points in
D ⊂ Rd. Later, in our numerical experiments, we will assume that the summands depend
at most on two of the transformed variables.

Let Br(d) := {x ∈ Rd : ∥x∥ ≤ r}. If the dimension is clear, we just write Br = Br(d).
By Md(R), we denote the space of d× d real-valued matrices. Let O(d) denote the Lie
group of orthogonal d× d matrices and SO(d) its subgroup of rotation matrices having
determinant 1. We deal with functions f : Br(d) → R. For U ∈ O(d), we set fU := f(U ·).
Clearly, Br(d) is invariant under the action of orthogonal matrices, so that fU : Br(d) → R
is also well-defined. Further, we have for twice differentiable f that

∇fU = UT∇f(U ·) and ∇2fU = UT∇2f(U ·)U. (8)

Example 3.1. Consider the orthogonal matrix

U = (u1, u2, u3, u4) =
1

2


1 1 1 1
1 −1 1 −1

−1 −1 1 1
−1 1 1 −1

 .
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Figure 1: Left: f(x) := sin(uT1 x
√
2/2) where U = (u1, u2) is a 2-dimensional rotation

matrix of rotation angle π/4. Right: Plot of fU . The left-hand diagram shows
that f depends on both variables x1 and x2 while fU is constant in x1.

Then the function

f(x) = h1(u
T
1 x, u

T
2 x) + h2(u

T
1 x, u

T
3 x), x = (x1, x2, x3, x4)

has in general no sparse decomposition in the components of x, but

fU (x) = f(Ux) = h1(u
T
1 Ux, uT2 Ux) + h2(u

T
1 Ux, uT3 Ux) = h1(x1, x2) + h2(x1, x3)

admits such a decomposition. This phenomenon is also illustrated in Figures 1,2,3.

Based on the given values of the gradient ∇f(x(n)) and the Hessian ∇2f(x(n)) at
x(n) ∈ Br(d), n ∈ [N ], we are searching for those matrices U ∈ O(d) for which the graph
G(fU ) has the smallest number of vertices and edges. We will find (an approximation of)
such U ∈ O(d) in two steps which are detailed in the following subsections:

1. Vertex minimization: Find a vertex minimizing matrix

UV ∈ argmin
U∈O(d)

V(fU ). (9)

2. Edge minimization: Using only the relevant vertices appearing in G(fUV ), say wlog
related to x = (x1, . . . , xd1), d1 ≤ d, we reduce our attention to g(x) := fUV (x, 0),
x ∈ Br(d1) and search for an edge-minimizing matrix, i.e.

UE ∈ argmin
U∈O(d1)

E(g) (10)

in two steps:
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Figure 2: Left: f(x) = sin(5uT1 x) + sin(5uT2 x) where U = (u1, u2) is a 2-dimensional
rotation matrix of angle π/4. Right: Image of the partial derivative ∂x1f(x).
The partial derivative ∂x1f(x) depends on x1 and x2 since its values vary in
both variables and thus f cannot be decomposed as a sum of two univariate
functions.

Figure 3: Left: fU where f, U are as in Figure 2. Right: Image of the partial derivative
∂x1fU which is constant with respect to x2. Therefore fU can be decomposed
as a sum of two univariate functions (see Theorem 2.5).
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2.1. Finest connected component decomposition: Find U ∈ O(d1) such that
G(gU ) provides the ”finest” decomposition into connected components.

2.2. Sparse component decomposition: For each of the connected components,
find an orthogonal matrix that transforms a connected component into one
with the smallest number of edges.

3.1. Vertex minimization

First, we deal with the minimization problem (9). By (6), this is equivalent to the fact
that most of the directional derivatives of f in direction uj , j = 1, . . . , d vanish, i.e.

∂jfU = uTj ∇f(U ·) = 0. (11)

Let
V∇f := span{∇f(x) : x ∈ Br} ⊆ Rd.

The following lemma allows us to describe vertices of the graph of fU in terms of the
gradient of f at a finite number of points.

Lemma 3.2. Let f ∈ C1(Br) and U ∈ O(d) and assume that V∇f = span{b1, . . . , bN}.
Then ∂jfU = 0 if and only if (UTbn)j = 0 for all n ∈ [N ].

Proof. By (12), we have that ∂jfU = 0 if and only if uTj v = 0 for all b ∈ V∇f . This is the
case if and only if uTj bn = (UTbn)j = 0 for all n ∈ [N ].

By the following proposition, the vertex minimizing transform in (9) can be obtained
via singular value decomposition.

Proposition 3.3. For x(n) ∈ Br, n ∈ [N ], let

B :=
(
∇f(x(1)), . . . ,∇f(x(N))

)
= (b1, . . . , bN ) ∈ Rd,N

such that V∇f = span{b1, . . . , bN}. Then the left singular matrix U ∈ O(d) of B is a
minimizer of (9).

Proof. By (12), we have that U ∈ O(d) is a minimizer of (9) if and only if UTB has the
largest number of zero rows. This is, if and only of U contains the largest number of
columns which are orthogonal to all columns of B. This is exactly given by a left singular
matrix of B.

Once we have found a minimizer UV by an SVD of B, say wlog.

UV = (u1, . . . , ud1︸ ︷︷ ︸
U1

, ud1+1 . . . ud︸ ︷︷ ︸
U2

) ∈ O(d)

10



such that span{u1, . . . , ud1} = span{b1, . . . , bN} and UT
2 B = 0, we know that fUV does

only depend on the first d1 components, so that we can restrict our attention to

g(x1, . . . , xd1︸ ︷︷ ︸
x[d1]

) := fUV (x1, . . . , xd1 , 0 . . . , 0) = fUV (x1, . . . , xd).

It follows immediately that

∇2fUV (x) =

(
H(x[d1]) 0

0 0

)
and H(x[d1]) := ∇2g(x[d1]) ∈ Rd1×d1 .

Further, we have by (8) that

∇2fUV (U
T
V x) = UT

V ∇2f(x)UV =

H
(
(UT

V x)[d1]

)
0

0 0

 .

Thus, given ∇2f(x(n)), n ∈ [N ], we obtain the values ∇2g
(
(UT

V x
(n))[d1]

)
by

UT
V ∇2f(x(n))UV =

∇2g
(
(UT

V x
(n))[d1]

)
0

0 0

 .

Remark 3.4. The minimizing matrix UV is not unique. However, it follows immediately
that for any other left singular matrix U of B we would have

∇2fU (x) = PT

(
WTH(x[d1])W 0

0 0

)
P

with some W ∈ O(d1) and a permutation matrix P . In particular, the choice of the
singular matrix does not influence the results in the next subsection.

3.2. Edge minimization

Next, we are interested in the minimization problem (10) taking only the d1 relevant
variables from the previous subsection into account. For simplicity of notation, we reset
d1 → d and (UT

V x
(n))[d1] → x(n), but keep the g. By the previous section, we can assume

that ∇2g(x(n)), n ∈ [N ] are given. By (6), the edge minimization problem is equivalent
to the fact that

∂i,jgU = ∂j,igU = uTi ∇2g(U ·)uj = 0 (12)

holds true for the largest number of pairs {i, j}. Let

V∇2g := span{∇2g(x) : x ∈ Br}.

Clearly, the Hessians of g at x ∈ Rd belong to the space of symmetric d× d has therefore
a spectral (eigenvalue) decomposition. Then, similarly as in Lemma 3.2, we observe the
following relation.
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Lemma 3.5. Let g ∈ C2(Br) and U ∈ O(d) and assume that V∇2g = span{H1, . . . ,HN}.
Then ∂i,jgU = 0 if and only if (UTHnU)ij = 0 for all n ∈ [N ].

Now we proceed in two steps.

3.2.1. Finest connected component decomposition

We start with the definition of graphs with „finest connected components”.

Definition 3.6 (Graph with finest components). For d ∈ N, we denote by Nd the set
of all descending sequences a = (a1, . . . , ada) ∈ Nka

>0 satisfying
∑da

i=1 ai = d. On Nd we
introduce a preordering by a ⪯ b if there exists a partition ∪iIi = [da] such that for all
i = 1, . . . , db it holds

bi =
∑
j∈Ii

aj .

On the set Gd of all graphs with d vertices, we define a function ϕ : Gd → Nd as follows:
for a graph G ∈ Gd, let G = ∪K

i=1Gi be its finest decomposition into disjoint connected
components, i.e., the Gi cannot be further decomposed into disjoint connected components,
and define ϕ(G) := (|V(G1)|, . . . , |V(GK |) ∈ Nd. Then a preordering on Gd is given by
G ⪯ G̃ if and only if ϕ(G) ⪯ ϕ(G̃). Now we consider the subset S ⊂ Gd and define the set
of graphs with finest connected components in S to be its minimal elements with respect
to ⪯.

We are interested in the minimal elements of

{G(gU ) : U ∈ O(d)} ⊂ Gd,

i.e., we are asking for U ∈ O(d) such that G(gU ) is a graph with finest connected
components. Assuming that

V∇2g = span{Hn := ∇2g(x(n)) : n ∈ [N ]},

we see by Definition 2.4, that this is equivalent to determining U ∈ O(d) such that Hn,
n ∈ [N ] admit the finest joint block diagonalization.

Definition 3.7 (Finest joint block diagonalization.). For Hn ∈ Rd×d, n ∈ [N ], let

UTHnU = diag(HU,1
n , . . . ,HU,K

n ) (13)

denote a joint block diagonalization of the Hn, n ∈ [N ] into K blocks HU,k
n ∈ RdUk ×dUk

which cannot be further splitted. Define ϕ : O(d) → Nd by ϕ(U) := dU = (dU1 , . . . , d
U
K).

Then U ⪯ Ũ if and only if ϕ(U) ⪯ ϕ(Ũ) is a preordering on O(d). We say that (13) is
the finest joint block diagonalization if U is minimal with respect to ⪯.

Remark 3.8. In [37] the term finest joint block diagonalization is defined in terms of
matrix ∗-algebras. It is shown Remark B.5 that both definitions are equivalent.
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To find such a finest block diagonalization, we apply a technique based on the following
observation.

Proposition 3.9 (Joint block diagonalization). For c ∈ RN randomly sampled from the
uniform distribution on the unit sphere SN−1 ∈ RN , let

H :=

N∑
n=1

cnHn. (14)

Let U ∈ O(d) be a matrix that diagonalizes H. Then, with probability one, U provides
a finest joint block diagonalization of the Hn, n ∈ [N ]. More precisely, the set of all
randomly sampled c ∈ SN−1 from the uniform distribution such that there exists U ∈ O(d)
that diagonalizes H but does not provides to a finest block diagonalization has measure
zero.

For a proof see [38, Proposition 3]. By the proposition, we can just look for the spectral
decomposition of a matrix H of the form (14). However, this strategy, is susceptible to
noise. Therefore, Maehara and Murota [37] suggested an extension using the space of
matrices that commute with the Hn, n ∈ [N ].

Proposition 3.10. [37, Proposition 3.8] Let A1, . . . , AM be a basis of the matrix space

{A ∈ Md(R) : [A,Hn] := AHn −HnA = 0 for all n ∈ [N ]}. (15)

For a randomly drawn c ∈ SM−1 from the uniform distribution, let U ∈ O(d) diagonalize

A :=

M∑
m=1

cmAm.

Then, with probability one U provides a finest block diagonalization of Hn, n ∈ [N ].

An important observation in [37] is that if the condition in (15) is relaxed to

∥[A,Hn]∥F ≤ δ for all n ∈ [N ] (16)

with small δ > 0, then a matrix U ∈ O(d) that diagonalizes A, also jointly block
diagonalizes the Hn, n ∈ [N ] up to a small error. Here ∥ · ∥F denotes the Frobenius norm.
More precisely, consider the linear operators Tn : Rd×d → Rd×d with A 7→ [A,Hn] and set

T :=
N∑

n=1

TT
n Tn. (17)

With the columnwise vectorization operator vec : Rd×d → Rd2 and the Kronecker product
⊗ of matrices we have that

vec
(
Tn(A)

)
= Tnvec(A), Tn := HT

n ⊗ Id − Id ⊗Hn

13



and ∥Tn(A)∥F = ∥Tnvec(A)∥2. Let V1, . . . , VK ∈ Rd×d be orthonormal eigenvectors of T
with eigenvalues λk smaller than δ2. Then, we obtain for

V :=

K∑
k=1

ckVk

and v := vec(V ) that

N∑
n=1

∥[V T, Hn]∥2F =
N∑

n=1

∥[V,Hn]∥2F =
N∑

n=1

∥Tn(V )∥2F =
N∑

n=1

∥Tnv∥22

=
N∑

n=1

⟨TT
n Tnv, v⟩ = ⟨T v, v⟩ =

K∑
k=1

c2kλk ≤ δ2
K∑
k=1

c2k.

Thus, for any c ∈ SK−1, the matrix 1
2(V +V T) fulfills (16). Then we know by [37, Lemma

4.1], for U ∈ O(n) satisfying 1
2U

T(V + V T)U = diag(λ1, . . . , λd), that

(UTHnU)ij |λi − λj | ≤ δ.

Consequently, UTHnU has an almost block diagonal structure and the blocks correspond
to different eigenvalues. The resulting error-controlled version of the block diagonalization
is stated as Algorithm 1.

Algorithm 1 Error-controlled block diagonalization
Input: Hessian matrices Hn, n ∈ [N ], error tolerance δ > 0.
Find an orthonormal basis V1, . . . , VK corresponding to eigenvalues smaller than δ2 of
T in (17).
Sample c ∈ SK−1 randomly from the uniform distribution on SK−1 and set V :=∑K

k=1 ckVk.
Compute U ∈ O(d) that diagonalizes 1

2(V + V T).
Output: U

While we know by Proposition 3.10 that the above algorithm is guaranteed to find the
finest block diagonalization with probability 1 for δ = 0, we did not find a uniqueness
statement in the literature. The following theorem contains the desired result. Its proof
requires a deeper look into theory of matrix-∗ algebras and can be found in Appendix B.

Theorem 3.11. Let U1, U2 correspond to finest joint block diagonalizations of Hn, n ∈ [N ]
with block sizes dU1

1 , . . . , dU1
K1

and dU2
1 , . . . , dU2

K2
and

UT
1 HnU1 = blockdiag(HU1,1

n , . . . ,HU1,K1
n ), UT

2 HnU2 = blockdiag(HU2,1
n , . . . ,HU2,K2

n ).

Then, it holds K1 = K2 =: K. Further, there exists a permutation σ of [K] and matrices
Vk ∈ O(dU1

k ), k ∈ [K] such that for all k ∈ [K] and all n ∈ [N ] we have

14



i) dU1
k = dU2

σ(k) and

ii) H
U2,σ(k)
n = V T

k HU1,k
n Vk.

Note that neither UV from (9) nor U obtained from the finest joint block diagonalization
algorithm is unique. However, the only ambiguity is a possible conjugation of the blocks
by orthogonal matrices as Remark 3.4 and Theorem 3.11 show.

3.2.2. Sparse component decomposition

Having found a joint approximate finest block decomposition of the Hessians Hn, n ∈ [N ],
i.e.,

UTHnU = blockdiag(HU,1
n , . . . ,HU,K

n ), HU,k
n ∈ RdU,k

k ×dU,k
k (18)

it remains to to enforce the sparsity in each block. In particular, we can treat the blocks
separately which reduces the dimension of the problem drastically. Therefore, we consider
for an arbitrary k ∈ [K], the k-th blocks Bn = HU,k

n in (18) and set d := dU,kk now.
Moreover, we agree that the diagonal elements of Bn, n ∈ [N ] are zero. The 0-"norm"
∥B∥0 of a d × d matrix B is the number of its nonzero components. We would like to
find a matrix U ∈ O(d) that minimizes

ℓ(U) :=
∥∥ 1

N

N∑
n=1

(UTBnU)2
∥∥
0

(19)

where the square of the matrix is taken compomentwise. Unfortunately, it is well-known
that the 0-"norm" minimization is NP-hard. Therefore, we will instead minimize the
relaxed differntiable loss function

ℓε(U) =
d∑

i,j=1
i ̸=j

( 1

N

N∑
n=1

(UTBnU)2i,j + ε
) 1

2
, ε > 0. (20)

The following proposition provides a sufficient condition that the relaxed version coincides
with original one.

Proposition 3.12. Let Bn ∈ Rd×d, n ∈ [N ] with zero diagonal components. If U ∈ O(d)
fulfills

ℓε(U) = max
{
dim(span{Bn, n ∈ [N ]}), max

n∈[N ]
rank(Bn)

}
,

then U is a minimizer of (19).

Proof. By the properties of the rank, we get for arbitrary M1, . . . ,MN that∥∥∥(∥((M1)ij , . . . , (MN )ij)∥∞
)d
i,j=1

∥∥∥
0
≥ ∥Mn∥0 ≥ rank(Mn), n ∈ [N ]
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and consequently∥∥∥(∥((M1)ij , . . . , (MN )ij)∥∞
)d
i,j=1

∥∥∥
0
≥ max

n∈[N ]
rank(Mn).

Now let B := {ei,j : ∃Mk such that (Mn)i,j ̸= 0}. Then, span(B) ⊇ span{Mn, n ∈ [N ]}
and dim(span(B)) =

∥∥∥(∥((M1)ij , . . . , (MN )ij)∥∞
)
i,j∈[d]2

∥∥∥
0
, which gives∥∥∥(∥((M1)ij , . . . (MN )ij)∥∞

)
i,j∈[d]2

∥∥∥
0
≥ dim(span{Mn, n ∈ [N ]}).

Therefore, for Mn := UTBnU the above inequalities yield

ℓε(U) =
∥∥∥(∥((M1)ij , . . . (MN )ij)∥∞

)d
i,j=1

∥∥∥
0

≥ max
{
dim(span{Mn, n ∈ [N ]}), max

n∈[N ]
rank(Mn)

}
.

Since U ∈ O(d), it holds that dim(span{Bn, n ∈ [N ]}) = dim(span{UTBnU, n ∈ [N ]})
and rank(Bn) = rank(UTBnU) for all n ∈ [N ]. Thus, we obtained a constant lower
bound for ℓ0,e(U),

ℓε(U) ≥ max
{
dim(span{Bn, n ∈ [N ]}), max

n∈[N ]
rank(Bn)

}
and if it is reached, U has to be the global minimizer of ℓε.

4. Minimization of the loss ℓε over SO(d)

This section deals with the efficient minimization of ℓε in (20). In Subsection 4.1, we
propose a gradient descent algorithm on SO(d) and also consider the Landing algorithm
for a regularized version of ℓε. Subsection 4.2 contains convergence results. The efficient
computation requires further a grid search to have an appropriate starting point for the
algorithm. The corresponding results can be found in Appendix C, where we also have a
closer look to the computational complexity.

4.1. Gradient descent and Landing algorithm over SO(d)

If U ∈ O(d) is a minimizer of (20), then blockdiag(−1, Id−1)U ∈ SO(d) is a minimizer
as well so that the optimization can be reduced to those over SO(d). Now, we turn
to the minimization of the loss function (20) on SO(d) using gradient-based manifold
optimization techniques. Let us start with a short overview of the basic definitions and
properties related to SO(d) as a manifold. For further details, we refer to [1, 11, 26].
Recall that SO(d) is a Riemannian manifold. For each U ∈ SO(d) the tangent space to
SO(d) at U is given by

TU = {V ∈ Rd×d : V UT + UV T = 0} = {AU : A ∈ Rd×d, A+AT = 0}.
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For a function F : Rd×d → R differentiable in the neighborhood of SO(d), its Riemannian
gradient gradF (U) at point U is given by an orthogonal projection of ∇F (U) onto
tangent space TU . For SO(d) specifically, it has a closed-form

gradF (U) := 1
2∇F (U)− 1

2U∇F (U)TU.

We denote by TSO(d) := ∪U∈SO(d){U} × TU the tangent bundle of SO(d). A retraction
operator is a smooth map of manifolds R : TSO(d) → SO(d) which satisfies for all
U ∈ SO(d) that

• R(U, 0) = U ,

• DRU (0) = IdTU
where RU = R|{U}×TU

: TU → SO(d) and D is the differential.

Note that the last properties ensures that for a line γ(t) = tV in the tangent space TU

we have that d
dtR(U, γ(t))|t=0 = V i.e. a retraction is a first-order approximation of the

exponential map. There are various choices of retraction operators for SO(d) such as the
exponential map, the Cayley transform, and the Polar decomposition [26, Chapter 3.3],
see also [21]. In this work, we use the QR-factorization [26] based retraction operator
defined as

Retr(U, V ) = QR(U − V ),

where QR(U − V ) denotes the orthogonal matrix of the QR-factorization of U − V .
Among many optimization methods on arbitrary Riemannian manifolds [26], and O(d)

[1] and SO(d) [49] in particular, we focus on the gradient descent and Landing methods.
Given an initial guess U (0) and step sizes {νr}r≥0, the sequence {U (r)}r≥0 constructed
via Riemannian gradient descent is given by

U (r+1) = Retr
(
U (r),−νr grad ℓε(U

(r))
)
, r ≥ 0. (21)

If the algorithm converges to a fixed point if U (r+1) = U (r), the condition grad ℓε(U
(r)) = 0

is satisfied. Computing the retraction operator can be very time-consuming when the
space dimension d is large. This is why, for O(d), an alternative method called the
Landing algorithm was developed in [1]. Instead of performing the minimization of ℓε on
SO(d), it minimizes the penalized objective

ℓε(U) + λ
4

∥∥∥Id − UUT
∥∥∥2
F
,

over Rd×d with the regularization parameter λ > 0. Note that the penalty is zero if and
only if U ∈ O(d). The Landing update step is given by

U (r+1) = U (r) − νr

(
grad ℓε(U

(r)) + λ
[
U (r)(U (r))T − Id

]
U (r)

)
, r ≥ 0, (22)

where the second term pushes U (r+1) in the direction of the manifold. Note that in general
U (r+1) /∈ O(d) and only after a certain number of iterations U (r+1) comes close to O(d).
Therefore, the fixed point U of the Landing algorithm admits

grad ℓ(U) = −λ
[
UUT − Id

]
U.

If U ∈ O(d), once again the gradient vanishes.
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4.2. Convergence analysis

In the previous subsection, we observed that if the algorithms converge, the fixed point
U ∈ SO(d) admits grad(U) = 0. Yet, it may not necessarily be global minima, unless
the function ℓε is geodesically convex [11, Corollary 11.18]. The latter is not true as the
following theorem shows, see [51].

Theorem 4.1. Let F : SO(d) → R be a continuous geodesically convex function on
SO(d). Then, F is constant.

Consequently, convergence to a global minimum of either of the methods depends on
the initial guess U (0). In the following, we focus on the Riemannian gradient descent and
derive its local sublinear convergence. As for the Landing algorithm, its local convergence
to the global minimizer remains an open problem. We start with the following sublinear
convergence result.

Theorem 4.2. There exist L > 0 such that the sequence {U (r)}r≥0 generated by Rieman-
nian gradient descent for (20) with step sizes νr = ν ≤ 1/L admits

ℓε(U
(r+1))− ℓε(U

(r)) ≤ − 1
2L

∥∥∥grad ℓε(U (r))
∥∥∥2
F
, r ≥ 0. (23)

Furthermore, {ℓε(U (r))}r≥0 converges and grad ℓε(U
(r)) → 0 as r → ∞.

Proof. We first note that ℓε(U) > 0 for all U ∈ Rd×d. Then, the convergence results follow
from (23) via [12, Theorem 2.5]. Hence, we only need to show that (23) holds, which is,
in turn, guaranteed by [12, Lemma 2.7]. Therefore, let us check that all the conditions of
[12, Lemma 2.7] are satisfied. The manifold SO(d) is a compact Riemannian submanifold
of Rd×d. Furthermore, ℓε is a continuously-differentiable function on a compact set, and,
hence, it is Lipschitz-continuous [46, Corollary 6.4.20].

Theorem 4.2 only ensures convergence of manifold optimization to a fixed point and not
necessarily to a global minimum, which is a typical outcome in nonconvex optimization.
Let us define

ℓ∗ := min
U∈SO(d)

ℓε(U), M := argmin
U∈SO(d)

ℓε(U), and F := {U ∈ SO(d) : grad ℓε(U) = 0}.

The next result ensures that by initializing Riemannian gradient descent in a neighborhood
of the global minima, it will converge to it.

Theorem 4.3. There exists a level set {U ∈ SO(d) : ℓε(U) ≤ ℓ∗ + q∗} with q∗ > 0 that
contains all global minimizers M and no other fixed points F of ℓ. Consequently, if
U (0) ∈ {U : ℓε(U) < ℓ∗ + q∗}, the sequence generated by Riemannian gradient descent
with step sizes as in Theorem 4.2 converges to a global minimum of ℓε.

Proof. The main idea of the proof is to show that there exists an open neighborhood of
M such that it does not contain other critical points F\M or in other words that M is
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isolated from F\M. Then, we will show that ℓε on F\M is strictly larger than ℓ∗ and it
is possible to find suitable q∗ > 0.

The proof is based on the Łojasiewicz inequality. We say that function ℓε satisfies
Łojasiewicz inequality at point U ∈ SO(d) if there exists δ > 0 such that for all V ∈ SO(d),
∥U − V ∥F ≤ δ the inequality∥∥grad ℓε(V )

∥∥
F
≥ c|ℓε(U)− ℓε(V )|1−ζ

holds for some c > 0 and ζ ∈ [0, 1/2). By [45, Proposition 2.2 and Remark 1], for an
analytic function on an analytic manifold1, Łojasiewicz inequality is satisfied at every
point on the manifold. SO(d) is analytic and ℓε ∈ C∞(r) is analytic as a superposition
of a square root and a positive polynomial. Consequently, for each U ∈ M we can find
an δ = δ(U) > 0 from Łojasiewicz inequality.

Next, we show by contradiction that there exists a threshold q∗ > 0 such that ℓε(U) >
ℓ∗ + q∗ on F\M. Assume that the opposite holds and for every q > 0 there exists
U = U(q) ∈ F\M such that ℓε(U(q)) ≤ ℓ∗ + q. Then, let us consider a sequence
{U(1/k)}k≥1 ⊆ F\M. Since F\M ⊆ SO(d) and SO(d) is compact, {U(1/k))}k≥1 is
bounded and there exists a convergent subsequence {U(1/kj)}j≥1 with limit U∗. By
construction, U∗ ∈ F and it admits

ℓ∗ ≤ ℓε(U
∗) = ℓε

(
lim
j→∞

U(1/kj)

)
= lim

j→∞
ℓε
(
U(1/kj)

)
≤ lim

j→∞
ℓ∗ +

1

kj
= ℓ∗,

so that U∗ ∈ M. However, from the convergence it follows that there exists j0 ∈ N such
that for all j ≥ j0 we have

∥∥U∗ − U(1/kj)
∥∥
F
< δ(U∗). The Łojasiewicz inequality then

gives
0 =

∥∥grad ℓε(U(1/kj))
∥∥
F
≥ c|ℓε(U∗)− ℓε(U(1/kj))|1−ζ ≥ 0,

which is only possible if U(1/kj) ∈ M and ℓε(U(1/kj)) = ℓ∗. Yet, it contradicts
U(1/kj) ∈ C\M. Therefore, we obtain the contradiction. We also note that the scenario
of a global minimum at infinity is impossible as SO(d) is compact.

Thus, there exists q∗ > 0 such that ℓε(U) > ℓ∗ + q∗ for all U ∈ F\M. Consequently,
all fixed points in the set L := {U ∈ SO(d) : ℓε(U) ≤ ℓ∗ + q∗} are global minimizers of ℓε.
If U (0) ∈ L, by Theorem 4.2, the sequence {U (r)}r≥0 generated by Riemannian gradient
descent will remain in L and converge to a point in L ∩ F = M.

Theorem 4.3 has a flavor of standard convergence results based on Łojasiewicz-type
inequalities, e.g., [2, Theorem 2.2] or [4, Theorem 3.3]. Although commonly a linear con-
vergence is expected in a neighborhood of the accumulation point, a stronger assumption
on the function is required. For instance, the exponent ζ in the Łojasiewicz inequality
has to be 1/2, which is known as the Polyak-Łojasiewicz inequality. For C2 functions, it
is equivalent to a number of other well-known conditions [44]. We refer the interested
reader to Section 1.3 of [44] for an extensive literature overview on the topic. While there
are some rules on the computation of Łojasiewicz exponents [33, 52], the establishment of
local linear convergence in the case of (20) remains a topic of future research.

1According to Definition 2.7.1 in [30]
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5. Numerical results

In the following section, we will first investigate the performance of the manifold optimiza-
tion method for sparsifying a set of symmetric matrices. Furthermore by applying the
three-step algorithm consisting of vertex minimization, finest connected component de-
composition and sparse component decomposition in order to find an optimal U ∈ SO(d)
for a set of functions, we demonstrate that the gradients and Hessians admit the optimal
sparsity patterns. For two test functions, we show that our algorithm finds U ∈ SO(d)
such that fU exhibits the correct sparse ANOVA decomposition. 2

To run the numerical experiments we have used the following libraries: pytorch [41],
numpy [20] for the general computations, RiemannianSGD from geoopt [29] to perform the
Riemannian gradient descent and LandingSGD from [1] to execute the Landing procedure.
To compute the ANOVA-terms in section 5.2, we have used the tntorch library [50]. All
computations were performed on a NVIDIA RTX A6000 48GB graphics card.

5.1. Manifold optimization on SO(d) for jointly sparsifying a set of
symmetric matrices

Creating jointly sparsifiable symmetric matrices

In order to test the feasibility of the manifold optimization methods for jointly sparsifying
matrices we create sets of nonsparse matrices where we know that they can be made
jointly sparse through conjugation with an orthogonal matrix. Let J ⊆ [d]× [d] be a set
of jointly nonsparse entries. The matrices H̃n, 1 ≤ n ≤ N , are constructed by sampling
(H̃n)i,j = (H̃n)j,i ∼ Unif[−1, 1] whenever (i, j) ∈ J and setting the rest of the entries to
zero. Then, with randomly drawn R ∈ SO(d), we take

HR(J) :=
{
Hn := RT H̃nR : 1 ≤ n ≤ N

}
as input data for edge minimization.

Remark 5.1. For generically chosen H̃n and R we have that dim span(HR(J)) =
dim span(H(J)) = |J |. Thus by Lemma 3.12 we know that for any minimizer U ∈ SO(d)
of ℓε it holds that UTHR(J)U has exactly |J | nonzero entries.

Creating noisy data. Additionally, to investigate whether the manifold optimization
procedures are robust towards noise, we define the set

HR(J, σ) := {H + ζH : H ∈ HR(J)}

where each entry (ζH)i,j ∼ N (0, σ2) is drawn from a Gaussian distribution with mean 0
and variance σ2.

2The code for our examples is available at https://github.com/fatima0111/Sparse-Function-
Decomposition-via-Orthogonal-Transformation.
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Details of the manifold optimization

Reducing complexity. To reduce the time complexity of the algorithm an approximate
basis of the span(HR(J)) resp. span(HR(J, σ)) is computed via SVD. Choose a threshold
τ and use SVD on HR(J) resp. HR(J, σ) to find all orthonormal vectors corresponding
to singular values s ≥ τ . We denote the set of these orthonormal vectors by HR(J) resp.
HR(J, σ). Note that even for HR(J) the threshold τ is necessary since numerical errors
may occur. Then, for H = HR(J) or H = HR(J, σ), we minimize

ℓH(U) :=
1√
|H|

∑
(i,j)∈[d]2

( ∑
H∈H

(UTHU)2i,j + ε
) 1

2 . (24)

Note that we included the diagonal entries as they provide information on whether the
function depends only linearly on the variables.

Random initialization. Since the loss function is not convex, an appropriate initialization
is needed. The random initialization method consists of generating randomly 5 angles
α1, · · · , α5 ∈ Θd from the uniform distribution and to compute the corresponding rotation
matrices Rαk

, k = 1, · · · , 5 according to (33). Each rotation matrix will be used to
initialize the Riemannian gradient descent or Landing method for only 5 · 103 iterations
to obtain the matrices R̂αk

. Let

ℓ 1
2
,2

(
U
)
:=

1√
|H|

( d∑
i,j=1

( ∑
H∈H

(UTHU)2i,j
) 1

4

)2
and use as the random initializer

R0
RI := argmin

1≤k≤5
ℓ 1
2
,2

(
R̂αk

)
.

Note that we used ℓ 1
2
,2 here because it better approximates the sparsity norm ∥ · ∥0,∞.

Grid search initialization. For the grid search in Section C.1 and for h ∈ {1, 0.5, 0.25, 0.125, 0.1}
and Γ(h) a grid as in (34) we let

R0
h := argmin

R∈Γ(h)
ℓ 1
2
,2(R).

For d = 5 we only use this method for h = 1 due to high computational complexity.

Convergence and performance of the manifold optimization methods

For d = 2, 3, 4, 5 we applied the manifold optimization methods for minimizing ℓH, see
(24). For every dimension d we created 100 sets of jointly sparsifiable symmetric matrices
HR(J) resp. HR(J, σ) where J was chosen randomly with the constraint that
Convergence. Note that the minimum of our objective (24) is unknown but we know
that RTHR(J)R admits the optimal sparsity pattern. Let U (r) be the output of the
manifold optimization at iteration r. We then compare ℓH(U

(r)) with ℓH(R
T ) Figure 4
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d = 2 d = 3 d = 4 d = 5

1 ≤ |J | ≤ 3 6 7 11

in order to analyze the convergence of the manifold optimization methods. It shows that
especially for d ∈ {4, 5} initialization with grid search admits a better convergence than
random initialization which is in line with Corollary C.3. The Landing method and the
Riemannian gradient descent quantitatively give similar results both in objective value
and runtime, see Figure 4 and Table 8 in Appendix D.

Figure 4: Mean optimality gap ℓH
(
U (r)

)
− ℓH

(
RT
)

over 100 experiments. Top: Noise-free
matrices. Bottom: Noisy matrices. RI denotes random initialization and h uses the
grid search with the corresponding grid density value. Subscripts Rgd and La stand
for Riemannian gradient descent and Landing algorithm, respectively.

Sparsifying performance. Since ℓε approximates ℓ, we will only obtain approximate
sparsity and use an upper threshold instead of the ∥ · ∥0,∞ norm as follows. For H ∈ Rd×d,
we define |H| = (|Hi,j |)(i,j)∈[d]2 and

H̄ :=
1

n

∑
H∈H

|H| ∈ Rd×d,
(
H̄η

)
ij
:=

{
0, if H̄ij ≤ η,

H̄ij , otherwise,

where H = UTHR(J)U . Thus we can compare the sparsity up to a level of η by

χ(U, η) :=
∥∥H̄η

∥∥
0
− |J |. (25)

The quantity χ(U, η) measures how far from the optimal sparsity UTHR(J)U is, details
about the results can be found in Appendix D.
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To highlight the impact of the thresholding parameter η on the sparsity, we consider a
failure ratio R as a mean

Ratio R :=
1

100

100∑
j=1

min{1, χ(Uj , η)} (26)

of 100 experiments with resulting matrices Uj . To evaluate how well our rotation matrices
U obtained from noisy data sparsify the noiseless matrices, we apply the matrices U to
H(J). The results are displayed in Figure 5 where the ratio of the algorithm not finding
the optimal sparsity is plotted over the level η. It shows that initialization with grid search
for small h is beneficial especially in dimension d ∈ {4, 5} while the comparison of manifold
optimization by means of Landing or Riemannian gradient descent is inconclusive.

Figure 5: Failure ratio R (26) of suboptimal joint sparsity reconstructions for a given
thresholding parameter η. First row: Clean data. Second row: Noisy data with
additive random Gaussian noise N (0, σ), σ = 10−3.

5.2. Performance of the sparsifying algorithm on test functions

To illustrate the performance of our three-step algorithm from Section 3 consisting of
vertex minimization, finest connected component decomposition and sparse component
decomposition we apply it to 50 functions. Each test function f : Br(d) → R with
10 ≤ d ≤ 15 arguments is determined in the following way. First, a function f̃ with sparse
E(f̃) is constructed by randomly partitioning [d] into connected components with 2 to 4
vertices. For each of the components, the edges (j, k) are picked at random. Then, we set
f̃ as

f̃(x) :=
∑

(j,k)∈E(f̃)

cjkgjk,1(xj)gjk,2(xk)
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where the coefficients cjk are drawn from the interval [5, 20] and functions gjk,1, gjk,2 are
drawn from the set

S :=
{
x+ t, xt,

3
√
x2 + t2, sin (tx) , cos (tx) , e−(x−t)2 : t ∈ {1, 2, 3}

}
.

At last, a random rotation of the coordinates f(x) = f̃(Rx) is applied. Moreover, to show
that our three-step algorithm is robust towards additive noise, consider the noise function

N(x) :=
1

2000

∑
µ∈Gd

exp

(
−1

2
(x− µ)TZ−1(x− µ)

)
, (27)

where Gd = {(x1, . . . , xd) : xi ∈ {−1/2, 3/2}}, Z = 0.5Id. The noisy test functions are
then

fn := f +N.

We sample for each function N = 100d points where we compute the gradient and
Hessians in order to apply the algorithm. We compare the convergence of the different
manifold optimization as follows. For a function f resp. fn we apply the first two
steps, the vertex minimization is done via SVD and the finest component decomposition
(18) which always resulted in the correct number of relevant variables resp. block sizes.
Then, for each collection of blocks Hk = {HU,k

n : 1 ≤ n ≤ N}, 1 ≤ k ≤ K, we use
either random initialization or grid search initialization followed by either Landing or
Riemannian gradient descent for r steps on each block. Afterwards, we compute the loss
(24) of each block, sum over all blocks

ℓH :=
K∑
k=1

ℓHk
. (28)

and take the mean over 50 trials. The results shown in Figure 6 and Figure 7 indicate
that grid search with smaller h converges faster and to lower function values than random
initialization. For comparing the sparsifying performance, we compute the ratio of
functions where the algorithm does not find the optimal sparsity of Hessians. It is smaller
for grid search initialization with small h compared to random initialization as can be
seen in the second column of Figure 6 and Figure 7. This is true for both the clean and
the noisy functions. There is no substantial difference for the comparison of the Landing
method and the Riemannian gradient descent.

5.3. ANOVA decomposition

To illustrate the dependency of the higher-order ANOVA terms on the first- and second-
order derivatives discussed in Section 2 we will consider two 7-dimensional sparse additive
test functions f : Br(7) → R defined as

1. f̃1(x) = 5e−(x1−1)2(x4+1)+7 sin(2x1)x
3
7+10 cos(2x2)(x5+3) where the connected

components of G(f) correspond to

B1 =
{
{x1, x4, x7} , {x2, x5}

}
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Figure 6: Mean optimality gap ℓH(U
(r))− ℓH(R

T ) and failure ratio R for 50 noise-free
functions, see (28) and (26) respectively. RI denotes random initialization and
h uses the grid search with the corresponding grid density value. Subscripts
Rgd and La stand for Riemannian gradient descent and Landing algorithm,
respectively.

Figure 7: Reconstructions for noisy test functions fn with notation as in Figure 6.
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2. f̃2(x) = 5e−(x1−1)2 cos(3x4)+10x1x
3
7+8 sin(x2) cos(x7)+12 cos(2x3) sin(3x5)+6x5x6

with connected components corresponding to

B2 =
{
{x1, x2, x4, x7} , {x3, x5, x6}

}
.

For each test function f̃ i, i = 1, 2 we randomly draw an orthogonal matrix Ri ∈ O(7)
such that f i := f̃ i

Ri are not sparse anymore. Additionally, we add the noise function N
from equation (27) to obtain the noisy functions f i,n = f i +N . As Table 1 shows f i has
no first- or second-order vanishing ANOVA terms anymore.

f = f1 f2

dsp = 1 2 1 2

A(f, dsp,∞) 0.6788 0.2465 0.3421 0.5783

A(f, dsp, 1) 0.3614 0.0453 0.2102 0.1203

Table 1: Minimal values of the Lp-norm, p ∈ {1,∞} among all first- and second-order
ANOVA terms, A(f, dsp, p) := min u⊆[d]

|u|=dsp

∥∥fu,A∥∥p.
We apply our three-step algorithm with the Riemannian gradient descent and a grid-

search initialization procedure with step-size h = 1 to the functions f i, f i,n to obtain the
orthogonal matrices Ui, Ui,n. Table 2 shows that the matrices Ui, Ui,n both applied to f i

yield the correct number of first- and second-order derivatives vanish approximately in the
sense that the empirical L1 resp. L∞ norm is small. Then by Proposition 2.6 all ANOVA
terms (f i

Ui
)u, (f

i
Ui,n

)u have to be approximately zero for all u ⊆ [7] which contains a first-
or second-order term that vanishes. This is confirmed empirically in Figures 8,9,10 where
the ANOVA decomposition and its p-norm was computed empirically.

f = f̃1 f1
U1

f1
U1,n

f̃2 f2
U2

f2
U2,n

G(f,∞) 2 2 2 0 0 0
G(f, 1) 2 2 2 0 0 0

H(f,∞) 18 18 17 16 15 14
H(f, 1) 18 18 18 16 15 15

Table 2: Number G(f, p) :=
∣∣{i ∈ [d] : ∥∂{i}f∥p ≤ 10−4}

∣∣ of small first-order derivatives
and number H(f, p) :=

∣∣{{i, j} ⊂ [d] : i ̸= j and ∥∂{i,j}f∥p ≤ 10−4}
∣∣ of small

second-order derivatives for the ground truth functions f̃ i and for f i
Ui
, f i

Ui,n
where

Ui, Ui,n is the output of the sparsifying algorithm.
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Figure 8: First row: f = f1
U1

. Second row: f = f1
U1,n

. First column: p = ∞. Second
column: p = 1. Blue bars: ∥f∥{i},p := max{i}⊆u⊆[7]

∥∥fu,A∥∥p, in decreasing
order. Orange bars: Lp-norm of the corresponding first-order partial derivative
∥∂{i}f∥p. The green dashed line represents 26max{∥∂{i}f∥p : ∥∂{i}f∥p ≤ 10−4}
corresponding to Theorem 2.6 and the red dashed line represents the truncation
value 10−4.
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Figure 9: First row: f = f1
U1

. Second row: f = f1
U1,n

. First column: p = ∞. Second
column: p = 1. Blue bars: ∥f∥{i,j},p := max{i,j}⊆u⊆[7]

∥∥fu,A∥∥p in decreasing
order. Orange bars: corresponding Lp-norm of the second-order partial deriva-
tive ∥∂{i,j}f∥p. Only the largest 8 terms are displayed. The green dashed line
represents 25max{∥∂{i,j}f∥p : ∥∂{i,j}f∥p ≤ 10−4} corresponding to Theorem
2.6 and the red dashed line represents the truncation value 10−4.
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Figure 10: First row: f = f2
U2

. Second row: f = fn
U2,n

. First column: p = ∞. Second
column: p = 1. Blue bars: ∥f∥{i,j},p := max{i,j}⊆u⊆[7]

∥∥fu,A∥∥p in decreasing
order. Orange bars: corresponding Lp-norm of the second-order partial deriva-
tive ∥∂{i,j}f∥p. Only the largest 8 terms are displayed. The green dashed line
represents 25max{∥∂{i,j}f∥p : ∥∂{i,j}f∥p ≤ 10−4} corresponding to Theorem
2.6 and the red dashed line represents the truncation value 10−4.
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A. Proof of Theorem 2.6

To prove the theorem, we need an auxiliary lemma. The anchored decomposition can
also be described via integrals of mixed partial derivatives as mentioned in [32, Example
2.3] and for Sobolev spaces in [22, Lemma 6].

Lemma A.1. Let f : D → R such that f ∈ C |u|(D). Then the summands in anchored
decomposition (5) can be represented as

fu,c =

∫
Du

∂tuf(tu, c[d]\u)M(tu, xu) dλu(tu),

where

Mu(tu, xu) :=
∏
i∈u

Mi(ti, xi), Mi(ti, xi) :=


1, ci < ti < xi,

−1, xi < ti < ci,

0 otherwise.

Proof. We show the assertion by induction over |u| for u ⊆ [d]. Without loss of generality
assume that ci < xi for all i ∈ [d]. If u = ∅ then the assertion follows directly from the
definition of the projection operator. Let ∅ ̸= v ⊂ [d] and let j ∈ [d] \ v be arbitrary but
fixed. Define ctj := (c1, · · · , cj−1, tj , cj+1, · · · , cd). Assume that the assertion holds for v.
We show that it also holds for u = v ∪ {j}. The Leibniz integral rule [19, Theorem 6.2]
implies on the one hand

hu,c(xu) =

∫
Du

∂j∂vf(tv, tj , c[d]\u)Mv(tv, xv)Mj(tj , xj) dλv(tv) dλj(tj)

=

∫
Ij

∂j

(∫
Dv

∂vf(tv, c
tj
[d]\v)Mv(tv, xv) dλv(tv)

)
Mj(tj , xj) dλj(tj),
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and on the other hand the induction step yields

hu,c(xu) =

∫ 1

−1
∂j

(∏
i∈v

(
Id − Pi,ctj

))
P[d]\v,ctj f(x)


︸ ︷︷ ︸

=f̃(xv,c
tj
[d]\v)

Mj(tj , xj) dλj(tj)

=

∫ xj

cj

∂j f̃(xv, c
tj
[d]\v)dλj(tj) =

∫ xj

cj

∂j f̃(xv, tj , c[d]\{j}) dλj(tj)

= f̃(xv, xj , c[d]\{j})− f̃(xv, cj , c[d]\{j}) = (Id − Pj,c)f̃(xv, xj , c[d]\{j})

= (Id − Pj,c)f̃(xv, c
xj

[d]\v) = (Id − Pj,c)
(∏
i∈v

(
Id − Pi,cxj

))
P[d]\v,cxj f(x).

Since j /∈ v, we have ∏
i∈v

(
Id − Pi,cxj

)
=
∏
i∈v

(
Id − Pi,c

)
,

and the definition of the projection operator and of cxj imply that

P[d]\v,cxj f(x) = f(xv, c
xj

[d]\v) = f(xv, xj , c[d]\(v∪{j})) = P[d]\u,cf(x)

which concludes the proof.

Proof of Theorem 2.6. i) By Lemma A.1, we have for sufficiently smooth f that

∥fv,c∥∞ =

∥∥∥∥∥
∫
Dv

∂tvf(tv, c[d]\v)M(tv, xv) dλv(tv)

∥∥∥∥∥ ≤ ∥∂tvf∥∞λv(Dv).

For w ⊆ [d] let fxw : Rd−|w| → R be the family of functions defined by fxw(x[d]\w) :=
f(xw, x[d]\w). For w := u \ v we have that

fu,c =
∏
i∈u

(Id − Pi,c)P[d]\u,cf =
∏
i∈w

(Id − Pi,c)
∏
j∈v

(Id − Pj,c)P([d]\w)\vf (29)

=
∏
i∈w

(Id − Pi,c)f
xw
v (xv).

Combining with
∣∣∣(Id − Pi,c)g(x[d]\i)

∣∣∣ ≤ 2∥g∥∞ for functions g, we obtain

∥fu,c∥∞ =

∥∥∥∥∥∥
∏
i∈w

(Id − Pi,c)f
xw
v (xv)

∥∥∥∥∥∥
∞

≤ 2|w| sup
xw∈Dw

{∥fxw
v ∥∞}

≤ 2|u|−|v|∥∂xvf∥∞λv(Dv).
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ii) This follows from part i) and the fact that we have by by Proposition 2.3 for the
ANOVA summands

fu,A =

∫
D
fu,c dλ(c).

iii) For w ⊆ [d], let fxw be defined as above and for any disjoint subsets s, t ⊆ [d] let
fxs,ct(x[d]\(s∪t)) = f(xs, ct, x[d]\(s∪t)). For w ⊆ [d] and any commuting linear operators
aj , bj , j ∈ w the following holds

∏
j∈w

(aj − bj) =
∑
s⊆w

∏
j∈s

aj

 ∏
j∈w\s

bj

 . (30)

If we define w := u \ v then equations (29), (30) and (4) imply that

fu,c =
∏
i∈w

(Id − Pi,c)f
xw
v,c[d]\w

=
∑
s⊆w

(−1)|w|−|s|Pw\sf
xw
v,c[d]\w

=
∑
s⊆w

(−1)|w|−|s|f
xs,cw\s
v,c[d]\w .

By proposition 2.3 the ANOVA term fulfills

∥∥fu,A∥∥1 ≤ ∫
Du

∫
D

∣∣fu,c∣∣ dλ(c)dxu =

∫
D

∫
Du

∣∣∣∣∣∣
∑
s⊆w

(−1)|w|−|s|f
xs,cw\s
v,c[d]\w

∣∣∣∣∣∣ dλu(xu)dλ(c)

≤
∑
s⊆w

λ(Dw)

∫
D[d]\s

∫
Dv∪s

∣∣∣fxs,cw\s
v,c[d]\w

∣∣∣ dλv∪s(xv∪s)dλ[d]\s(c[d]\s)

= λ(Dw)
∑
s⊆w

∫
D[d]\w

∫
Dv

∫
Dw

∣∣∣fxw
v,c[d]\w

∣∣∣ dλw(xw)dλv(xv)dλ[d]\w(c[d]\w)

= 2|w|λ(Dw)

∫
D[d]\w

∫
Dv

∫
Dw

∣∣∣fxw
v,c[d]\w

∣∣∣ dλw(xw)dλv(xv)dλ[d]\w(c[d]\w)︸ ︷︷ ︸
=:I

.

Finally, the triangle inequality yields

I =

∫
D[d]\w

∫
Du

∣∣∣∣∣
∫
Dv

∂tvf(tv, c([d]\w)\v, xw)M(tv, xv)dλv(tv)

∣∣∣∣∣ dλ(xu)dλ(c[d]\w)
≤
∫
D[d]\w

∫
Du

∫
Dv

∣∣∣∂tvf(tv, c([d]\w)\v, xw)
∣∣∣ dλv(tv)dλ(xu)dλ(c[d]\w)

= λv(Dv)

∫
D[d]\w

∫
Dw

∫
Dv

∣∣∣∂tvf(tv, c([d]\w)\v, xw)
∣∣∣ dλv(tv)dλ(xw)dλ(c[d]\w)

= λ2
v(Dv)

∫
D[d]\u

∫
Dw

∫
Dv

∣∣∣∂tvf(tv, c[d]\u, xw)∣∣∣ dλv(tv)dλ(xw)dλ(c[d]\u)

= ∥∂tvf∥1λ2
v(Dv).
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By combining all together, we obtain∥∥fu,A∥∥1 ≤ 2|u|−|v|∥∂xvf∥1λu(Du)λv(Dv).

B. Proof of Theorem 3.11

The proof requires a lot of preliminary results. In particular, the uniqueness up to
permutation of blocks and conjugation by orthogonal matrices relies on the theory of
matrix ∗ algebras.

A matrix ∗ algebra A is a subalgebra of the R algebra of n× n matrices Mn(R) which
is closed under taking the transpose i.e. A ∈ A implies AT ∈ A. Let Ai ∈ Mni(R) and
denote by diag(A1, . . . , An) the block diagonal matrix

A1 0 0 0
0 A2 0 0

. . . . . .
. . . 0

0 0 0 An

 .

a subset A ⊆ {diag(A1, . . . , Ak) : Ai ∈ Mñi} we denote by πj the projection onto the j-th
block i.e. πj(diag(A1, . . . , Ak)) = Aj . If A is a matrix ∗ algebra the map πj : A → Mñ(R)
is a morphism of matrix ∗ algebras which means that πj is a R algebra morphism fullfiling
πj(A

T ) = πj(A)
T .

Recall that an R algebra is simple if it does not contain any proper ideals. A matrix algebra
A ⊆ Mn(R) has a canonical representation ρ : A → End(Rn) given by ρ(x) = x which is
called the regular representation of A. We call A irreducible if the regular representation
is irreducible i.e. the regular representation contains no non-trivial subrepresentation.

Remark B.1. An important decomposition of a semisimple algebra is the Artin-Wedderburn
decomposition and we will describe its close relationship to the block diagonalization. While
subalgebras of Mn(R) are not semisimple in general, matrix ∗ algebras subalgebras of
Mn(R) are semisimple R algebras [38, Lemma A.3]. Thus by the Artin-Wedderburn The-
orem [15, Theorem 5.2.4] for every matrix ∗-subalgebra S of Mn(R) there exists division
algebras Di over R and ni ∈ N such that

S ≃ Mn1(D1)× · · · ×Mnj (Dj)

where up to permutation of factors the ni are unique and the Di are unique up to
isomorphism. Note that the individual factors Mni(Di) are simple R-algebras and simple
S modules.

Remark B.2. Note that UTHiU, 1 ≤ i ≤ n has a common block diagonal form if and only
if this is true for every element of the matrix ∗ algebra generated by UTHiU, 1 ≤ i ≤ n.
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This follows from the fact that for U ∈ O(d) we have that

UT (A+B)U = UTAU + UTBU, UTABU = UTAUUTBU

(UTAU)T = UTATU.

In particular if H1, . . . ,Hn generate V∇2f and U ∈ O(d) corresponds to a finest block
diagonalization of H1, . . . ,Hn then fU ∈ MK(GS(f)). Furthermore up to a permutation
matrix every element of MK(GS(f)) is of this form. Thus we can use block diagonalization
results for matrix ∗ algebras in order to find a suitable U ∈ O(d).

While there is algorithms about block diagonalization of matrix ∗ algebras to our
knowledge the uniqueness of the blocks up to orthogonal conjugation of the blocks is not
explicitly stated in the corresponding papers which is why we will briefly discuss it in the
following.
The general strategy for proving the uniqueness of a finest block diagonalization up to
conjugation of the blocks by orthogonal matrices is as follows. Let H1, . . . ,Hn ∈ Md(R)
and let U1, U2 ∈ O(d) correspond to finest block diagonalizations. Denote by Bi the
matrix ∗-algebra generated by UT

i H1Ui, . . . , U
T
i HnUi. Then

• Show that there exists simple matrix ∗-subalgebras Ti,j ⊆ Bi such that

Bi = {diag(Ti,1, . . . , Ti,ni) : Ti,j ∈ Ti,j}.

Show that n1 = n2.

• Denote by φ : B1 → B2 the matrix ∗-isomorphism φ : x 7→ UT
2 U1xU

T
1 U2 and by

φ
∣∣
T1,j

: T1,j → B2 the restriction to T1,j . Show up to permutation of the indices j it
holds φ

∣∣
T1,j

(
T1,j
)
= T2,j . Consequently

φ
∣∣
T1,j

: T1,j → T2,j

is a matrix ∗-isomorphism.

• To conclude the argument we show that a matrix ∗-algebra isomorphism between
simple matrix ∗-algebras S1, S2 ∈ Mn(Rd) which are of finest decomposition can be
described as conjugation of the blocks by orthogonal matrices.
To be more precise let S1 ⊆ {diag(A1, . . . , An) : Aj ∈ Mm(R)} ⊇ S2 be simple
matrix ∗-subalgebras such that the image of the projection πj onto the j-th block
is irreducible. Then for every matrix ∗-isomorphism ϕ : S1 → S2 there exists
Vj ∈ O(d) such that

ϕ(x) = diag(V1, . . . , Vn)
Txdiag(V1, . . . , Vn).

Overall we see that up to a permutation of blocks finest block diagonalizations are unique
up to a orthogonal conjugation of the individual blocks.
The following theorem guarantees the existence of a finest block diagonalization.
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Theorem B.3. [38, Theorem 1] Let T be a ∗ subalgebra of Mn(R). Then there exists
U ∈ O(n) and simple subalgebras Tj ⊆ Mnj s.t.

UTT U = {diag(T1, . . . , Tk) : Ti ∈ Ti}.

Furthermore for a simple subalgebra T ⊆ Mn(R) there exists an irreducible subalgebra
T i ⊆ Mn̂(R) and a V ∈ O(n) s.t.

V TT V = {diag(A, . . . , A) : A ∈ T i}.

Remark B.4. Theorem B.3 also illustrates that for two isomorphic matrix ∗-algebras
S1 ≃ S2 which are both contained in Mn(R) it is not necessarily true that they are
isomorphic as vector spaces. Take e.g. the irreducible matrix ∗-algebra S = Mm(R) and
S1 = {diag(A, 0) : A ∈ S} ⊂ M2m(R) and S2 = {diag(A,A) : A ∈ S} ⊂ M2m(R).

Remark B.5. All finest block diagonalizations correspond to a matrix ∗-algebra decompo-
sition as in Theorem B.3 i.e. the block of a finest block diagonalization are irreducible
matrix ∗-algebras. Otherwise they could be further refined. By Lemma B.7 these irreducible
blocks can be grouped into simple algebras algebras.

We start the rigorous proof with the following auxiliary lemma.

Lemma B.6. Let U correspond to a finest block diagonalization of H1, . . . ,Hn with block
sizes (d1, . . . , dk). Let A be the matrix ∗-subalgebra of Md(R) generated by H1, . . . ,Hn.
Then also UTAU is a matrix ∗-algebra and every a ∈ A is blockdiagonal with block sizes
(d1, . . . , dk). Furthermore the projection πi : U

TAU → Mdi(R) is a ∗-algebra morphism
onto an irreducible subalgebra of Mdi(R).

Proof. It is immediate that UTAU is a matrix ∗-algebra which is block diagonal and
that πi is a ∗-algebra morphism, see also Remark B.2. Assume that the image of πi was
not irreducible. Then according to Theorem B.3 this block could be further refined by
an orthogonal conjugation which would contradict that U corresponds to a finest block
diagonalization.

Next we make sure that the simple components of the Artin-Wedderburn decomposition
show up as, not necessarily finest, blocks in the finest block decomposition.

Lemma B.7. Let H1, . . . ,Hn ∈ Rd×d and assume that U ∈ O(d) corresponds to a finest
block diagonalization. Let A be the matrix ∗-algebra generated by H1, . . . ,Hn and let
d1, . . . , dk be the size of the blocks. Then there exists unique (up to block permutation)
simple matrix ∗-algebras Ti ⊆ UTAU such that

UTAU = {diag(T1, . . . , Tk) : Ti ∈ Ti}

Proof. Let B = UTAU and let B ≃ ⊕k
i=1Ri be the Artin-Wedderburn decomposition into

simple B modules which are also subalgebras (without 1), which exists by Remark B.1.
By abuse of notation denote by Ri also the corresponding subalgebra of B. Let πj be the
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projection of B onto the j-th block. By Corollary B.6 the image of πj is irreducible and
hence in particular simple. Thus Schur’s lemma implies that πj

∣∣∣
Ri

is either zero or an

isomorphism onto the block. Since Ri are orthogonal, we have that if for indices n,m we
have that both πj

∣∣
Rn

̸= 0 and πj
∣∣
Rm

̸= 0, then n = m and the claim follows.

Lemma B.8. Let U1, U2 correspond to finest block diagonalizations and denote by Bi

the matrix ∗-algebras UT
i AUi. Denote by T1,1, . . . , T1,k1 resp. T2,1, . . . , T2,k2 be the simple

matrix ∗ algebras from Lemma B.7. Then k1 = k2 =: k and for φ : B1 → B2 defined by
φ(x) = UT

2 U1xU
T
1 U2 there exists a permutation σ ∈ Σ(k) such that φ(T1,j) = T2,σ(j) and

φ : T1,j → Tσ(j),2 is an isomorphism of matrix ∗ algebras.

Proof. By Artin-Wedderburn k1 = k2. By Schur’s lemma we have that πT2,m ◦ φ
∣∣∣
T1,n

is

either an isomorphism or zero. Since the T1,l are orthogonal we have that if for m,n

it holds that both πT2,j ◦ φ
∣∣∣
T1,m

̸= 0 and ∧πT2,j ◦ φ
∣∣∣
T1,n

̸= 0 then m = n. Hence there

exists a partition [k2] = ∪k1
j=1Ij with Ij = {n ∈ [k2] : πT2,n ◦ φ

∣∣∣
T1,j

̸= 0}. Since φ is an

isomporhism we know that |Ij | ≥ 1. Using that k1 = k2 we can conclude that |Ij | = 1
and thus the claim.

Proposition B.9. Let S ⊆ Mn(R) be an irreducible matrix ∗ subalgebra and let T ⊆
Mñ be a simple matrix ∗ subalgebra isomporhic to S via a matrix ∗ morphism φ :

S → T . Assume furthermore that T ⊆ {diag(A1, . . . , Ak) : Ai ∈ Mn(R)}. Then
there exists V1, . . . , Vk ∈ O(n) such that for V = diag(V1, . . . , Vk) we have that φ(x) =
V Tdiag(x, . . . , x)V .

Proof. By Skolem-Noether there exists matrices W1, . . . ,Wk ∈ GLn(R) such that for
W = diag(W1, . . . ,Wk) we have that φ(x) = W−1diag(x, . . . , x)W . This implies that
for πi the projection of the k-th block we have that πi ◦ φ is an isomorphism of matrix
∗ representations via the map Wi : Rn → Rn. Thus by [38, Lemma A.4] there exists
Vi ∈ O(n) such that πi ◦ φ(x) = V TxV and thus the claim.

Corollary B.10. Let T1 ⊆ Mn(R) and T2 ⊆ Mm(R) be simple isomorphic matrix ∗ algebra
with isomorphism φ. Assume furthermore that Ti ⊆ {diag(A1, . . . , Aki) : Aj ∈ Mñ(R)}
such that the image of the projection onto the ℓ-th block is an irreducible representation.
Then φ induces an isomorphism φi,j : πi(T1) → πj(T2) and there exists a V ∈ O(ñ) such
that φi,j(x) = V TxV .

Proof. There exists an irreducible matrix ∗ algebra S and an isomorphism τ : S → T1.
By Proposition B.9 we have that there exists V1, V2 such that πi ◦ τ(x) = V T

1 xV1 and
πj ◦ φ ◦ τ(x) = V T

2 xV2. Thus we can use V := V −1
1 V2.

Proposition B.11. Let U1, U2 correspond to finest block diagonalizations and denote
by B1, B2 the matrix ∗ algebras UT

1 AU1 resp. UT
2 AU2. Let d1,j , . . . , dkj ,j be the blocks

sizes of Bj and let φ : B1 → B2 be defined by φ(x) = UT
2 U1xU

T
1 U2. Then k1 = k2 =: k
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and there exists a permutation σ ∈ Σ(k) such that di,1 = dσ(i),2 and a block permutation
matrix Pσ and V1, . . . , Vk, Vi ∈ O(di,1) such that φ(x) = V TP T

σ xPσV .

Proof. By Lemma B.7 we know that there exists a decomposition of B1, B2 into simple
algebras which have disjoint block form. By Lemma B.8 there exists a permutation of
simple blocks such that φ maps a simple block isomorphically to exactly one simple block.
Since φ does preserve the rank of matrices the corresponding simple blocks must be of
same dimension. By Corollary B.10 the claim follows.

C. Algorithmic Details

C.1. Grid search and initialization close to a global minimum

According to Lemma 4.1, the loss function ℓε is not geodesically convex, and, thus,
convergence to a global solution is not guaranteed. By Theorem 4.3, the Riemannian
gradient descent method converges locally with suitable step sizes. To find a good starting
point U ∈ SO(d), we establish a grid search procedure on SO(d). Its main idea is to
compute the loss on the discrete subset Γ ⊂ SO(d) and initialize the gradient-descent
method with the minimizer of

U = argmin
V ∈Γ

ℓε(V ). (31)

The benefit of working with SO(d) is that it can be parametrized by d(d− 1)/2 angles.
Let us consider the Jacobi rotation matrix with parameters r ∈ [d− 1] and α ∈ [0, 2π)
given by

Rr,r(r, α) = cos(α) Rr,r+1(r, θ) = − sin(α) Rj,j(r, α) = 1, j /∈ {r, r + 1},
Rr+1,r(r, α) = sin(α), Rr+1,r+1(r, α) = cos(α), Ri,j(r, α) = 0 otherwise.

(32)

Then, every SO(d) matrix factorizes into a product of d(d− 1)/2 Jacobi matrices.

Proposition C.1 ([27]). Let d ≥ 2. For every U ∈ SO(d), there exist vectors

αr = (αr
1, · · · , αr

r) ∈ [0, 2π)× [0, π)r−1, r ∈ [d− 1],

such that

U = U(α) =
d−1∏
r=1

r∏
j=1

R(d− 1− r + j, αr
j). (33)

Proposition C.1 provides a parametrization of U ∈ SO(d) by a vector of angles
α ∈ [0, 2π)d−1 × [0, π)(d−1)(d−2)/2 ⊂ Rd(d−1)/2. In the context of the grid search, the
main benefit of the angle representation of SO(d) is the possibility to construct lattices
efficiently. Let

Θ(a, h) := {kh : k ∈ ⌈a/h⌉} and Θ(h) := Θ(2π, h)d−1 ×Θ(π, h)(d−1)(d−2)/2
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be one- and multidimensional lattices, respectively. Then, we define Γ in (31) as

Γ := Γ(h) = {U(α) ∈ SO(d) : α ∈ Θ(h)}. (34)

Then, for such Γ we have the following results.

Proposition C.2. Let h ∈ (0, 1). Then, for every V ∈ SO(d) there exists α ∈ Θ(h) such
that ∥∥V − U(α)

∥∥
F
≤ d(d− 1)h.

Proof. Proposition C.1 allows to parametrize V by angles β ∈ [0, 2π)d−1×[0, π)(d−1)(d−2)/2

such that

V = V (β) =

d−1∏
r=1

r∏
j=1

R(d− 1− r + j, βr
j ) =:

d(d−1)/2∏
k=1

Rk(β),

where in the last equality we introduced a short single indexed notation. Then, for any
α ∈ Θ(h), using the telescopic sum, we get

∥∥U(α)− V (β)
∥∥
F
=
∥∥∥ d(d−1)/2∏

k=1

Rk(α)−
d(d−1)/2∏

k=1

Rk(β)
∥∥∥
F

=
∥∥∥ d(d−1)/2∑

n=1

[ n−1∏
k=1

Rk(α)
] (

Rn(α)−Rn(β)
) [ d(d−1)/2∏

k=n+1

Rk(β)
]∥∥∥

F

≤
d(d−1)/2∑

n=1

∥∥∥[ n−1∏
k=1

Rk(α)
]
(Rn(α)−Rn(β))

[ d(d−1)/2∏
k=n+1

Rk(α)
]∥∥∥

F

=

d(d−1)/2∑
n=1

∥∥∥Rn(α)−Rn(β)
∥∥∥
F
.

The last equality follows from the fact that the Frobenius norm is invariant under left and
right multiplication with orthogonal matrices. Next, recall that for every n ∈ [d(d− 1)/2]
there exists a unique pair r ∈ [d− 1] and j ∈ [r] such that∥∥Rn(α)−Rn(β)

∥∥2
F
=
∥∥∥R(d− 1− r + j, αr

j)−R(d− 1− r + j, βr
j )
∥∥∥2
F

= 2(cos(αr
j)− cos(βr

j ))
2 + 2(sin(αr

j)− sin(βr
j ))

2 ≤ 4|αr
j − βr

j |2,

where used definition (32) of R and that cosine and sine are Lipschitz-1 functions. By
construction of Θ(h) there exists α ∈ Θ(h), such that |αr

j − βr
j | < h for all r, j. Thus, we

conclude that

∥∥U(α)− V (β)
∥∥
F
≤ 2

d(d−1)/2∑
n=1

|αr
j − βr

j | < 2hd(d− 1)/2 = d(d− 1)h.
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In other words, Γ is a hd(d− 1)-net over SO(d). Hence, for sufficiently small h, the
minimizer of (31) will be in the neighborhood where local convergence of Riemannian
gradient descent is guaranteed.

Corollary C.3. For 0 < h < 1, let U(h) denote the minimizer of (31) with Γ(h) given by
(34). Then, there exists h > 0, such that U(h) belongs to a level set defined in Theorem
4.3. Consequently, the sequence generated by Riemannian gradient descent with step sizes
as in Theorem 4.2 and initial guess U (0) = U(h) converges to a global minimum of ℓε.

Proof. By Theorem 4.3, the all fixed points in the set L := {U ∈ SO(d) : ℓε(U) < ℓ∗+q∗}
are global minimizers of ℓε over SO(d). It is open as a preimage ℓ−1

ε ((−∞, ℓ∗ + q∗)) of an
open set via continuous function. Let U∗ ∈ L be an arbitrary global minimizer of ℓε over
SO(d). Since L is open, the open ball {U ∈ SO(d) :∥U − U∗∥F < δ} is contained in L for
some δ > 0. Then, by Proposition C.2 with h = δ/d(d− 1), we can find Ub ∈ Γ satisfying
∥Ub − U∗∥F < δ and, hence, Ub ∈ L. Consequently, the minimizer U(h) of (31) admits

ℓε(U(h)) = min
U∈Γ

ℓε(U) ≤ ℓε(Ub) < ℓ∗ + q∗,

so that U(h) ∈ L. The rest of the claim follows from Theorem 4.3.

We summarize the manifold optimization methods for in Algorithm 2.

Algorithm 2 Manifold optimization for edge minimization
Input Diagonal blocks Bn as in (18), n ∈ [N ], step sizes {νr}r≥0, grid search density
h ∈ (0, 1), smoothing ε > 0.
Construct Γ(h) as in (34) and compute U (0) as the minimizer of (31).
for r = 0,1,. . . do

Compute U (r+1) via (21) or (22) with step sizes νr.
Check the stopping criteria.

end for
Return: {U (r)}r≥0.

C.2. Computational complexity

The main drawback of computation complexity is the necessity to evaluate the function
value for every U ∈ Γ. By construction (34), it leads to an exponential number of
elements,

|Θ(h)| =
(⌈2π

h

⌉)d−1(⌈π
h

⌉) (d−1)(d−2)
2

.

Therefore, the grid search is only available for small dimension d and requires efficient
computation of matrices U ∈ Γ and corresponding values ℓε(U).

Given that Algorithm 2 is applied to blocks BU,k in (18), the dimension of the problems
is small as a result of splitting the graph into the finest connected components and
optimizing the edges for each of them.
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Furthermore, to avoid possible memory issues, the grid Θ(h) is split into blocks. First,
the minimizer of ℓ(U) within the blocks is computed, and then U in (31) is taken as the
minimum among the blocks.

As for the computation of U , the construction of rotation matrices (32) leads to a fast
multiplication with other matrices. Let A = (a1 . . . ad) ∈ Rd×d. Then, for arbitrary
r ∈ [d− 1], α ∈ [0, 2π), the product AR(r, α) has is given by(

a1 . . . ar−1 cos(α)ar + sin(α)ar+1 cos(α)ar+1 − sin(α)ar ar+1 . . . ad

)
,

and requires only 4d operations. Using this, any U ∈ Γ can be efficiently computed using
O(d3) operations.

The computational complexity of Algorithm 2 is summarized in Tabular 3.

Grid search
Number of grid points Θ(h) O

(
(⌈2π/h⌉)d(⌈π/h⌉)d2

)
Matrix U ∈ Γ O(d3)
Loss function ℓ(U) O(Nd3)

Total O
(
Nd3(⌈2π/h⌉)d(⌈π/h⌉)d2

)
Manifold Optimiztion

Riemannian/Euclidean gradient O(Nd3)
Riemannian gradient descent (21) O(KNd3)
Landing (22) O(KNd3)

Table 3: Number of operations for the grid search and for K iterations of the manifold
optimization method. Here d is the dimension, N the number of Hessians and h
the density of the grid.

D. Additional numerical results

A more detailed analysis for the results of Figure 5 are given for η = 10−9 (noise
free Hessians), and η = 10−4 (noisy Hessians) in tables 4, 5, 6, 7. They indicate
that the sparsifying performance is better for the grid search initialization for small h
compared to random initialization for dimensions d ∈ {4, 5} for both clean and noisy data.
Riemannian gradient descent performs better than the Landing method on clean data but
the comparison on noisy data is inconclusive. Table 8 shows that when the underlying
dimension d is small, there is no significant difference between the two methods regarding
the time complexity. The only case where we can get improvement from Landing is
runtime for large d [1]. In addition, as expected, the runtime effort for the calculation
of the rotation matrices U ∈ Γ(h) and the losses ℓ(U) increases with the dimension d,
the step size h and the number of Hessians N . Furthermore, we see that the runtime of
the grid search method for the step sizes considered in our numerics is still low and the
grid-search initialization provides better results than the random initialisation method.
To apply the grid search method more efficiently to more than 1 set of matrices, it is
beneficial to calculate the rotation matrices only once, and reuse then for any set of
matrices.
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Clean data Noisy data σ = 10−3

Rgd Landing Rgd Landing
i 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3

Random initialization 100 0 0 0 100 0 0 0 98 2 0 0 98 2 0 0

Grid-Search
initialization

h = 1 100 0 0 0 100 0 0 0 98 2 0 0 98 2 0 0
h = 0.5 100 0 0 0 100 0 0 0 98 2 0 0 98 2 0 0
h = 0.25 100 0 0 0 100 0 0 0 98 2 0 0 98 2 0 0
h = 0.125 100 0 0 0 100 0 0 0 98 2 0 0 98 2 0 0
h = 0.1 100 0 0 0 100 0 0 0 98 2 0 0 98 2 0 0

Table 4: Number of set of matrices such that diff χ(U, η) = i (see (25)) and input dimension
d = 2, η = 10−9, 10−4 for clean resp. noisy data. Rgd: Riemannian gradient descent.

Clean data Noisy data σ = 10−3

Rgd Landing Rgd Landing
i 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3

Random initialization 98 0 0 2 87 0 5 8 98 1 1 0 95 2 3 0

Grid-Search
initialization

h = 1 99 1 0 0 91 1 0 8 98 1 1 0 98 1 1 0

h = 0.5 100 0 0 0 91 0 0 9 99 0 1 0 99 0 1 0
h = 0.25 100 0 0 0 91 0 0 9 99 0 1 0 99 0 1 0
h = 0.125 100 0 0 0 92 0 0 8 99 0 1 0 99 0 1 0
h = 0.1 100 0 0 0 92 0 0 8 100 0 0 0 100 0 0 0

Table 5: Same as table 4 for input dimension d = 3.

Clean data Noisy data σ = 10−3

Rgd Landing Rgd Landing
i 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3

Random initialization 86 1 8 5 57 2 21 20 84 6 7 3 88 1 11 0

Grid-Search
initialization

h = 1 94 3 2 1 84 1 7 8 92 5 2 1 92 5 2 1

h = 0.5 98 0 1 1 87 0 7 6 96 2 2 0 96 2 2 0
h = 0.25 100 0 0 0 89 0 6 5 99 1 0 0 99 1 0 0
h = 0.125 100 0 0 0 89 0 6 5 99 1 0 0 99 1 0 0
h = 0.1 100 0 0 0 89 0 6 5 99 1 0 0 99 1 0 0

Table 6: Same as table 4 for input dimension d = 4

Clean data Noisy data σ = 10−3

Rgd Landing Rgd Landing
i 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3

Random initialization 71 4 13 12 37 7 13 43 70 9 9 12 74 5 8 13

Grid-Search
initialization

h = 1 93 2 4 1 85 2 8 5 93 2 4 1 93 2 4 1

Table 7: Same as table 4 for input dimension d = 5
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Input
dimension

Random Init. Grid-search Init.

Rgd La Rotation U ∈ Γ(h) Losses ℓ(U), U ∈ Γ(U)
1 0.5 0.25 0.125 0.1 1 0.5 0.25 0.125 0.1

d = 2 29.36 33.36 0.0010 0.0009 0.0008 0.0008 0.0008
0.0003 0.0003 0.0003 0.0003 0.0003
0.0009 0.0009 0.0009 0.0009 0.0009

d = 3 29.39 32.18 0.0211 0.0211 0.0211 0.0213 0.0215
0.0032 0.0032 0.0032 0.0035 0.0041
0.0194 0.0193 0.0193 0.0210 0.0244

d = 4 29.66 32.50 0.6105 0.7062 2.0015 11.3731 168.4473
0.0343 0.0761 0.1732 5.9366 12.4121
0.3434 0.7612 1.7323 59.3655 124.1206

d = 5 29.77 32.55 23.5289 − − − − 1.1344 − − − −
17.0158 − − − −

Table 8: Mean runtime in seconds(s) for the 5-time random initialisation method with K = 5 ·103
iterations and the grid search initialisation (step size h = 1, 0.5, 0.25, 0.125, 0.1) procedure
over 10 random chosen examples out of the 100 randomly generated examples for
dimension d = 2, 3, 4, 5. For each dimension d = 2, 3, 4, 5 the first row in the subtable
losses ℓ(U), U ∈ Γ(U) denotes the minimal runtime for N = 1 Hessians and the second
row the maximal runtime for N = d(d + 1)/2 Hessians. Rgd: Riemannian gradient
descent. La: Landing method.
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