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Exact distance Kneser graphs

Agustina Victoria Ledezma ∗ Adrián Pastine † Mario Valencia-Pabon‡

Abstract

For any graph G = (V,E) and positive integer d, the exact distance-d graph G
=d is the graph

with vertex set V , where two vertices are adjacent if and only if the distance between them in
G is d. We study the exact distance-d Kneser graphs. For these graphs, we characterize the
adjacency of vertices in terms of the cardinality of the intersection between them. We present
formulas describing the distance between any pair of vertices and we compute the diameter of
these graphs.

Keywords: exact distance graphs, Kneser graphs, Kneser-like graphs, diameter of graphs.

1 Introduction and main results

Let G be a connected graph. Given two vertices a and b in G, distG(a, b), the distance between a
and b, is defined as the length of the shortest path in G joining a to b. The diameter of G, denoted
diam(G), is defined as the maximum distance between any pair of vertices in G.

The concept of exact distance-d graph, where d is a positive integer, was introduced by Nes̆etr̆il
and Ossona de Mendez [11] (Section 11.9). Formally, if G = (V,E) is a graph, the exact distance-d
graph G=d of G is the graph with vertex set V and where two vertices a and b in G=d are adjacent
if and only if distG(a, b) = d. Note that G=1 = G.

The main focus in early research of exact distance graphs was on their chromatic number
[2, 8, 11, 12]. The exact distance graphs have been much earlier considered for hypercube graphs in
the frame of the so-called cube-like graphs [5, 9, 15]. More recently, Bres̆ar et al. [3] considered the
structure of exact distance graphs of some graph products. They remarked that the exact distance
graphs are not only interesting because of the chromatic number, but also as a general metric graph
theory concept.

Let k and r be positive integers and let [2k + r] = {1, 2, . . . , 2k + r}. Let [2k + r]k be the set
of k-subsets of [2k + r]. The Kneser graph K(2k + r, k) is the graph with vertex set [2k + r]k and
where two k-subsets A,B ∈ [2k + r]k are joined by an edge if A ∩B = ∅. Note that K(5, 2) is the
well-known Petersen graph. It is easy to show that the Kneser graph K(2k + r, k) is a connected
regular graph having

(2k+r
k

)

vertices of degree
(k+r

k

)

. Theoretical properties of Kneser graphs have
been studied in past years (see for example [7, 10, 13, 14] and references therein).

Stahl shows in [13] the following result.
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Lemma 1.1 ([13]). Let A,B ∈ [2k + r]k be two vertices in K(2k + r, k) joined by a path of length
2p (p ≥ 0). Then |A ∩B| ≥ k − rp.

The following result is a consequence of Lemma 1.1.

Corollary 1.2. Let A,B ∈ [2k+r]k be two vertices in K(2k+r, k) joined by a path of length 2p+1
(p ≥ 0). Then |A ∩B| ≤ rp.

Valencia-Pabon and Vera [14] shown the following results.

Proposition 1.3 ([14]). Let k and r be positive integers, with k ≥ 2 and r ≥ k − 1. Then
diam(K(2k + r, k)) = 2.

Lemma 1.4 ([14]). Let A,B ∈ [2k+ r]k be two different vertices of the Kneser graph K(2k+ r, k),
where 1 ≤ r < k − 1. If |A ∩B| = s then

dist(A,B) = min

{

2

⌈

k − s

r

⌉

, 2
⌈s

r

⌉

+ 1

}

.

Theorem 1.5 ([14]). Let k and r be positive integers. Then diam(K(2k + r, k)) =
⌈

k−1
r

⌉

+ 1.

There are some generalizations to Kneser-like graphs in the literature (see for example [1, 4, 6, 7]
and references therein). Let K(n, k, i) be the generalized Kneser graph, i.e. the graph with vertex
set [n]k and the edges connecting all pairs of vertices with intersection smaller that i. Denote by
J(n, k, i) the generalized Johnson graph, i.e. the graph with the same vertex set [n]k and edges
connecting all pairs of vertices with intersections exactly i. In particular, in [4] the distance between
two vertices ofK(n, k, i) was characterized in terms of the size of their intersection, and the diameter
of the graph was computed. These results are given in Theorems 1.6 and 1.7.

Theorem 1.6 ([4]). Let A and B be two vertices in K(n, k, i), where n = 2k − i+ r and 0 ≤ r <
k − 2i− 1. If |A ∩B| = s > i then

distK(n,k,i)(A,B) = min

{

2

⌈

k − s

i+ r

⌉

, 2

⌈

s− i

i+ r

⌉

+ 1

}

.

Theorem 1.7 ([4]). If k and r are positive integers, i < k is a non negative integer and n = 2k−i+r

then diam(K(n, k, i)) =
⌈

k−i−1
i+r

⌉

+ 1.

Later, in [1], similar results were obtained for J(n, k, i), which are given in Theorems 1.8 and
1.9.

Theorem 1.8 ([1]). Let A and B be two vertices in J(n, k, i), where n > k > i are non negative
integers, n ≥ 2k and (n, k, i) 6= (2k, k, 0). If |A ∩B| = s then

distJ(n,k,i)(A,B) =















3 if s < min{i,−n+ 3k − 2i};
⌈

k−s
k−i

⌉

if −n+ 3k − 2i ≤ s < i;

min
{

2
⌈

k−s
n−2k+2i

⌉

, 2
⌈

s−i
n−2k+2i

⌉

+ 1
}

if s ≥ i.

Theorem 1.9 ([1]). If n > k > i are non negative integers, n ≥ 2k and (n, k, i) 6= (2k, k, 0) then

diam(J(n, k, i)) =















⌈

k−i−1
n−2k+2i

⌉

+ 1 if n < 3(k − i)− 1 or i = 0;

3 if 3(k − i)− 1 ≤ n < 3k − 2i and i 6= 0;
⌈

k
k−i

⌉

if n ≥ 3k − 2i and i 6= 0.
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In this paper, we are interested in exact distance-d Kneser graphs, K=d(2k + r, k), with k
and r positive integers. In Section 2 we prove the following theorem, which gives a complete
characterization of the adjacency relation on K=d(2k + r, k) in terms of the cardinality of the
intersection of its vertices, thus showing that they are another type of generalization of Kneser
graphs.

Theorem 1.10. Let k and r be positive integers with k ≥ 2 and 1 ≤ r < k − 1. Let D =
diam(K(2k + r, k)) and let 1 < d ≤ D be a fixed integer. Two vertices A and B in K=d(2k + r, k)
are adjacent if and only if

(i) Case d = 2p (with p ≥ 1).

1. k − rp ≤ |A ∩B| ≤ k − rp+ r − 1 when d < D or when r divides k − 1.

2. rp− r + 1 ≤ |A ∩B| ≤ k − rp+ r − 1 if d = D and r does not divide k − 1.

(ii) Case d = 2p+ 1 (with p ≥ 1).

1. rp− r + 1 ≤ |A ∩B| ≤ rp when d < D or when r divides k − 1.

2. rp− r + 1 ≤ |A ∩B| ≤ k − rp− 1 if d = D and r does not divide k − 1.

In order to avoid any confusion about the distance between two vertices in K(2k + r, k) and in
K=d(2k + r, k), we prefer to denote distK(A,B) instead of distK(2k+r,k)(A,B), and dist(K,d)(A,B)
instead of distK

=d(2k+r,k)(A,B), when the parameters of the Kneser graph and the exact distance-d
Kneser graph are clear from the context. In Section 3, we compute the distance between any two
vertices in K=d(2k + r, k), and we prove the two following theorems.

Theorem 1.11. Let A and B be two non adjacent vertices in K=2p(2k+ r, k). If |A∩B| = s then

dist(K,2p)(A,B) = max

{

2,

⌈

k − s

rp

⌉}

.

Theorem 1.12. Let A and B be two non adjacent vertices in K=2p+1(2k + r, k). If |A ∩ B| = s
then

dist(K,2p+1)(A,B) = min

{

1 + 2

⌈

|s− rp|

2rp+ r

⌉

, 2

⌈

k − s

2rp+ r

⌉}

.

Finally, in Section 4, we compute the diameter of graph K=d(2k+ r, k), and prove the following
theorem.

Theorem 1.13. Let k and r be positive integers with k ≥ 2 and 1 ≤ r < k − 1. Let D be the
diameter of the Kneser graph K(2k+ r, k) and let 1 < d ≤ D. The diameter of the exact distance-d
Kneser graph K=d(2k + r, k) is given by

diam(K=d(2k + r, k)) =















































































2 (i) if d = D, r ∤ k − 1;

(ii) if d = 2p + 1 = D, r | k − 1;

⌈

k
rp

⌉

(iii) if d = 2p < D;

(iv) if d = 2p = D, r | k − 1;

⌈

k+(r/2)
2rp+r

⌉

(v) if d = 2p+ 1 < D, 2 |
(

k − r
2

)

;

1 +
⌈

k+(r/2)−1
2rp+r

⌉

(vi) if d = 2p + 1 < D, 2 ∤
(

k − r
2

)

.
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2 Adjacency characterization

The aim of this section is to characterize the adjacency relation of vertices in K=d(2k + r, k) in
terms of the cardinality of their intersection.

For the remainder of this article we denote |A ∩B| = s, diam(K(2k + r, k)) = D and assume d
to be a fixed integer with 1 ≤ d ≤ D.

Notice first that, by Proposition 1.3, D = 2 when r ≥ k−1 and thus, in this case, there are only
two different distances: 1 and 2. As K=1(2k+ r, k) is isomorphic to K(2k+ r, k) and K=2(2k+ r, k)
is isomorphic to the complement of K(2k + r, k), we have the following remark.

Remark 2.1. Let k and r be positive integers with r ≥ k−1. Two vertices A and B in K=2(2k+r, k)
are adjacent if and only if 1 ≤ s ≤ k − 1.

The following remark is used in several proofs, including the ones in this section.

Remark 2.2. Let k and r be positive integers with k ≥ 2 and 1 ≤ r < k− 1, and let k− 1 = xr+ y
with x, y integers such that x > 0 and 0 ≤ y < r. By Theorem 1.5, D =

⌈

k−1
r

⌉

+ 1. Clearly, if r
divides k − 1 then y = 0 and D = x+ 1, otherwise D = x+ 2.

We split the proof of Theorem 1.10 in the following four lemmas.

Lemma 2.3. Let k and r be positive integers with k ≥ 2 and 1 ≤ r < k − 1, and let p ≥ 1, such
that 2p < D or r divides k − 1. Two vertices A and B in K=2p(2k + r, k) are adjacent if and only
if k − rp ≤ s ≤ k − rp+ r − 1.

Proof. Trivially, k−rp ≤ k−rp+r−1. Notice that if D = x+1 then x+1 ≥ 2p and so x ≥ 2p−1.
Otherwise, D = x+ 2 and x+ 2 > 2p which also implies that x ≥ 2p − 1.

Assume that s = k − rp + q with 0 ≤ q < r. Now, on the one hand, 2⌈k−s
r ⌉ = 2⌈ rp−q

r ⌉ =

2⌈p − q
r ⌉ = 2p. On the other hand, 2⌈ sr ⌉+ 1 = 2⌈k−rp+q

r ⌉+ 1. Replacing k by xr + y + 1, we have

that 2⌈ sr ⌉+1 = 2⌈x− p+ y+1+q
r ⌉+1 ≥ 2p+1, because x ≥ 2p− 1 and r > y, q ≥ 0. Therefore, by

Lemma 1.4, distK(A,B) = 2p, and A is adjacent to B in K=2p(2k + r, k).
Conversely, let distK(A,B) = 2p. On the one hand, suppose that s = k− rp− q with q > 0. As

distK(A,B) is even then by Lemma 1.4, it must be equal to 2⌈k−s
r ⌉ = 2⌈ rp+q

r ⌉ = 2⌈p+ q
r ⌉ ≥ 2(p+1).

On the other hand, if s = k− rp+ q with q ≥ r, then distK(A,B) = 2⌈k−s
r ⌉ = 2⌈p− q

r ⌉ ≤ 2(p− 1).
Either case contradicts the fact that distK(A,B) = 2p. Therefore k − rp ≤ s ≤ k − rp+ r − 1.

Lemma 2.4. Let k and r be positive integers with k ≥ 2, 1 ≤ r < k− 1 such that r does not divide
k − 1, and let 2p = D with p ≥ 1. Two vertices A and B in K=2p(2k + r, k) are adjacent if and
only if rp− r + 1 ≤ s ≤ k − rp+ r − 1.

Proof. Let k− 1 = xr+ y with 1 ≤ y < r, and notice x+2 = 2p. First, rp− r+1 ≤ k− rp+ r− 1.
In fact, k − 2rp + 2r − 2 = xr + y − 2rp + 2r − 1 = (2p − 2)r + y − 2rp + 2r − 1 = y − 1 ≥ 0.
Moreover, the integer interval [rp− r + 1, k − rp+ r − 1] is composed of y integers.

Assume first that s = k − rp + r − 1 − q with 0 ≤ q ≤ y − 1. Then we have to prove
that 2⌈k−s

r ⌉ ≤ 2⌈ sr ⌉ + 1. Notice that, 2⌈k−s
r ⌉ = 2⌈p − 1 + q+1

r ⌉ = 2p. Moreover, 2⌈ sr ⌉ + 1 =

2⌈k−rp+r−1−q
r ⌉+ 1 = 2⌈xr+y−rp+r−q

r ⌉+ 1 = 2⌈ (2p−2)r+y−rp+r−q
r ⌉+ 1 = 2⌈p− 1 + y−q

r ⌉+ 1 = 2p+ 1
because 0 < y−q

r < 1. Therefore, by Lemma 1.4, distK(A,B) = 2p, and A is adjacent to B in
K=2p(2k + r, k).

Conversely, let distK(A,B) = 2p. On the one hand assume that s = rp − r + 1 − q with
q ≥ 1. In this case, 2⌈ sr ⌉ + 1 < 2p. In fact, 2⌈ sr ⌉ + 1 = 2⌈ rp−r+1−q

r ⌉ + 1 = 2⌈p − 1 + 1−q
r ⌉ + 1 ≤

4



2(p − 1) + 1 = 2p − 1. On the other hand, assume that s = k − rp + r − 1 + q with q ≥ 1. Then
distK(A,B) = 2⌈k−s

r ⌉ = 2⌈ rp−r+1−q
r ⌉ = 2⌈p− 1 + 1−q

r ⌉ ≤ 2(p− 1). Either case contradicts the fact
that distK(A,B) = 2p. Therefore rp− r + 1 ≤ s ≤ k − rp+ r − 1.

Lemma 2.5. Let k and r be positive integers with k ≥ 2 and 1 ≤ r < k − 1, and let p ≥ 1, such
that 2p+1 < D or r divides k− 1. Two vertices A and B in K=2p+1(2k+ r, k) are adjacent if and
only if rp− r + 1 ≤ s ≤ rp.

Proof. Trivially, rp− r + 1 ≤ rp, also by Remark 2.2, we have that x ≥ 2p. Assume that s = rp−
r+1+q with 0 ≤ q < r. On the one hand, 2⌈k−s

r ⌉ = 2⌈xr+y−rp+r−q
r ⌉ = 2⌈x−p+1+ y−q

r ⌉ ≥ 2(p+1)

because −1 < y−q
r < 1. On the other hand, 2⌈ sr ⌉+1 = 2⌈ rp−r+1+q

r ⌉+1 = 2⌈p−1+ 1+q
r ⌉+1 = 2p+1.

Therefore, by Lemma 1.4, distK(A,B) = 2p+ 1, and A is adjacent to B in K=2p+1(2k + r, k).
Conversely, let distK(A,B) = 2p + 1. On the one hand, suppose that s = rp − r + 1 − q with

q > 0. As distK(A,B) is odd then by Lemma 1.4, it must be equal to 2⌈ sr ⌉+1 = 2⌈ rp−r+1−q
r ⌉+1 =

2⌈p − 1 + 1−q
r ⌉+ 1 ≤ 2(p − 1) + 1. On the other hand, suppose that s = rp+ q with q > 0. Thus,

distK(A,B) = 2⌈ rp+q
r ⌉ + 1 = 2⌈p + q

r ⌉ + 1 ≥ 2(p + 1) + 1. Either case contradicts the fact that
distK(A,B) = 2p+ 1. Therefore rp− r + 1 ≤ s ≤ rp.

Lemma 2.6. Let k and r be positive integers with k ≥ 2, 1 ≤ r < k− 1 such that r does not divide
k − 1, and let 2p + 1 = D with p ≥ 1. Two vertices A and B in K=2p+1(2k + r, k) are adjacent if
and only if rp− r + 1 ≤ s ≤ k − rp− 1.

Proof. Let k− 1 = xr+ y with 1 ≤ y < r and notice x+2 = 2p+1. First, rp− r+1 ≤ k− rp− 1.
In fact, k− 2rp+ r− 2 = xr+ y− 2rp+ r− 1 = (2p− 1)r+ y− 2rp+ r− 1 = y− 1 ≥ 0. Moreover,
the integer interval [rp− r + 1, k − rp− 1] is composed of y integers.

Assume first that s = rp − r + 1 + q with 0 ≤ q ≤ y − 1. Then we must prove that 2⌈k−s
r ⌉ ≥

2⌈ sr ⌉ + 1. Notice that, 2⌈k−s
r ⌉ = 2⌈xr+y−rp+r−q

r ⌉ = 2⌈x − p + 1 + y−q
r ⌉ = 2⌈p + y−q

r ⌉ = 2(p + 1),

because 0 < y−q
r < 1. Moreover, 2⌈ sr ⌉ + 1 = 2⌈ rp−r+1+q

r ⌉ + 1 = 2⌈p − 1 + q+1
r ⌉ + 1 = 2p + 1

because 0 < q+1
r < 1. Therefore, by Lemma 1.4, distK(A,B) = 2p + 1, and A is adjacent to B in

K=2p+1(2k + r, k).
Conversely, let distK(A,B) = 2p + 1. On the one hand assume that s = rp − r + 1 − q with

q ≥ 1. As distK(A,B) is odd then by Lemma 1.4, distK(A,B) = 2⌈ sr ⌉ + 1 = 2⌈ rp−r+1−q
r ⌉ + 1 =

2⌈p − 1 + 1−q
r ⌉ + 1 = 2(p − 1) + 1 because −1 < 1−q

r ≤ 0. On the other hand, assume that

s = k−rp−1+q with q ≥ 1. Then 2⌈k−s
r ⌉ < 2p+1. In fact, 2⌈k−s

r ⌉ = 2⌈ rp+1−q
r ⌉ = 2⌈p+ 1−q

r ⌉ = 2p

because −1 < 1−q
r ≤ 0. Either case contradicts the fact that distK(A,B) = 2p + 1. Therefore

rp− r + 1 ≤ s ≤ k − rp− 1.

As a direct consequence of Theorem 1.10 we have the following result for r = 1.

Corollary 2.7. Let k be positive integer with k ≥ 2 and 1 < d ≤ k be a fixed integer. Two vertices
A and B in K=d(2k + 1, k) are adjacent if and only if

s =

{

k − d
2 if d is even;

d−1
2 if d is odd.

3 Computing the distance function

In this section, we compute the distance function of two non adjacent vertices in the exact distance-
d Kneser graph K=d(2k + r, k), where k, r and d are positive integers, with r < k − 1. We assume

5



d ≥ 2, as the exact distance-1 Kneser graph is exactly the original Kneser graph whose distance
function was computed in [14]. By Remark 2.1, we obtain the following.

Remark 3.1. Let k and r be positive integers with r ≥ k − 1. If A and B are two non-adjacent
vertices in K=2(2k + r, k) then dist(K,2)(A,B) = 2.

Let A and B be two vertices inK=d(2k+r, k). We denote by C the set A∩B and we denote by Z
the set [2k+ r] \C. Notice that |C| = s and |Z| = r+ s. Thus, in this section, we use the following
notation for sets A,B,C and Z: A = {c1, . . . , cs, a1, . . . , ak−s}, B = {c1, . . . , cs, b1, . . . , bk−s},
C = {c1, . . . , cs}, and Z = {z1, . . . , zr+s}.

3.1 Case d = 2p

The proof of Theorem 1.11 follows from Lemmas 3.2, 3.3, 3.4, 3.6 and Corollary 3.5 given below.

Lemma 3.2. Let 2p = D and r does not divide k−1. If A and B are two vertices in K=2p(2k+r, k)
which are not adjacent, then dist(K,2p)(A,B) = 2.

Proof. As vertices A and B are not adjacent then dist(K,2p)(A,B) ≥ 2. Moreover, by Theorem 1.10
(Case (i).2), s ≤ rp− r or s ≥ k − rp+ r.

(i) Let 0 ≤ s ≤ rp − r. As rp − r + 1 ≤ k, rp ≥ r − 1 and k − rp + r − 1 − s ≥ 0, we have the
following vertex X in K=2p(2k + r, k):

X = {c1, . . . , cs, a1, . . . , arp−r+1−s, b1, . . . , bk−rp+r−1−s, z1, . . . , zs}.

Clearly, |A ∩X| = rp − r + 1 and |B ∩X| = k − rp + r − 1. Thus, by Theorem 1.10 (Case
(i).2), X is adjacent to A and to B in K=2p(2k + r, k). Therefore, dist(K,2p)(A,B) ≤ 2.

(ii) Let k− rp+ r ≤ s ≤ k− 1. As rp− r+1 ≤ k− rp+ r− 1 and |Z| = s+ r > s ≥ k− rp+ r ≥
rp− r + 2 > rp− r + 1, we have the following vertex X in K=2p(2k + r, k):

X = {c1, . . . , ck−rp+r−1, z1, . . . , zrp−r+1}.

Clearly, |A∩X| = |B∩X| = k−rp+r−1. Thus, by Theorem 1.10 (Case (i).2), X is adjacent
to A and to B in K=2p(2k + r, k). Therefore, dist(K,2p)(A,B) ≤ 2.

Lemma 3.3. Let 2p < D or r divides k− 1. Let A and B be two vertices in K=2p(2k+ r, k) which
are not adjacent. If s ≥ k − rp + r then dist(K,2p)(A,B) = 2. Otherwise, if 0 ≤ s < k − rp then

dist(K,2p)(A,B) ≤ ⌈k−s
rp ⌉.

Proof. By Theorem 1.10 (Case (i).1), two vertices A and B are adjacent if and only if k− rp ≤ s ≤
k− rp+ r− 1. If s ≥ k− rp+ r then as in the proof of Lemma 3.2 (Case (ii)), dist(K,2p)(A,B) = 2.
Thus, assume that 0 ≤ s ≤ k − rp − 1. Let k − rp − s = trp+ q, with t ≥ 0 and 0 ≤ q < rp. We
split the proof in two cases, either t = 0, or t > 0.

• t = 0. In this case, k− rp− s < rp, which implies k− s < 2rp and therefore, 2rp+ s− k > 0.
In order to prove that 2rp + s − k ≤ r + s, it suffices to prove that k ≥ 2rp− r. Recall that
k − 1 = xr + y with x ≥ 1 and 0 ≤ y ≤ r − 1.

– Assume r divides k−1. In this case D = x+1. So, if x+1 ≥ 2p then k ≥ (2p−1)r+1 >
2pr − r.

6



– Assume r does not divide k − 1. In this case, D = x + 2. By theorem hypothesis,
x+ 2 > 2p and so, k ≥ (2p− 1)r + y + 1 > 2pr − r because y + 1 ≥ 2.

Now we have the following vertex X in K=2p(2k + r, k):

X = {c1, . . . , cs, a1, . . . , ak−rp−s, b1, . . . , bk−rp−s, z1, . . . , z2rp+s−k}.

Clearly, |X ∩A| = |X ∩B| = k − rp and thus, X is adjacent to both A and B.

• t > 0. Let A = X0 and for 1 ≤ i ≤ t, consider the following vertices in K=2p(2k + r, k):

Xi = {c1, . . . , cs, a1, . . . , ak−irp−s, b1, . . . , birp}.

Notice that |Xi ∩Xi+1| = s+ (irp) + (k − (i+ 1)rp− s) = k − rp and thus Xi is adjacent to
Xi+1 for 0 ≤ i < t. Moreover, Xi is not adjacent to Xj , for j > i + 1 or j < i − 1 because
|Xi ∩Xj | < k − rp. Now, we consider two cases:

– rp divides k − rp− s.
In this case, Xt = {c1, . . . , cs, a1, . . . , arp, b1, . . . , bk−rp−s}. Thus, |Xt∩B| = k−rp which
implies that Xt and B are adjacent. Hence, dist(K,2p)(A,B) ≤ t+ 1.

– rp does not divide k − rp− s.
In this case, Xt = {c1, . . . , cs, a1, . . . , arp+q, b1, . . . , bk−rp−s−q}. Thus, |Xt∩B| = k−rp−
q < k − rp because q > 0, which implies that Xt and B are not adjacent.

Let’s prove that k − s − trp + rp − q ≤ k − s. As t, q > 0 then rp ≤ trp + q and so
k − s+ rp− (trp+ q) ≤ k − s. Now we have the following vertex:

Xt+1 = {c1, . . . , cs, a1, . . . , aq, ak−s−trp+1, . . . , ak−s−trp+rp−q,

b1, . . . , btrp+q}.

Notice that |Xt ∩Xt+1| = s+ trp+ q = k − rp = |Xt+1 ∩B| and thus, Xt+1 is adjacent
to both Xt and B. Finally, for this case, we obtain dist(K,2p)(A,B) ≤ t+ 2.

Therefore, dist(K,2p)(A,B) ≤ ⌈k−rp−s
rp ⌉+ 1 = ⌈k−s

rp ⌉.

In order to obtain a lower bound for the distance function when d is even and, d < D or r
divides k − 1, we need the following results.

Lemma 3.4. Let d < D or r divides k − 1. Let A and B be two vertices in K=2p(2k + r, k). If
there is a path of length ℓ from A to B, then s ≥ k − ℓrp.

Proof. The proof follows by induction. For the base case, if there is a path of length 1, then
s ≥ k − rp by Theorem 1.10.

Assume there is a path of length ℓ from A to B, and let X be the vertex adjacent to B in
such path. As there is a path of length (ℓ− 1) from A to X, by the inductive hypothesis, we have
|A ∩X| ≥ k − (ℓ− 1)rp. On the other hand, as B and X are adjacent, we have |X ∩B| ≥ k − rp.
Then

s = |A ∩B| ≥|A ∩B ∩X|

≥|A ∩X| − |X ∩B|

=|A ∩X| − |X| + |X ∩B|

≥k − (ℓ− 1)rp− k + k − rp

=k − ℓrp.

Thus, the result follows by induction.
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Corollary 3.5. Let d < D or r divides k − 1. If A and B are two vertices in K=d(2k + r, k) then
dist(K,2p)(A,B) ≥ k−s

rp .

Proof. There is a path of length dist(K,2p)(A,B) from A to B. Thus, applying Lemma 3.4 with
ℓ = dist(K,2p)(A,B) yields,

|A ∩B| ≥ k − dist(K,2p)(A,B)rp.

Solving for dist(K,2p)(A,B) we get

dist(K,2p)(A,B) ≥
k − |A ∩B|

rp
.

Thus, the result follows.

Lemma 3.6. Let d < D or r divides k − 1. Let A and B be two vertices in K=d(2k + r, k) which
are not adjacent. If 0 ≤ s < k − rp then dist(K,2p)(A,B) = ⌈k−s

rp ⌉.

Proof. The result follows from Lemma 3.3 and Corollary 3.5.

To complete the proof of Theorem 1.11, we must show that
⌈

k−|A∩B|
rp

⌉

≤ 2 whenever dist(K,2p)(A,B) =

2. This is split in two cases. Namely, the case when |A∩B| ≥ k− rp+ r and the case when d = D.
First, when |A ∩B| ≥ k − rp+ r, we have

k − |A ∩B|

rp
≤
rp− r

rp

≤1.

Thus,
⌈

k−|A∩B|
rp

⌉

≤ 1 < 2.

When d = D we have

p =
D

2
=

1

2

(⌈

k − 1

r

⌉

+ 1

)

.

Thus,

k − |A ∩B|

rp
=2

(

k − |A ∩B|

r
⌈

k−1
r

⌉

+ r

)

≤2

(

k

r
(

k−1
r

)

+ r

)

≤2

(

k

k

)

=2.

Similarly, this implies
⌈

k−|A∩B|
rp

⌉

≤ 2.

3.2 Case d = 2p+ 1

The proof of Theorem 1.12 follows from Lemmas 3.7, 3.8, 3.11 and 3.12, and Corollary 3.10 given
below.

Lemma 3.7. Let A and B be two vertices in K=2p+1(2k+r, k) which are not adjacent. If 2p+1 = D
and r does not divide k − 1, then dist(K,2p+1)(A,B) = 2.
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Proof. As vertices A and B are not adjacent, dist(K,2p+1)(A,B) ≥ 2. Moreover, by Theorem 1.10
(Case (ii).2), |A∩B| ≤ rp− r or |A∩B| ≥ k− rp. As r does not divide k− 1 then k− 1 = xr+ y,
with 0 < y < r and D = x+ 2. So, in this case, x+ 2 = 2p+ 1 which implies that x = 2p− 1 and
therefore, k = 2rp− r + y + 1.

(i) Case 0 ≤ |A ∩B| ≤ rp− r. As r, y > 0, s ≤ rp− r, and k − rp− 1− s ≥ rp− r + y − s ≥ y,
the quantities rp− r+ 1− s and k− rp− 1− s are both positive. Thus, we can consider the
vertex X in K=2p+1(2k + r, k):

X = {a1, . . . , arp−r+1−s, b1, . . . , bk−rp−1−s, z1, . . . , zs+r} ∪C.

Clearly, |A∩X| = rp− r+1 and |B ∩X| = k− rp−1. Hence, by Theorem 1.10 (Case (ii).2),
X is adjacent to A and to B in K=2p+1(2k + r, k). Therefore, dist(K,2p+1)(A,B) ≤ 2.

(ii) Case k − rp ≤ |A ∩ B| ≤ k − 1. As k = 2rp − r + y + 1, we have 0 < k − rp − 1 < s and
s+ r > rp+ 1. Thus, we can consider the following vertex X in K=2p+1(2k + r, k):

X = {c1, . . . , ck−rp−1, z1, . . . , zrp+1}.

Clearly, |A∩X| = |B ∩X| = k− rp− 1. Hence, by Theorem 1.10 (Case (ii).2), X is adjacent
to A and to B in K=2p+1(2k + r, k). Therefore, dist(K,2p+1)(A,B) ≤ 2.

Lemma 3.8. Let A and B be two vertices in K=2p+1(2k+r, k) which are not adjacent. If 2p+1 = D
and r divides k − 1, then dist(K,2p+1)(A,B) = 2.

Proof. As vertices A and B are not adjacent then dist(K,2p+1)(A,B) ≥ 2. Moreover, by Theorem
1.10 (Case (ii).1), s ≤ rp−r or s ≥ rp+1. Recall that in this case, D = x+1 and thus k = 2rp+1.

(i) Case 0 ≤ s ≤ rp− r. This case is similar to the Case (i) in Lemma 3.7.

(ii) Case rp + 1 ≤ s ≤ k − 1. Notice that k − rp = rp + 1 < s + r. Thus, we can consider the
following vertex X in K=2p+1(2k + r, k):

X = {c1, . . . , crp, z1, . . . , zk−rp}.

Clearly, |A ∩X| = |B ∩X| = rp. Hence, by Theorem 1.10 (Case (ii).1), X is adjacent to A
and to B in K=2p+1(2k + r, k). Therefore, dist(K,2p+1)(A,B) ≤ 2.

Lemma 3.9. Let d < D and let A and B be two vertices in K=d(2k + r, k). If s ≤ rp− r, then

dist(K,2p+1)(A,B) =

{

2 if s ≥ k − 2rp− r;

3 if s < k − 2rp− r.

Proof. (i) Case s ≥ k − 2rp − r. As s ≤ rp − r, by Theorem 1.10, A and B are not adjacent.
Thus, for this case it is enough to show that dist(K,2p+1)(A,B) ≤ 2. Notice that the set

X = {a1, . . . , arp, b1, . . . , brp, z1, . . . , zk−2rp}

is a vertex in K=2p+1(2k+r, k) because k > 2rp when d < D. Clearly, |A∩X| = |X∩B| = rp
and, by Theorem 1.10 (Case (ii).1), X is adjacent to A and to B in K=2p+1(2k + r + k).
Therefore, dist(K,2p+1)(A,B) = 2.
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(ii) Case s < k − 2rp − r. The proof of this case is split in two parts. First we show that
dist(K,2p+1)(A,B) ≤ 3. As rp− r+1− s > 0 because s ≤ rp− r we can consider the following
vertices X1,X2 in K=2p+1(2k + r, k):

X1 = {c1, . . . , cs, a1, . . . , arp−r+1−s, b1, . . . , bk−rp+r−1},

X2 = {c1, . . . , cs, arp−r+1−s+1, . . . , ak−s, b1, . . . , brp−r+1−s}.

Notice that |X1 ∩ X2| = |A ∩X1| = |X2 ∩ B| = rp − r + 1. Thus, by Theorem 1.10, X1 is
adjacent to A and to X2, and B is adjacent to X2. Hence, dist(K,2p+1)(A,B) ≤ 3.

To complete the proof, we need to show that no vertex Y can be adjacent to both A and
B. As |A ∩ B| < k − r − 2rp, we have |Z| = r + s < k − 2rp. Thus, if |Y | = k, then
|Y ∩ (A ∪ B)| ≥ |Y | − |Z| ≥ 2rp + 1. This implies that max{|Y ∩ A|, |Y ∩ B|} ≥ rp + 1.
Hence, by Theorem 1.10, Y cannot be simultaneously adjacent to A and to B. Therefore,
dist(K,2p+1)(A,B) ≥ 3.

Corollary 3.10. Let A and B be two vertices in K=d(2k + r, k). If d = D or s ≤ rp− r, then

dist(K,2p+1)(A,B) = min

{

1 + 2

⌈

|s− rp|

2rp+ r

⌉

, 2

⌈

k − s

2rp+ r

⌉}

.

Proof. Let m = min
{

1 + 2
⌈

|s−rp|
2rp+r

⌉

, 2
⌈

k−s
2rp+r

⌉}

. By Lemma 3.9, we need to show that

m =











2 (i) if d = D,

(ii) if d < D, k − 2rp− r ≤ s ≤ rp− r;

3 if d < D, s ≤ rp− r, and s < k − 2rp− r.

Notice that s 6∈ {rp, k}, as A and B are not adjacent and A 6= B. This implies that

1 + 2

⌈

|s− rp|

2rp+ r

⌉

≥ 3,

and that

2

⌈

k − s

2rp+ r

⌉

≥ 2.

Thus, in order to prove that m = 2, it suffices to show that
⌈

k−s
2rp+r

⌉

≤ 1.

When d = D, we have 2p+ 1 =
⌈

k−1
r

⌉

+ 1. Then

p =
1

2

⌈

k − 1

r

⌉

≥
k − 1

2r
.

Thus,

⌈

k − s

2rp+ r

⌉

≤

⌈

k

k − 1 + r

⌉

=1.
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When d < D and k − 2rp− r ≤ s ≤ rp− r,
⌈

k − s

2rp+ r

⌉

≤

⌈

k − k + 2rp+ r

2rp+ r

⌉

=1.

Thus, in these cases m = 2.
Assume now that d < D, s < k − 2rp− r and s ≤ rp− r. Notice that

k − s

2rp+ r
≥
k − k + 2rp+ r + 1

2rp+ r

=1 +
1

2rp+ r
.

Thus,

2

⌈

k − s

2rp+ r

⌉

≥2

⌈

1 +
1

2rp+ r

⌉

=2 · 2

=4.

But, as s ≤ rp− r,

1 + 2

⌈

|s− rp|

2rp+ r

⌉

=1 + 2

⌈

rp− s

2rp+ r

⌉

≤1 + 2

⌈

rp

2rp+ r

⌉

≤1 + 2

=3.

Therefore, in this case, m = 3.

For the remaining cases, we first show the existence of a path of a certain length between A
and B to give a lower bound for |A ∩B|. Then, we use this bound to find the actual distance.

Lemma 3.11. Let d < D. If there is a path of length 2ℓ from A to B, then |A∩B| ≥ k−2ℓrp− rℓ.
If there is a path of length 2ℓ+ 1 from A to B, then |A ∩B| ≤ (2ℓ+ 1)rp+ rℓ.

Proof. The proof follows by induction. For the base case, when ℓ = 0, if there is a path of length
1 = 2 · 0 + 1, then |A ∩B| ≤ (2ℓ+ 1)rp+ rℓ by Theorem 1.10.

Assume there is a path of length 2ℓ from A to B, and let X be the vertex adjacent to B in such
path. As there is a path of length 2(ℓ− 1) + 1 from A to X, by the inductive hypothesis, we have

|A ∩X| ≤[2(ℓ− 1) + 1]rp+ r(ℓ− 1)

=(2ℓ− 1)rp + r(ℓ− 1).

Thus, we have an upper bound for the size of the complement of A ∪X,

|A ∪X| =2k + r − |A| − |X| + |A ∩X|

≤2k + r − k − k + (2ℓ− 1)rp+ r(ℓ− 1)

=(2ℓ− 1)rp+ rℓ.
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On the other hand, as B and X are adjacent, by Theorem 1.10 we have

rp− r + 1 ≤ |B ∩X| ≤ rp.

Hence,

|B ∩A| =|B ∩ (A ∪X)|+ |B ∩A ∩X|

≤|A ∪X |+ |B ∩X|

≤(2ℓ− 1)rp+ rℓ+ rp

=2ℓrp+ rℓ.

Thus,

|B ∩A| =k − |B ∩ A|

≥k − 2ℓrp− rℓ.

Which proves the even case.
For the odd case, assume there is a path of length 2ℓ + 1 from A to B, and let X be the

vertex adjacent to B in such path. As there is a path of length 2ℓ from A to X, by the inductive
hypothesis, we have

|A ∩X| ≥k − 2ℓrp− rℓ.

Thus, we have an upper bound for the size of A ∩X,

|A ∩X | ≤k − (k − 2ℓrp− rℓ)

=2ℓrp+ rℓ.

On the other hand, as B and X are adjacent, by Theorem 1.10 we have

rp− r + 1 ≤ |B ∩X| ≤ rp.

Hence

|A ∩B| =|A ∩B ∩X |+ |A ∩B ∩X|

≤|A ∩X|+ |B ∩X|

≤2ℓrp+ rℓ+ rp

=(2ℓ+ 1)rp+ rℓ.

Therefore, the result follows by induction.

By Lemma 3.11, if s ≥ rp+ 1, then dist(K,2p+1)(A,B) is given by

min ({2ℓ+ 1 | (2ℓ+ 1)rp+ rℓ ≥ s} ∪ {2ℓ | k − 2ℓrp− rℓ ≤ s}) .

Assume d = min{ℓ | (2ℓ+ 1)rp+ rℓ ≥ s}. Then

(2(d − 1) + 1)rp+ r(d− 1) < s ≤ (2d+ 1)rp + rd.
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Which yields

s− rp

2rp+ r
≤ d <

s+ rp+ r

2rp+ r
.

But, as d is an integer,

⌈

s− rp

2rp+ r

⌉

≤ d <

⌈

s+ rp+ r

2rp+ r

⌉

⌈

s− rp

2rp+ r

⌉

≤ d <

⌈

s− rp+ 2rp+ r

2rp+ r

⌉

⌈

s− rp

2rp+ r

⌉

≤ d <

⌈

s− rp

2rp+ r
+ 1

⌉

⌈

s− rp

2rp+ r

⌉

≤ d <

⌈

s− rp

2rp+ r

⌉

+ 1.

Which implies, d =
⌈

s−rp
2rp+r

⌉

, and 2d+ 1 = 2
⌈

s−rp
2rp+r

⌉

+ 1.

Similarly, if d = min{ℓ | k − 2ℓrp− rℓ ≤ s}, we have

k − 2drp− rd ≤ s < k − 2(d− 1)rp− r(d− 1),

which, solving for d, implies

k − s

2rp+ r
≤ d <

k − s

2rp+ r
+ 1.

Thus, d =
⌈

k−s
2rp+r

⌉

, and 2d = 2
⌈

k−s
2rp+r

⌉

. Hence, the distance between A and B is

dist(K,2p+1)(A,B) = min

{

1 + 2

⌈

s− rp

2rp+ r

⌉

, 2

⌈

k − s

2rp+ r

⌉}

.

Therefore, we obtain the following result.

Lemma 3.12. Let d < D and let A and B be two vertices in K=d(2k+ r, k). Let s ≥ rp+1. Then

dist(K,2p+1)(A,B) = min
{

1 + 2
⌈

s−rp
2rp+r

⌉

, 2
⌈

k−s
2rp+r

⌉}

.

Proof. The result follows from the preceding discussion.

4 Computing the diameter

Notice first that, by Remark 3.1, we have the following result.

Remark 4.1. If k and r are positive integers with k ≥ 2 and r ≥ k−1, then, diam(K=2(2k+r, k)) =
2.

We can now proceed with the proof of Theorem 1.13.
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Theorem 1.13. Let k and r be positive integers with k ≥ 2 and 1 ≤ r < k − 1. Let D be the
diameter of the Kneser graph K(2k+ r, k) and let 1 < d ≤ D. The diameter of the exact distance-d
Kneser graph K=d(2k + r, k) is given by

diam(K=d(2k + r, k)) =















































































2 (i) if d = D, r ∤ k − 1;

(ii) if d = 2p+ 1 = D, r | k − 1;

⌈

k
rp

⌉

(iii) if d = 2p < D;

(iv) if d = 2p = D, r | k − 1;

⌈

k+(r/2)
2rp+r

⌉

(v) if d = 2p + 1 < D, 2 | k − (r/2);

1 +
⌈

k+(r/2)−1
2rp+r

⌉

(vi) if d = 2p+ 1 < D, 2 ∤ k − (r/2).

Proof. Cases (i) and (ii) follow from Lemma 3.2, 3.7, and 3.8. Cases (iii) and (iv) follow from
Lemma 3.6 by having A ∩B = ∅.

For case (v), assume d = 2p+ 1 < D. By Lemma 3.12 we have

diam(K=d(2k + r, k)) = max
s

min

{

1 + 2

⌈

s− rp

2rp+ r

⌉

, 2

⌈

k − s

2rp+ r

⌉}

.

Let A and B be two vertices in K=d(2k + r, k), and notice

dist(K,d)(A,B) ≤ 1 + 2

⌈

s− rp

2rp+ r

⌉

< 3 + 2

(

s− rp

2rp+ r

)

and

dist(K,d)(A,B) ≤ 2

⌈

k − s

2rp+ r

⌉

< 2 + 2

(

k − s

2rp+ r

)

.

We find the value of s that maximizes the distance by doing

3 + 2

(

s− rp

2rp+ r

)

=2 + 2

(

k − s

2rp+ r

)

2s =k + rp−
2rp+ r

2

s =
k − (r/2)

2
.

In the case when k−(r/2)
2 is an integer, it is a valid value to take for s. In such a case diam(K=d(2k+

r, k)) is given by

min

{

1 + 2

⌈

(k − (r/2))/2 − rp

2rp+ r

⌉

, 2

⌈

k − (k − (r/2))/2

2rp+ r

⌉}

.
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Letting k = (4rp+ 2r)a+ b, with 0 ≤ b < 4rp+ 2r

2

⌈

k − (k − (r/2))/2

2rp+ r

⌉

=2

⌈

(k + (r/2))/2

2rp+ r

⌉

=2a+ 2

⌈

b+ (r/2)

4rp+ 2r

⌉

=

{

2a+ 2 if b ≤ 4rp+ r + (r/2)

2a+ 4 if b > 4rp+ r + (r/2),

and

1 + 2

⌈

(k − (r/2))/2 − rp

2rp+ r

⌉

= 1 + 2

⌈

k − (r/2)− 2rp

4rp+ 2r

⌉

= 1 + 2(a− 1) + 2

⌈

4rp+ 2r + b− (r/2) − 2rp

4rp+ 2r

⌉

= 1 + 2(a− 1) + 2

⌈

2rp+ b+ (3r/2)

4rp+ 2r

⌉

=

{

2a+ 1 if b ≤ 2rp+ (r/2)

2a+ 3 if b > 2rp+ (r/2).

Thus, when k−(r/2)
2 is an integer, we have

diam(K=d(2k + r, k)) = 2a+











1 if b ≤ 2rp+ ⌊(r/2)⌋

2 if 2rp+ ⌊(r/2)⌋ < b ≤ 4rp+ r + ⌊(r/2)⌋

3 if 4rp+ r + ⌊(r/2)⌋ < b.

Notice that in this case
⌈

k + (r/2)

2rp+ r

⌉

=

⌈

2a(2rp + r) + b+ (r/2)

2rp+ r

⌉

=2a+

⌈

b+ (r/2)

2rp+ r

⌉

=2a+











1 if b ≤ 2rp+ ⌊(r/2)⌋

2 if 2rp+ ⌊(r/2)⌋ < b ≤ 4rp+ r + ⌊(r/2)⌋

3 if 4rp+ r + ⌊(r/2)⌋ < b.

Thus, when 2p+ 1 = d < D and k−(r/2)
2 is an integer,

diam(K=d(2k + r, k)) =

⌈

k + (r/2)

2rp+ r

⌉

.

For case (vi), when k−(r/2)
2 is not an integer, notice that 1 + 2

⌈

s−rp
2rp+r

⌉

and 2
⌈

k−s
2rp+r

⌉

are a

non-decreasing and a non-increasing function of s, respectively. Thus, for 1+2
⌈

s−rp
2rp+r

⌉

we consider

the value s = k−(r/2)−1
2 and for 2

⌈

k−s
2rp+r

⌉

the value s = k−(r/2)+1
2 . As the diameter is the maximum
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of the distances, in this case diam(K=d(2k + r, k)) is given by

max

{

1 + 2

⌈

(k − (r/2) − 1)/2 − rp

2rp+ r

⌉

, 2

⌈

k − (k − (r/2) + 1)/2

2rp+ r

⌉}

.

Letting k = (4rp + 2r)a+ 2b + ξ, with 0 ≤ 2b + ξ < 4rp + 2r and 0 ≤ ξ ≤ 1 and r = 4q + 2t+ ζ,
with 0 ≤ t, ζ ≤ 1 and q = ⌊ r4⌋, we have

⌈

(k − (r/2)− 1)/2 − rp

2rp+ r

⌉

=

⌈

(2rp + r)a+ b− q − rp+ (ξ − t− (ζ/2)− 1)/2

2rp+ r

⌉

=(a− 1) +

⌈

b+ 2rp+ 4q + 2t+ ζ − q − rp+ (ξ − t− (ζ/2)− 1)/2

2rp+ r

⌉

=(a− 1) +

⌈

b+ rp+ 3q + 2t+ ζ + (ξ − t− (ζ/2)− 1)/2

2rp+ r

⌉

.

Thus,

1 + 2

⌈

(k − (r/2)− 1)/2 − rp

2rp+ r

⌉

=1 + 2(a− 1) + 2

⌈

b+ rp+ 3q + 2t+ ζ + (ξ − t− (ζ/2) − 1)/2

2rp+ r

⌉

=

{

2a+ 1 if b ≤ rp+ q − (ξ − t− (ζ/2)− 1)/2

2a+ 3 if b > rp+ q − (ξ − t− (ζ/2)− 1)/2

and

2

⌈

k − (k − (r/2) + 1)/2

2rp+ r

⌉

=2

⌈

(4rp+ 2r)a+ 2b+ ξ − ((4rp + 2r)a+ 2b+ ξ − 2q − t− (ζ/2) + 1)/2

2rp+ r

⌉

=2

⌈

(2rp+ r)a+ b+ ξ + q − (ξ − t− (ζ/2) + 1)/2

2rp+ r

⌉

=2a+ 2

⌈

b+ q + (ξ + t+ (ζ/2)− 1)/2

2rp+ r

⌉

=

{

2a+ 2 if b ≤ 2rp+ 3q + 2t+ ζ − (ξ + t+ (ζ/2)− 1)/2

2a+ 4 if b > 2rp+ 3q + 2t+ ζ − (ξ + t+ (ζ/2)− 1)/2.

Thus,

diam(K=d(2k + r, k)) =











2a+ 2 if b ≤ rp+ q − ξ
2 +

t
2 + ζ

4 +
1
2

2a+ 3 if rp+ q − ξ
2 +

t
2 +

ζ
4 + 1

2 < b ≤ 2rp+ 3q + 2t− ξ
2 − t

2 +
3ζ
4 + 1

2

2a+ 4 if b > 2rp+ 3q + 2t− ξ
2 − t

2 +
3ζ
4 + 1

2 .
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But notice that

1 +

⌈

k + (r/2)− 1

2rp+ r

⌉

=1 +

⌈

(2rp+ r)2a+ 2b+ ξ + 2q + t+ (ζ/2)− 1

2rp+ r

⌉

=1 + 2a+

⌈

2b+ ξ + 2q + t+ (ζ/2)− 1

2rp+ r

⌉

=2a+











2 if 2b ≤ 2rp+ 2q + t+ (ζ/2)− ξ + 1

3 if 2rp+ 2q + t+ (ζ/2)− ξ + 1 < 2b ≤ 4rp+ 6q + 3t+ 3(ζ/2) − ξ + 1

4 if 2b > 4rp+ 6q + 3t+ 3(ζ/2) − ξ + 1

=2a+























2 if b ≤ rp+ q − ξ
2 + t

2 +
ζ
4 + 1

2

3 if rp+ q − ξ
2 +

t
2 + ζ

4 +
1
2 < b

and b ≤ 2rp+ 3q + 2t− ξ
2 −

t
2 + 3ζ

4 + 1
2

4 if b > 2rp+ 3q + 2t− ξ
2 − t

2 +
3ζ
4 + 1

2 .

Thus, in this case,

diam(K=d(2k + r, k)) = 1 +

⌈

k + (r/2)− 1

2rp+ r

⌉

.
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